
Adaptive modeling of biochemical pathways

R.Brause
J.W.G.University, Frankfurt, Germany

Brause@cs.uni-frankfurt.de

Abstract

In bioinformatics, biochemical pathways can be mod-
eled by many differential equations. It is still an open
problem how to fit the huge amount of parameters of the
equations to the available data. Here, the approach of
systematically learning the parameters is necessary.

In this paper, for the small, important example of in-
flammation modeling a network is constructed and differ-
ent learning algorithms are proposed. It turned out that
due to the nonlinear dynamics evolutionary approaches
are necessary to fit the parameters for sparse, given data.

1. Introduction

In living organisms many metabolisms and immune re-
actions depend on the biochemical pathways of molecules.
In Bioinformatics, these pathways are modeled by many
differential equations. For complicated systems, differen-
tial equations systems (DES) with up to 7,000 equations
and 20,000 associated parameters exist and model reality.
The motivation for life science industry to use such sys-
tems is evident: A prediction of reactions and influences
by simulated models helps avoiding time-consuming, ex-
pensive animal and laboratory experiments, decrease the
high costs for developing new drugs and therefore may
save millions of Euros.

Although the basic idea is quite seducing, the practical
problems associated with the simulation approach are dif-
ficult to solve: How can all parameters be set to the cor-
rect values? And if all parameters are different for each
individual, how can they be adapted to the real values
based only on a small set of measured data per organism?
Here, neural networks come into hand.

Traditionally, the worlds of neural networks and of dif-
ferential equations are well separated. Neural networks are
used to approximate stochastically unknown functions and
relations. This approximation is a kind of implicit model
of the unknown dependencies. In contrast, differential
equations are used to model explicitly all relations. Here,
the given interdependencies will result in a complex, pa-
rameter determined behavior.

Now, what about using the approximation capabilities
of neural networks for approximating the unknown pa-
rameters? This idea is elaborated in the next section.

2. The differential equation neural network
of inflammation and septic shock

The initial idea of using neural networks for approximat-
ing the parameters of differential equations can be refor-
mulated in an interesting manner. It is well known that all
activity equations and learning equations of neural net-
works can be formulated as difference equations. Now, if
we can reformulate our differential equation system DES
by difference equations and map the difference equations
on neural networks, perhaps we can learn the parameters
automatically by the emulating neural networks instead of
setting them manually in a long and laborious way.

Let us take a more concrete look on an example sys-
tem: the DES of inflammation and septic shock. The
symptoms of septic shock contain low blood pressure,
high ventilation and high heart rates and may occur after
an infection or a trauma (damage of tissue). The septic
shock research has no convincing results yet; there is still
a high mortality of about 50% on the intensive care units
(ICU) and nobody knows why. It is only possible to pre-
dict the outcome for a patient in advance just for 3 days,
see [3] . In 1999, about 250,000 deaths were associated
with sepsis in the USA.

A confusing myriad of chemical pathways and mole-
cules of the immune system produce the septic shock
state. A recent approach tries to model one of the main
pathways by a small set of 16 ordinary differential equa-
tions [1]. Nevertheless, this model uses 117 parameter
constants that are far too many for a simple approach.
Therefore, for studying some approximation methods we
restrict ourselves first to a simplified but still functional
version of the model that uses only three variables and 12
constant parameters [2]. First, let us introduce the basic
model assumptions.

Let P be the pathogen influence and M the immu-
nological response, e.g. the macrophages involved. Then
1) P will be increased by cell growth, i.e. splitting of

pathogen cells: P'(t) ~ P
2) For this, there is a limit of resources,

i.e. P'(t) ~ (Pmax–P) with concentration Pmax =1.
3) P will also decrease by the probability that macro-

phages and pathogens are at the same place:
P'(t) ~ –M⋅P

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence - ICTAI 2003
1082-3409/03 $17.00 © 2003 IEEE

4) The number of macrophages will grow when a
“combat indicator” is produced when they destroy
the pathogen. Therefore, they grow with the prob-
ability of macrophages and pathogens at the same
place: M'(t) ~ M⋅P

5) Macrophages die at constant rate: M'(t) ~ –M
6) There is a cell damage D which is caused by in-

flammation. This will also cause the number of
macrophages to grow because they are also used to
do a “cleaning service”. Like the pathogens, the
macrophages grow with the probability of being at
the same place: M'(t) ~ MD

7) There is a limited resource for macrophages. There-
fore, all growth is also proportional to the remaining
resource: M'(t) ~ (1-M)

8) The cell damage is repaired with a certain rate:
D'(t) ~ –D

9) Let us assume that the amount of additional damage
is indicated by a sigmoid function h() of the number
of macrophages: D'(t) ~ h(M-θ) where θ is a thresh-
old.

All the assumptions can be combined into a coupled sys-
tem of three first order differential equations:

P'(t) = α1P(1–P) – α2MP 1) +2) +3) αi>0 (1)

M'(t) = –β1M +M(1–M)(β2P+ β3D) 4) +5)+6)+7) βi>0 (2)

D'(t) = –χ1D + χ2h((M–θ)/χ3) 8) + 9) χi>0 (3)

where a typical parameter regime takes as maximal values

α1: 0.1 β1: 1.0 χ1: 0.1 h(.)= 1/(1+exp(.))

α2: 1.0 β2: 10.0 χ2: 0.04 θ = 0.5

 β3: 1.0 χ3 : 0.25

For discrete time dynamics, the differential equations have
to be transformed into difference equations. In general, an
equation of the form

=
dt

dyi)t,y,...,y(f n1i i=1,..n

can be written by a difference equation
 yi(t+h) = yi(t) + h)t,y,...,y(f n1i

 + O(h2)

For small values of h, the last term in this Taylor expan-
sion becomes very small and can be neglected (finite dif-
ference method). Therefore, for discrete, relative small
time steps t, t+1, t+2, … we might replace the differential
equations by the difference equations

P (t+1) = P + a1(1–P)P + a2MP with a1:=α1, a2:=–α2 (4)
M(t+1) = a3M +a4M(1–M)P + a5M(1–M)D

with a3:=(1–β1), a4:=β2, a5:=β3 (5)

D(t+1) = a6D + a7 h(a8(M–a9))
with a6:=(1–χ1), a7:=χ2, a8:= χ3

-1, a9:=θ (6)

This can also be interpreted as the activity of a recurrent
two-layer neural network with the structure drawn in
Fig.1. The sum of each equation is emulated by one linear
neuron (Σ-neuron) in the second layer with the weighted
input of non-linear terms. Each non-linear term is pro-
duced by one non-linear neuron of a previous layer.

P(t+1) D(t+1)

h(M-θ)

P-P2P D

M(t+1)

C3

M⋅P

(1-M)⋅M⋅D
M⋅(1-M)⋅P

M

Fig. 1 A recurrent neural network directly model-
ing the system

There is another version of the differential equations,
which can be written in polynomial form:

P (t+1) = w1P + w2MP + w3P
2

with w1:=(1+α1), w2:=–α2, w3:=–α1 (7)

M(t+1) = w4M + w5MP + w6MD+ w7M
2P + w8M

2D
 with w4:=(1–β1), w5:=β2, w6:=β3, w7:= –β2, w8:= –β3 (8)
D(t+1) = w9D + w10 h(w11(M–w12))
 with w9:=(1–χ1), w10:=χ2, w11:= χ3

-1, w12:=θ (9)

The corresponding network is shown in Fig. 2. Here, the
first layer is mainly composed of Π-neurons which com-
pute the product of its input terms.

P(t+1) D(t+1)

h(M-θ) M⋅PP2P
D

M(t+1)

C3

M2⋅P M2⋅D

M⋅D

Fig. 2 The polynomial recurrent neural network

modeling the system

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence - ICTAI 2003
1082-3409/03 $17.00 © 2003 IEEE

The plot of the time course for the three outputs (three
variables) for the set of parameters shown in Tab. 1 is
shown in Fig. 3.

Tab. 1 The constant parameter values
α1 = 0.045 β1 = 1.0 χ1 = 0.087

α2 = –0.225 β2 = 6.0 χ2 = 0.04
 β3 = 0.95 χ3 = 0.25

It can be concluded that an infection (P) causes cell dam-
age (D) and a delayed activity of the macrophages (M).
The infection is defeated by the macrophages which de-
crease to a sufficient level afterwards. In this case (pa-
rameter regime), the infection remains chronically.

Fig. 3 The time dynamics of the equa-

tions (4),(5) and (6).

Now, how can the parameters, which correspond to the
weights of the second layer, be learned? It is well known
that the non-linear transfer function of deterministic cha-
otic systems can be efficiently learned in order to predict a
chaotic time series, see for instance [5]. Therefore, all
dynamics which evolve by recurrent influence may be
modeled by recurrent neural nets containing delayed sig-
nals, implemented e.g. in the discrete case by delay ele-
ments like tapped delay lines. In this case, the learning can
be done by simple error reducing algorithms.

In the next section we regard the adaptation of the pa-
rameters more closely.

3. Learning the parameters

Generally, the biochemical pathways are very com-
plex. It is not clear, which influences are important and
which are not important. For the analytical description of
equations 1 and 2 this means that the number of terms and
the values of its parameters are not given a priori, but
have to be estimated (“learned”) by the real observed data.
How can this be done?

The learning process has to take into account that the
error of the approximation is caused either by the value of
the parameter or the existence of the term. Since decreas-
ing a very small term (very small parameter) is equivalent

to dropping it, the goal of selecting the most important
terms is also reached by minimizing the error influence of
each term adjusting its parameter value.

To describe the possible learning algorithm in detail,
let us first generalize the three equations (4),(5),(6) to

y1(t+1) = a11x1 + a12 x2 + a13 x3 + a14 x4 + a15 x5 + a16 x6
+ a17 x7 + a18 x8 (10)

y2(t+1) = a21x1 + a22 x2 + a23 x3 + a24 x4 + a25 x5 + a26 x6
+ a27 x7 + a28 x8 (11)

y3(t+1) = a31x1 + a32 x2 + a33 x3 + a34 x4 + a35 x5 + a36 x6
+ a37 x7 + a38 x8 (12)

with
x1:= P, x2:= (1–P)P, x3:=MP, x4:= M, x5:=M(1–M)P,
x6:= M(1–M)D, x7:=D, x8:= h(M–θ)

and
a11=1, a12=a1, a13= a2, a14=a15=a16=a15=a17= a18= 0

a21=a22=a23=0, a24=a3=1–β1, a25=a4=β2, a26=a5=β3,
a27=a28=0,3

a31=a32=a33=a34=a35=a36=0, a37=a6 =1–χ1, a38=a7=χ2

In conclusion, the system of parameters to be adapted can
be described by the linear equation

y = Wx
with y := (y1,…,ym), x := (x1,…,xn), W=(aij) (13)

Let us assume that we have for t=1,…,N data samples the
input P(t),M(t),D(t) i.e. x, and the desired output L. As
learning goal, the weights W should be adapted such that
for x(t), L(t) the mean squared error of the predicted out-
put to all observed samples at time points t

R(W) := 〈(y(x(t)) – L(t))2〉t = 〈(Wx(t)) – L(t))2〉 t = min

takes a minimum.
Now, the straightforward approach as performed in [5]
trains the net with several hundred data tuples (input, de-
sired output) and learns the nonlinear mapping from the
input to the output for each time step, i.e. each data tuple.
There are several possible learning algorithms to solve
this task.

The simple gradient learning takes the gradient of R to
compute the next iteration step k

W(k+1) = W(k) -γ(k) gradw R(W)

For the mean squared error this becomes with the expecta-
tion brackets 〈.〉

W(k+1) = W(k) -γ(k) 〈2(Wx(t)) – L(t))x(,t)〉 t (14)

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence - ICTAI 2003
1082-3409/03 $17.00 © 2003 IEEE

This equation gives only a crude direction in which the
update should evolve. It can be smoothed in order to re-
flect the proper error amount, see [4], to

 W(k+1) = W(k) -γ(k) 〈(Wx(t)) – L(t))
2

)t(

)t(

x

x
〉 t

 Widrow-Hoff learning (15)

For the weights aij of eq.(10)-(12) this becomes for the k-
th time step the stochastic approximation

 aij (k+1) = aij(k) + γ(Li-yi(t))xj(t)/Σpxp(t)
2 (16)

Although the input x is produced by nonlinear terms
(polynomials of P,M,D), the learning is only used for the
linear mapping by matrix W. Therefore, knowing the de-
sired output {P(t),M(t),D(t)} and by this the set {x(t)}, we
can directly learn the parameters W of the mapping.

Please consider that the iteration is deterministic; for
each iteration step, the average over N samples must be
computed. For a small number of data, e.g. for N=6 for rat
blood samples, this is easy to do. In the case of the many
data of a complete time course, the stochastic approxima-
tion approach should be chosen and the expectation
brackets be dropped as done in eq.(16).

In the deterministic case of a DES with no random in-
fluences, the parameters can even be directly computed: m
samples give us m equations for m parameters that are
easily computable by the well-known Gaussian elimina-
tion method.

The gradient learning has already been used success-
fully in learning the parameters of nonlinear chaotic map-
pings, see e.g. [5]. Therefore, we will not consider it fur-
ther in detail. Instead, let us refine our problem in the next
section.

4. Learning from sparse data

Let us assume that we do not have the full data set of
Fig. 3 but only the small set of observed data given in
table 1.

Time
step

P M D

0 0.050000 0.001000 0.150000
100 0.201215 0.206079 0.254347
200 0.183751 0.206844 0.342027
300 0.177270 0.206750 0.374282
400 0.174876 0.206680 0.386141
500 0.173995 0.206649 0.390500

Tab. 2 The observed sparse data

This situation is different from the previous one of
learning the unknown parameters: the time scales of the
observed training data and of the iteration cycles are dif-
ferent. For instance, the dynamics of inflammation might
be in the reach of hours, whereas the observed data is
taken once each day. In Fig. 4 this situation is shown.
Here, the variable y(t) changes after each time tick, but it
is only measured at time points ti.

y (t)

t i m e t i c k st 1 t 2 t 3 t 4

Fig. 4 The different time intervals for the differential

equation and the observations

The different time scales will change heavily the approxi-
mated coefficients and difference equations. To see this,
let us consider an example. For the differential equations

axyy =& , bxyx =&

we get the difference equations

 axyy =& ≈
t

)t(y)tt(y

∆
−∆+ or y(t+∆t) = y(t) +∆t⋅axy

and bxyx =& ≈
t

)t(x)tt(x

∆
−∆+ or x(t+∆t) = x(t) +∆t⋅bxy

For ∆t=1 we get the differential equations y(t+1) = y(t)
+axy and x(t+1) = x(t) +bxy.
This means

y(t+2) = y(t+1) + axy(t+1) = y +axy + a(x +bxy)(y +axy)

 = y + 2axy +a2x2y+abxy2+a2bx2y2

whereas for ∆t=2 we get

y(t+2) = y + 2axy

which is significantly different from the previous equa-
tion.

Therefore, if we ignore the time steps between the ob-
servations and assume that the network iterates once for
one observations we will not be able to predict the best

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence - ICTAI 2003
1082-3409/03 $17.00 © 2003 IEEE

fitting parameters ai for the difference equations which
have several time steps between the observations.
Now, how can we proceed to approximate the unknown
parameters from sparse observations? Obviously, the di-
rect approach of [5] is not possible here because we have
no training tuples (y(t),y(t+1)). Our approach has to be
different.

4.1 The error landscape

What can we expect for any error-decreasing learning?
What does the error landscape look like for our problem?
In Fig. 5 different aspects of the error landscape are
shown. The figures are obtained by varying two weights
(parameters) in the difference equations within the given
interval, the remaining weights are fixed at the bounda-
ries.

The squared error between the demanded values of P,
M, D (see Tab. 2) and the computed ones at t=100 is plot-
ted in logarithmic scaling for the z-direction.

(1) weights w1 vs. w2

(2) weights w2 vs. w3

(3) weights w5 vs. w6

(4) weights w8 vs. w9

Fig. 5 Types of the error landscape

It is interesting to see that the error landscape is highly
nonregular. There are wide areas where the error does not
change; the interesting regions (valleys) of the error are in
a very small parameter range, see e.g. at the boarder in
Fig. 5 (1) or diametral in Fig. 5 (3). By these statements
one might think that simple gradient seeking mechanisms
might be sufficient. But additionally, we have a highly
dynamic system with fixed upper and lower limits of the
dynamical variables. This might produce chaotic behav-
iour, see [6]. In our case, we encounter chaos indeed. To
see this, let us zoom in on the rough region of Fig. 5 (2).

(1) First zoom

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence - ICTAI 2003
1082-3409/03 $17.00 © 2003 IEEE

(2) Second zoom

Fig. 6 Zooming in a chaotic landscape

A smooth landscape change by a complete nonregular
landscape which can not be anticipated by any standard
minimum-seeking mechanism.

4.2 Random adaptive learning

For all cases where the analytic form of the objective
function is not given and the error landscape is not smooth
we can not compute the gradient explicitly. Instead, let us
consider a variant of the classical evolutionary approach
as it was introduced by Rechenberg 1973 [7].

1. Generate a new set of random weights numeri-
cally by incrementing the old value with a ran-
dom number, e.g. a Gaussian deviation.

2. test it: does it decrease the objective function?
3. If no, inverse the sign of the increment and test

it: does it decrease the objective function?
4. If no, take the old weight values and choose an-

other weight set.

The advantage of this approach is its independency of the
complexity of the objective function. The disadvantage is
its slow convergence speed: we have to recompute the
objective function each time we change only one weight,
and we can not adapt the step width in advance.

For our parameter approximation problem, this results
in the following algorithm:

P-LEARN :
for i=1 to m do
 w0[i]:=0.9*(MaxValue[i]-MinValue[i])

+ MinValue[i]
next i
R0:= Risk(k);
for t:=1 to 100,000 do
 for i:=1 to m do

w[i]:= w0[i]
+ GaussRandom()*s
*(MaxValue[i]-MinValue[i])

 next i
 R:= Risk(k);
 if R<R0 then
 for i:=1 to m do w0[i]=w[i] next i;
 R0=R;
 endif
next t

Fig. 7 The evolutionary learning algorithm in
pseudo code notation

In the beginning, the weights (parameters) are initial-
ized to random values within the allowed range. Then, the
algorithm uses the Risk(k) method to activate the neural
network feedback (iterate the differential equation) and
saves the output at the predefined time points, ending with
the k-th point. By the difference between the simulation
output and the given real world observations the absolute
error, the scalar R, is computed and used for changing the
weights.

There is another problem to be solved. Since the value

of the 100st iteration is a highly nonlinear function of the
starting values, the time course can easily grow out of
bounds. Therefore, at each iteration we have to assure the
upper and lower limits 1.0 and 0.0 for the concentrations.

4.3 Simulating Random Parallel Learning

Now, let us simulate the evolutionary approach for ap-
proximating the parameters of the differential equation
system of section 2. In Fig. 8 the error decrease is shown.
In order to compute this, the weights are initialized to half
the maximal range. Then, random deviations of the
weights are computed with a normal distribution of vari-
ance σ = s⋅(weight range). Executing the algorithm of Fig.
7 the resulting squared error is stored for each time step.
The procedure is performed 100 times for each s, giving
100 time courses. The average time course of 10,000 steps
(mutations) for each value of s is plotted in Fig. 8.

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence - ICTAI 2003
1082-3409/03 $17.00 © 2003 IEEE

s = 0.2 s = 1.0
...

sq
ua

re
d

 e
rr

or

s = 0.5

s = 0.4

s = 0.1

s = 0.3

s = 0.6

Fig. 8 Average error decrease and random vari-

ance

The figure shows that the random variance s above a value
of s=0.3 performs well. Nevertheless, the convergence is
very slow. Does this accelerate if we mutate only one
weight after the other?

4.4 Simulating Random Sequential Learning

Instead of changing all weights for the next try, let us
change only one. This might leave some weights in a
“good” state, while changing non-optimal ones. Fig. 9
shows a serial version of the parallel evolutionary algo-
rithm of Fig. 7.

S-LEARN :
for i=1 to m do
 w0[i]:=0.9*(MaxValue[i]-MinValue[i])

+ MinValue[i]
next i
R0:=Risk(k);
for t:=1 to 100,000 do
 for i:=1 to m do

w[i]:= w0[i]
+ GaussRandom()*s
*(MaxValue[i]-MinValue[i])

 R:=Risk(k);
 if R<R0 then R0=R; w0[i]=w[i] endif
 next i
next t

Fig. 9 The serial evolutionary algorithm.

For this, 10 performance time courses for different values
of s are shown in Fig. 10. For each time step, all weights
are mutated. Comparing this to Fig. 8, we observe a slight,
but not one dramatic advantage. Also, since we have to
evaluate the weights after each mutation, for one time step
we have to evaluate 10 times, not once.

5. Discussion

The use of differential equation models in life science
depends heavily on the approximation of the equation
parameters to fit the observations.

s = 0.2

s = 1.0
...

sq
ua

re
d

 e
rr

or

s = 0.5
s = 0.4

s = 0.1

s = 0.3

s = 0.6

Fig. 10 Performance of the serial adaptive evolu-

tionary algorithm

This paper introduces the problem for a small but fully
functional model used in septic shock modeling and shows
the advantages and disadvantages of several approaches.

It turns out that classical error correction learning is
straight forward for fully known differential equation time
courses, but it is not possible for the case of sparse obser-
vations. Here, random oriented optimum seeking algo-
rithms should be preferred. According to the simulations,
no significant performance difference between sequential
and parallel adaptation schemes could be found.

6. References

[1] C. Chow, G. Clermont, R. Kumart, Z. Tawadrous, D.
Gallo, B. Betten, G. Constantine, M. Fink, T. Billiar,
Y. Vodovotz: “Quantitative Dynamics of the Acute In-
flammatory Response in Shock States”, preprint 2003
(personal communication)

[2] C. Chow: Development of a Dynamical Systems
Model of Acute Inflammation, E. Neugebauer: 2nd
workshop on complex systems: Analysis in Shock and
Trauma Research, University of Cologne, 2003

[3] J. Paetz, R. Brause: “A Frequent Patterns Tree Ap-
proach for Rule Generation with Categorical Septic
Shock Patient Data”; in: J. Crespo, V. Maojo, F. Mar-
tin, Medical Data Analysis, Springer Verlag Berlin
Heidelberg 2001, pp.207-212

[4] B.Widrow, M. Hoff: “Adaptive switching circuits”;
1960 IRE WESCON Convention Record, New York:
IRE, pp.96-104 (1960)

[5] A. Lapedes, R. Farber: “How Neural Nets Work”;
Report LA-UR-88-418, Los Alamos Nat. Lab. 1988;
and in Y.C. Lee (Ed.): Evolution, Learning and Cog-
nition; World Scientific, Singapore, New Jersey, Lon-
don 1988

[6] H. G. Schuster: Deterministic Chaos: An Introduction;
Physik-Verlag, Weilheim 1984

[7] I. Rechenberg: Evolutionsstrategie; problemata
frommann-holzboog, 1973

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence - ICTAI 2003
1082-3409/03 $17.00 © 2003 IEEE

