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Abstract 

A broad range of neuropsychiatric disorders are associated with alterations in 

macroscale brain circuitry and connectivity. Identifying consistent brain patterns 

underlying these disorders by means of structural and functional MRI has proven 

challenging, partly due to the vast number of tests required to examine the entire 

brain, which can lead to an increase in missed findings. In this study, we propose 

polyconnectomic score (PCS) as a metric designed to quantify the presence of 

disease-related brain connectivity signatures in connectomes. PCS summarizes 

evidence of brain patterns related to a phenotype across the entire landscape of 

brain connectivity into a subject-level score. We evaluated PCS across four brain 

disorders (autism spectrum disorder, schizophrenia, attention deficit hyperactivity 

disorder, and Alzheimer's disease) and 14 studies encompassing ~35,000 

individuals. Our findings consistently show that patients exhibit significantly higher 

PCS compared to controls, with effect sizes that go beyond other single MRI metrics 

([min, max]: Cohen's d = [0.30, 0.87], AUC = [0.58, 0.73]). We further demonstrate 

that PCS serves as a valuable tool for stratifying individuals, for example within the 

psychosis continuum, distinguishing patients with schizophrenia from their first-

degree relatives (d = 0.42, p = 4 x 10-3, FDR-corrected), and first-degree relatives 

from healthy controls (d = 0.34, p = 0.034, FDR-corrected). We also show that PCS 

is useful to uncover associations between brain connectivity patterns related to 

neuropsychiatric disorders and mental health, psychosocial factors, and body 

measurements. 
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Introduction 

Understanding the circuitry architecture of the human brain is a major goal in 

neuroscience and medicine. Magnetic resonance imaging (MRI) provides a non-

invasive method for mapping macroscale structural and functional connections in the 

brain. The field of network neuroscience1 describes and analyzes the intricate 

system of connections within the nervous system, examining variations in brain 

connectivity underlying healthy and pathological conditions2,3. 

 

Detecting consistent and reliable neurobiological processes underlying 

neuropsychiatric disorders4,5 has proven challenging due to methodological 

limitations6–9 and the inherent heterogeneity of the phenotypes studied4,10, among 

other factors11,12. One methodological challenge arises when examining the 

extensive number of connections in the brain. Network studies often overlook the 

contribution from connections that do not reach significance after controlling for 

multiple comparisons9,13, and these 'missed connections'6 might constitute a 

substantial portion of the truly involved brain circuitry14–16. The search for brain 

signatures underlying neuropsychiatric disorders is further complicated by the co-

occurrence of different disorders within a single individual17 and the overlapping 

neurobiological alterations among conditions18–22. Studying heterogeneous 

populations can result in a spatially distributed neural circuitry associated with a 

phenotype, complicating the identification of consistent brain patterns across 

individuals. 

 

We propose polyconnectomic score (PCS)3 as a metric to capture connectome 

signatures in individual subjects. Drawing inspiration from polygenic score in 
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genetics23, PCS quantifies the presence of brain circuitry associated with a specific 

phenotype in an individual's brain connectome. By distilling the biological evidence of 

both subtle and pronounced connectivity alterations into a single score, PCS 

provides a global depiction of the disorder-related neural circuitry present in an 

individual while reducing the number of tests required. We show the utility of PCS in 

three different applications: identifying individuals predisposed to disease based on 

their brain connectivity, stratifying patients according to disease liability, and 

uncovering brain-behavior correlations. PCS provides a way to quantify the presence 

of connectivity signatures related to a phenotype within a connectome, facilitating 

further investigation into the brain's role in health and disease states. 

 

Materials and Methods 

Studies and subjects 

Resting-state functional MRI (fMRI) data from a total of 34,570 individuals were 

included from 14 different studies. Each study received approval from the relevant 

ethics committee, and participants provided written informed consent. Descriptions of 

these studies and their corresponding scanning parameters are detailed in the 

Supplemental Methods and Table S1, respectively.  

We initially evaluated case-control differences in PCS by examining 12 

studies including 4,610 healthy controls and 2,683 individuals with schizophrenia 

(SCZ), autism spectrum disorder (ASD), attention deficit hyperactivity disorder 

(ADHD), or Alzheimer's disease (AD)24–35. Table 1 provides a demographic overview 

of these studies. Additionally, a 13th study was included for stratification of 

individuals based on their liability to psychosis, comprising individuals with SCZ, 

schizoaffective disorder (SCA), and psychotic bipolar disorder (BD; n = 126, 59, and 
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72, respectively), as well as their first-degree relatives (n = 113, 71, and 75, 

respectively), and healthy controls (n = 88)36. We further incorporated data from the 

UK Biobank (UKB)37 to measure brain-behavior associations, including 26,673 

individuals with both neuroimaging and behavioral assessments. 

 

Data processing 

Anatomical T1-weighted images were parcellated into 68 cortical regions following 

the Desikan–Killiany atlas38 using FreeSurfer v7.1.139. Functional connectivity (FC) 

reconstruction was done with CATO 3.1.220. Motion parameters and the signal 

intensity of white matter and cerebrospinal fluid were regressed out from the fMRI 

time-series. Global mean correction was performed by regressing out the mean 

signal intensity of all voxels in the brain from the time-series40. Next, bandpass 

filtering (0.01 - 0.1 Hz) and motion scrubbing41 (max FD = 0.25, max DVARS = 1.5) 

were applied to the BOLD time-series. FC between all pairs of brain regions was 

estimated by extracting the mean time-series from the cortical regions and 

computing Pearson's correlation coefficient between each pair of regions42,43. Quality 

control was performed based on two criteria: individuals were removed if either their 

mean positive connections or more than 1% of their total connections deviated 

beyond three standard deviations from the study mean. For each study, the effects 

of covariates age, sex, site, and total in-scanner motion were regressed out from the 

FC. Sensitivity analyses were conducted using higher resolution atlases44 describing 

114 and 219 cortical regions (data shown in Supplemental Results), and without 

applying global mean correction (data shown in Supplemental Results). 

 

Polyconnectomic score 
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Figure 1 outlines the steps to compute polyconnectomic score (PCS), a method that 

leverages 'connectome summary statistics' (CSS). These statistics represent the 

strength and direction of the association between brain connections and the 

phenotype of interest (POI)45. CSS are typically represented by a symmetric matrix β 

of size 𝑛 by 𝑛, where each element denotes the association strength of a connection 

between a pair of regions. CSS can be based on either a discovery dataset or a 

previously conducted independent study. In this work, we tested the PCS framework 

by deriving it from the CSS of a single study, or by aggregating CSS from multiple 

independent studies using a meta-analytic approach with a random-effects model46. 

The strength of an association between a connection and a POI is quantified using 

regression coefficients for scale variables or t-statistics and Cohen's d for group 

contrasts. The PCS for an out-of-sample individual can then be computed as the 

weighted average of the CSS and the individual's brain connectivity map: 

𝑃𝐶𝑆 = 	 !
"
∑"# (𝛽 ∗ 𝐶)  

Here β is the CSS matrix and C is the connectivity map of the new subject. As such, 

PCS serves as a relative measure, attaining interpretative significance when 

compared with other subjects within the same sample. 

 

Statistical analyses 

Simulations 

We examined the theoretical predictive power of PCS by means of Monte Carlo 

simulations. A FC matrix was generated by sampling from a Gaussian distribution of 

size n by n (here, n = 68) with a mean of zero and standard deviation of 0.2, resulting 

in values ranging from -1 to 1. Studies were simulated with varying sample sizes (50, 

100, 200, 500, 800, and 1600 subjects), and each study was partitioned into two 
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equally-sized non-overlapping groups representing cases and controls. We 

generated a simulated contrast covering 10% of connections by sampling from a 

Gaussian distribution with a mean of zero and a standard deviation of 0.03, and 

subsequently applied this contrast to all cases. The simulated contrast resulted in a 

mixture of increased and decreased connectivity values in cases compared to 

controls, alterations equivalent to a distribution of Cohen's d with mean zero and a 

standard deviation of 0.15. In each experiment, two studies of the same sample size 

were simulated. CSS were extracted from one study to compute PCS in the second 

study. We then evaluated the predictive power of PCS by estimating the Cohen's d 

case-control differences in PCS. PCS was further evaluated using a logistic 

regression to classify each subject's diagnosis and compute the area under the 

curve (AUC) of the receiver operating characteristic curve, with an AUC above 0.5 

indicating a prediction better than random chance. The experiments were conducted 

in two scenarios: in the first scenario, cases from both studies received alterations on 

identical connections; in the second scenario, the alteration was applied in randomly 

different connections between studies. We conducted the experiment 1,000 times, 

considering both connectivity alteration scenarios, various sample sizes, and multiple 

p-value thresholds for the inclusion of connections from the CSS (ranging from 1 to 1 

x 10-5). 

 

Connectome summary statistics 

We computed PCS using CSS representing FC differences between patients with 

neuropsychiatric disorders and controls. For the section on phenotypic prediction, we 

sourced CSS from the studies that had the largest patient samples available to us for 

ASD, SCZ, ADHD, and AD26,29,31,33. In the subsequent analyses, we conducted a 
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meta-analysis using the CSS from four studies focusing on SCZ patients25,30,32,33 and 

four studies on ASD patients26,28,29,33 to compute PCS for SCZ (PCS-SCZ) and PCS 

for ASD (PCS-ASD), respectively. In each analysis, we ensured that the CSS were 

derived from studies independent of those where PCS was calculated. Table S1 

provides the meta-analytic CSS for each disorder, allowing researchers to compute 

PCS for ASD, SCZ, ADHD, and AD in their own studies. 

 

Phenotypic prediction 

PCS was computed for patients with ASD, SCZ, ADHD, AD, and healthy controls. 

We assessed the ability of PCS to differentiate between patients and controls using 

Cohen's d, obtaining p-values from a Student's t-test and correcting for false 

discovery rate (FDR)47. The ability of PCS to classify individuals' disease status more 

accurately than random chance was evaluated through a logistic regression with 

PCS as the predictor and diagnosis as the outcome variable. We computed the AUC 

to evaluate the model's accuracy, using class weights to balance the differences in 

sample size between patient and control groups. 

 

Patient stratification based on disease liability 

We carried out analyses to investigate whether PCS can distinguish individuals 

based on their predisposition to psychosis. PCS-SCZ was computed in an 

independent study including patients with SCZ, SCA, BD, their first-degree relatives, 

and healthy controls36. PCS-SCZ levels were statistically compared across all groups 

using Cohen's d, and p-values derived from Student's t-test statistic (FDR-corrected). 

 

Brain-behavior associations 
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We evaluated the utility of PCS in uncovering brain-behavior associations. We 

computed PCS-SCZ and PCS-ASD within the UKB cohort37. The relationship 

between PCS and cognitive measures, mental health factors, psychosocial 

questionnaires, and body measurements was analyzed. Pearson's correlation 

coefficient was estimated for scaled variables, and Cohen's d for categorical 

variables with p-values derived from Student's t-test statistic (FDR-corrected). We 

replicated the analysis focusing on a subclinical population of subjects without 

clinical records of neuropsychiatric disorders or self-reported diagnoses 

(Supplemental Results). 

 

Results 

Evaluating PCS performance through simulation studies 

In each iteration, we simulated two studies (Methods). The connectome summary 

statistics (CSS) from the first simulated study were extracted to compute 

polyconnectomic score (PCS) in the second study (PCS framework is illustrated in 

Figure 1). Simulations showed that when two studies presented different sets of 

altered connections, PCS revealed no significant differences between cases and 

controls (Figure S1). On the other hand, when identical connections were 

manipulated in cases from both studies, and the sample size was 100 individuals or 

more, PCS was higher in cases compared to controls (p < 0.05; Figure S1). In 

simulations with 100 individuals, group differences in PCS decreased when 

increasing the p-value thresholds for the inclusion of connections from the CSS, with 

Cohen's d ranging from 0.52 (no p-value threshold) to 0.22 (p-value threshold < 5 x 

10-4). For larger sample sizes, the predictive power of PCS declined when reaching 

Bonferroni correction. In simulations with 400 individuals, Cohen's d for group 
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differences in PCS started at 0.97 (no p-value threshold), peaked at 1.18 (p-value 

threshold < 0.01), and then declined, reaching 0.61 at Bonferroni correction (p-value 

threshold < 1 x 10-5). Only in simulations with 1,600 individuals, we found 

comparable group differences in PCS, regardless of whether all connections were 

included (d = 1.56) or Bonferroni correction was applied (d = 1.63). 

 

PCS capture brain patterns related to neuropsychiatric disorders  

We evaluated the ability of PCS to identify ASD-associated brain connectivity 

patterns and differentiate patients from controls (Methods; Figure 1). ASD patients 

exhibited significantly higher PCS-ASD levels compared to controls (d = 0.45, p = 3 x 

10-11, FDR-corrected), and using PCS-ASD led to a classification of individuals' 

disease status more accurate than would expected by random chance (AUC = 0.63). 

We further evaluated the reliability of PCS in detecting ASD-related brain signatures 

by incorporating two additional independent studies. Consistent with our initial 

findings, ASD patients in both studies displayed higher PCS-ASD compared to 

controls (d = 0.30 and 0.43, p = 2 x 10-3 and 1.2 x 10-3, FDR-corrected; AUC = 0.58 

and 0.61, respectively; Figure 2A; Table S2). 

We expanded our analyses to compute PCS for SCZ, ADHD, and AD (Table 

S2). In three studies, individuals diagnosed with SCZ displayed elevated PCS-SCZ 

relative to controls ([min, max]: d = [0.54, 0.87], p < 0.05, FDR-corrected; AUC = 

[0.65, 0.73]; Figure 2B). Individuals with ADHD showed no differences in PCS-ADHD 

compared to controls (p > 0.05, FDR-corrected; Figure 2C). In one study, AD 

patients presented elevated PCS-AD compared to controls (d = 0.48, p = 0.034, 

FDR-corrected; AUC = 0.63), while no such difference was found in the other study 

(p > 0.05, FDR-corrected; Figure 2D). Differences in PCS between groups remained 
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consistent under various conditions, including evaluations against a null model that 

permuted the effect sizes from the CSS (Table S2), computations of PCS using a 

meta-analytical CSS (Figure 3 and Table S3), utilizing higher-resolution atlases or 

without applying global mean correction (Supplemental Results). 

 

PCS stratifies individuals across the psychosis continuum 

We investigated the ability of PCS to differentiate individuals based on their 

predisposition to psychosis by computing PCS-SCZ for patients with SCZ, first-

degree relatives of SCZ patients, and healthy controls (Methods). Analysis revealed 

that SCZ patients exhibited higher PCS-SCZ compared to both their first-degree 

relatives (d = 0.42, p = 4 x 10-3, FDR-corrected; Figure S7) and healthy controls (d = 

0.77, p = 1 x 10-6, FDR-corrected). First-degree relatives of SCZ patients also 

presented significantly elevated PCS-SCZ compared to healthy controls (d = 0.34, p 

= 0.034, FDR-corrected).  

We expanded our analysis to the complete psychosis continuum, including 

patients with schizoaffective disorder (SCA) and bipolar disorder (BD), as well as 

their first-degree relatives (Figure 4). SCZ patients showed the largest difference in 

PCS-SCZ compared to healthy controls (d = 0.77), followed by patients with SCA (d 

= 0.66, p = 7.4 x 10-4, FDR-corrected) and BD (d = 0.57, p = 1.6 x 10-3, FDR-

corrected). No statistical differences were observed in PCS-SCZ among SCZ, SCA, 

and BD patients (p > 0.05, FDR-corrected). Within individual disorders, patients with 

SCA exhibited PCS-SCZ levels that were nominally higher than those of their first-

degree relatives (d = 0.31, p = 0.12, FDR-corrected), and first-degree relatives also 

showed a slight increase in PCS-SCZ compared to healthy controls (d = 0.35, p = 

0.11, FDR-corrected), although these effects did not reach significance after 
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correction for multiple comparisons. BD patients presented a significant increase in 

PCS-SCZ compared to their first-degree relatives (d = 0.59, p = 1.6 x 10-3, FDR-

corrected), while first-degree relatives of BD patients showed no differences with 

healthy controls (p > 0.05, FDR-corrected). 

 

PCS detects brain-behavior associations 

We further assessed the relationship between PCS and clinical as well as behavioral 

measures in the UK Biobank (UKB; Methods). Individuals exhibiting higher PCS-SCZ 

displayed lower fluid intelligence (r = -0.037, p = 1.1 x 10-5, FDR-corrected) and 

slower reaction times (r = 0.033, p = 5.7 x 10-5, FDR-corrected; Figure 5). No specific 

effects on cognition were found for PCS-ASD (Figure S8). Regarding mental health 

indicators, elevated PCS-SCZ was correlated with a higher likelihood of experiencing 

nervous feelings (d = 0.12, p = 2.8 x 10-9, FDR-corrected), increased neuroticism 

scores (r = 0.031, p = 1.5 x 10-5, FDR-corrected), and decreased propensity for risk-

taking (d = -0.09, p = 1.8 x 10-7, FDR-corrected), among other aspects (complete 

results in Table S4). Subjects with higher PCS-ASD were likely to have more 

consultations with a psychiatrist for issues related to nerves, anxiety, tension, or 

depression (d = 0.08, p = 4.7 x 10-3, FDR-corrected). Our analysis also uncovered 

potential links between PCS and measures of well-being. We observed a negative 

correlation between happiness and both PCS-SCZ (r = -0.023, p = 6.4 x 10-4, FDR-

corrected) and PCS-ASD (r = -0.026, p = 9.1 x 10-4, FDR-corrected). Individuals with 

higher PCS-SCZ reported lower levels of job satisfaction (r = -0.047, p = 1.6 x 10-12, 

FDR-corrected) and health satisfaction (r = -0.032, p = 1.1 x 10-6, FDR-corrected), 

whereas individuals with elevated PCS-ASD reported reduced levels of friendship 

satisfaction (r = -0.017, p = 0.033, FDR-corrected) and family satisfaction (r = -0.021, 
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p = 7.1 x 10-3, FDR-corrected). These findings were consistent when focusing on 

healthy subjects without any neuropsychiatric diagnosis (Table S5). 

 

Discussion 

We investigated the ability of PCS to capture and quantify disorder-related brain 

signatures in individual connectomes. Our findings suggest that PCS has several 

valuable applications, including distinguishing populations with neuropsychiatric 

disorders, stratifying patients by disease risk, and uncovering links between brain 

connectivity and behavior. 

 

PCS associated with neuropsychiatric disorders were generally higher in patients 

compared to controls. SCZ patients in particular showed elevated PCS-SCZ than 

controls across three different datasets ([min, max]: d = [0.54, 0.87]; Figure 2B and 

Table S2), supporting the hypothesis of dysconnectivity as a basis for the 

neuropathology of SCZ48,49. The mean effect of PCS-SCZ across studies (d = 0.74) 

exceeded the largest effect sizes of previously reported brain alterations in SCZ, 

such as cortical thickness thinning (d = -0.54)50, reductions in total gray matter (d = -

0.58)51 and thalamus volume (d = -0.68)51, enlargement of the third ventricle (d = 

0.60)51, and alteration in overall white matter microstructure (d = -0.42)52. ASD 

patients similarly showed higher PCS-ASD than controls in three studies (d = [0.30, 

0.45]; Figure 2A and Table S2) with a mean effect size of 0.39, an effect comparable 

to the largest effect sizes reported for whole brain thickness in ASD patients (d = 

0.41)53. Furthermore, larger group differences in PCS were generally found as a 

result of employing a meta-analytic CSS for the computation of PCS (Figure 3 and 

Table S3). These results support the utility of PCS as a valuable brain metric for 
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distinguishing patient groups with neuropsychiatric disorders from control 

populations. 

 

PCS differentiated patients from controls more robustly when all connections were 

included in the analysis, compared to when only connections that remained 

significant after Bonferroni correction were incorporated. Both our simulations 

(Figure S1) and empirical analyses (Figure 3) showed that connections containing 

relevant information about the phenotype under investigation often were discarded in 

traditional neuroimaging studies after controlling for multiple comparisons. Such 

findings are consistent with existing evidence suggesting that effects found in 

spatially localized sets of connections may constitute only a small fraction of a 

broader global brain involvement14–16. In line with this evidence, differences in PCS 

between patients and controls exceeded those in global FC, potentially due to the 

inclusion of the entire connectome combined with the disease-specific circuitry 

information (Figure S4 and Figure S5). 

 

A crucial question regarding PCS is whether this method captures connectivity 

patterns specific to the disease of interest or whether it represents a general 

alteration common across disorders. Our data indicate that PCS-ASD levels are 

higher in ASD patients compared to controls, an effect generally not observed when 

comparing PCS-ASD levels between individuals with other neuropsychiatric 

disorders and controls (Figure S3). These observations suggest that PCS was able 

to capture disease-specific brain predispositions, rather than a general cross-

disorder vulnerability19–22, which is critical for developing connectomic markers with 

potential clinical applications3. However, PCS was not always disease-specific. 
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Patients with BD, ASD, and major depressive disorder also exhibited elevated PCS-

SCZ compared to controls (Figure S3). Additional analyses indicated that PCS-SCZ 

appears to identify brain signatures related to psychosis liability, not exclusively 

specific to SCZ. Across the psychosis continuum, SCZ patients presented the 

highest PCS-SCZ levels, followed by SCA and BD patients, as well as their 

respective first-degree relatives (Figure 4), suggesting an overlap in the functional 

brain circuitry alterations across psychotic disorders22,54. 

 

PCS shows potential in uncovering associations between brain connectivity and 

cognitive measures, mental health factors, psychosocial questionnaires, and body 

measurements. Individuals with connectomes resembling those typically seen in 

SCZ exhibited reduced cognitive performance, echoing the well-established 

relationship between SCZ and intelligence (Figure 5)55–58. Additionally, we observed 

significant correlations of PCS-SCZ and PCS-ASD with neuroticism. This 

observation aligns with existing research identifying links between neuroticism and 

both SCZ and ASD at the behavioral59,60 and genetic levels61–63. Given that 

neuroticism and intelligence are associated with a general factor of psychopathology 

(p-factor)64, it is plausible that PCS-SCZ could serve as a broader marker for 

transdiagnostic psychopathology. In terms of physical measurements, elevated PCS-

ASD was associated with a lower body mass index (Figure S8). A negative 

association between male children with ASD and body mass index has been 

previously reported65, although other studies report a positive association66,67. These 

findings demonstrate the utility of PCS for detecting links between brain connectivity 

and behavior, contributing to a deeper understanding of the neural underpinnings of 

clinical traits. 
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PCS sets itself apart from existing methods such as examining graph metrics1, 

network-based statistics68, regional vulnerability index69, and connectome-based 

predictive modeling70. One key strength of PCS is the inclusion of whole-brain 

connectivity information to provide an interpretable metric that quantifies the 

resemblance of a given connectome to the neural circuitry associated with a 

phenotype. PCS is not constrained by the topological organization of brain circuits 

related to a phenotype, offering a comprehensive and unbiased view on the 

implicated brain connections. PCS is also designed to take into account both the 

strength of individual connections and their similarity to the phenotype-associated 

neural circuitry, maximizing the information utilized to detect relevant brain 

signatures. Additionally, PCS is a computationally inexpensive method and does not 

require data normalization across subjects, reducing the risk of data leakage 

between patient and control groups. Previous studies have used frameworks similar 

to PCS for analyzing brain functional activation71 and connectivity72, providing 

compelling evidence of the predictive power to detect individual differences in 

cognitive performance. Building upon this work, our study replicates these findings in 

the UKB (Figure S6), and further extends the application of PCS to both healthy and 

diseased connectomes across multiple independent studies. 

 

There are several limitations that should be noted. Similar to polygenic score23, PCS 

serves as a relative measure and its interpretation becomes meaningful only within 

the context of the same sample. The development of an absolute scale is crucial to 

enhance its clinical utility. PCS do not consider potential interactions within the brain, 

treating each connection independently. A model that accounts for the 
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autocorrelated structure of the brain could improve the predictive power of 

neuroimaging markers71,73,74, although this is not always the case72. Previous studies 

have highlighted the potential of connectivity markers in predicting the progression of 

brain disorders75,76. While PCS distinguished groups of individuals based on 

psychosis risk in cross-sectional analyses, the ability of PCS to predict disease onset 

in longitudinal studies remains to be determined. Furthermore, PCS showed limited 

effectiveness in distinguishing ADHD patients from controls. This result could be due 

to a pronounced disease heterogeneity across ADHD studies (Figure S2), potentially 

reducing the predictive power of PCS in identifying disorder-related brain patterns in 

diverse patient groups. 

 

PCS provides a way to address the challenges inherent in network neuroimaging 

studies. Using PCS to integrate information from the entire brain into a single score 

has the potential to create robust endophenotypes while boosting statistical power. 

We show evidence that PCS can aid researchers to identify subjects with 

neuropsychiatric disorders, stratify individuals based on disease risk, and uncover 

brain-behavior associations. PCS stands as a promising tool for deepening our 

understanding of both healthy and diseased brains, with a wide range of potential 

applications in the field of neuroscience. 

 

Data availability 

COBRE is available from http://schizconnect.org. CNP is available from OpenNeuro 

(http://openneuro.org, accession number ds000030). BSNIP is obtained from the 

NIMH Data Archive (https://nda.nih.gov; NDAR ID: 2274, respectively). SRPBS is 

available at https://bicr-resource.atr.jp/srpbs1600. HBN is available at 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 27, 2023. ; https://doi.org/10.1101/2023.09.26.559327doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?NiNNuj
https://www.zotero.org/google-docs/?p32iPL
https://www.zotero.org/google-docs/?2Iy32P
https://doi.org/10.1101/2023.09.26.559327
http://creativecommons.org/licenses/by-nc/4.0/


 

 

http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network. NKI-Enhanced is 

obtained from http://fcon_1000.projects.nitrc.org/indi/enhanced/. ADNI2/GO, and 
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brains.org. The UKB MRI data is available at https://www.ukbiobank.ac.uk. 
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Table 1. Demographic overview of included studies. 

A demographic overview of the studies included in the main analysis is presented. 

For each study (first column), the table provides the number of patients and controls 

(second column), the number of males and females (third column), the mean and 

standard deviation for age (fifth column) and head motion (seventh column). 

Statistics used to evaluate differences in these measurements between patients and 

controls are also given (fourth, sixth, and eighth columns). A positive t-value 

indicates higher values in patients compared to controls. Bolded values denote 

statistically significant group differences. ASD, autism spectrum disorder; SCZ, 

schizophrenia; ADHD, attention deficit hyperactivity disorder; AD, Alzheimer's 

disease; FD, framewise displacement; SD, standard deviation. 

Study Diagnosis Male/Female, n �2
, p-value Age, years (Mean ± SD) t, p-value Head motion, FD (Mean ± SD) t, p-value

ASD I Control, n=527 527/0 14.8 ± 9.0 0.14 ± 0.16

Autism, n=437 368/69 87.27, <0.001 14.6 ± 8.0 -0.52, 0.602 0.18 ± 0.22 2.89, 0.004

ASD II Control, n=691 400/291 31.4 ± 10.4 0.12 ± 0.07

Autism, n=125 109/16 37.52, <0.001 32.5 ± 8.0 1.27, 0.206 0.15 ± 0.09 3.59, <0.001

ASD III Control, n=156 86/70 10.9 ± 3.4 0.24 ± 0.3

Autism, n=109 91/18 22.00, <0.001 11.6 ± 3.7 1.70, 0.091 0.33 ± 0.43 2.00, 0.047

ASD IV Control, n=506 415/91 17.4 ± 7.6 0.13 ± 0.08

Autism, n=446 397/49 8.70, 0.003 17.4 ± 8.4 -0.03, 0.974 0.18 ± 0.19 5.15, <0.001

SCZ I Control, n=79 59/20 38.2 ± 11.8 0.25 ± 0.14

Schizophrenia, n=66 52/14 0.15, 0.701 37.8 ± 13.6 -0.16, 0.872 0.35 ± 0.26 2.85, 0.005

SCZ II Control, n=509 175/334 36.9 ± 13.1 0.19 ± 0.11

Schizophrenia, n=63 34/29 8.45, 0.004 38.8 ± 12.3 1.16, 0.248 0.29 ± 0.17 4.39, <0.001

SCZ III Control, n=95 50/45 32.1 ± 8.5 0.13 ± 0.09

Schizophrenia, n=29 21/8 2.79, 0.095 36.9 ± 9.2 2.52, 0.015 0.18 ± 0.09 2.60, 0.012

SCZ IV Control, n=840 478/362 34.6 ± 13.7 0.12 ± 0.07

Schizophrenia, n=121 72/49 0.20, 0.658 37.1 ± 10.4 2.32, 0.022 0.13 ± 0.07 1.36, 0.177

ADHD I Control, n=511 263/248 12.4 ± 3.1 0.14 ± 0.14

ADHD, n=303 239/64 59.30, <0.001 11.8 ± 3.0 -2.49, 0.013 0.15 ± 0.11 1.12, 0.263

ADHD II Control, n=528 191/337 32.2 ± 18.2 0.26 ± 0.22

ADHD, n=60 40/20 19.74, <0.001 18.3 ± 14.1 -7.00, <0.001 0.24 ± 0.11 -1.13, 0.259

ADHD III Control, n=102 52/50 31.3 ± 8.7 0.13 ± 0.09

ADHD, n=35 18/17 0.00, 1.000 32.5 ± 10.2 0.59, 0.556 0.12 ± 0.06 -0.52, 0.603

ADHD IV Control, n=159 88/71 10.8 ± 3.5 0.26 ± 0.35

ADHD, n=666 473/193 13.78, <0.001 10.5 ± 3.0 -0.98, 0.330 0.37 ± 0.61 3.21, 0.001

AD I Control, n=23 10/13 74.4 ± 6.0 0.52 ± 0.32

Alzheimer, n=29 14/15 0.00, 0.948 73.1 ± 7.0 -0.72, 0.473 0.67 ± 1.3 0.60, 0.554

AD II Control, n=160 78/82 77.2 ± 7.3 0.75 ± 0.5

Alzheimer, n=29 18/11 1.25, 0.263 76.2 ± 7.4 -0.69, 0.497 0.92 ± 0.81 1.08, 0.287

AD III Control, n=665 278/387 69.9 ± 8.4 0.27 ± 0.14

Alzheimer, n=165 94/71 11.69, <0.001 74.8 ± 7.6 7.31, <0.001 0.27 ± 0.12 -0.03, 0.979

1
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Fig 1. Computation of polyconnectomic score.  

The computation of the polyconnectomic score (PCS) relies on connectome 

summary statistics (CSS). These statistics represent the strength and direction of the 

association between brain connections and the phenotype of interest (POI), 

measured using regression coefficients for scaled variables or Cohen's d for binary 

variables. CSS can be based on either a discovery dataset or a previously 

conducted independent study. The PCS for an out-of-sample individual can then be 

computed as the weighted average of the CSS and the individual's brain connectivity 

map, capturing how closely a subject's connectome resembles the brain signature 

associated with the POI. The efficacy of PCS is evaluated by comparing scores 

between cases and controls. PCS, polyconnectomic score; POI, phenotype of 

interest; d, Cohen's d. 
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Figure 2. Polyconnectomic score for autism spectrum disorder, schizophrenia, 

attention deficit hyperactivity disorder, and Alzheimer's disease. 

Connectome summary statistics (CSS) are estimated from a previously conducted 

study (left column). These statistics quantify the strength of the association (x-axis) 

and the level of significance (y-axis) for each brain connection in relation to (A) 

autism spectrum disorder, (B) schizophrenia, (C) attention deficit hyperactivity 

disorder, and (D) Alzheimer's disease. Blue and red dots represent connections with 

decreased and increased functional connectivity in patients compared to controls, 

respectively. These CSS are used to calculate the polyconnectomic score (PCS) in 
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an independent study (middle column). In each study, we statistically compare PCS 

levels between patients and controls (y-axis; white dots indicate group means) to 

assess the method's efficacy in capturing brain connectivity signatures linked to 

neuropsychiatric disorders. Asterisks denote studies where significant differences in 

PCS between groups were observed, as estimated by t-test statistics (FDR-

corrected). Logistic regression analysis (right column) is used to evaluate the 

predictive power of PCS in classifying individual diagnoses by estimating the area 

under the receiver operating characteristic curve (AUC; x-axis for false positive rate, 

y-axis for true positive rate). A dotted line at an AUC of 0.5 corresponds to random 

guessing. CSS, connectome summary statistics; PCS, polyconnectomic score; ASD, 

autism spectrum disorder; SCZ, schizophrenia; ADHD, attention deficit hyperactivity 

disorder; AD, Alzheimer's disease; AUC, area under the curve of the receiver 

operating characteristic curve. 
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Figure 3. Computation of polyconnectomic score using meta-analytic summary 

statistics. 

A leave-one-out meta-analysis is conducted to derive robust connectome summary 

statistics (CSS) for calculating the polyconnectomic score (PCS) in independent 

studies. Within each study (x-axis), differences in PCS levels between patients and 

controls are estimated using Cohen's d (y-axis). Connections from the CSS are 

thresholded based on p-value significance levels, ranging from no threshold to 

approximately Bonferroni correction (p-value threshold < 1 x 10-5). Asterisks indicate 

studies where significant differences in PCS between patients and controls are 

observed, as estimated by t-test statistics (FDR-corrected). PCS, polyconnectomic 

score; ASD, autism spectrum disorder; SCZ, schizophrenia; ADHD, attention deficit 

hyperactivity disorder; AD, Alzheimer's disease. 
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Figure 4. Using polyconnectomic score for schizophrenia to stratify individuals 

across the psychosis continuum 

The polyconnectomic score (PCS) for schizophrenia (SCZ) is computed across the 

psychosis continuum, including patients with SCZ, schizoaffective disorder (SCA), 

and psychotic bipolar disorder (BD), as well as first-degree relatives from each 

group, and healthy controls. (A) Violin plots display the distribution of PCS-SCZ (y-

axis) for each group (x-axis; white dot denotes the mean). (B) A histogram shows the 

frequency count (y-axis) of PCS-SCZ values (x-axis) among individuals in each 

group. Patients with SCZ present the largest differences in PCS-SCZ compared to 

healthy controls (d = 0.77), followed by SCA (d = 0.66) and BD (d = 0.57). SCZ, 

schizophrenia; SCA, schizoaffective disorder; BD, bipolar disorder; SCZ-rel, first-

degree relatives of schizophrenia patients; SCA-rel, first-degree relatives of 

schizoaffective disorder patients; BD-rel, first-degree relatives of bipolar disorder 

patients; PCS-SCZ, polyconnectomic score for schizophrenia. 
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Figure 5. Brain-behavior correlations using polyconnectomic score for 

schizophrenia. 

A circle plot illustrates the association between the polyconnectomic score for 

schizophrenia (PCS-SCZ) and measures of cognition (dark blue), mental health (light 

blue), and self-reported medical conditions (pink), based on data from the UK 

Biobank. Pearson's correlation coefficients are displayed only for associations that 

remain significant after FDR correction (gray indicates non-significant effects). 

Dichotomous variables measured with Cohen's d are converted to Pearson's 

correlation coefficient for visualization purposes. Elevated levels of PCS-SCZ are 

associated with reduced cognitive performance, increased neuroticism, and a higher 

incidence of mental health complaints. Similar associations are observed in 

subclinical populations. PCS-SCZ, polyconnectomic score for schizophrenia. 
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