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Real-valued Feature Selection  
for process approximation and prediction 

 
Frank Heister, Rüdiger Brause 

Department of Computer Science and Mathematics 
Johann Wolfgang Goethe-University 

60054 Frankfurt, Germany 
r.brause (at) informatik.uni-frankfurt.de 

Abstract 
The selection of features for classification, clustering and approximation is an important task in 
pattern recognition, data mining and soft computing. For real-valued features, this contribution 
shows how feature selection for a high number of features can be implemented using mutual in-
formation. Especially, the common problem for mutual information computation of computing 
joint probabilities for many dimensions using only a few samples is treated by using the Rènyi 
mutual information of order two as computational base. For this, the Grassberger-Takens corre-
lation integral is used which was developed for estimating probability densities in chaos theory. 
Additionally, an adaptive procedure for computing the hypercube size is introduced and for real 
world applications, the treatment of missing values is included. The computation procedure is 
accelerated by exploiting the ranking of the set of real feature values especially for the example of 
time series. 

As example, a small blackbox-glassbox example shows how the relevant features and their time 
lags are determined in the time series even if the input feature time series determine nonlinearly 
the output. A more realistic example from chemical industry shows that this enables a better ap-
proximation of the input-output mapping than the best neural network approach developed for an 
international contest. 

By the computationally efficient implementation, mutual information becomes an attractive tool 
for feature selection even for a high number of real-valued features. 

Key words: feature selection, process approximation, Rènyi mutual information, classification, 
clustering, Takens-Grassberger correlation integral,  

1 Introduction: Feature selection methods 

For many applications the selection of proper input features is very important. Good features are es-
sential for good diagnosis, prognosis, classification and approximation used in the medical, financial 
and industrial area. What are “good” features and how are they obtained? If we have many input fea-
tures, how do we know which are the most salient ones? This is the classical task for feature selection 
and depends heavily on the application.  

This paper shows how real-valued features can be selected using information as performance 
measure. We concentrate on features which contribute most of the information to the target of the 
application, e.g. a diagnosis or a prognosis. As information measure, we start with the traditional 
Shannon information using mutual information I(X;Y) between the input features X and a target Y.  

For qualitative features, e.g. features exhibiting a final number of states or qualitative labels like 
“green”, “red”, “good”, “sweet”, the computation of mutual information between the features and the 
target variable is quite common for building decision trees, see [1], and are based on the probability 
evaluation of the states (“counting the states”). For real valued features, this is not possible any more, 
because we have an infinity of states. Here, other methods have to be considered.For real-valued in-
put, there are many different ways of extracting relevant features for a target, like non-supervised 
linear transformations as the Principal Component Analysis (PCA) or the Independent Component 
Analysis (ICA). Both methods are based on a linear transformation of the basis vectors. For PCA, 
after transformation the components of maximal variance are selected, all others are dropped (“trans-
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form coding”). Unfortunately, the results of PCA depend on the scaling of the input variables. For 
ICA, those components are manually selected which have a high semantic meaning. Both transfor-
mation methods can not be applied to situations where input data measurements are sparse or expen-
sive or just not possible like all clinical tests or examinations; PCA and ICA need always all features 
for computing the new ones. In many cases, a feature selection process has to be applied before any 
transformation; measuring all possible features is not possible and acceptable. 

Another common approach for real valued feature selection is the sensibility analysis, e.g. [1] 
which checks the influence of each input for the approximated output when an approximating system 
is given. For instance, the error of an approximation model for the desired output gives us a perform-
ance measure of that model. Other approaches like the correlation coefficient try to predict one vari-
able by another variable [3]. The disadvantage of this method is that it can not be applied to non-
linear dependencies. 

Before we discuss the main task of this paper how to compute the mutual information, let us con-
sider how to select the most important features, based on mutual information. There are two simple 
greedy procedures for selecting features based on a performance criterion: the sequential forward 
selection and the sequential backward selection approach [4].   

The sequential forward selection approach starts with one feature and checks the performance. The 
best one is chosen and kept. Then a second one is chosen which gives the best result under the con-
dition of using the first feature. Then a third feature is selected, using the first and second selected 
ones. This is iterated and gives us a ranked list of inputs. If we choose a threshold of performance, 
we might drop all features of that list which have a lower rank and are not necessary for the per-
formance.  

The sequential backward selection approach uses all features first, and then drops the feature which 
affects the performance at least. This gives us the first feature to drop. For the second one, the same 
procedure applies as before: only that feature is dropped which has the weakest influence on the 
model performance. Continuing the iterated procedure gives us also a ranked list of input features. 

In general, both methods are greedy algorithms, and, like most greedy algorithms, not optimal: they 
tend to get stuck in local optima and are not to guarantee a global optimum, i.e. the optimal subset of 
features of all possible 2N subsets. Nevertheless, it is clear that for a high number N of possible fea-
tures (e.g. N= 200) a systematic evaluation of the whole search space of 2N subsets is out of question. 
Both methods are simple to implement and fit to most needs.  
From the computational point, the forward method is more advantageous if the desired number k of 
features is closer to 1 than to N; otherwise, the backward method requests fewer steps. On the other 
hand, if there is a subset of features where all members are necessary, the backward selection method 
shows better results: it avoids breaking up the subset. This situation is explained best by an example.  

Example 1 
Consider for instance the CorrAL dataset of [1] with the binary feature set M6 = {A0, A1, B0, 
B1, C, D} of n = 6 features where binary target Y is determined by the subset of four features 
{A0, A1, B0, B1} by Y = (A0A1)  (B0B1). Feature C is assumed to correlate to Y in 75% of 
all cases and gives a mutual information of I(Y;C) = 0.31 whereas feature D is independent of Y 
with I(Y;D) = 0.01. Assuming equal probabilities for features A0, A1, B0, B1, D of P(1) = P(0) 
= 0.5 the involved conditional probabilities and mutual information can be easily computed, see 
Appendix A.  
The sequential forward selection strategy using mutual information will select feature C with 
I(Y;C) = 0.3 as most important one, all other features with I(Y;A0) = 0.1 afterwards, and feature 
D with I(Y;D) = 0.01 as last one. If we look for the feature set of the best k=4 features of n = 6 
ones we will get for instance M4 = {C, A0, A1, B0} which gives a mutual information of 
I(Y;M4) = H(Y) – 1/8 = 0.8637.  
In contrast to this, the backward selection strategy will first drop feature D and then C, because 
dropping any other feature will not conserve the initial mutual information of I(M6) = H(Y) = 
0.9887, and with the reduced feature set of M4 = {A0, A1, B0, B1} the mutual information 
I(Y;M4) = H(Y) is still maximal, see Appendix A. Therefore, the backward selection scheme se-



lects a better subset of k = 4 features than the forward selection scheme. 

Please note that A0, A1, B0 and B1 are independent features, i.e. the mutual information be-
tween them is zero. Nevertheless, the grouping effect takes place. Therefore, independency of 
features is not sufficient for reaching the global optimum in the forward selection procedure. 

 

In conclusion, closed feature groups are better treated by backward selection. Nevertheless, if there 
are no closed feature groups (which is indicated by no sudden jumps in mutual information when 
adding features continuously) the forward selection method is faster for selecting only a few features 
out of many. 

Certainly, there are other methods which are more efficient than greedy algorithms, like the float-
ing search method [5] which includes features again already dropped, or the branch and bound 
method [6][7] which depends on the monotony of the performance criterion. Nevertheless, since we 
have no grouped features in our examples and the methods above are computationally more complex 
than simple greedy algorithms, they are not used here. 

The usual precondition for using the forward and backward procedures is the existence of an already 
defined model for measuring the performance, e.g. the error of an approximation or classification. In 
contrast to this, in our case we want first to choose the inputs and then subsequently build up an 
adaptive model based on that choice of features. Therefore, for selecting the most relevant input fea-
tures we choose a special performance function: The probability of frequent input-output pairs of 
sample values which does not need an explicit model. This is done by taking the mutual information 
between input and output. Let us formalize this concept in detail. 

2 Mutual information based feature selection 

Let us use the concept of mutual information in selecting the input features. Given all input features, 
we have to select a proper subset of them. The concept of evaluating all possible subsets is prohibited 
by the combinatorial explosion of the number of subsets to be tested. Instead, we use the simple for-
ward procedure already introduced using mutual information as performance criterion.  
Let us start with the observed n input features X1…Xn and the output Y. With the definition of the 
mutual information [8] 

 I(X;Y) = H(Y) – H(Y|X) = H(Y) +H(X) – H(Y,X) (1)

and the Shannon entropy [9] 

 
H(X) = = 

m

i i
i 1

P log(P(x ))


 i i
log p(x )   

we know that for random variables X and Y we have H(Y) > H(Y|X)  or 

 I(X;Y) > 0 (2)

which becomes zero only for independent variables, see [8]. On the other hand, the more Y depends 
on feature xi the amount of mutual information increases independently of the kind of input-output 
function. On this observation we build our selection procedure. The base for the greedy forward and 
backward selection algorithms is the chain rule for mutual information, see [8], Theorem 2.5.2: 

 I(X1,X2,…,Xn;Y) = I(X1;Y) + I(X2;Y |X1) + I(X3;Y | X1,X2) +...+.... 

     =  
n

i i 1 i 2
i 1

I(X ;Y | X ,X ,...,X )- -
=
å 1

Thus, the mutual information between the n random variables and target Y can be obtained by adding 
n terms of mutual information between the target and a feature on the condition of a sequentially 
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growing feature set. In every step, the mutual information is conditional upon the joint distribution of 
the already selected features (random variables). Thus, we only count the additional information a 
feature gives us about the target in the light of the already included features, not the full information 
of the feature including redundancy. 

If we choose the normalized version of mutual information 

 
I(X;Y)  H(Y) H(Y | X)

H(Y)

 = H(Y) H(X) H(X,Y)

H(Y)

   

we have the property 

 0 I(X;Y) 1   (3)

If not denoted otherwise, we use the normalized version of mutual information in the rest of the pa-
per. For the subsequent examples, we choose the mutual information forward selection algorithm as 
follows: 

Forward selection algorithm  
i = 1. As first input feature Xk1, select the feature with the highest mutual information I(.) 

 Xk1  =  arg  I(Xj;Y) 
jX

max

FOR i :=1 TO n DO 
            i := i+1.  Select the next variable Xki giving the highest mutual information 

 Xki  =   arg   I(Xj; Y | Xk1,…,Xki-1) 
jX

max (4)

ENDFOR 

The algorithm gives us a ranked list of variables {Xk1,…,Xkn}. For a set of only relevant features, we 
might stop the algorithm as soon as possible, e.g.  

 we have reached the number of predefined input variables, 
 or the amount I(.) gets no significant information increase any more, 
 or the amount I(.) surpasses a predefined threshold  
 or the computation time surpasses a predefined threshold. 

 

3 Computing mutual information 

The main reason why information based real valued feature selection is not commonly used, is an 
efficient procedure for computing the mutual information. The computation of mutual information 
I(.) is based on the computation of the entropies H(Y), H(X), and H(X,Y) using the joint distributions 
P(X) = P(Xk1,…,Xkn) and P(X,Y). The computation of an entropy H(.) is impeded by the fact that in 
the standard case we do not have the necessary number of input samples for the computation to avoid 
the curse of dimensionality for a high number n of dimensions.  
For the Shannon information measure, a correct sample frequency can hardly be measured in a high-
dimensional interval. For example, as rule of thumb a histogram of at least 10 intervals is necessary 
for a rough estimation. If we use 100 samples for these 10 intervals, the resulting histogram gives a 
fair distribution approximation. Now, using n = 20 variables, the same average density of 10 samples 
per interval can only be obtained by using 10020 = 1040 samples, which is prohibitively high.  

The basic problem for computing the information lies in the difficulty of computing the joint prob-
ability density of many random variables based on only a few samples. There are several possibilities 
for estimating the probability density. One idea is to circumvent the problem by approximating the 
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mutual information between the feature set and the target output by a weighted sum of the pairwise 
mutual informations of the feature set, see for example Battini [10]. Certainly, for more complicated 
interactions this does not replace the real conditional mutual information.  

Another approach is based on the Parzen window approach  [8]: Each sample is taken as the center of 
a Gaussian distribution of variance 1; the superposition of all Gaussians is taken as the desired den-
sity function. For mutual information, this approach was introduced by Principe et al. [12] and used 
for learning e.g. by Torkkola [13].  

Let us follow another approach. We might try to circumvent the problem that we do not have suf-
ficient samples per histogram interval by taking also the samples in the neighboured intervals into 
account, i.e. by averaging the number of samples. For the Shannon entropy the average is taken after 
computing the probability and its logarithm, not before. So, averaging the number of samples is not 
possible. If we could inverse the sequence, i.e. first compute the average of the probability and then 
take the logarithm, we can profit not only from the neighbours, but also avoid costly computations of 
the logarithm. This is performed by the following approach. 

By Jensen's inequality for the convex function f(Z) (see theorem 2.6.2 in [8] ) which is true for 
random variables Z, 

  i ii i
f (z ) f z

  

we know that for the negation of the relation 

 H(X) = i i
log P  <   H2(X)  i i

log P

holds. Here, the average can be computed very efficiently, see appendix A. The function 

 
H2(X) = i i

log P(x ) = = 
m

i i
i 1

log P P(x )


 
m

2
i

i 1

log P


   (5)

is called the Rényi entropy H of order = 2 (see [23]) which is a generalization of the Shannon 
entropy.  
Formally, the Rényi entropy is defined as follows. Let  be a discrete random variable with the prob-
ability distribution 

 
P(=xi)  {Pi}, i = 1..m    and  = 1 

m

i
i 1

P



Then, the Rényi-Entropy of order , α ≥ 0 is defined by 

 

H(X) := H({Pm}) = 

m

2 i
i 1

m

i 2 i
i 1

1
log P    : 0, 1

1

P log P     :  1         








    


   




 (6)

with 00 := 0 and 0log2 (0) := 0. Here, for  = 1 we get the Shannon entropy. 

For independent random variables X, Y we know that the mutual information I(X;Y) in eq.(1) be-
comes zero, which is also valid for I2(X;Y). Nevertheless, in our case I2(X;Y) may also become nega-
tive, and from I2(X;Y) = 0 we can not deduce the independence of X and Y because relation (2) does 
not hold any more. Therefore, our selection procedure may be no longer accurate. This problem is 
illustrated in Appendix B by an example. 

There is one possibility of ensuring proportion (2): for a uniformly distributed Y we prove in 
Appendix B  that 

 min{H2(X), H2(Y)} > I2(X;Y) > 0 (7)
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with I2 equal to zero only in the case where X and Y are independent distributions. So, our selection 
procedure still holds for uniform target distributions. This is the reason why we transfer the target 
time series Y to uniform distribution before we use it for computing I2(X;Y). The resulting time series 
Y is changed, but it still reflects the time series dynamics. 

4 Computing mutual information of order 2 
Most of the work in using mutual information feature selection is bound to the implementation. There 
are several problems and their solutions which are described here. Let us start with the basic compu-
tation procedure and then consider the acceleration of the computation afterwards. 

4.1 The basic computations 
Let us assume that our samples {x} are from the n-dimensional space n. For time series, the i-th 
sample x(ti) is taken at time point ti. The number c of samples x(t2) in its neighbourhood is the num-
ber of all samples within a hypercube of length for index t1  t2, i.e. within interval [xi(t1) – /2, 
xi(t1) + /2] for all dimensions i.  
We have 

 
c(t1)  = 

n

1 2 i 1 i 2 22
i 1

(t , t ) | x (t ) x (t ) , t 1,...,T



     
  

  (8)

 =  1 2 1 2 2(t , t ) | B(t , t ) TRUE, t 1,...,T   

 with B(t1, t2) = 
n

i 1 i 2 2
i 1

x (t ) x (t ) 


   

(9)

 
= 

2

1 2
t

b(t , t )   with b(t1,t2) =  1 2

1 2

0  B(t , t ) FALSE

1   B(t , t ) TRUE


 

All decisions {b(t1,t2)} can be represented by a binary matrix b = [b(i,j)] containing them. The num-
ber c(t1) is the number of co-occurrences of the sample events within the -hypercube.  
The average number over all T possible values for t1 is  

 
C = 

T

i i
i 1

p(c )c

  = 

T T

i
i 1 j 1

p(c ) b(i, j)
 
   = 

T T

i 1 j 1

1
b(i, j)

T  
  (10)

This is referenced as the "correlation integral" introduced by Takens [19] and Grassberger & Procac-
cia [19] and used there for probability estimation in chaotic systems. 
The relative number of samples per -hypercube, an estimation for the average probability within a 
cube,  becomes 

 
PC/T = 

T
i

i
i 1

c
p(c )

T
  = 

T

i i
i 1

p(c )p(c )

  = 

T
2

i
i 1

p(c )

  

 

and the negative logarithm of it becomes 

 
xlogP(x) log 

T
2

i
i 1

log p(c )


 
   

 


T T

2
i 1 j 1

1
b(i, j)

T  
  (11)
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4.2 Accelerating the computations 

Thus, by eq. (11) the final procedure for computing the multi-dimensional entropy is reduced to 
counting samples b(i,j) within -hypercubes. Since we have T samples, we have to compute TT = T2 
decisions to cover all possible (t1,t2) tuples; the runtime complexity is O(T2). 

4.2.1 Acceleration by symmetry 

Since we have symmetric decisions b(t1,t2) = b(t2,t1) we might facilitate the task by computing only 
half of the decisions, i.e. the upper triangular part of the matrix . The T2 decisions are separated into 
the T trivial elements b(i,i) = 1 and the T(T1) non-trivial elements b(i,j), i  j 

 

P(x)
T T

2
i 1 j 1

1
b(i, j)

T  
  = 

T T T

2
i 1 i 1 j 1

j i

1
b(i, i) b(i, j)

T   


 
 

 
 
 

   

 
= 

T T T

2
i 1 i 1 j i 1

1
b(i, i) 2 b(i, j)

T    

 
 
 
 
    =  x

1
T 2C

T T



= x2C1

1
T T

  
 

 

 = x
2 2

2CT

T T
  = x

2

2C T

T

  (12)

The number Cx of comparisons in the upper triangular matrix of decisions (bij) is doubled, since they 
are symmetric, and complemented by the value of the main diagonal bii. The relation to the number 
of all possible decisions is the sample average probability. 
Therefore,  

 
H(x) = log x2C1

1
T T

 
 


    with Cx = 

T T

i 1 j i 1

b(i, j)
  
   (13)

 

4.2.2 Acceleration by ranking 

Further acceleration can be found by decreasing the number of decisions. Equation (13) still suggests 
that we have to compare all T samples with the rest of the samples. Since we have to rank at least the 
target samples before computing the information, we might as well profit by the already existing in-
dex arrays of the ranking, see by Pompe and Heilfort [21]. The main idea is illustrated by drawing of 
the probability density function p(f) of a time series f(t) in Fig. 1. 

   

0 T 

f(t)

t

f

p(
f)

 

 
Fig. 1 The probability density function of a time series 

Each function value f(t) of the time series is represented in the histogram (pdf) on the left hand side. 
Similar values, even if they occur at very different time instances, are neighbours here. This 
neighbourhood is reflected by the ranking index field: two neighboured samples yi, yj have also a 
small distance in their ranking index 

9 of 36 



 | index(yi) – index(yj) | <  (14)

For instance, for the uniform distribution of the ranked output y we know that the T samples are 
transformed into the ranked time series with indices 0,1,2,…,T–1. Replacing the original samples by 
their index values and scaling them to 0.0, 1/(T–1), 2/(T–1), …, (T–1)/(T–1) = 1.0  in the interval 
[0.0,1.0] produces a uniformly distributed time series. Within this time series, the linearly changing 
index value also limits the maximal value difference of the samples. In our case, only all  samples 
from index t1 = i+1 to t2 = i+ within the index array fulfil relation (14), because 

 |yi –yj| < ' i j

T 1 T 1


 
< '| i–j | < ' 

Therefore, it is sufficient to check only for those  samples of time series y if the corresponding com-
pound input samples x(k) also fulfil relation (9). If YES, the comparison is counted for Cxy. If NO, it 
is omitted. 
By this limitation, we are able to lower the runtime complexity of the computation algorithm from 
O(T2) to O(T) which is much lower. 

4.3 The missing value problem 
There is one problem often found in real world data: the data are not complete. This might due to 
acquisition errors like broken or stuck sensors, or because the measurements are too expensive or not 
available, e.g. x-ray data of humans or laboratory data like tissue analysis which has not a high sam-
pling frequency. For all these missing values, the comparison with the other time series samples at 
the same time point can not be done. This has some implications on the entropy computation: 

 The uniform distribution can not be normalized by the number of all samples (length of the 
ranked array), but only by the number of valid ones.  

 The number of possible comparisons which is necessary for computing the entropy in eq.(13) is 
reduced by the number of missing values. This has to be taken into the computation formula. 

Let us investigate this more concretely. 

4.3.1 Treating missing values 

Let us assume that we have marked k missing values in the involved n time series, e.g. by assigning 
them the maximal or minimal possible input value. How should they be treated for the computation 
of the mutual information? We know that for a given time point t, if there is only one missing value 
in one of the n series, all other samples for point t can not be used, too. Therefore, the number of pos-
sible comparisons b(i,j) is restricted by the k missing values, not by dimension n.  
For the main diagonal of matrix b = [b(i,j)] (see Fig. 2) we have only T−k valuable comparisons. 
Each missing value, denoted by a filled circle in the TT matrix b, causes other comparisons to be 
invalid. Each missing value is involved in the T comparisons on the horizontal line and on the verti-
cal line in Fig. 2, and therefore invalidates them. To be exact, including the missing value on the 
main diagonal the first missing value invalidates T+(T−1) = 2T−1 comparisons. The next one also 
invalidates T+(T−1) comparisons, but the two comparison at the crossings of the vertical and hori-
zontal lines with those of the first missing value are counted double. So, we have only T+(T−3) = 
2T−3 additional invalidations for the 2nd missing value. 
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Fig. 2 The invalidations by missing values 

This is also valid for the 3rd missing value which invalidates 2T−5 comparisons. In conclusion, we 
have 

 m = (2T−1)  +  (2T−3) + … + (2T−2k+1)  

= = k(2T +1) −2
k

i 1

2T 2i 1


  
k

i 1

i

   (15)

invalidations. With  

 k

i 1

i

  = 

k(k 1)

2


  

we have 

 m = k(2T +1) −2 k(k 1)

2

  = 2kT+k−k2−k = k(2T−k)  

invalidations. Therefore, in eq. (12) 

 P(x) x
2

T 2C

T

   

the number T of main diagonal elements with b(i,i) = 1 becomes (T−k) for k missing values. Addi-
tionally, the total number of valid comparisons becomes T2−m. Therefore, we get for the estimated 
average probability having k missing values 

 P(x) x
2

2C T k

T m

 


 = x

2

2C T k

T k(2T k)

 

 
 (16)

4.3.2 Treating equal values 

Another problem is the appearance of equal values within a time series. Sometimes, they are due to a 
broken sensor and should therefore be treated as missing values. In other cases, the accuracy of the 
sensors is limited to a restricted number of discrete values. In the latter case, we have to treat the fea-
tures differently, especially if this occurs in the target time series. For equal values, the order of the 
ranked samples will be very arbitrary, depending on the sorting algorithm. For two different sorting 
algorithms the order in the ranking might be different, resulting in two different ranked and scaled 
time series and therefore in two different numerical values of the mutual information for the same 
feature data. There are several ideas how to treat this problem: 

1. we might not do anything special, since the differences are small in the example 
2. we always use only the same sorting algorithms 
3. we change the input data by adding a small increment to all equal valued samples 
4. we treat all equal valued samples as discrete states, compute the mutual information by the 

conventional symbolic approach of counting the states and integrate it into the I2-estimation 
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The first two ideas are very arbitrary and not very appealing. The third one is also arbitrary, but pro-
vides the means for consistent results in different software environments. The fourth one is the best, 
but most complicated one: How should we integrate two different kinds of probability estimation into 
one schema? 
In this paper, we use the third approach, leaving the fourth one for further research. Please note that 
the smallest possible increment of a floating point number x is not a constant, but depends on the 
value of x. It can be obtained by converting the normalized floating point number, e.g. in the 64 bit 
IEEE 754 format, into a bit string (long integer), increment it, and then convert it back again into a 
floating point number. 

4.4 The hypercube size 
In this paper, for each computation of the mutual information a hypercube size  for each counting is 
used. What size should it have to give optimal performance? It should not be too small, giving no 
result, or too big, giving an imprecise result.  

 There are complicated algorithms for determining a cube size depending on a performance crite-
rion, for instance the recursive division of input space by Frazer [14]. However, computational 
efficient approaches taking the finite Epanechnikov kernel [12] show that the results depend 
heavily on the initial kernel width and on the binning algorithm. Here, we do not depend on a re-
cursive binning algorithm because we can average the probability estimation before taking the 
logarithm which is much more stable. Therefore, we can use a fixed hypercube size for the 
whole feature space.  

 With this idea, we can use a much simpler algorithm, an interval nesting, based on the target 
value of a certain percentage s of samples which should be contained in the hypercube. The in-
terval nesting should choose a cube size  such that the entropy Hxy() is equal to the entropy Hs 
= –log(s). The algorithm is described in appendix C.1. 

 Interestingly, the mutual information computation changes also when adding additional features 
as precondition. How does an increase in the number of features change the resulting informa-
tion? This is treated in appendix C.2. As result, the mutual information becomes smaller.  

 The accuracy of the mutual information computation using hypercubes of size  depends heavily 
on the number of examples (samples in a time series). How does the squared error, the variance, 
in the number of samples per hypercube depend on the size of the hypercube? This is discussed 
in appendix C.3 giving a formula where the error depends nonlinearly on the cube length . 

4.5 Number representation 
There are different approaches for computing the mutual information. Originally, the mutual infor-
mation is a real valued number which means it is represented in a floating point format. Nevertheless, 
we have to rank the target time series according to theorem eq.(24) in order to have the minimum of 
mutual information at zero. The operation of ranking induces an order, expressed by an index which 
is an integer value. In general, subtracting and comparing two integers is faster than the same proce-
dures for floating point numbers. Since the accuracy is approximate the same for using integers or 
floating point for the same numbers, the results should not differ much and are in favour for integer 
comparison. However, in the counting process for each comparison we have to convert either the 
integers to floating point representation or to convert the floating point numbers to integer, e.g. by 
ranking the array. In each case, we have a conversion overhead. 
Additionally, in the two different cases we get different results. Why? Although the number values 
by the different representations are very close, the computation of mutual information by the adapta-
tion procedure used in C.1 depends on the kind of numbers we use because the -values are different: 
the interval nesting stops when a  is determined which produces an Hxy sufficiently close to Hs. 



Since  is determined in the middle of the interval [0,1] as = (1-0)/2, the division by two returns 
different results depending on the fact using either integer  or floating point . In the former case, 
rounding will occur and produces a different than in the latter case. In both cases, the resulting  
will fulfil the requirements, but the computed approximate Hxy will be different for both cases. There 
is no favour for each of both solutions, they all are correct in the approximate sense. 

Now, what should we choose as number representation? Integer or floating point? Although the 
integer solution performs a bit faster even when the ranking pre-processing is included, we prefer the 
approach of not ranking too many time series, only the necessary one in order not to change any data 
unnecessarily. This implies the conversion of the index array of the ranked array y into a floating 
point representation, using only floating point numbers in each comparison and for . 

5 A simple application example 

Now, as introducing example we take a system which we regard in two ways: on one hand as a block 
box which has inputs and output and a input-output mapping function which we have to approximate, 
and on the other hand as a glass box system, i.e. a nonlinear system where we know everything about 
[24] and can compare the real mapping with the approximated one.  
Let us assume that we have four inputs and one output. The system is depicted by the following fig-
ure. 
 

x1 
 
x2 
 
x3             z1    y 
 
x4           z2 

f(x1,x2,x3,z1, z2) 
g(z1,z2) 

 
Fig. 3  An example of a dynamical system 

From outside, we can only observe the time series of x1, x2, x3, x4 and the output y. The structure 
within the grey boarder is hidden. This structure might be described by the following equations of a 
simple, non-linear system 

 z1(t+1) = z1(t) – ½ z2(t) + 0.8x2
2(t-10) + x4

2(t-20) 

z2(t+1) = z1(t)/(1+ 0.1z2
2(t)) + 0.8x2

2(t-10) + x4
2(t-20) 

and y(t) = 1.8 tanh(0.32z1(t)) – 0.63 

We note that the system states and the output do not use inputs 1 and 3, but inputs 2 and 4 at different 
time delays 10 and 20. 
As input we might take a random input which will cause the observed output in Fig. 4. 
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x1(t) x2(t) 

x3(t) x4(t) 

y(t)

  
Fig. 4  The random input and resulting output signals 

Now, the mutual information I2 between all delayed input lines xi(t-r) and the desired output y(t) is 
shown in Fig. 5 

    
x1(t) 

x2(t)
x3(t) 

x4(t) 

time lags 

I2(xi(t-r),y(t) 

x4(t-20) x2(t-10) 

  
Fig. 5  The mutual information between the delayed input and the output 

We see that, although the output is a nonlinear function of the interdependent states which are them-
selves non-linear functions of the inputs, both facts are reflected by the mutual information [14]: The 
mutual information between the not used input lines and the output is significant lower, and the mu-
tual information between the involved input and the output has its peaks at the two time lags r = 10 
and r = 20. Thus, in our small example the mutual information feature selection works well and is 
even valid for time delayed features. Let us now regard a more realistic example: the approximation 
of a chemical process output. 

6 Approximating an industrial process output 

The feature selection method introduced so far is now used to approximate the time series of a 
chemical process. The approximation benchmark was introduced as a competition within the Euro-
pean NISIS network at 2006. It consists of a data base of 5867 samples of 14 input lines and one out-
put (“catalyst activity”) for training and four periods for prediction and retraining, see Fig. 6. 
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original data

 trained   
approximation 

prediction 

 
Fig. 6 The training period and the test/retraining intervals 

The input/output data of each period was provided only after a prognosis was given for that interval. 
The prognosis was based on all data available before that period. The resulting error between the 
prognosis and the real data was accumulated. After the end of the contest, the best solution was 
marked.  
Now let us regard the task a bit closer. The chemical process can be described as follows. 

6.1 The process 
The chemical process to be modelled consists of a reactor containing some 1000 tubes filled with 
catalyst, used to oxidize a gaseous feed (ethane is taken as example). It is cooled with a coolant sup-
posed to be at constant temperature. The description of the reaction speed is taken from literature and 
depends strongly non-linearly from temperature. Its exothermal reaction is counteracted by the cool-
ing and leads to a temperature maximum somewhere along the length of the tube. As the catalyst 
decays, this becomes less pronounced and moves further downstream. The catalyst activity usually 
decays within some time to zero, a year is taken as example here. The process to be modelled takes 
input from other, larger processes, so that the feed will vary over the days. The operating personal 
reacts to this by choosing appropriate operating conditions. The catalyst decay is however much 
slower than these effects. The process is equipped with measurements to log all the variations of the 
feed and the operating conditions. In addition, there are measurements showing some concentrations, 
flows and a lot of temperatures along the length of a characteristic tube to identify the processes 
state. 
 

     
 

Fig. 7 The reactor with catalyst tubes and its content 

All measurable influences are considered as input variables for a mathematical multi-input-single-
output-model describing relevant process variables (model outputs) representative for chemical proc-
esses: 
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Fig. 8 The input-output modelling situation 

16 columns, where the content of the columns is as follows: 

column1: time in hours (1/24) since last catalyst change 
column2-15: input data at this time 
column16: output data at this time. 

Input: 
 Measured flow of air, kg/hr 
 Measured flow of combustible gas, kg/hr 
 Measured concentration of combustible component in combustible gas feed in mass fraction 
 Total feed temperature, Cooling temperature 
 Temperature at length 1/20, 2/20, 4/20, 7/20, 11/20, 16/20, 20/20 of reactor length in Celsius 
 Product concentration of oxygen in mass fraction 
 Product concentration of combustible component in mass fraction 

Output: Catalyst activity. All time series have 5807 samples. 

6.2 Selecting relevant inputs 
First, the input feature selection process can be applied to the 14 input lines of the process example 
described above. In a first attempt, we just set up a ranking according to the mutual information I2 
between the last 3800 samples of the output time series (s=2%) and the corresponding input feature 
time series. This gives us Table 1 . 
 

Table 1 Ranking of inputs on I2 basis 

rank Name of var I2 

1 QI X ORG  0,6138 
2 QI EX C*  0,4829 
3 FI ORG 0,3994 
4 TI ROR 7 0,3296 
5 TI ROR11  0,2504 
6 QI EX O2  0,2250 
7 TI ROR16   0,2154 
8 TI ROR 4  0,2074 
9 TCOOL 0,1801 

10 TI ROR20    0,1763 
11 FI AIR 0,1674 
12 TI FEED  0,1399 
13 TI ROR 1 0,1311 
14 TI ROR 2   0,1266 

 
The ranking shows a peculiarity: the input “QI X ORG” is nearly constant due to a sensor failure. 
Since the activity of the catalyst degrades slowly, a constant value seems to have some information in 
common with it. This is also partially true for other input values which can be labelled as “missing 
values”. Therefore, we weight the input sources by their amount of missing values and select only the 
most reliable ones. This eliminates the input lines “QI X ORG” and “QI EX C*”.  
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Additionally, for each time series the normalized mutual information with the output time series is 
computed. As we discussed in section 2, this takes not the mutual dependencies into account. There-
fore, we revise the list: we apply the forward selection procedure described in section 2 and rank the 
inputs according to their conditional normalized mutual information. The results are shown in Table 
2. 

Table 2 Ranking of inputs on conditional I2 basis 

rank Name of var I2 incr I2 
1 FI ORG 0,3994 0,3994 
2 TI ROR 7 0,2118 0,6111 
3 TI ROR11  0,0828 0,6939 
4 FI AIR 0,0602 0,7541 
5 TI ROR16   0,0562 0,8103 
6 TI ROR 4  0,0142 0,8245 
7 TCOOL 0,0127 0,8373 
8 QI EX O2  0,0043 0,8415 
9 TI ROR20    0,0044 0,8459 

10 TI ROR 2   -0,0179 0,8280 
11 TI ROR 1 -0,0297 0,7984 
12 TI FEED  -0,0136 0,7848 

 
We also remark that for high dimensional cells (10, 11 and 12 variables) which have to be enlarged 
in order to hold still 2% of the samples, the I2 computation precision decreases and gives lower abso-
lute I2 values leading to negative I2 differences: Those inputs may also be cancelled. 

Now we pose the question: Does the activity depend on input values of the past? Are there time 
delays in the system which makes the output in a time step depend on input values of prior time 
steps? Like in our synthetic example of Fig. 5, we test this by introducing as new inputs the old in-
puts delayed by different time delays, from 0 to 2000 samples in steps of 100 samples. This gives us 
the ranking in Table 3. 

Table 3 Ranking of inputs on conditional I2 basis including their delayed versions 
rank Name of var delay I2 incr I2 

1 FI ORG 700 0,5075 0,5075 
2 FI ORG 1700 0,2951 0,8026 
3 FI ORG 1000 0,0933 0,8959 
4 FI ORG 100 0,0622 0,9581 
5 FI ORG 800 0,0100 0,9681 
6 FI ORG 1300 0,0046 0,9727 
7 FI ORG 0 0,0145 0,9871 
8 FI ORG 400 0,0051 0,9923 
9 FI ORG 1200 0,0003 0,9926 

10 FI ORG 0 0,0000 0,9926 
11 FI ORG 0 0,0000 0,9926 
12 FI ORG 0 0,0000 0,9926 

 
We remark a stupefying result: It suffices to take the delayed versions of just one input for com-
pletely determining the output. The last three variables in the list reflect the fact that no other variable 
gives a contribution which increases the I2 any more; the best variable is one which contributes zero. 
Here, the I2 depends not only on the variable but also on its delay; for each possible delay we obtain 
one I2 value. The results for different input variables may be plotted as a function of the delay. This is 
shown in Fig. 9. 
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Fig. 9 Different I2 values for variables as functions of the delays 

The I2 increase by different contributing variables is shown for two states: in the lower part the first 
approximation is shown, corresponding to Table 1; in the upper part the same variables for the 11th 
approximation are drawn. It is obvious that the variance is reduced due to the small possible en-
hancements. 
The whole ranking of the forward selection process of section 2 can be visualized in Fig. 10. The 
contributions are shown as bars while the resulting I2 is shown as function plot. The contributing 
variable names are shown under the bars. 
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Fig. 10 Approximating maximal I2 by input feature selection 

 

6.3 Approximation by neural networks 
The contribution of the best four variables to a neural network approximation is shown in Fig. 11. 
Here, different approximation states for the training samples are shown. Starting with a rough ap-
proximation by one feature, the approximation becomes smoother and smoother as we add further 
features. 
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Fig. 11 Output approximation by input selection of maximal I2 

The relative error EA of the approximation is defined within the contest by 

 
EA = 

4 N
i i

j 1 i 1 i

y L100

N y 


   (17)

as sum of the 4 periods containing N=15 selected samples each. 

After selecting the best features we trained two kind of neural networks: A standard two-layer RBF 
network and a standard two-layer perceptron network with backpropagation learning.  

6.3.1 RBF approximation  

Adaptive approximations by growing RBF networks are hindered by the RBF proportion of local 
reference. RBF networks are good in interpolation, whereas our problem has non-stationary input and 
needs extrapolation. This is true for different architectures as growing cell structures and neural gas 
algorithms.  

For this reason we chose a fixed RBF architecture where the centres of the RBF neurons are given 
and fixed within a regular grid of the input space and overlap sufficiently. The only layer to adapt is 
the linear second layer with its weights. In Fig. 11 the coverage of the input space is shown for two 
inputs by 9 RBF neurons with a Gaussian activation function. The input values are filtered 
(smoothed) and start on the left lower end in the figure. The training period stops with the values 
shown on the right upper end. 
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Fig. 12 Input space coverage 

 

Different experiments showed that the number of neurons for the RBF network should not be too 
high: For too many neurons the influence of neighboured learning for neurons in the prognosis period 
is too small; they do not profit of the experience of the others. Here, a mix of multiple grid structures 
with different widths does not help. As optimal number of neurons we got 9 neurons for 2 inputs. 

6.3.2 Multilayer Perceptron Backpropagation approximation 

The input-output mapping of non-stationary input my also be approximated by the sigmoidal activa-
tion functions of a standard multilayer backpropagation network. Here, the training of one neuron 
affects all the output and we have no local input space sensitivity. The best results were achieved 
with 50 neurons and four inputs. The number of neurons does not affect much the prediction error. 

6.3.3 Approximation results 

The original contest had a variety of system architectures. The best architecture was a set of multi-
layer-backpropagation networks learning by genetic algorithms. Each network was characterized by 
a parameter set and adapted using genetic operations. 

 In the following table, the errors of the best three approximations of the competition (cont1, cont2, 
cont3) are shown. Additionally on the last lines, we show the results of our best RBF and Multilayer 
Perceptron approximation. 

Table 4 Prediction error of the best competition networks  

 
# Test 1 Test 2 Test 3 Test 4 Sum 

cont
1 

21.01 12.87 19.14 20.13 73.06 

cont
2 

43.41 18.38 52.31 24.14 138.26 

cont
3 

63.15 17.83 33.89 28.91 143.79 

RBF 1.76 6.10 5.57 15.47 28.90 

ML 3.12 16.86 17.59 18.54 56.11 

We see that the two standard approaches using only the selected features of maximal mutual informa-
tion give much better predictions than all other specialized approaches. 
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7 Selecting real time features for combustion control in automotive 
environments 

The necessity for feature selection is especially appreciated in real time applications. The following 
chapter gives an example for real time control of motor combustion.  

7.1 Technical background 

Today combustion motor management systems rely on numerous sensor signals to accomplish their 
tasks. From the viewpoint of combustion control, the so called 50%-energy conversion point (50%-
ECP) is of particular interest. However, this variable cannot be measured directly. It has to be deter-
mined from a measurable surrogate quantity which implicitly characterizes the combustion quality. 
Since the in-cylinder pressure describes the course of the entire combustion cycle, this measurable 
quantity is used to determine the desired 50%-ECP.  

 
Fig. 13 In-cylinder pressure, the 50%-ECP and the course of the energy 

conversion during one combustion cycle 

Fig. 13 displays the in-cylinder pressure curve and the according energy conversion as a function of 
the crank angle position during one combustion cycle. The 50%-energy conversion point is defined 
as the crank angle position at which 50% of the chemically stored energy has been released. In case 
of an optimal combustion with maximum efficiency, the position of the 50%-ECP has to be at a 
crank angle position of approximately +8° (±2°) after the top-dead-center position (TDC) of the pis-
ton [15]. The desired crank angle is shown by a thin dotted line, while the actual 50%-ECP is shown 
by a bold dotted line. In order to keep the 50%-ECP at the desired crank angle position, we employ a 
closed loop PI controller on top of a neural combustion analysis shown in Fig. 14. 
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Fig. 14 Basic structure of a closed loop neural combustion control 

The figure depicts the basic structure of such a closed loop combustion control. The desired crank 
angle position depends on the actual operating condition of the engine. The in-cylinder pressure is 
constantly measured during the course of combustion and the crank angle position of the 50%-ECP is 
determined from the obtained pressure curve through a neural network. The deviation of the current 
50%-ECP from the desired value is fed into the PI controller, which then adjusts the ignition timing 
for the next combustion cycle. The 50%-ECP might be obtained with a high degree of accuracy from 
the measured pressure curve through a thermodynamic computation. Since this calculation is far too 
complex to be accomplished in real time, a neural network has been employed as an alternative. Once 
the training has been successfully completed, the neural network can be regarded as a so called vir-
tual sensor for the 50%-ECP. Finally, it is integrated into the control structure shown in Fig. 14.  

7.2 Selection of the relevant input variables  
Since a neural network should be employed to model the nonlinear mapping between the samples of 
the in-cylinder pressure and the 50%-ECP, the most relevant pressure samples have to be selected, 
see the stage at the right hand side of Fig. 14. In order to construct an optimized data set for neural 
network training, the input variables with the highest information content are iteratively selected 
from a 180-dimensional data set with the forward-selection strategy [16], [17]. How is this obtained?  
Here again, mutual information can be used. 

In Fig. 15, the so called I2 function for the selection of the first feature can be observed.  

   
Fig. 15 The I2 function reaches its maximum at the crank angle position with the 

highest information content. 

 
This particular I2 function depicts the values of the mutual information of order two (I2) against the 
crank angle position. The position with the highest I2 value is interpreted as the most relevant sample 
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point of the pressure curve for determining the 50\%-ECP. In this case, the first sample point to be 
chosen would be at 9° relative to the top dead center position of the piston.  

As mentioned earlier in this report, the correlation of coefficients is not capable for the identifica-
tion of nonlinear dependencies. Since thermodynamic processes are known to be highly nonlinear, 
the comparison between the mutual information and the coefficient of correlation might be of par-
ticular interest for our problem context. 

    
Fig. 16 Spearman's rank correlation coefficients adopt values around zero for crank 

angle position where the I2 reaches  its maximum. 

 
In Fig. 16, the Spearman rank correlation coefficients [18] are depicted. It can be clearly observed 
that the correlation coefficients adopt values around zero whereas the I2 function in Fig. 15 reaches 
its maximum. If we would choose the correlation coefficients to tell us where the interesting sample 
points are, we could not conclude anything in the range -5° to +15°. Hence, we would have a blind 
spot in the so called high-pressure phase of the combustion. Since the high-pressure phase is defi-
nitely the most interesting part of the combustion, employing the linear methods does clearly not 
contribute to the solution of our selection problem. 
Although the I2 function in Fig. 15 might us remind of the coefficient of correlation, it differs from 
the latter in multiple points: 

 The I2 is defined also for multivariate time series, while the coefficient of correlation is not. 
 All linear- and nonlinear dependencies between the possible multivariate sequences are cap-

tured by the I2. The conventional coefficient of correlation is only sensitive to linear depend-
encies. 

 If the I2 value tends to zero, it can be concluded that there are no statistical dependencies be-
tween the investigated time series. From a coefficient of correlation of zero no conclusion can 
be drawn at all for arbitrarily distributed time series. 

 
Continuing with the forward selection strategy delivers an ordered set of crank angle positions, speci-
fying the positions with the highest information content for the determination of the 50%-ECP. 
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Fig. 17 illustrates the I2 functions of successive iteration steps which were used to identify the most 
relevant sample points of the in-cylinder pressure curve. The described procedure is carried out while 
the information gain is significant. If additional input variables will not yield further information 
about the output variable, the iteration process is stopped. It can be observed that the selected points 
are not equally distributed, like one might assume naively. However, from the viewpoint of informa-
tion theory, the identified set of crank angle positions is indeed optimal. 

   
 

Fig. 17  Sequence of I2 functions for successive iteration of the forward selection process. 

Employing the concept of mutual information resulted in a significant reduction of the input dimen-
sion, the dimensionality of the input vector could be decreased from 180 down to only five sample-
points. Finally, the identified crank angle positions are further employed for the construction of a 
neural training set.  

7.3 Results  

In the previous section, the most relevant input variables of the in-cylinder pressure has been se-
lected. In order to implement an optimized closed loop combustion control, this process has to be 
identified in advance. For this purpose, we employed a feed forward neural network, which was 
trained by the Extended Kalman Filter rules. 

Fig. 18  Determination of the 50%-ECP from the I2 selected points of the in-cylinder pressure 
curve with a Kalman Filter trained neural network.

In Fig. 18, the performance of the derived neural network is assessed with a test data set of 400 input 
patterns. The maximum absolute error turned out to be 1.48° for this test set. This is below the prede-

24 of 36 



fined error tolerance of ±2°, which is the requirement for the implementation of a closed loop com-
bustion control. Hence, this neural network can be employed as a so called virtual sensor for the de-
termination of the 50%-ECP, as depicted in Fig. 13. 

 

Fig. 19  The 50%-ECPs of cylinder 3 over 500 cycles with conven-
tional open-loop combustion control 

 
In Fig. 19, the actual and the desired 50%-ECPs are plotted over 500 combustion cycles. In this case, 
the ignition angle is determined from a conventional ignition map inside the engine control unit as a 
function of engine speed and load. The deviation of the actual and the desired value of the 50%-ECP 
varies between -11° and +18°. 

 

Fig. 20 The 50%-ECPs of cylinder 3 over 500 cycles with optimized 
neural combustion control

In contrast to this, Fig. 20 depicts the actual- and the desired 50%-ECPs of 500 cycles while the com-
bustion control is active. Compared to Figure 7, the 50%-ECPs follow the desired value quite accu-
rately with a significantly smaller deviation between -3° and +8°. 
 

8 Conclusion  
In this contribution we have shown how the selection of real valued features for mutual information 
can be approximated using only a few samples. This enables us to drop all irritating, irrelevant fea-
tures in the process of approximating an input-output function, even if we do not know this function 
explicitly. Thus, the approximation process becomes much more efficient: the convergence is accel-
erated and the resulting error is decreased. It was shown that even the influence on the input-output 
mapping of time delays of the time series can be included in the feature selection process. 

For the implementation of the density estimation process, the approach using the Rènyi informa-
tion measure was introduced and its limitation discussed. A theorem is proved which guarantees that 
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the minimal mutual information stays positive as long as we use at least one uniformly distributed 
random variable. Several algorithmic acceleration procedures were proposed and the influence of 
“missing values” were discussed and included in the computation scheme. 

Three examples show the usefulness of feature selection for real world applications. First, a sim-
ple example of a nonlinear input-output mapping using time delays show how the relevant inputs and 
their time delays are determined. Second, a chemical process was approximated using delayed ver-
sions of only one input variable out of 14. The results are better than that of the best solution in an 
international contest. Third, the use of feature selection in real time process control is demonstrated 
for the example of automotive combustion control selecting only 5 samples out of 180. The results 
show the advanced control featuring a better control by fewer demands for hardware speed. 

In summary, real valued feature selection shows to be a promising tool for facilitating the building 
of all approximation and diagnostic tools.  

All program code can be obtained at the web site of the working group [25]. 
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Appendix A The example dataset 

The example presented here is a probability-corrected version of the simplified CorrAL dataset of 
[1]. It consists of a binary feature set M6 = {A0, A1, B0, B1, C, D} of n = 6 features where binary 
target Y is determined by the subset of four features {A0,A1,B0,B1} by Y = (A0A1)  (B0B1). 
Feature C is assumed to correlate to Y in 75% of all cases whereas feature D is independent of Y. 
Assuming equal probabilities for features A0, A1, B0, B1, D of P(1) = P(0) = 0.5 the involved condi-
tional probabilities and mutual information can be easily computed. The following table shows our 
dataset. 
 

# A0 A1 B0 B1  D C Y # A0 A1 B0 B1 D  C Y 
1 0 0 0 0 0 1 0 9 1 0 0 0 1 1 0 
2 0 0 0 1 1 1 0 10 1 0 0 1 1 0 0 
3 0 0 1 0 0 1 0 11 1 0 1 0 0 1 0 
4 0 0 1 1 1 0 1 12 1 0 1 1 1 0 1 
5 0 1 0 0 0 1 0 13 1 1 0 0 0 0 1 
6 0 1 0 1 1 1 0 14 1 1 0 1 0 1 1 
7 0 1 1 0 1 0 0 15 1 1 1 0 1 0 1 
8 0 1 1 1 0 1 1 16 1 1 1 1 0 0 1 

 
We have  
H(Y)  = P(0)ld(P(0)-1) + P(1)ld(P(1)-1) = –9/16ld(9/16) – 7/16  ld(7/16) = 0.4669 + 0.52178  

= 0.9887 
With  

P(Y=0D=0) = 4/16  4.5/16 = 9/16  0.5 = P(Y=0)P(D=0) 
P(Y=0D=1) = 5/16  4.5/16 = 9/16  0.5 = P(Y=0)P(D=1)   

 P(Y=0D=0)+ P(Y=0D=1) = P(Y=0)= 9/16 
P(Y=1D=0) = 4/16  3.5/16 = 7/16  0.5 = P(Y=1)P(D=0) 
P(Y=1D=1) = 3/16  3.5/16 = 7/16  0.5 = P(Y=1)P(D=0) 

 P(Y=1D=0)+ P(Y=1D=1) = P(Y=1)= 7/16 
we see that the two features Y and D are independent. 
For feature D, the corresponding mutual information is I(Y;D) = H(Y) – H(Y|D) with 
H(Y|D) = P(D=0)H(Y|D=0) + P(D=1)H(Y|D=1) with 
H(Y|D=0) = P(Y=0|D=0)ld(.) + P(Y=1|D=0)ld(.) = –4/8  ld(4/8) –4/8ld(4/8) = 1.0 
H(Y|D=1) = P(Y=0|D=1)ld(.) + P(Y=1|D=1)ld(.) = –5/8  ld(5/8) –3/8ld(3/8) = 0.95443 

 I(Y;D) = H(Y) – H(Y|D) = 0.9887 – 0.9772 = 0.01148 
 
For feature C, we see that in 12 of 16 cases (75%) we have Y = C, i.e. a highly correlated feature. 
The mutual information is I(Y;C) = H(Y) – H(Y|C) with 
H(Y|C) = P(C=0)H(Y|C=0) + P(C=1)H(Y|C=1) with P(C=0) = P(C=1) = 0.5 and 
H(Y|C=0) = P(Y=0|C=0)ld(.) + P(Y=1|C=0)ld(.) = –2/8  ld(2/8) –6/8ld(6/8) = 0.811278 
H(Y|C=1) = P(Y=0|C=1)ld(.) + P(Y=1|C=1)ld(.) = –7/8  ld(7/8) –1/8ld(1/8) = 0.543564 

 I(Y;C) = H(Y) – H(Y|C) = 0.9887 – 0.67742 = 0.3113 
 
For feature A0 we have I(Y;A0) = H(Y) – H(Y|A0). 
H(A0) = P(A0=0)ld(P(A0=0)-1) + P(A0=1)ld(P(A0=1)-1) = 0.5ld(2/1) + 0.5ld(2/1) = 1.0  

= H(A1) = H(B0) = H(B1) 
H(Y|A0) = P(A0=0)H(Y|A0=0) + P(A0=1)H(Y|A0=1) with 
H(Y|A0=0) = P(Y=0|A0=0)ld(.) + P(Y=1|A0=0)ld(.) = –6/8  ld(6/8) –3/8ld(3/8) = 0.84192 
H(Y|A0=1) = P(Y=0|A0=1)ld(.) + P(Y=1|A0=1)ld(.) = –2/8  ld(2/8) –5/8ld(5/8) = 0.9238 

 H(Y|A0) = 0.88286 



 I(Y;A0) = H(Y) – H(Y|A0) = 0.9887 – 0.88286 = 0.10584 
 
Since the computation Y = (A0A1)  (B0B1) is completely insensitive to a relabeling of the fea-
tures, the mutual information of A1, B0 and B1 with Y are equal to that of A0: 
I(Y;A1) = I(Y;B0) = I(Y;B1) = I(Y;A0). 

The mutual information of the set M4 = {A0, A1, B0, B1} is 
I(Y;M4) = H(Y) – H(Y|M4) with  
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i

 H(Y|M4) =  
16 1

i j i j
i 1 j 0

P(S ) P(Y | S )ld(P(Y | S )
 

 

using the 16 states of the joint random variable S = (A0, A1, B0, B1) and P(Si) = 1/16 of each state. 
This becomes 

 H(Y|M4) = 
16

i i i
i 1

1
P(Y 0 | S )ld P(Y 0 | S ) P(Y 1| S )ld P(Y 1| S )

16 

      i  

All states are different and determine the value of Y. Therefore, each term of the sum  

 P(Y=0|Si)ld P(Y=0|Si) + P(Y=1|Si)ld P(Y=1|Si) 

becomes zero, either because P(.) = 1 and ld(P(.)) = 0, or because P(.) = 0 and therefore P(.)ld(P(.)) 
also becomes zero when ld(.)  –. In summary, H(Y|M4) = 0 and therefore 
I(Y;M4) = H(Y) – H(Y|M4) = H(Y) = 0.9887. 
 
In contrast to this, the mutual information of the set M4 = {C, A0, A1, B0} is 
I(Y;M4) = H(Y) – H(Y|M4). The computation gives nearly the same results as above; nearly all sums 
become zero except one. Here, the state S = (A0=0, A1=1, B0=1, C=0) occurs two times (P(S) = 1/8) 
with two different results Y=0 and Y=1 of equal occurrence and we get 

 H(Y|M4) = – 1/8 [P(Y=0|S)ld P(Y=0|S) + P(Y=1|S)ld P(Y=1|S)] 

  = – 1/8 [0.5ld 1/2 + 0.5ld 1/2] = 1/8 [ld(2)  – ld(1)] = 1/8 

I(Y;M4) = H(Y) – H(Y|M4) = 0.9887 – 0.125 = 0.8637 
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Appendix B The proportions of mutual information of order 2 

One of the severe drawbacks of the quadratic Rényi  information measure gives a mutual informa-
tion, which fulfil the condition 

 I(X;Y) > 0   only for  = 0,1 (18)

for arbitrary distributions of X and Y, see [23]. This means that the mutual information also may be-
come negative for > 1. Especially, if I(X;Y) = 0 for > 1 we can not deduce that X and Y are 
independent 

Example  
Let us assume that we have two binary random variables X and Y which can take the values x1, x2 
and y1, y2. Both should have the same distribution, i. e. P(x1) = p, P(x2) = 1–p and P(y1) = p, P(y2) = 
1–p.   

The joint distribution of both should be for  1–1/2 < p < 1/2, see [26]: 

 P(x1,y1) = – ½ +2p – p2 

P(x1,y2) =    ½  – p + p2 

P(x2,y1) =    ½  – p + p2  

P(x2,y2) =    ½        – p2 

(19)

which gives us the correct marginal distributions 

 P(x1) = P(x1,y1) + P(x1,y2) = p 

P(x2) = P(x2,y1) + P(x2,y2) = 1–p  

P(y1) = P(x1,y1) + P(x2,y1) = p 

P(y2) = P(x1,y2) + P(x2,y2) = 1–p 

(20)

The two random variables are only independent, iff 

 P(xi,yj)  = P(xi)P(yj) (21)

holds. For the first joint probability of eq. (19) this is the case iff 
 

P(x1,y1) = – ½ +2p – p2 = p2 = P(x1)P(y1)        2p2 –2p + 
½ = 0      

   p = ½  

(22)

The same goes for the other three joint probabilities. 
Now, let us compute the mutual information I2(X;Y). By eqs.(1) and (5) we have 

 I2(X;Y) = H2(X)+ H2(Y)  – H2(X,Y) (23)

 

 = –log (P(x1)
2+P(x2)

2)   –log (P(y1)
2+P(y2)

2)  

   + log( P(x1,y1)
2+P(x1,y2)

2+P(x2,y1)
2+P(x2,y2)

2  ) 

= –2log (p2 + (1–p)2) +log( (–½ +2p –p2)2 + 2(½ –p +p2)2 + (½ 
–p2)2 ) 

= –log (p2 + (1–p)2)2 +log (4p4–8p3+8p2–4p +1)  = 0 

Thus, in the whole range of 1–1/2 < p < 1/2 the mutual information becomes zero, not only for p = 



½ . This means that for =2 we can not deduce the independence of random variables from their zero 
mutual information. 
 
How can we overcome this problem? This is obtained by the following theorem: 

Theorem: For uniformly distributed random variable Y with Pi = 1/T and random variable X of un-
known distribution we have 

 I(X;Y) > 0   for  = 2 (24)

Only iff the random variables X and Y become independent, this becomes zero. 
 
Proof: 
Assuming an uniformly distributed random variable Y with Pi = 1/T we have with eq.(23) 

 I2(X;Y) = H2(X) + H2(Y) – H2(X,Y)  

 
=  

T
2

i
i 1

log P (x )


 
T

2
i

i 1

log P (y )


 
T

2
i j

i, j 1

log P (x , y )


 

 
= 

T
2

i
i 1

log P (x )


 
2T

i 1

1
log

T

   
 


T

2
i j

i, j 1

log P (x , y )


   

=

T
2

i j
i, j 1

2T T
2

i
i 1 i 1

P (x , y )

log
1

P (x )
T



 

 
 
 
       



 
=

T
2

i j
i, j 1

T T
2

i 2
i 1 i 1

P (x , y )

log
1

P (x ) 1
T



 

 
 
 
 
  
 



 
=

T
2

i j
i, j 1

T
2

i
i 1

P (x , y )

log
1

P (x )
T





 
 
 
 
  
 




 

 

 = 

T T T T
2 2 2

i i i
i 1 i 1 i 1 j 1

T
2

i
i 1

1 1
P (x ) P (x ) P (x , y )

T T
log

1
P (x )

T

   



 
  

 
 
  
 

  



j

 

 

= 

T T T
2 2

i i
i 1 i 1 j 1

T
2

i
i 1

1
P (x ) P (x , y )

T
log 1

1
P (x )

T

  



 
  

  
  
 

 



j

 

This is always greater or equal zero if we can prove that the numerator of the fraction is always posi-
tive. With equations 

 T
2

i
i 1

1
P (x )

T 
 =

2T T
i

2
j 1 i 1

P (x )
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we get for the numerator of the fraction 
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The expression for the numerator can only become greater than or equal zero. Therefore, the loga-
rithm becomes 

I2(X;Y) = 

2T T
i

i j
i 1 j 1

T
2

i
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P(x )
P(x , y )

T
log 1

1
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 (25)

and the argument of the logarithmic function is always greater equal one. So, for a uniformly distrib-
uted random variable Y the desired relation (18) also holds for  = 2.    
     
For independent random variables X and Y, we have P(xi,yj) = P(xi)P(yj). Then, with P(yi) = 1/T we 
get 

  
T T 2

i j i
i 1 j 1

P(x , y ) P(x ) / T
 

  = = 0  
T T 22

i j
i 1 j 1

P(x ) P(y ) 1/ T
 



and therefore  

 I2(X;Y) = log(1) = 0 (26)

Conversely, eq. (26) holds only iff the quotient in eq. (25) is zero. This is only the case for the posi-
tive denominator iff the numerator is zero which in turn is only the case for positive terms  

  2

i j iP(x , y ) P(x ) / T  = 0 

or with P(yi) = 1/T 

 i j i jP(x , y ) P(x )P(y ) 0    or  i j i jP(x , y ) P(x )P(y )  

which is the definition of independency. Thus, for zero mutual information both random variables 
have to be independent.  � 
 
Please note that P(xi) is the probability of the i-th event of random variable X. This is also true for a 
compound random variable xi n. Therefore, the theorem above (eq.(24)) is also true for compound 
random variables X. 
 

Appendix C The size of the Hypercube 

C.1 Adapting the hypercube size 

The size  of the hypercube is essential for estimating correctly co occurrences of the events. If it is 
taken too small, the number of samples within the hypercube changes too much from location to lo-
cation. Conversely, if it is taken too big, the sample average does not reflect the local distribution 
well. Therefore, an adaptive algorithm is used for estimating a "good" . As goal, we chose a certain 
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percentage s of samples per hypercube of the joint distribution pxy, i.e. the corresponding entropy Hs 
= –log(s). For adaptation, let us use interval nesting. 

Defining the function f() = Hs – Hxy() for  within the interval [0=0, 1=1] we know  by eq. (13) 
that for zero cube size no samples are captured except the central sample of the cube 

 f(0) = Hs – Hxy() = –log(s) + log (1/T) < 0  

because 1 > s > 1/T.  Additionally, when we capture all the samples, we have a ratio of one in eq. 
(12) and we get 

 f(1) = Hs – Hxy(1) =  –log(s) + log 1 > 0 

In fact, f() has one zero crossing within the interval. By choosing a new boundary within the old 
interval and defining whether it is on the right side or in the left side, we maintain the property of the 
interval that it contains a zero crossing of f(). Therefore, we use the following steps: 

1. Choose a new value within the interval, e.g. n) = (1-0)/2. 
2. IF f(n))  >  0   THEN 1 = (n)  // use it as new  right boundary  

         ELSE 0 = (n). // use it as new left boundary 
3. Increment n and continue at step 1. 

The whole process should be stopped when f() is small enough. The obtained  should be used also 
for the computation of H(x) and H(y). 

C.2 Mutual information, feature dimensionality increase and hypercube size  

When we use the forward selection procedure described in section 2, the dimension of the random 
variable X for computing the mutual information I2(X;Y) increases after each iteration and changes 
the mutual information. In order to understand this change, we have to take the following insights 
into account: 
 For a fixed hypercube size  we see that the mutual information 

I2(X;Y) = H2(X) + H2(Y) – H2(X,Y)   

 =  ylog h(C )  xlog h(C )  xylog h(C )  with h(C) =
1 2C

1
T T
  
 

  (27)

depends on the monotonously increasing function h(C). Since the negative logarithm is decreas-
ing, the whole function H(h(C)) is monotonously decreasing. If we add the n+1-th variable with 
its additional time series, we implement it by adding an additional AND condition in eq. (8). Here, 
the number of terms B(t1,t2) with the value true will be the same or less, but not more than that 
without the n+1-th variable. This leads to a constant or decreasing Cx and therefore to a constant 
or increasing H2(h(Cx)).  

For the correlation integral Cxy we have to include additional conditions for the time series sam-
ples of Y. Therefore, we have Cx > Cxy which means that H2(h(Cx)) < H2(h(Cxy)). If we add a vari-
able, Cx will decrease, H2(X) will increase, and so will H2(X,Y) and  stay always bigger than 
H2(X). With constant H2(Y), the resulting I2(X;Y) will stay the same or become smaller. 
 

 When an additional input variable is considered, the high-dimensional event space has less sam-
ples. Therefore, the hypercube size has to increase in order to hold the same number of samples as 
before. For increasing , the counters Cy and Cx increase, making H2(Y) and H2(X) smaller. Since 
 is increased such that Hxy takes the same value as before adding the additional feature, the result-
ing mutual information becomes smaller. 
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In conclusion, increasing the number of features will decrease the amount of mutual information. 

C.3 Variance and hypercube size 

The size of the hypercube which we consider here directly depends on the desired number of samples 
to catch within, e.g. p = 2% of T samples. For n time series we have a n-dimensional space where we 
place our hypercube. Assuming that we have uniformly distributed samples within the hyperspace, 
the pT samples are located in a hypercube with a volume V = n out of the whole volume V = Tn, i.e. 
V = pTn = n. Therefore, we have 

  = p1/nT     or    p= ( )nT
e  

(28)

Ideally, this is the hypercube length. In reality, we have to include two facts: 
 The distributions involved are not uniform 
 There is a variance within each hypercube which can not be neglected 

Therefore, the actually needed  will be different. Because we compute the correlation integral of eq. 
(10) by averaging over all hypercubes, we have to consider the variance within this averaging proc-
ess in order to predict the variability (the error) in measuring the mutual information. 

The number of samples within a hypercube initially does not depend on the other hypercubes. Count-
ing samples within a hypercube is equivalent to counting random events of a random source sorted 
into a bin. Assuming that we have k = pT  samples in a bin we have a probability of p that random 
events are put into the bin and (1–p) that this is not the case. The probability of a discrete random 
event to be in the bin is therefore  

 P = p(1–p) 

 After T random events we have k of those in the bin. There are  T
k

possibilities of selecting a subset 

of k events of all T events. Each of this subsets has the probability of pk(1-p)T-k to occur. Therefore, 
the probability to count k samples within a hypercube is 

 PB(k|p,T) =  pk(1–p)T-k  Binomial distribution  T
k (29)

 This probability is well known, the corresponding distribution is called the Binomial distribution and 
the cumulative distribution function is 

 
Fx =  

x
k T

k 1

T  p (1 p)k

  
k



   

Principally, for T, the Binomial distribution becomes a Gaussian distribution. As a rule of thumb 
this is already the case for Tp and T(1–p) > 5.  
 

Therefore, the variance within a bin is 2 = p(1–p) or with eq. (28) to  

 2 = p(1–p) = p – p2 = ( )nT
e – ( )2nT

e   

This means, the variance of the samples within a bin is determined by the hypercube size length 
nonlinearly.  
 
The average for all the bins is the sum of them 

 B
2 = 1

2+…+T
2  (30)

For uniformly distributed samples the probabilities of all bins are equal and we have 
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 B
2 = T p(1–p) = T [( )nT

e – ( )2nT
e ] 

This is true for independent bins. Now, in the averaging process the bin window is shifted only a 
small length within the input space. Therefore, are certain fraction of the bin under consideration 
contains samples in common with the neighbouring bins. Therefore, the bins are not independent; the 
variance of the random variables is not the simple sum of eq.(30) but it is smaller. 
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Appendix D Computation pseudo code 

The main ideas are demonstrated by the following pseudo code which takes all the considerations 
into account. It uses the symmetry approach acceleration of eq.(13) and the ranking approach of 
eq.(14) as well as the missing value evaluation of eq.(15).  
 

double hx(int[][] X, int[] index, int epsilon){ 
int end = VIP_List.length;  
int Cx = 0; // init correlation integral values 
int M = 0; // init counter for comparisons; 
int t1,t2;  // absolute and relative time index 
for (int j = 0; j < T-1; j++){  // check all point indices 
   t1 = index[j];   // and corresponding time points 
boolean c = true; int i = 0;  
   while (c && (i <= end)) {  // check for missing values in x 
 c = c && (X[i][t1] != SPECIAL_VALUE);  
 i++; 
   }  
   if (!c) { M++;   // if missing value in t1: count it  
   } else {    // look for missing value in t2 

int k = j+1; c1++; 
  while ( (k < j + epsilonInt) && (k < T) ){ // and all neighbors within  

 t2 = index[k];  c2++; 
 c = true; i = 0;  
 while (c && (i <= end)) { // check co-occurrence for already selected features 
       c = c && ( Math.abs(X[i][t1]- X[i][t2]) < epsilon ) 
            && ( X[i][t2] != SPECIAL_VALUE ); 

      i++; } if (c) Cx++;     // All conditions for x met? count Cx on. 
k++; 
} // end while k  

 } // end if..else 
  } // end for j 
  return g(Cx,M); 
} // end hx() 
 

 
The computation compares the time series X[0] with all other time series X[i]. The precondition for this is the 
uniform distribution of one time series. This is accomplished by the ranking of the y = X[0] time series prior to 
comparison. The ranking algorithm is a variant of the well-known quicksort algorithm, presented e.g. in [21]. 
In Java this can be done for instance by the following code for the time series data of length T which returns 
the ranked array and the index array: 

public int[][] rank(double[] data, int T){ 
 this.data = data;    // copy reference to unranked data 
 RankX = new int [T];     
 Tindex = new int [T]; 
 
 for (int j = 0; j < T; j++) { Tindex[j] = j; } // init Tindex 
 QuicksortIndex(0,T-1);   // reorder it according to sample rank 
 for (int j = 0; j < T; j++){  // set invers transform  
 RankX[Tindex[j]] = j; 
 }// end for j 
 
 int [][] result = {RankX, Tindex};   
 return result; 
}// end ranking 
 
private void QuicksortIndex(int left, int right){ 
 int t; double middle; 
 int j = left; 
 int k = right; 
   
 if (right > left){  
  middle = data[Tindex[(left + right)/2 ]]; 
   while (j <= k){ 
  while (data[Tindex[j]] < middle){ j = j+1; } 
  while (data[Tindex[k]] > middle){ k = k-1; } 
  if (j <= k){ 
   t = Tindex[j]; 
   Tindex[j] = Tindex[k]; 
   Tindex[k] = t; 
   j = j+1; 
   k = k-1; 
  }//end if 
   } //end while j 
   QuicksortIndex(left,k); 
   QuicksortIndex(j,right); 
 } //end if 
}//end QuicksortIndex 
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