
Inhomogeneous condensation in the Gross-Neveu model in noninteger spatial
dimensions 1 ≤ d < 3

Laurin Pannullo∗
Institut für Theoretische Physik, Goethe-Universität Frankfurt am Main,

Max-von-Laue-Straße 1, D-60438 Frankfurt am Main, Germany.
(Dated: August 8, 2023)

The Gross-Neveu model in the N → ∞ limit in d = 1 spatial dimensions exhibits a chiral
inhomogeneous phase (IP), where the chiral condensate has a spatial dependence that spontaneously
breaks translational invariance and the Z2 chiral symmetry. This phase is absent in d = 2, while
in d = 3 its existence and extent strongly depends on the regularization and the value of the finite
regulator. This work connects these three results smoothly by extending the analysis to noninteger
spatial dimensions 1 ≤ d < 3, where the model is fully renormalizable. To this end, we adapt the
stability analysis, which probes the stability of the homogeneous ground state under inhomogeneous
perturbations, to noninteger spatial dimensions. We find that the IP is present for all d < 2 and
vanishes exactly at d = 2. Moreover, we find no instability towards an IP for 2 ≤ d < 3, which
suggests that the IP in d = 3 is solely generated by the presence of a regulator.

Keywords: Gross-Neveu model, inhomogeneous phases, moat regime, stability analysis, noninteger spatial
dimensions, mean-field

I. INTRODUCTION

A chiral inhomogeneous phase (IP) features a condensate with a spatial dependence that spontaneously breaks
translational invariance in addition to chiral symmetry (see Ref. [1] for an extensive review). While phases with inho-
mogeneous order parameters are well established in condensed matter physics, they are a rather exotic phenomenon in
high-energy contexts. In Quantum Chromodynamics (QCD) an IP occurs in the limit of infinite number of colors Nc

and at asymptotically large chemical potential [2]. For the physical case of Nc = 3, there are also indications for the
realization of such a phase at low temperature and high baryon chemical potential as provided by a Dyson-Schwinger
equation (DSE) based study that used specific ansatz functions for the inhomogeneous condensate [3]. Recent techni-
cal developments [4] might even enable an ansatz-free investigation of the IP within the DSE framework. Moreover,
a functional renormalization group study of QCD [5] found a so-called moat regime, where the wave-function renor-
malization assumes negative values. Such a regime is closely related to the existence of an IP and the implications
of such a non-trivial dispersion relation might also be measurable in an experiment [6–9]. Furthermore, it was shown
that inhomogeneous ground states can naturally be found in theories with PT -type symmetries, which is also realized
in finite-density QCD [10, 11].

However, due to the lack of first principle calculations of QCD at low temperature and high chemical potential, it is
not clear whether the IP is indeed realized in nature or what the extent of the moat regime might be. Therefore, more
often IPs are investigated in Four-Fermion (FF) and related Yukawa-models, some of which can be regarded as toy-
models for QCD [1]. A prominent example is the (1 + 1)-dimensional Gross-Neveu (GN) model [12] in the infinite N
limit (equivalent to a mean-field approximation in this model), where all quantum fluctuations of the bosonic degrees
of freedom are neglected. It features a homogeneously broken phase (HBP) at low temperature and baryon chemical
potential, where the constant, nonzero chiral condensate breaks the discrete Z2 chiral symmetry that is realized in
the model. This phase is separated from a chirally symmetric phase (SP) by a second order line at high temperatures
and low chemical potentials that bends down to lower temperatures for increasing chemical potential and ends in a
critical point (CP) [13, 14]. If the chiral condensate is restricted to being homogeneous, a first order phase transition
extends from this CP down to zero temperature. However, for spatially dependent condensates, the CP coincides
with a Lifshitz point (LP) from which an IP opens up to lower temperatures and higher chemical potentials [14–16].
The coincidence of these points is a feature of the GN model (and Nambu-Jona-Lasinio (NJL)-type models) in various
dimensions [16–20] that can be broken up by introducing additional vector interactions [21, 22]. These points can
also separate as the result of artifacts at finite regulators in certain regularization schemes [18, 20, 23]. In addition,
the model also exhibits a moat regime within a region in the phase diagram that is larger than the IP itself [17].
While the phase diagram of the (1+1)-dimensional GN and the related chiral GN model (sometimes also called NJL2
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model), which features a continuous chiral symmetry, is fairly understood in the infinite-N limit, it is under intense
investigation for finite N . Currently, there is no final consensus about which phases persist with full bosonic quantum
fluctuations [24–31]. However, recent work [31] showed that the feature of negative wave-function renormalization
and moat regimes at large µ is robust under the influence of bosonic fluctuations.

In contrast to the infinite N results in 1 + 1 dimensions stands the phase diagram of the same GN model in 2 + 1
dimensions, where no IP for any chemical potential and nonzero temperature is present [23, 32–34]. One only finds a
second order line separating the HBP at low temperature and chemical potential from the SP, which ends in a CP at
zero temperature [35, 36]. It was found that keeping regulators such as the lattice spacing or the Pauli-Villars mass
at a finite value, causes the CP to be located at a nonzero temperature and the emergence of an IP [23]. An extended
analysis in 2 + 1 dimensions revealed that a large class of FF models featuring Lorentz-(pseudo)scalar interactions
and their Yukawa model extensions do not exhibit an IP [34]. Thus, the absence of an IP in the (2 + 1)-dimensional
GN model is apparently part of a more general behavior of FF models in 2 + 1 dimensions. Still it is not clear
what the cause of the absence of the IP compared to 1 + 1 dimensions is. There has also been considerable effort
in understanding the phase structure of the (2 + 1)-dimensional GN model beyond the infinite-N limit for finite
temperature, chemical potential and magnetic field with lattice and functional methods (see e.g. [37–44]). However,
there is no concrete evidence for inhomogeneous condensation for finite N .

In 3 + 1 dimensions, the GN and NJL model exhibit an identical phase diagram in the chiral limit within the
mean-field approximation [19]. In general, one finds a similar phase structure as for the GN model in d = 1 with
all three phases and a CP present. These models are, however, non-renormalizable in d = 3 and thus one has to
keep the employed regulator (e.g. the Pauli-Villars mass) at a finite value. The phase structure of the theory is
strongly dependent on the chosen regularization scheme and value of the regulator [45–48]. Varying these can lead to
a disappearance of the CP for the homogeneous phase transition [46], a splitting of LP and CP [18, 19, 23, 49], and
an absence of the IP altogether [45, 47].

In this work, we connect these three results from integer dimensions and illustrate why the model shows these
qualitatively different phase diagrams. To this end, we consider the GN model in the mean-field approximation in
noninteger number of spatial dimensions 1 ≤ d < 3. This builds on the results of Ref. [50] where the dependence of
the homogeneous phase diagram on d was investigated. We extend this by an investigation of the IP and the moat
regime based on the bosonic two-point function.

The so-called stability analysis, which probes the stability of a homogeneous field configuration against spatially
inhomogeneous perturbations by inspection of the bosonic two-point functions, is a common technique to study IPs.
This method was already used to investigate the IP in integer spatial dimensions d = 1, 2, 3 within the GN and related
models (see, e.g., Refs. [17, 23, 47, 51–56]) and we extend this technique to noninteger spatial dimensions 1 ≤ d < 3.
The model is renormalizable for 1 ≤ d < 3 and the analysis can be formulated independently from details like the
fermion representation. Thus, in this setup the only parameter left is the number of spatial dimensions, which allows
us to study its influence isolated from other effects. At this point it needs to be noted that the concept of noninteger
spatial dimensions is something peculiar – especially since we are investigating a spatial phenomenon. Therefore, we
should consider the number of spatial dimensions d merely as a parameter that we can vary to interpolate between
the physically relevant integer dimensions. The study is restricted to zero temperature as it suffices to demonstrate
the central findings and makes it possible to give closed form expression for most of the derived quantities.

We find that the instability towards the IP gradually disappears when going from d = 1 to d = 2. Since this
setup depends only on d as a parameter, we can identify the number of spatial dimensions as the sole cause of the
disappearance of the IP in d = 2. Furthermore, there is no instability for 2 < d < 3, which suggests that the presence
of an IP in studies of (3 + 1)-dimensional models is caused by the presence of finite regulators.

This paper is structured as follows. Section II introduces the GN model in d spatial dimensions. The homogeneous
effective potential at zero temperature and aspects of the homogeneous phase transition are discussed in Section IIA .
The key quantities of the stability analysis are introduced in Section II B and the main results of the stability analysis
are presented in Section III, which is split between spatial dimensions 1 ≤ d ≤ 2 and 2 ≤ d < 3. Section IV provides
a brief conclusion and outlook on future extensions to this work. The Appendices A and B present technical aspects
of the derivation of the effective potential, the stability analysis and the wave-function renormalization.

II. THE GROSS-NEVEU MODEL IN 1 ≤ d < 3 SPATIAL DIMENSIONS

We consider the action of the GN model in D = d+ 1 spacetime dimensions

S[ψ̄, ψ] =
∫ β

0

dτ

∫
ddx

[
ψ̄(/∂ + γ0µ)ψ − λ

2N

(
ψ̄ψ
)2 ]

, (1)
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where ψ are fermionic spinors with N ×Nγ degrees of freedom (number of flavors1 × dimension of the representation
of the Clifford algebra). The Euclidean time direction, i.e., the zeroth direction, is compactified with its extent
β corresponding to the inverse temperature β = 1/T and the d-dimensional spatial integration goes over the d-
dimensional volume V . In the actual calculations, we will assume both V and β to be infinite and hence consider the
theory at zero temperature in an infinite volume. A baryon chemical potential µ is introduced in the standard way
and the coupling λ controls the strength of the FF interaction.

By applying a Hubbard-Stratonovich transformation, we remove the FF interaction and introduce a real, scalar
bosonic field σ in the action

Sσ[ψ̄, ψ, σ] =

∫ β

0

dτ

∫
ddx

[
N

2λ
σ2 + ψ̄(/∂ + γ0µ+ σ)ψ

]
, (2)

where the introduced bosonic field fulfills the Ward identity

〈
ψ̄(x)ψ(x)

〉
=

−N
λ

⟨σ(x)⟩ (3)

that connects the expectation values of the chiral condensate and the bosonic field at the spacetime point x. The
model possesses a discrete Z2 chiral symmetry in integer dimensions under the transformation

ψ → γ5ψ , ψ̄ → −ψ̄γ5 , σ → −σ, (4)

where γ5 is the Dirac matrix that anti-commutes with the spacetime Dirac matrices. Thus, the auxiliary field σ also
serves as an order parameter of the spontaneous breaking of the chiral symmetry. The special connection between
chirality and the number of spacetime dimensions, as well as the ambiguities of defining γ5 [57] in noninteger dimensions
cause the chiral symmetry to be strictly present only in integer dimensions. Nevertheless, in analogy to this symmetry,
we denote phases with ⟨σ⟩ ≠ 0 as HBP (or IP, if ⟨σ⟩ is spatially dependent) as well as phases with ⟨σ⟩ = 0 as SP even
in noninteger dimensions.

Moreover, one has to choose a reducible representation of the Clifford algebra in odd spacetime dimensions in order
to find an additional matrix that anti-commutes with the spacetime Dirac matrices. This is particularly relevant in 2+1
dimensions, where one needs to use a reducible 4× 4 representation to regain the notion of chirality [23, 51, 58, 59].
Even though our analysis will be independent of specific representations and their dimensions, we will assume a
representation that enables the existence of a matrix γ5 in the respective integer dimensions. Irrespective of the
number of dimensions and representation, we can assume the standard anti-commutation relation for the spacetime
Dirac matrices {γµ, γν} = 2δµν1 to hold [57].

Integrating over the fermionic fields in the path integral yields the so-called effective action

Seff [σ]

N
=

∫ β

0

dτ

∫
ddx

σ2

2λ
− lnDet

[
β
(
/∂ + γ0µ+ σ

)]
, (5)

where Det denotes a functional determinant. In the following, we consider only the leading term in a 1/N expansion
(equivalent to a mean-field approximation in this case), which neglects all quantum fluctuations of σ. Then, the only
field configurations Σ that contribute to the path integral are these that minimize the effective action Seff globally. In
the case of a broken symmetry, there are multiple such field configurations which are connected by the transformations
of the broken symmetry. One typically picks one of these configurations in the evaluation of observables (compare,
e.g., Refs. [17, 19]). This is equivalent to introducing an explicit breaking to the action and extrapolating this term
to zero.

The model is renormalizable for d < 3 [60] and we use as a renormalization condition that the vacuum expectation
value of the auxiliary field assumes a finite homogeneous value ⟨σ⟩|T=µ=0 = σ̄0. The UV-divergent contributions
from loop integrals are regularized with a spatial momentum cutoff. This regularization scheme is chosen due to its
simplicity and its application being independent of the number of spatial dimensions. The scheme restricts the spatial
loop momenta to a d-dimensional sphere with radius Λ in the regularized integrals and Λ is then sent to infinity in
the renormalization procedure.

1 Note that within the GN model, “flavors” is the traditional name for this degree of freedom in which the interactions are diagonal.
Hence, these flavors are distinctively different from an isospin degree of freedom or quark flavors in QCD.
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A. The homogeneous effective potential at zero temperature

We define the homogeneous effective potential Ūeff as the effective action of the homogeneous bosonic field per
volume and degree of freedom, i.e.,

Ūeff(σ̄, µ, d) :=
Seff [σ̄]

NV β
, (6)

where σ̄ is the bosonic field restricted to homogeneous field configurations, i.e., σ̄ = const. We proceed to calculate
the homogeneous effective potential at zero temperature in the infinite spatial volume

Ūeff(σ̄, µ, d) =
σ̄2

2λ
− 1

βV
lnDet

(
/∂ + γ0µ+ σ̄

)
=

=
σ̄2

2λ
− Nγ

2

∫
ddp
(2π)d

[
E −Θ(µ2 − E2)(E − |µ|)

]
=

=
σ̄2

2λ
− Nγ

2
l0
(
σ̄2, µ

)
, (7)

where E2 = σ̄2 + p2. The integral l0 is obviously UV-divergent for every number of spatial dimensions d > 0. We
renormalize the effective potential with the condition ⟨σ⟩|T=µ=0 = σ̄0 (see Section II). This condition corresponds to
minσ̄ Ūeff |T=µ=0 = Σ̄ |T=µ=0 = σ̄0 within the infinite N limit. Therefore, σ̄0 fulfills the homogeneous gap equation

dŪeff

dσ̄

∣∣∣∣∣
T=µ=0,σ̄=σ̄0

=

[
σ̄

λ
− σ̄Nγ

∫ ∞

−∞

dp0

(2π)

∫
Λ

ddp
(2π)d

1

(p0 − iµ)2 + E2

] ∣∣∣∣∣
T=µ=0,σ̄=σ̄0

=

=

[
σ̄

(
1

λ
−Nγ l1

)] ∣∣∣∣∣
T=µ=0,σ̄=σ̄0

!
= 0, (8)

which is used to tune the coupling λ in order to renormalize the theory.
Appendix A outlines the calculation of l0 and l1 for spatial dimensions 1 ≤ d < 3, which are needed to obtain the

renormalized effective potential

Ūeff(σ̄, µ, d) =
Nγ

2dπ
d
2

[
(d+ 1)Γ

(
−d+1

2

)
8
√
π

(
− σ̄

d−1
0 σ̄2

2
+

|σ̄|d+1

d+ 1

)
+

+
Θ
(
µ̄2
)

dΓ
(
d
2

) |σ̄|d+1
∣∣∣ µ̄
σ̄

∣∣∣d (2F1

(
− 1

2 ,
d
2 ;

d+2
2 ;− µ̄2

σ̄2

)
−
∣∣∣µ
σ̄

∣∣∣) ], (9)

where 2F1 is the Gaussian hypergeometric Function defined by Eq. (A2), µ̄2 = µ2 − σ̄2 and a divergent, thermo-
dynamically irrelevant constant term is neglected. The effective potential in noninteger spatial dimensions was first
investigated in Ref. [50]. However, a closed form expression for T = 0 and finite chemical potential was not explicitly
given and thus we provide it for completeness.

For homogeneous fields, one finds by inspection of Ūeff for all number of spatial dimensions 1 ≤ d < 3 an HBP
at low chemical potential indicated by the minimizing field value Σ̄ being nonzero. For chemical potentials larger
than a critical chemical potential µc(d), the system enters the SP signaled by

∣∣Σ̄∣∣ = 0 (see Ref. [50] for a detailed
discussion of the homogeneous phase structure). Figure 1 shows the renormalized effective potential Ū ′

eff(σ̄, µc(d), d) =
Ūeff(σ̄, µc(d), d)− Ūeff(0, µc(d), d)

2 in the σ̄, d-plane at the critical chemical potential µc(d) with the red dashed lines
indicating the minima Σ̄(d). This illustrates how the phase transition is of first order for d < 2 due to the potential
barrier separating the two minima at Σ̄ = 0, σ̄0. The potential is flat for |σ̄| ≤ σ̄0 at d = 2, which is caused by
a combined effect of zero temperature and the CP being located at this point. Ref. [50] documents how this CP
evolves from (µ, T )/σ̄0 ≈ (0.608, 0.318) in d = 1 to (µ, T )/σ̄0 = (1.0, 0) in d = 2. For d > 2 the CP vanishes and the
homogeneous phase transition is strictly of second order.

2 The symmetric contribution is subtracted in order to facilitate the comparison between different d.
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FIG. 1. The renormalized effective potential Ū ′
eff(σ̄, µc(d), d) = Ūeff(σ̄, µc(d), d)− Ūeff(0, µc(d), d) in the σ̄, d-plane at the critical

chemical potential µc(d), where the homogeneous phase transition occurs. The red dashed lines indicate the minima Σ̄(d).

B. Stability analysis at zero temperature

The key concept of the stability analysis is to apply an arbitrary inhomogeneous perturbation of infinitesimal
amplitude to a homogeneous field configuration σ̄ and analyze the curvature of the effective action Seff under this
perturbation. If the global homogeneous minimum Σ̄ is used as an expansion point, a negative curvature indicates
that there exists an inhomogeneous field configuration with an even lower action and thus confirms the existence of
an IP. For a detailed derivation of the stability analysis in the GN model in 1 + 1 and 2 + 1 dimensions we refer to
Refs. [17, 23]. Here, we present only the final result for the bosonic two-point function Γ(2), which is the previously
mentioned curvature of the effective action in the direction of an inhomogeneous perturbation of momentum q to
the homogeneous bosonic field σ̄. One finds that this curvature is only dependent on the magnitude of the bosonic
momentum |q| = q and not its direction in the d-dimensional space. This circumstance makes it possible to apply
this technique in noninteger spatial dimensions.

The two-point function at zero temperature has the general form

Γ(2)(σ̄2, µ, q2, d) =
1

λ
−Nγ l1

(
σ̄2, µ, d

)
+ L2(σ̄

2, µ, q2, d), (10)

where we recognize the same contribution 1/λ−Nγ l1 as in the gap equation and that the whole momentum dependence
resides in L2, which is given by

L2(σ̄
2, µ, q2, d) = 1

2

(
q2 + 4σ̄2

)
Nγ

∫ ∞

−∞

dp0

(2π)

∫
ddp
(2π)d

1

((p0 − iµ)2 + σ̄2 + (p+ q)2)((p0 − iµ)2 + σ̄2 + p2)
. (11)

The evaluation of this expression for arbitrary 1 ≤ d < 3 is outlined in Appendix B, while for the integer cases of
d = 1 we refer to Ref. [17] and for d = 2 to Ref. [23]. We find for arbitrary spatial dimensions 1 ≤ d < 3 that the
two-point function evaluates to

Γ(2)(σ̄2, µ, q2, d) =
Nγ

2dπ
d
2Γ
(
d
2

) [Γ ( 1−d
2

)
Γ
(
d+2
2

)
dπ

(
|σ̄0|d−1 − |σ̄|d−1

)
+ (12)

+


|µ|d−1

(d− 1)
if σ̄ = 0, µ ̸= 0

|σ̄|d−1

d

∣∣∣ µ̄
σ̄

∣∣∣d 2F1

(
1
2 ,

d
2 ;

d+2
2 ;− µ̄2

σ̄2

)
if σ̄ ̸= 0, µ̄2 > 0

0 otherwise

+
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+
(

q2

4 + σ̄2
)∫ 1

0

dx ×


µ̃d−3

(3− d)
2F1

(
3
2 ,

3−d
2 ; 3−d

2 + 1;− ∆̃2

µ̃2

)
− µ̃d−2

|µ|
if µ̃2 > 0

∆̃d−3

2
B
(
d
2 ,

3−d
2

)
otherwise


 ,

where ∆̃2 = σ̄2+ q2x(1−x) and µ̃2 = µ2− ∆̃2. The remaining integral over x is evaluated numerically since no closed
form can be given for the integral.

The other quantity of interest is the bosonic wave-function renormalization z, where negative values indicate a moat
regime. This z is the coefficient of the bosonic kinetic term ∝ 1/2 ∂µσ∂µσ in the effective action that is contained in
the fermionic contribution3. We can calculate z from the bosonic two-point function by differentiating it twice with
respect to q and setting q = 0 [17], i.e.,

z(σ̄, µ, d) =
1

2

d2 Γ(2)(σ̄, µ, q2, d)

dq2

∣∣∣∣∣
q=0

=

=
Nγ

2d+2π
d
2 Γ
(
d
2

) ×



1

(3− d)µ̄3−d 2F1

(
3
2 ,

3−d
2 ; 5−d

2 ;− σ̄2

µ̄2

)
+

− 1

(5− d)

σ̄2

µ̄2

1

µ̄3−d 2F1

(
5
2 ,

5−d
2 ; 7−d

2 ;− σ̄2

µ̄2

)
+

+
µ̄d−2

|µ|

[
σ̄2

µ2

(
1 +

1

3µ̄2

(
2σ̄2 − (4− d)µ2

))
− 1

]
if µ̄2 > 0

1

2|σ̄|3−d

[
B
(
d
2 ,

3−d
2

)
−B

(
d
2 ,

5−d
2

)]
otherwise

. (13)

The derivation of z is outlined in Appendix B. If z is evaluated on the global homogeneous minimum Σ̄(µ, d), we
denote it as Z(µ, d) ≡ z

(
Σ̄(µ, d), µ, d

)
.

III. RESULTS OF THE STABILITY ANALYSIS

In this section the results that are obtained by the stability analysis of the GN model for 1 ≤ d < 3 spatial
dimensions are discussed. The discussion is split in 1 ≤ d ≤ 2 and 2 ≤ d < 3 due to the different conclusions that we
can draw from these two intervals.

A. 1 ≤ d ≤ 2

Figure 2 shows the two-point functions Γ(2)(Σ̄2, µ+
c , q

2, d) for 1 ≤ d ≤ 2 spatial dimensions at µ = µ+
c , which is the

critical chemical potential with an infinitesimal positive shift. This ensures that the homogeneous minimum used as
the expansion point is Σ̄ = 0. For d = 1, the two-point function diverges logarithmically at q = 2µ for all µ > µc

as also observed in Ref. [17]. For 1 < d < 2, the integral over x in Eq. (12) has to be performed numerically. It
is thus not immediately clear, whether the two-point function diverges as in d = 1 for q = 2µ. The integrand in
Eq. (12) is divergent at x = 1/2 for σ̄ = 0, q = 2µ and expanding it at x0 = 1/2 reveals that the most divergent
term is ∝ (x− 1/2)

d−2. Hence, the integral over x is finite for any d > 1. Thus, the divergence of the two-point
functions vanishes for d > 1, but a cusp that is a negative minimum is retained. This preserves the instability at µc

for 1 < d < 2. However, one finds that the offset of Γ(2) at q = 0 increases with increasing µ. Thus, for 1 < d < 2
there is an upper µ at which the IP vanishes (see Fig. 6).

It was documented in Ref. [17] that in the (1+1)-dimensional GN model there is a region of the IP in the µ-T -plane
that is not detected by the stability analysis. This is where the homogeneous minimum Σ̄ assumes a finite value,
which is separated from the true inhomogeneous minimum by an energy barrier. Thus, Σ̄ appears to be stable against
inhomogeneous perturbations even though an inhomogeneous condensate is energetically preferred [14]. We expect
this to happen in some portion of the phase diagram for all spatial dimensions 1 < d < 2, since the first order phase
transition, which was identified as the cause of this effect in d = 1, is also present there.

3 This term can be explicitly seen in an expansion of the lnDet contribution in the effective action (5), e.g., in a Ginzburg-Landau approach.
See also Ref. [31] for a study of Z in the (1 + 1)-dimensional GN model at finite N , i.e., in the presence of bosonic fluctuations.
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(
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)
/
(σ̄
d
−

1
0

N
γ

)
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d = 1.5

d = 1.7
d = 1.9

d = 2.0

FIG. 2. The two-point function Γ(2)(Σ̄2 = 0, µ+
c , q

2, d) as a
function of the bosonic momentum q for various spatial di-
mensions 1 ≤ d ≤ 2 evaluated at the homogeneous minimum
Σ̄ at chemical potential µ = µ+

c (the critical chemical poten-
tial with an infinitesimal positive shift). Compare to Ref. [17]
for d = 1 and Refs. [23, 34] for d = 2.

0.0 0.5 1.0 1.5

µ/σ̄0

−0.04

−0.03

−0.02

−0.01

0.00

0.01

Z
/
(σ̄
d
−

3
0

N
γ

)

d = 1.0

d = 1.2

d = 1.5

d = 1.7
d = 1.9

d = 2.0

FIG. 3. The wave-function renormalization Z as a function of
the chemical potential for various spatial dimensions 1 ≤ d ≤
2. The circle indicates the chemical potential µc at which
the homogeneous phase transition is located. Compare to
Ref. [17] for d = 1.

By increasing d further to d = 2, the two-point function evolves to the known (2+1)-dimensional result [23, 34]. The
two-point function is constant and zero for all q ≤ 2µ at which it rises for q > 2µ. This corresponds to a degeneracy of
the homogeneous minimum and field configurations with small inhomogeneous perturbations of momentum q ≤ 2µ.
Hence, it cannot provide any information about the energetically preferred state. However, it was found that the crystal
kink solutions of the (1+ 1)-dimensional GN model embedded in 2 spatial dimensions are energetically degenerate to
homogeneous field configurations even for finite amplitudes at (µ, T ) = (µc, 0) in the (2 + 1)-dimensional GN model
[32].4 This observation and our results for the two-point function suggest a flat effective potential for a variety of
inhomogeneous modulations. This would be similar to the flat homogeneous potential shown in Fig. 1, which is caused
by the special nature of the CP at this point.

We observe that all numbers of spatial dimensions 1 ≤ d < 2, where the CP is also located at a nonzero temperature
(as discussed in Section II A), exhibit an instability. This is due to the coincidence of the CP and the LP for the
renormalized GN model.

Figure 3 shows the wave-function renormalization evaluated at Σ̄ as a function of µ for 1 ≤ d ≤ 2. We observe
Z < 0 for µ > µc and d < 2, which is the key property of a moat regime [6–9]. Thus, a moat regime is retained for
all chemical potentials for d < 2.

B. 2 ≤ d < 3

Figure 4 shows Γ(2)(Σ̄2, µ, q2, d) for spatial dimensions 2 ≤ d < 3 at µ = µ+
c . For spatial dimensions d > 2, the

constant behavior vanishes and the two-point function approaches a parabolic shape, but the cusp at q = 2µ remains
a non-analytic point. Thus, by inspection of the two-point function we recognize that there is no instability for
2 < d < 3. This is in stark contrast to existing results of the NJL model in 3+ 1 dimensions, which exhibits the same
phase diagram as the (3 + 1)-dimensional GN model within the mean-field approximation [19, 50]. Here one finds
instabilities towards an IP [47, 52, 61] and even the energetically preferred inhomogeneous condensates by minimizing
the effective action with a suitable ansatz [19, 45, 53, 61–65]. Due to the smooth evolution of the two-point function
for 1 ≤ d < 3, we would not expect a significant change in behavior caused by increasing the number of dimensions
when going from d < 3 to d = 3. The difference, however, is that while we investigated the renormalized model
in d < 3, it loses its renormalizability in d = 3. Thus, the aforementioned investigations are performed at a finite
regulator. It was shown that varying the regularization scheme (e.g. Pauli-Villars regularization, spatial momentum
cutoff, lattice regularization) and the value of its regulator can have a severe impact on the existence and extent of
the IP [45, 47]. Moreover, the CP coincides with the LP only for some regularization schemes, e.g., Pauli-Villars

4 It might be interesting to embed the solutions of the (1 + 1)-dimensional GN model in 1 < d < 2 similar to what was done for d = 2
in [32]. In this way, one could observe how the degeneracy between homogeneous configurations and these inhomogeneous modulations
develops at d = 2.
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FIG. 4. The two-point function Γ(2)(Σ̄2 = 0, µ+
c , q

2, d) as
a function of the bosonic momentum q for various spatial
dimensions 2 ≤ d < 3 evaluated at the homogeneous mini-
mum Σ̄ at chemical potential µ = µ+

c (the critical chemical
potential with an infinitesimal positive shift). Compare to
Refs. [23, 34] for d = 2.
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FIG. 5. The wave-function renormalization Z as a function
of the chemical potential for various spatial dimensions 2 ≤
d < 3. The circle indicates the chemical potential µc at which
the homogeneous phase transition is located.

or dimensional regularization. For small enough regulators this CP and with it also the LP is located at a nonzero
temperature, which enables the existence of the IP. In a similar fashion an investigation of the (2 + 1)-dimensional
GN model revealed that an IP exists at a finite regulator and vanishes when removing the regulator [23, 33, 51].
This finding and the lack of instability for 2 < d < 3 in the renormalized setup as presented in this work suggest the
conclusion that the existence of the IP in the (3 + 1)-dimensional GN model (and due to their equivalence also the
NJL model) is solely triggered by the choice of the regularization scheme and the presence of a finite regulator.

Figure 5 depicts the bosonic wave-function renormalization Z as a function of the chemical potential for various
spatial dimensions 2 ≤ d < 3. While the minimum value of the wave-function renormalization at d = 2 is Z = 0,
it is strictly positive for 2 < d < 3. Therefore, no moat regime is retained for d > 2. Moreover, we note that Z
diverges at µ/σ̄0 = 1. This is caused in 2 < d < 3 by the second order homogeneous phase transition, where the
condensate starts to “melt” for chemical potentials µ/σ̄0 > 1. This enables 1 = µ2 ≈ Σ̄(µ)2, which causes divergences
in Z (compare to Eq. (13)). Graphically speaking, this is caused by the cusp that is present in the two-point function
at |q| = 2

√
µ2 − σ̄2, being located at q = 0 for µ2 = Σ̄2. Then, this causes Z, which is the second derivative of the

two-point function, to diverge.

IV. CONCLUSION AND OUTLOOK

A. Conclusion

Within the stability analysis one applies inhomogeneous perturbations to the homogeneous ground state and inspects
the curvature of the effective action for these perturbations. If one finds negative values for this curvature, which
are given by negatives values in the momentum dependence of the bosonic two-point function, the homogeneous field
configuration is unstable and an inhomogeneous ground state is energetically preferred.

We adapted this method to noninteger spatial dimensions and illuminated how the instability towards an
inhomogeneous phase (IP) in 1+1 dimensions turns into an absence of instability in 2+1 dimensions. By continuously
increasing the number of spatial dimensions from d = 1 to d = 2, we observed how the two-point function evolves
as a function of d. The IP is present for all d < 2 in some range of µ and the instability vanishes exactly at d = 2.
Moreover, for 1 < d < 2 there is an upper chemical potential at which the instability vanishes, but a moat regime is
retained for all chemical potentials. This renormalized setup is independent of regulators and details like the fermion
representation, which allows us to study the isolated effect of the number of dimension. Thus, we identified that
the sole driver of the disappearance of the IP at d = 2 is the number of spatial dimensions, and by extension the
dependence of the critical point (CP) and Lifshitz point (LP) on d.

For 2 < d < 3, one finds that the two-point function is positive for all bosonic momenta q ≥ 0 and thus there
is no instability towards an IP. This is qualitatively different from existing results in d = 3 that exhibit an IP
[19, 45, 47, 52, 53, 61–65]. The difference is the need for a finite regulator in d = 3 spatial dimensions that can cause
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FIG. 6. The phase diagram of the renormalized GN model as obtained from the stability analysis in the plane of spatial
dimensions d and chemical potential µ. The phase diagram shows a homogeneously broken phase (HBP) with σ(x) = σ̄ = const,
a symmetric phase (SP) with σ(x) = 0, an inhomogeneous phase (IP) with σ(x) = f(x) and a moat regime with negative wave-
function renormalization, i.e., Z < 0. The boundaries of the HBP are calculated by Eq. (3.33) and Eq. (3.35) from Ref. [50].

the appearance of a CP and LP at a nonzero temperature. This effect was also observed in the Gross-Neveu (GN)
model for d = 2 where it led to the appearance of the IP even though it is not present when the model is renormalized
[23, 33, 51]. This observation and our results suggest that the appearance of the IP in the (3 + 1)-dimensional GN
and Nambu-Jona-Lasinio (NJL) model is generated by the necessary use of a finite regulator.

Figure 6 summarizes these findings in the phase diagram of the renormalized GN model at zero temperature in the
plane of the number of spatial dimensions d and chemical potential µ.

Interestingly there is a connection of this work with investigations of the (3 + 1)-dimensional NJL model that use
dimensional regularization to regulate the theory [46, 66–69]. Due to the nonrenormalizability of the model, the
number of spatial dimensions d has to be fixed at a value d < 3 and additionally one has to introduce a mass scale M0

(because the regulator d itself is dimensionless). Both d and M0 are then tuned such that certain observables in the
vacuum assume fixed values (e.g. the pion decay constant). In this way, one could interpret the present work as the
(3 + 1)-dimensional GN model with dimensional regularization, since the applied renormalization also introduced a
mass scale σ̄0 and we vary the dimensions d. In this picture, by analyzing the phase structure for different d, we really
investigate the regulator dependence of the phase diagram of the (3 + 1)-dimensional GN model for the dimensional
regularization scheme. Vice versa, the effect of considering (3+1)-dimensional models with dimensional regularization
at finite regulator is that one generates the phase structure of lower dimensional versions of the respective models.

B. Outlook

An obvious extension of the present work might be the investigation of the NJL model. It features an additional
Yukawa interaction term with a pion field of the form ψ̄iγ5τ⃗ · π⃗ψ. However, the ambiguities of γ5 in noninteger
dimensions lead to an altered anti-commutation relation {γµ, γ5} [57], which significantly changes the renormalization
and the stability analysis of the NJL model compared to integer dimensions. While it is still possible to conduct the
stability analysis, the results depend on these ambiguities in noninteger dimensions and thus no results for this model
are presented. A more detailed discussion of the resulting implications can be found in Ref. [70].

Most investigations of the IP in (3 + 1)-dimensional models (see, e.g., Refs. [18, 19, 21, 22, 49, 52, 63, 64]) use
the Pauli-Villars regularization. In order to connect better to these results, it would be instructive to carry out the
present analysis in noninteger spatial dimensions with the Pauli-Villars regularization at a finite regulator. In this
way, one could show that it is possible to regain an IP for 2 < d ≤ 3 by considering appropriate values of the regulator
and smoothly connect our noninteger analysis to established, finite regulator results in d = 3.

Several investigations in integer dimensions (e.g. Refs. [19, 32]) have embedded 1-dimensional solutions of the (1+1)-
dimensional GN model in higher dimensional models. This procedure is also adaptable to noninteger d, since the
(d−1)-dimensional space perpendicular to the modulation can be treated in a way where d enters only as a parameter
just as in the present study. This would enable us to observe how the degeneracy of the 1-dimensional solutions of
the 1 + 1-dimensional GN model and homogeneous field configurations at (µ, T ) = (µc, 0) in d = 2 [32] develops for
1 < d < 2.

The extension of the present analysis to nonzero temperature is under way. A nonzero temperature will likely not
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change the conclusion about the (non)existence of the instability, since a nonzero temperature in all known occurrences
disfavors an IP. However, it would reveal how the whole phase diagram evolves between the known results in integer
spatial dimensions.
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Appendix A: Derivation of the renormalized, homogeneous effective potential

In this Appendix, we outline the derivation of the renormalized, homogeneous effective potential by using a spatial
momentum cutoff Λ to regularize the theory. A more detailed derivation and discussion can be found in Ref. [70]. The
homogeneous effective potential was already investigated in Ref. [50], thus it is not original to this work. However,
we need some of the results in the later derivation and hence it is instructive to also include the full derivation of the
renormalized, effective potential here. Throughout this Appendix, we make regular use of the integral identities 3.194
from Ref. [71].

We start the derivation by calculating the integral l0 that appears in the expression Eq. (7) and find that it evaluates
to

l0 =
Sd

(2π)d

∫
dp pd−1

[
E −Θ(µ2 − E2)(E − |µ|)

]
=

=
Sd

(2π)d
1

d

[
Λd|σ̄|2F1

(
− 1

2 ,
d
2 ;

d+2
2 ;−

(
Λ
σ̄

)2)−Θ
(
µ̄2
)
|σ̄|d+1

∣∣∣ µ̄
σ̄

∣∣∣d (2F1

(
− 1

2 ,
d
2 ;

d+2
2 ;− µ̄2

σ̄2

)
−
∣∣∣µ
σ̄

∣∣∣)] =
=

Sd

(2π)d
1

2

[
−
|σ̄|d+1Γ

(
−d

2 − 1
2

)
Γ
(
d
2 + 1

)
d
√
π

+ Λd

(
2Λ

d+ 1
+

σ̄2

(d− 1)Λ
+

σ̄4

4(3− d)Λ3
+O

(
Λ−5

))
+

− Θ
(
µ̄2
)
|σ̄|d+1

∣∣∣ µ̄
σ̄

∣∣∣d (2F1

(
− 1

2 ,
d
2 ;

d+2
2 ;− µ̄2

σ̄2

)
−
∣∣∣µ
σ̄

∣∣∣)] , (A1)

where Sd = 2π
d
2 /Γ

(
d
2

)
is the surface area of a d-dimensional unit sphere, µ̄2 = µ2 − σ̄2 and we expanded the Λ

dependent terms for |Λ/σ̄| ≫ 1 in the last step. 2F1 denotes the Gaussian hypergeometric Function that can be
represented via the integral

2F1 (α, β; γ; z) =
1

B(β, γ − β)

∫ 1

0

dt tβ−1(1− t)γ−β−1(1− tz)−α (A2)

with B being the Beta function.
In order to derive the renormalized, homogeneous effective potential, one needs to tune the coupling λ by imposing

that the minimum of the renormalized, homogeneous effective potential in vacuum is at σ̄ = σ̄0. To do so, we employ
the gap equation (8), where we need to calculate the integral l1. For the renormalization procedure, we would only
need l1 at µ = 0 and finite σ̄. However, we calculate it in its general µ and σ̄ dependent form, since the same integral
also appears in the bosonic two-point function that we need for the stability analysis. We find for the integral

l1
(
σ̄2, µ, d

)
=

∫
Λ

ddp
(2π)d

∫ ∞

−∞

dp0

(2π)

1

(p0 − iµ)2 + E2
=

Sd

(2π)d

∫ Λ

0

dp pd−1 1−Θ
(
µ2 − E2

)
2E

=

=
Sd

(2π)d
1

2d|σ̄|

[
Λd

2F1

(
1
2 ,

d
2 ;

d+2
2 ;−

(
Λ
σ̄

)2)−Θ
(
µ̄2
)
|µ̄|d 2F1

(
1
2 ,

d
2 ;

d+2
2 ;− µ̄2

σ̄2

)]
. (A3)
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Using the vacuum part of this result and the gap equation (8), we tune the coupling to the appropriate value

1

λ
= Nγ

Sd

(2π)d
1

2dσ̄0
Λd

2F1

(
1
2 ,

d
2 ;

d+2
2 ;−

(
Λ
σ̄0

)2)
= (A4)

= Nγ
Sd

(2π)d
1

2

[
σ̄d−1
0 Γ

(
d
2 + 1

)
Γ
(
1
2 − d

2

)
d
√
π

+ Λd

(
1

(d− 1)Λ
+

σ̄2
0

2(3− d)Λ3
+O

(
Λ−5

))]
, (A5)

where we expanded the Λ dependent terms for |Λ/σ̄0| ≫ 1. Inserting the expression for l0 from Eq. (A1) and the
tuned coupling into Eq. (7) yields the renormalized, homogeneous effective potential from Eq. (9), where a divergent,
thermodynamically irrelevant constant term is neglected. We find for the symmetric limit σ̄ → 0 that the renormalized
effective potential is reduced to

Ūeff(σ̄ = 0, µ, d) =
Nγ

2dπ
d
2

|µ|d+1

Γ
(
d
2

)
d(d+ 1)

. (A6)

Appendix B: Derivation of the bosonic two-point function and the bosonic wave-function renormalization

In this Appendix, we outline the derivation of the bosonic two-point function and the wave-function renormalization.
A more detailed derivation and discussion can be found in Ref. [70]. Throughout this Appendix, we make regular use
of the integral identities 3.194 from Ref. [71].

The bosonic-two point function consists of a constant contribution 1/λ − Nγ l1, which is derived in Appendix A.
Thus, we only need to calculate the integral L2 that is given in Eq. (11). The first step is to get rid of any contributions
that depend on the angle between the loop momentum p and the external bosonic momentum q. We can achieve this
by applying a Feynman parametrization of the integral in Eq. (11) resulting in

l2
(
σ̄2, µ, q2, d

)
= Nγ

∫ ∞

−∞

dp0

(2π)

∫
ddp
(2π)d

∫ 1

0

dx
1

[(p+ q)2x+∆2x+ (1− x)p2 + (1− x)∆2]
2 =

= Nγ

∫ ∞

−∞

dp0

(2π)

∫
ddp
(2π)d

∫ 1

0

dx
1

[p2 +∆2 + q2x(1− x)]
2 (B1)

where we performed a shift of the integration variable p + qx → p and ∆2 = (p0 − iµ)2 + σ̄2. In this form we can
easily carry out the integration over the temporal momenta and over the spatial momenta subsequently to obtain the
form

l2
(
σ̄2, µ, q2, d

)
= Nγ

Sd

(2π)d

∫ 1

0

dx

∫ ∞

0

dp pd−1 1

4Ẽ3

[
Θ

(
Ẽ

|µ|
− 1

)
− Ẽ

|µ|
δ

(
Ẽ

|µ|
− 1

)]
=

=
Nγ

2d+1πd/2Γ
(
d
2

) ∫ 1

0

dx ×


µ̃d−3

(3− d)
2F1

(
3
2 ,

3−d
2 ; 3−d

2 + 1;− ∆̃2

µ̃2

)
− µ̃d−2

|µ|
if µ̃2 > 0

∆̃d−3

2
B
(
d
2 ,

3−d
2

)
otherwise

, (B2)

where Ẽ2 = σ̄2 + p2 + q2x(1 − x), ∆̃2 = σ̄2 + q2x(1 − x) and µ̃2 = µ2 − ∆̃2. Since only certain limits of σ̄2, µ2 and
q2 allow to give a closed form expression of the integral over x, we simply evaluate the integral over x numerically.
Inserting the result for l2 (B2) and for 1/λ− l1 from Eqs. (A3) and (A5) into Eq. (10) yields the full two-point function
from Eq. (12). The integral over x is trivial in the limit of q → 0 for which we obtain for the two-point function the
closed form

Γ(2)(σ̄2, µ, q2 = 0, d) =
Nγ

2dπ
d
2Γ
(
d
2

) [Γ ( 1−d
2

)
Γ
(
d+2
2

)
dπ

(
|σ̄0|d−1 − |σ̄|d−1

)
+ (B3)

+


|µ|d−1

(d− 1)
if σ̄ = 0, µ ̸= 0

|σ̄|d−1

d

∣∣∣ µ̄
σ̄

∣∣∣d 2F1

(
1
2 ,

d
2 ;

d+2
2 ;− µ̄2

σ̄2

)
if σ̄ ̸= 0, µ̄2 > 0

0 otherwise

+
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+|σ̄|d−1 ×


1

(3− d)

∣∣∣∣ µ̄|σ̄|
∣∣∣∣d−3
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(
3
2 ,
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µ̄2

)
− µ̄d−2

|µ|
if µ̄2 > 0

1
2B
(
d
2 ,

3−d
2

)
otherwise


 ,

where µ̄2 = µ2 − σ̄2.
The bosonic wave-function renormalization z is the curvature of the bosonic two-point function evaluated at q = 0.

By differentiating L2 twice with respect to q and evaluating it at q = 0, we find

z =
1

2

d2 Γ(2)(σ̄, µ, q2, d)

dq2

∣∣∣∣∣
q=0

=
1

4
Nγ

∫ ∞

−∞

dp0

(2π)

Sd

(2π)d

∫ ∞

0
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[
2
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3 (E2 + (p0 − iµ)2)
3

]
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1

4
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(2π)d
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0
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1

2E3

[
Θ

(
E2

µ2
− 1

)
− E

|µ|
δ

(
E

|µ|
− 1
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+

−8σ̄2

3

3

16

[
1

E5
Θ(E2 − µ2)− 1

E4|µ|
δ

(
E

|µ|
− 1

)
+

1

3E3µ2
δ′
(
E
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)]}
. (B4)

Carrying out the remaining integral over p results in the form given in Eq. (13).
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