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1 Abstract

After a short introduction into traditional image
transform coding, multirate systems and multiscale
signal coding the paper focuses on the subject of image
encoding by a neural network. Taking also noise into
account a network model is proposed which not only
learns the optimal localized basis functions for the
transform but also learns to implement a whitening filter
by multi-resolution encoding. A simulation showing the
multi-resolution capabilitys concludes the contribution.

2 Introduction

In the sensor encoding area, all approaches try to
minimize the necessary information for a given
reproduction error. One actual, important approach is the
transform coding concept that is the base for the JPEG
and MPEG image encoding standards [3], [5]. This
concept sees the pixels of an image as parallel signals
which have to be encoded. For this purpose, the picture is
subdivided into subimages  (e.g. 8x8 pixels) and
transformed by a linear transform into coefficients.
Afterwards, the code coefficients are quantized according
to a quantization table. For the reconstruction process,
these procedures are inversely done. In figure 1 the
encoding and decoding situation is visualized.

The transforms are based on the decomposition
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for a vectored signal x and the basis functions ji. It is
well known that transform coding minimizing the least
mean squared error (LMSE) for the reproduced images
can be obtained by the Karhunen-Loève expansion (KLT)
or principal component analysis (PCA), which can be
implemented by lateral inhibited neural networks, e.g [1].

Nevertheless, the JPEG and MPEG standard uses the
cosine transform, (DCT) a special kind of Fourier
transform (DFT) as basis functions ϕi which become
basis vectors in the descrete case.

They all share the property that the part of the
sampled data, the block, is of equal length for all basis
functions. Since the different basis functions are sinus or
cosines of different frequencies, this means that we
sample the sensor data with the same inter-sample
distance for different frequencies. According to the
sample theorem of Shannon [10] , a signal containing a
certain highest frequency f can only be recontructed if the
sample frequeny fs (i.e. the sampling distance), is doubled
fs≥2f (i.e. the sampling interval is smaller than half of the
period of f). So, by choosing a small sampling interval
for a reliable reconstruction we oversample all the lower
frequency components which results in highly correlated
and thus redundant

.
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Fig. 1 The transform coding approach
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coefficients even for the PCA case. This can be
changed by a spectral multi-resolution approach where
each frequency component has ist own sampling block
size. This spectral multiresolution idea is also reflected
by the well known subject of multirate filter systems, see
e.g. the book of Vaidyanathan[11]. Here, we start with the
approach of deviding the power spectrum |y(f)| of a signal
x(t) into several overlapping intervals or subbands by the
linear decomposition of basis functions with different
frequency characteristics (filter banks). In figure 2a a
filter bank system and in figure 2b the frequency
responses of the different encoded signals yi are shown.

           y0         |y|
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             . . .
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Fig.2 Filter banks and subbands
         for multirate sampling

According to the Shannon theorem, we can save
sample points (and therefore encoding coefficients) by
decreasing the sampling rates for the lower frequency
bands, e.g. by a factor of two. If we arrange this parallel
scheme in a sequential manner using only one type of
filter bank which consists of two symmetrically aranged,
overlapping filter banks (a high-pass filter and a low-pass
filter: Quadrature Mirror Filter QMF-Filter[11] ) we get
the wavelet approach [4].

Since each filtered signal is subsampled, the
corresponding part of the original signal is scaled
(compressed) on the time scale. Thus, the corresponding
basis function have to be rescaled (expanded) to represent
the real basis function. The corresponding sampling
interval is therefore also expanded, resulting in a
different interval, i.e. in image encoding a different area
surface, for each basis function.

Additionally, in many sensor encoding tasks the
ability to deal with the noisy environment of the
transmission or storage is of crucial importance. It can be
shown [2] that for many parallel channels the information
flow is maximized if the linear transformation produces
decorrelated and normalized channel output which
coincidents well with the classical result of a whitening
filter by Shannon [9] for one channel. This means that we
have no longer to implement a PCA, but to decorrelate
and normalize the output data which can be done by an
infinity of base vector systems. Among them, a PCA with
scaled eigenvectors is just one sufficient solution, not a
necessary one.

So, we can finally conclude that we are looking for an

encoding scheme that uses non-uniform sampling and
orthonormalizes the output data at the same time. For
this task, neural  networks are good candidates.

3 A multi-resolution network model

For our multi-resolution model, let us first specify the
activity in the network.

3.1 The activity model

The linear activity due to eq.(1.1) can be easily
implemented by a net of n linear neurons each
implementing a scalar product

y = w xj j
j
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=
∑

1

= wTx. (2.1)

As a network they implement a linear transform by their
parallel action
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This is shown in figure 3 by the solid lines.
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Fig. 3 A symmetrically lateral inhibited network model

Now, how can we get the vectors orthogonal ?
The ordinary PCA networks minimize the error of the

reconstruction by assigning to the weight vectors the
eigenvectors of the input covariance matrix CXX which
forms an orthogonal base. The main difference between
the different models is given how the assignment takes
place. This is done by learning rules which induce a
special learning network, i.e. a network for the signal
flow exclusive for the learning phase.

3.2 The learning network

The learning rules of the models can be devided into
three categories: models using symmetric lateral
inhibitions (as e.g. [1], see dotted lines in figure 3),
models using asymmetric lateral inhibiton influence (e.g.
[7]) and models without lateral inhibition, but using a
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kind of activity backpropagation through the weights
influencing the signal source (e.g. [6],[8]). The first ones
have the advantage that they are biologically plausible
(lateral inhibition connections are found also in
biological nervous systems) and can easily be
implemented by analog circuits, because it uses only one
line of feedback per neuron contrary to the signal
influencing feedback of the latter ones.
So, let us choose a lateral inhibition model, for instance
the one of Brause [1]. Here, our objective function that
implements a PCA for the learning model is
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(2.3a)
accompanied by the restriction for obtaining normalized
weights

|wk| = 1 (2.3.b)

The objective function is composed by two terms R1 and
R2. The first term becomes zero only when all
crosscorrelation terms cij are zero while the second term
become strongly negative for the variance getting
maximal. Since the extrema of the objective function,
even scaled by an arbitrary factor, remains the same the
factor β denotes only the relative influence of the
crosscorrelations with respect to the autocorrelation
influence.

Now we let the weights of this feedforward network
learn by the simple gradient descent learning rule

( ) ( ) ( ) ( )w w w w wk k
w

mt t t Rk= − − ∇1 1 2γ , , ,�

 k = 1, 2,…, m
with  the learning rate γ and the Nabla operator ∇ for the
gradient.

With the gradient we can directly compute the
deterministic learning rule for the k-th neuron.
Introducing lateral coupling weights which are often
observed in biological nervous circuitry

uij = - 〈yiyj〉      lateral inhibition  (2.4)

between the neurons for the learning process we finally
get as the stochastic learning rules
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Please note that all weight vectors have a different
number of dimensions; since they are only coupled by the
scalar output yi, the different dimensions do not imply
any problems.

For noise suppression, the covariance coefficients
have to become [2]
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In contrast to the ordinary orthonormal networks, we
do not change the length of the weight vectors to fit the
variance P by a proper objective function (see [2] , but we
introduce a second learning mechanism for the area
(number of components) that the weight vector covers.
By correspondingly increasing the image area, also the
variance represented by the neuronal output is increased.
Thus, we change from the equi-resolution encoding to
the multi-resolution approach.

The mechanism can be realized by a simple gradient
descent on the mean squared error

( )n(t +1) =  n(t) -  (t)γ ∂
∂

y n P
y
nk( )2 −         (2.7)

For an unknown input statistic, we do not know
explicitely y(n). Since we can assume that it is a
monotoneous increasing function, we might as well
replace it by a positive constant for the stochastic
learning, including it in the (heuristic) learning rate γ(t).

( )n(t +1) =  n(t) -  (t)γ y Pk
2 −        (2.8)

So, the system starts with all neurons having an equal
input area. For a stable input statistic, by using a small γ
each neuron should only slowly change the input area,
much more slowly than the weights themselves.

 The growing mechanism of (2.8) can also have a
biological counterpart: the receptive field of the neuron
might grow as long as it senses a difference between its
own, small activity and the neighboured activity. This
can also be interpretated as a kind of load balancing
mechanism for a pool of processors.

The lateral inhibition weights should also be updated
and reflect an average of the most recent patterns. Please
note that the standard stochastic approximation approach
yields some problems in this case because the distribution
of the yi is not stationery; they are subject for change of
the weights.

It should be noted that the goal of the combined
decorrelation and growing mechanism is no longer a
PCA in the classical sense; the decorrelation of the
output is produced by vectors which are no longer the
eigenvectors of the input correlation matrix; they are
something different. The exact analytical expression for
the new multi-resolution goal is not easily to obtain; this
is a subject for current research.



4 Simulating multi-resolution image
encoding

For a small picture called „Nikita“, shown in figure 4, we
implemented a multi-resolution encoding.

Fig. 4 The image „Nikita“

For this purpose we divided the 35x18 pixel image
into blocks of different, but fixed size, input sequentially
the blocks to one network with the input dimension n of
the blocksize, and let the network converge by the
learning rules. After convergence, we can compare the
number of encoding coefficients and the measured
reproduction error of an equal block size encoding, i.e. a
classical KLT, with the ones of the multi-resolution
approach which certainly does not result in a KLT but
still decorrelates the output data. The following table
compares the two encodings.

Enco
ding
type

No. of diff.
comp.

comp. size Total
no. of
comp.

Reprod.
error

KLT 2 4x2 162 0.1413

MR 2 4x2, 5x3 123 0.115

KLT 3 4x2 243 0.1215

MR 3 4x2, 5x3, 6x4 147 0.113

As we can see, the multi-resolution scheme MR has
already advantages over the classical KLT encoding even
for just two components. For three KLT components, the
number of necessary encoding components is 198%
compared to the MR encoding, even involving a higher
reproduction error.

This simulation has shown the principal advantage of
multi-resolution encoding over the classical encoding
scheme of the KLT encoding. Nevertheless, for higher
areas the model encounters heavy convergence problems
due to the fact that the conditions (2.5c) are only valid for
the actual, unknown variance (which is different for each
area) and a KLT expansion, which is not given here.

For bigger pictures and more neurons our
biologically-inspired approach of symmetrical networks
poses too much problems. Thus, we have to devise a
different algorithm for technical applications.

5 Conclusion

We presented a  multi-resolution encoding scheme for
image encoding and showed that the underlieing concept
of non-uniform sampling yields higher compression at
lower error compared with conventional methods.

Additionally, for the implementation of this concept
we presented an adaptive algorithm for the generation of
a noise-immune multi-resolution architecture of an
neural network.

Nevertheless, for the multi-resolution encoding for
technical applications other algorithms are needed which
will be presented elsewhere.
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