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Abstract

Attraction and commercial success of web sites depend
heavily on the additional values visitors may find. Here, in-
dividual, automatically obtained and maintained user pro-
files are the key for user satisfaction. This contribution
shows for the example of a cooking information site how
user profiles might be obtained using category information
provided by cooking recipes. It is shown that metrical dis-
tance functions and standard clustering procedures lead to
erroneous results. Instead, we propose a new mutual infor-
mation based clustering approach and outline its implica-
tions for the example of user profiling.

1 Introduction

The internet’s growth steadily fosters competition among
portals whose operators aim at selling all kind of services
and products. Therefore, one of their main concerns is high
attractivity as commercial sites being uninteresting or non-
functional loose their customers rapidly. One promising
way for portal operators is the adaptation to changing user
needs and interests. This can be achieved by collecting and
analyzing information of all users visiting their web site.
The aggregated, user related information is called user pro-
file and is difficult to obtain in the anonymous as well as
stateless world of the HTTP protocol.
In this contribution we use the example of a cooking site,
providing recipes, tools and advice for cooking. In this con-
text, user profiles might be utilized for

• individualizing feedback emails to users in order to
provide notice only for recipes and goods that corre-
spond to the user’s information desires,

• generating recommendations for interesting portal
contents that have not been visited yet,

• ameliorating the site’s structure and

• structuring discussion groups as well as identifying
their main interests.

To obtain data for these purposes portal operators might ei-
ther record page view information like time duration, or ex-
plicit user feedback, e.g. ratings, downloads and printouts
of specific texts as well as any other kinds of services.
Beside the multiple applications from above, the modeling
of state transitions and sequences is not covered by this con-
tribution. Attempts that compute user profiles by model-
ing user action sequences via Markov chains can be found
in [20] and [2]. Other approaches like those of [18] and
[21] incorporate frequent item sets for predicting page vis-
its. [14] even advances this idea by introducing click stream
trees which represent frequent sequences of page views.
One common enhancement of all these approaches is the
reduction of dimensionality by clustering portal contents.
Thus, for market basket data these applications might ben-
efit from the mutual information based clustering approach
described in this paper.

2 Methods for forming user profiles

User profiles are supposed to reflect preferences. For the
cooking site the only indications available for these prefer-
ences are the visited recipes which in turn are composed of
ingredients. Further, our data does not possess any quanti-
tative weighting, except the binary information concerning
an ingredient’s presence within a recipe. Thus, for this case
user profiles can be obtained from user-typical item col-
lections which might be computed by the following three
strategies:

1. The classical bottom-up approach for basket data
analysis, e.g. using the A-Priori Algorithm [17] which
aggregates all current items (here ingredients) to a few
typical sets. Unfortunately, the d = 45 ingredients let
this become infeasible as they lead to a combinatorial
explosion of 245 > 35 · 1012 possible set patterns.



2. The top-down approach that takes the existing recipes
patterns and aims at generalizing them [4, 19]. This
yields to more valid rules for user preferences than the
first one, but the approach also suffers from the combi-
natorial explosion although some heuristics described
in [19] might alleviate this problem a bit.

3. Sets of user preferences might also be regarded as cor-
responding to clusters. Following this perspective the
objective is to identify classes within the data set via
cluster analysis methods.

We have chosen the third approach for this contribution.
Since no classes are defined a priori, suitable clustering
methods are to seek for structures within all users’ data. Af-
ter obtaining this classification basis, assignments of classes
for each user or actual visit statistics for different classes can
be stored as individual user profiles. For the clustering two
different options exist:

1. A statistical data base clustering that is obtained from
all recipes available on the web site’s server. Thus, its
clusters reflect the internal occurrence probabilities of
ingredient combinations within the data base.

2. A user weighted clustering that is based on all recipes
weighted by their download frequencies. Here, clus-
ters represent the users’ interest focuses.

3 Clustering Requirements for Market Bas-
ket Data

Traditionally, algorithms for analyzing cluster structures
are based on distance measures for pairwise comparisons
of data patterns. Further, multiple parameters are used in-
cluding average distances within clusters, means of cluster
attributes and maximal intra as well as minimal inter cluster
pattern distances [8]. Unfortunately, these approaches are
inherently based on metrical data, i.e. pattern tuples con-
sisting of real numbers.
The cooking site provides information for recipes down-
loaded by registered users. Further, the recipe patterns are
represented by the corresponding ingredients omitting their
quantitative weighting. Thus, the objective is to cluster cat-
egorical patterns and not metrical ones. The following defi-
nition states this task more precisely.

Definition: Clustering of item sets
Let {xi} denote the set of all categorical attributes, called
items. Then, a categorical pattern or item set pattern is
defined as a set of these items’ categorical values cj

x = {xi = cj |i = 1, ..., d, j = 1, ..., mi} = (x1, x2, ..., xd)

where each item xi can take mi such possible values and
mi = 2 for binary data. All observed item set patterns

form the data base D. A clustering of D is defined as a
partition Ck of the data base into k disjoint subsets Ωi, e.g.

k⋃
i=1

Ωi = D, Ωi ∩ Ωj = ∅ for i �= j (1)

Further, ωk denotes that a pattern x belongs to subset Ωk.
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Figure 1: (a) Metrical and (b) categorical clustering

Different from metrical clusterings, categorical data lacks
meaningful distance functions among its symbolic enti-
ties. To illustrate this challenge, we consider the six 2-
dimensional item set patterns defined by the attributes a and
b as (a1, b2), (a1, b3), (a1, b4), (a4, b2), (a4, b3), (a4, b4).
Fig. 1(a) depicts them within metrical coordinates assuming
that ai = i and bj = j. Within this metrical setup two clus-
ters, highlighted by grey dotted circles, can easily be identi-
fied. But with data exhibiting a pure categorical interpreta-
tion, relabeling the attributes changes the scene completely.
E.g., when the variable a represents colors no inherent order
exists among the variable’s values. Since, intrinsically also
no distances are defined among colors, the order of a1 and
a4 might be changed leading to the situation that is depicted
in Fig. 1(b). Here, only one class instead of the two can be
deduced. To overcome these kinds of challenges for cat-
egorical data literature proposes only few approaches [13].
Their main problem is the definition of an adequate distance
measure which meets the requirements that

• members of one cluster are supposed to be as similar
as possible and

• members from different clusters shall exhibit no or
only little similarities i.e. possess high pairwise dis-
tances.

The computations for implementing these demands are NP
hard [12] and depend heavily on the distance function [10].
For binary encodings, as those of market basket data or cat-
egorical item sets, which contain a one for an attribute’s
presence and a zero for an attribute’s absence, different dis-
tance measures have been proposed like the Hamming Dis-
tance or the City Block Metric. For binary encodings these
measures are equal and compute distance rankings identical



cluster 1 cluster 2
pattern present items pattern present items
x1 {1, 3} x6 {2}
x2 {1, 3, 9} x7 {2, 4, 5}
x3 {3, 9} x8 {2, 4, 5, 6, 10}
x4 {3, 7} x9 {2, 4, 5, 6, 8, 10}
x5 {7, 9} x10 {2, 4, 5, 8, 10}

x11 {4, 5, 6, 8, 10}
x12 {4, 5, 6, 8}

Table 1: Clustering of item set patterns

to those of the Euclidian Distance. Thus, we will further
consider the Hamming Distance only.
Table 1 presents a second example. It depicts an idealized
clustering of binary market basket data and shall illustrate
the following six typical characteristics of this data type:

1. Item set patterns might possess different numbers of
items that are present.

2. Compared to the overall number of possible items only
few ones are actually present (e.g. xi : i = 1, ..., 5).

3. Item set patterns might be rather similar although pos-
sessing different amounts of present items (e.g. x6 and
x9).

4. Data might be scattered as it is typically made of a
small fraction of the 2d discriminable item set patterns.

5. Clusters are characterized by individual or joint occur-
rences of typical items that are present (e.g. the pres-
ence of the 2nd or 4th item for the 2nd cluster).

6. Item set patterns belonging to the same cluster might
share little or even no present items at all. Thus, an
item set patterns’s cluster affiliation is established via
other item set patterns possessing typical items for this
cluster (e.g. item set patterns x1 and x5 are intercon-
nected by x2, x3 and x4).

7. The number of item set patterns within clusters might
vary. Further, the larger a cluster is the lower the av-
erage similarity among its cluster members becomes
as for an item set patterns x there are

∑i
j=0

(
d
j

)
item

set patterns x′ with a Hamming distance ≤ i. Among
these the maximal distance of 2i appears quite often
as there

(
d
i

)
border item set patterns can be found and

each of them in turn possesses
(
d−i
2 i

)
neighbors with a

distance of 2i.

The immediate implications concerning distance measures
for binary market basket data are twofold:

1. The superior number of absent items requires an asym-
metrical treatment of their matches compared to those
for items being present. E.g. within the cooking site,
recipes are represented by 45 ingredient categories
whereas on average only ingredients from 7 of these
categories are used.

2. Measures like the Hamming Distance are mislead-
ing for binary market basket data as they bear the
risk of assessing object pairs sharing present items to
be less similar than those lacking this similarity (e.g.
distHam(x1, x6) < distHam(x9, x6)).

To preserve the geometrical perspective of traditional clus-
tering algorithms we propose to employ Jaccard’s Coef-
ficient [22]. This measure accounts only for matches of
present items as it standardizes the Hamming Distance via a
division by the number of items being present at least within
one object. Unfortunately, it turns out that several classical
methods still yield to erroneous results.
Partitioning clustering approaches that are based on the
principle of minimizing variance of cluster members around
central objects (prototypes) are misleading, because proto-
types cannot capture cluster characteristics like multiple at-
tribute co-occurrences. Further, their objective seeks for
spherical, equal sized clusters tending to split larger ones
as this decreases variance. Characteristic 7 also claims that
within larger clusters object dissimilarities increase. This
leads to prototype patterns converging to zero vectors be-
cause with increasing cluster size more items are present
within the clusters but their relative occurrence frequencies
decrease. These considerations are supported by validations
of multiple partitioning approaches on our data set via the
Silhouette Coefficient proposed by Kaufman and Rousseuw
[10] concluding that no cluster structure prevails or these
methods are simply not the right one.
Density-based methods are not applicable here either, as
categorical data possesses no such metrical proportions. In-
stead, objects are placed in the corners of the d-dimensional
hypercube.
Although, the hierarchical clustering approach seems
promising because of its flexibility, traditional distance
measures like the Single-, Complete- and Average-Link ap-
proaches lack a global perspective that is required to satisfy
characteristic 6. To overcome this problem Guha proposes
the ROCK (RObust Clustering using linKs) Algorithm [13].
It defines a neighborhood via links among objects whose
similarity exceeds a predefined threshold. Further, its ob-
jective function aims at maximizing the number of within
cluster links via a hill-climbing procedure. Although this
approach is reported to work well in the case of pure cat-
egorical data, for the case of binary market basket data it
seems less promising as its main assumption is a constant
number of ones, i.e. a constant number items being present
which is not satisfied in our case. Therefore, we have not
further investigated this approach.
In conclusion, a geometric perspective employed by tradi-
tional clustering algorithms is not suitable for binary market
basket data. Furthermore, instead of local, pairwise com-
parisons it seems that a global perspective accounting for
typical cluster characteristics is more required.



4 A mutual information based approach

As profiles represent approximations of the user’s infor-
mation desire, a probabilistic perspective seems suitable.
For this purpose a desirable objective is the maximization of
the information for the guess of an item’s presence within
one pattern on the basis of its cluster affiliation. To fur-
ther motivate this idea, one might consider evaluation meth-
ods for cluster quality. Among them one approach used
for metrical patterns is the calculation of bits that are re-
quired to codify the cluster assignments. This corresponds
to the so called minimum description length (MDL) princi-
ple [8, 15]. It can be shown that the lower bound for the de-
scription length L equals the entropy of the data set’s prob-
ability distribution. Therefore, the best clustering is the one
which minimizes the entropy of the clustering. This can be
achieved by minimizing the conditional entropy H(X|k)
[7] of the patterns within the k clusters where X is a mul-
tidimensional random variable, taking values from all pos-
sible item sets, and k is a random variable which describes
the patterns’ cluster affiliation. Further, [16] argue that for
binary objects that result from a superposition of multiple
Bernoulli distributions a clustering with minimal cluster en-
tropy H(X|k) is an optimal estimation of this model ac-
cording to the maximum-likelihood principle. Certainly, as
the entropy H(X) for all patterns is constant for the data
set, the optimal clustering C maximizes also the mutual in-
formation I(X; k) between the patterns X within a cluster
and the cluster assignment itself.

min
C

H(X|ωk) ⇐⇒ max
C

[H(X) − H(X|ωk)]

= max
C

I(X; ωk) (2)

Thus, as desired a categorical pattern’s cluster assignment
indicates its items’ presence values and vice versa. The
objective to maximize mutual information corresponds to a
minimization of an information based distance measure be-
tween two clusters Ωi and Ωj implemented by conditional
entropy. This distance is expressed as the difference be-
tween the conditional entropy of all fused clusters Ωi ∪ Ωj

and the average of the particular clusters:

dI(Ωi, Ωj) = H(X|
∨

k∈{i,j}
ωk) − 〈H(X|ωk)〉k (3)

= H(X|ωi∨ωj) − H(X|ωi)P (ωi) − H(X|ωj)P (ωj)

If the items Xi are independent, the equation for computing
the entropy can be simplified to [7]

H(X) = H(X1, X2, ..., Xd) =
d∑

i=1

H(Xi) (4)

which is also valid for the mutual information

max
C

I(X; ωk) = max
C

d∑
i=1

I(Xi; ωk) (5)

By this, we approximate the probability density function
(pdf) of the compound random variable by its marginal den-
sities facilitating our task significantly. Under the inde-
pendence assumption, we are not supposed to compute the
relative frequencies of all |ai|d possible patterns any more
which is quite a high number in our case: For ai ∈ {0, 1}
and d = 45 items per recipe pattern one encounters 245 >
35 · 1012 possible patterns, corresponding to more than a
million times of the data available. Therefore, it is impos-
sible to compute the high-dimensional pdf anyway. Nev-
ertheless, the assumption of independent items is neither
meaningful nor valid. First, without any dependencies there
is no basis for clustering as all combinations are equally
probable. Second, a correlation analysis revealed that there
are some medium correlations which imply also that depen-
dencies exist. Certainly, if the dependencies are too strong,
we will not be able to separate the pattern set into distinct
clusters anymore as there will be only one cluster or none.
Therefore, we will assume only small or moderate depen-
dencies in the remaining paper and will check this later,
see section 5. Thus, the mutual information based clus-
tering algorithm (MIBAC) can be formulated like this with
O(d n2 log(n)) time and O(d n2) space requirements:

Algorithm MIBAC: Mutual Information BAsed Clustering
Input: An item set pattern database D = {xi|i = 1, ..., n}
Objective: Compute a hierarchy of clusterings {Ck}k=n,...,1 and

return the best one.

1: Create an initial clustering Ck = {Ωi = {xi}|xi ∈ D}.
2: Build a heap h that stores the information distance dI(Ωi, Ωj)

for all cluster pairs. This requires O(d n2) time and space.
3: for k = n to 2 do repeat until only one cluster is left:
4: Retrieve {Ωi, Ωj} from heap h with minimal distance dI .
5: Fuse them to Ω ← Ωi ∪ Ωj .
6: Define the k−1 clusters for the next hierarchy stage by

replacing the fused sets with their fusion:

Ck−1 ← (Ck \ {Ωi, Ωj}) ∪ Ω

7: Remove from heap h all distances dI regarding Ωi or Ωj .
8: For all Ωx ∈ Ck : x �= i,j add the distance dI(Ωx, Ω) to

to the fused set Ω to heap h. Steps 7 and 8 take each
O(d n log(n)) time.

9: Evaluate the quality for each clustering stage k.
10: return the clustering that yields best quality.

The above time and space considerations require calculating
the distance between two clusters (see eq. (3)) in time O(d).
This can be achieved under the independence assumption by
storing d probabilities for each cluster concerning the items’



presence. In order to maintain these probabilities after a fu-
sion the cluster weights have to be stored also. For practical
applications the item number d is bounded by a constant
due to the curse of dimensionality.
For the evaluation of the computed clusterings multiple
measures shall be considered. Beside mutual information
it turns out that classification success statistics are use-
ful to judge the interconnection between cluster assign-
ments and attribute characteristics. This is further sup-
ported by [16] who claim that clusters possessing minimal
entropy H(X|ωk) maximize Symon’s Classification Like-
lihood. The evaluation via classification success statistics
require prior knowledge of the data categories. Therefore,
we assume the computed clusters to correspond to class la-
bels and check how well common classifiers can capture
the classes’ pattern sets. For this evaluation we choose pre-
cision and recall from Information Retrieval [2]. For a set
of patterns D, a given query q with its result set Q on D and
the subset Ω of all relevant patterns within Q the precision
of the query is defined as:

Prec(q, D) =
|Ω|
|Q| (6)

The relation of Ω to all relevant patterns R within D defines
the recall:

Rec(q, D) =
|Ω|
|R| (7)

In order to reflect both precision and recall we use their har-
monic mean that is typically called the F1-Measure:

F1(q, D) =
2 · Prec(q, D) · Rec(q, D)
Prec(q, D) + Rec(q, D)

(8)

5 Results

In this section we will present the results of the mutual
information based clustering approach. Therefore, we start
with a brief presentation of the data set before the charac-
teristics of our clustering procedure are discussed.

5.1 The data set

The used data basis constitutes of site usage records over
a 6 week period in 2005 that subsumes to over 18 mil-
lions user actions for computing statistical user states. Our
first concern has been the extraction of useful attributes, i.e.
items within recipes. Therefore, we focused on the item
distribution. Fig. 2 depicts the item (ingredient) occurrence
frequency. As expected, only few ingredients are included
frequently in recipes (> 100), whereas the majority of the
ingredients is referenced seldom. The dotted line repre-
sents the average item reference count computed out of four
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Figure 2: Frequency of item references by all recipes

neighbors corresponding to a power law distribution [2]:

P (k) =
1
kα

[ ∞∑
i=1

1
iα

]−1

(9)

For a manageable item number one typical feature selection
procedure is the removal of infrequent items. On first sight
a threshold of 4% seems suitable. This selection yields to
47 items. But these are referenced only within 12% of the
recipes which is not much. Therefore, we aimed at broad-
ening our data basis by mapping similar items into the same
category using a self-made thesaurus as well as standard
text pre-processing stages like stemming. Fig. 3 exhibits
a comparison between the number of resulting categories
within recipes and the initial items. As one can see, an av-
erage recipe contains about 10 items (ingredients), but only
about 7 categories which results from a mapping of multiple
ingredients within one recipe to the same category.
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Further, recipes cannot be characterized uniquely any more
by their items as about 28% of them correspond to dupli-
cates which reduces the initial data basis of 34,109 recipes
to 24,481 unique pattern representations after the introduc-
tion of 45 ingredient categories.
In order to test the independence assumption for the mutual
information based approach we perform a correlation analy-
sis. It reveals relatively week correlation coefficients whose
absolute values are on average 0.095. The only exception is
a moderate correlation of 0.515 among the presence of flour
and eggs. Later this leads to a baking cluster. Altogether,
these results support the independence assumption.

5.2 Determining the number of categori-
cal clusters

For categorical data, the number of clusters is difficult to
obtain. As stated in section 3 we tried several traditional ap-
proaches like partitioning, density-based as well as hierar-
chical clustering methods, but all have failed. It seems that
it is not possible to find a suitable method for our categor-
ical data from the classical toolboxes. Therefore, we used
the mutual information based approach described in section
4 where clustering is directed not by a geometrical distance
measure. Instead, it is guided by the information content
that patterns possess for each cluster. Thus, the characteris-
tics of this measure might be a useful indicator.

 10

 12

 14

 16

 18

 20

 22

 24

 0  20  40  60  80  100

co
nd

iti
on

al
 e

nt
ro

py
 H

(X
|

k)

number of clusters k

m
ut

ua
l i

nf
or

m
at

io
n 

I(
X

;
k)

15

13

11

9

7

5

3

1

H(X| k)
I(X; k)

Figure 4: Conditional entropy and the mutual information of the
user patterns as function of the cluster number

The conditional entropy H(X|ωk) is the entropy of a ran-
dom variable X , describing all possible attribute instances
within cluster k. It decreases monotonically with increasing
cluster numbers as is exhibited in Fig. 4 by the dotted line.
The mutual information I(X; ωk) between the cluster sub-
set Ωk and the attributes is also highlighted there. By defi-
nition it is inverse to the conditional entropy. Unfortunately,
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no significant steps or irregularities offering the possibility
to decide a proper cluster number can be found. Also the
purity measure called Category Utility Function CU(Ck)
[1] in Fig. 5. provides no deeper insights. Hence, we
magnify the decline of conditional entropy defined as the
decrease ΔH(X|ωk) = H(X|ωk) − H(X|ωk+1). Fig. 5
shows this for the interesting part of the graph, the first 20
clusters. Although, one can see that the decrease ΔH is
monotonous it becomes evident that ΔH is not constant for
all merging steps. This fact is further underlined by plot-
ting the change in the decrease, defined by Δ2H(X|ωk) =
ΔH(X|ωk) − H(X|ωk+1) which is depicted in Fig. 6.
Here, striking changes for the conditional entropy decrease
can be seen for the transition from two clusters to one. The
decrease is also remarkable for the transition from four clus-
ters to three and to a smaller extend also for the merger lead-
ing from six to four clusters. There are no further significant
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changes to be observed. The first transition from two clus-
ters to one shall be treated with special care as it is expected
to induce a high change for all data that exhibit a suitable
cluster structure. In conclusion, we shall split the data into
either four or six clusters, but no more. To verify these re-
sults we perform two hypothesis tests resulting in signifi-
cance. The first test rules out the chance that the reported
measures are obtained randomly for our data set whereas
the second test’s null hypothesis is the assumption that the
data possesses no clustering structure at all.

5.3 Separability of the categorical clusters

Another important criterion for a good clustering is the
separability of its clusters. Therefore we propose a three-
stage process: First, the data shall be clustered by the algo-
rithm to be evaluated. Second, we switch to a classification
perspective where cluster assignments are treated as class
labels. Therefore, a data subset is taken to train a classi-
fier. Finally, the remaining data is used as a validation set.
The classification results retrieved from all validation pat-
terns are then compared with their cluster origins in order
to assess the error probability, our indicator for separability.
Further, we incorporate 10-fold cross-validation to increase
significance.

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 F1

Ω1 4582 14 426 1251 336 66 0.717
Ω2 1 5674 72 85 14 359 0.918
Ω3 391 80 2993 690 174 28 0.723
Ω4 754 65 318 5421 577 121 0.681
Ω5 339 10 86 890 2801 74 0.686
Ω6 35 314 32 334 69 4633 0.866

Table 2: The data base statistic results for 6 clusters

According to this procedure suitable cluster numbers are
supposed to lead to superior classification results for mul-
tiple classifiers. If no satisfying results can be obtained at
all, this is evidence that the data exhibits no cluster struc-
ture. In order to compare our mutual information based
clusterings consisting of four and six clusters, we choose
three classifiers: the naı̈ve Bayes learner [17], the decision
tree algorithms C4.5 [17] and the rule learner RIPPER [6].
Altogether, these algorithms obtain all comparable classifi-
cation errors although the RIPPER algorithm exhibits best
performance with an error probability of about only 16%.
Further, as only 120 rules are required for these results the
cluster patterns of the 24,481 distinguishable objects seem
to possess a compact representation. The obtained kappa
coefficients [11] range from 0.7 to 0.8 corresponding to a
good compliance between the cluster structure and the clas-
sification labels. Table 2 depicts the confusion matrix that
is computed from the RIPPER learner’s classification on
the partitioning into six clusters. Within each row the clas-
sifier’s pattern assignments are listed. The bold numbers

Ω1 Ω2 Ω3 Ω4 F1

Ω1 8847 104 1968 112 0.814
Ω2 86 5558 135 426 0.905
Ω3 1718 73 9386 279 0.805
Ω4 58 339 377 4643 0.854

Table 3: The data base statistic results for 4 clusters

in the diagonal correspond to correctly classified patterns
whereas all off-diagonal entries correspond to misclassifi-
cations. Although, most patterns are classified correctly one
can notice several error entries beside the main diagonal ex-
ceeding the 10% level of activity. The last column within
the table 1 depicts the values of the resulting F1-Measure
averaging the classifications precision and recall as defined
in eq. (8). An overview of the results for the partitioning
into four clusters is depicted in table 3. Although, they seem
quite similar to those seen before, the F1-Measure indicates
higher average precision and recall values for four clusters.
The results of the corresponding user weighted clusterings
give a similar impression.

5.4 Stability of the categorical clusters

If the computed clusters do not depend on the utilized
clustering method and parameter set it is quite probable that
their cluster structure is stable, i.e. it is independent of
user fluctuations. Further, the larger the data basis becomes
the more importance is gained by clusterings obtained from
randomly selected samples. Of course, these partitionings
shall be stable for different subsampled pattern sets. Hence,
stability is an interesting as well as important topic.
If it is possible to detect the same cluster number obtained
from all data already by subsampling, we call this clustering
”stable”.
For the statistical as well as the user weighted data base we

choose a subsampling set size of 5000 item patterns. Then,
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we repeated our clustering procedure 50 times for both data
bases. For the user weighted data the 50 resulting graphs
for the change in conditional entropy’s decrease (see Fig.
6) are depicted in Fig. 7(b). The statistical data results are
omitted as they reveal nearly identical proportions.
An automated prediction of a suitable cluster number k de-
pends on the detection of significant changes in entropy de-
crease. Therefore, we introduce the concept of a significant
maximum which requires a function value to exceed α times
its neighbors’ values

significant maximum ⇔ f(k) ≥ αf(k − 1) ∧
f(k) ≥ αf(k + 1) (10)

For our data, we obtained good results for α = 1.08 al-
though the prediction of each cluster number k for each
subsample might include multiple guesses. An overview
of the prediction frequencies for each cluster number k ∈
{2, ..., 10} is shown in Fig. 7(a). We notice that as expected
all 50 sets have a significant maximum for the change in
entropy decrease at k = 2 clusters. Predictions for larger
cluster numbers are less frequent. The only further peaks
can be found for four and six clusters. Consequently, the
predictions of two, four as well as six clusters are the most
stable and most probable ones. Additionally, Fig. 7(b) de-
picts these results also by a superposition of the changes in
entropy decrease for all 50 subsamples.
In a second step we further investigated how the object as-
signments for the subsample clusters comply with the clus-
tering obtained from the complete data base. Here, the
four cluster structure exhibits the best results although one
subsample cluster’s composition seems rather ambiguous.
Thus, the data seems to possess a significant cluster struc-
ture without being too arbitrary.

5.5 Characteristics of the categorical clus-
ters

A characterization of the individual recipe pattern clus-
ters can be achieved via statistics for frequent occurrences
of items (ingredients) or item combinations. E.g. within the
four cluster structure one partition could be identified as a
baking cluster as the combination of flour, eggs, butter and
milk is usual for its recipes. However, the individual items’
information content is very different.
One way to show this is to rank each item by its contribu-
tion to the mutual information of a pattern’s cluster assign-
ment and its presence within the pattern. Thus, we can com-
pute for each ingredient the importance of its affiliation to a
recipe for the purpose of assigning this recipe’s pattern to a
cluster. This kind of ranking is only valid for one item. But
if the first one is selected, a ranking for the remaining items
can be computed under the condition that we add a second
item to a list possessing highest mutual information where
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Figure 8: The solid line shows the increase in mutual information
when adding a new item. The dotted line shows the
decreases of the contribution for each additional item

the first is already fixed. After choosing the second item,
we might select, under the condition of two fixed items, the
third one and so on. This greedy procedure, known as for-
ward feature selection, computes mutual information for a
fixed clustering as a function of the item (attribute) number
l used for clustering I(X l; ωk). Fig. 8 depicts this function
for the case of four clusters. Certainly, the contribution of
each additional item decreases with the number of already
selected items. This is highlighted in Fig. 8 by the dotted
line; the corresponding units can be found at the figure’s
right hand side. In contrast to the sum of all mutual infor-
mation contributions, we notice that the first five items have
most influence on mutual information.

6 Discussion

For all kinds of customer-oriented business intelligence
approaches user profiles are an important topic to be con-
sidered. This contribution outlines how web based user
profiling might be established upon clustering of categor-
ical user data. It turns out that classical, metrical clustering
algorithms are inappropriate because of the special nature
of categorical item sets. Therefore, we suggest a new clus-
tering approach based on probabilities, i.e. the mutual in-
formation between item patterns and the cluster candidates
they are affiliated to.
The utilization of information as clustering criterion is not
new. E.g. the COOLCAT algorithm [3] greedily fuses clus-
ters based only on conditional entropy. This yields to results
comparable to those of Hamming Distance based clustering
which is inappropriate for categorical item sets. Since the
deviations at the beginning of the sequential clustering de-
termine the final results, we did not use this approach. An-
other algorithm based on an information motivated criterion



is LIMBO (scaLable InforMation Bottleneck) [1]. It incor-
porates mutual information to calculate information loss for
each cluster fusion. For all patterns, the probability is com-
puted separately using the number of present items and as-
suming that they are equally probable. For clusters possess-
ing only one pattern this procedure results in the inconsis-
tent case of non-zero entropies. Thus, we did not continue
this approach either. Finally, after performing this work,
we became aware of another approach quite similar to ours.
The HierEntro algorithm for classical category information
[5] uses the entropy of each item xi and normalizes it via a
division by log2(mi) where mi describes the number of all
possible values for xi. Thus, the influence of items possess-
ing many possible values is reduced compared to those with
only few ones. As clustering criterion this approach consid-
ers the increase of average conditional entropy claiming that
small entropies indicate a homogeneous clustering.
In conclusion, there are many approaches for building user
profiles. But, for categorical user patterns the choice of
useful methods diminishes heavily. For the special case
of patterns consisting of binary item sets, metrical meth-
ods based on Euclidean or Hamming distance shall not be
used. Instead, the mutual information guided approach ob-
tains meaningful clusters. Further, it allows not only to
identify user defined similarities and preferences, but also
to differentiate among several mainstreams by indicate a fa-
vorable cluster number. Now, it is essential to verify the
value of these clusterings for real-life profiling applications.
The first results are promising. We already succeeded to
predict future user actions based on assignments to the clus-
ter whose contents have been visited most frequently quite
well. But these results constitute only a starting point and
require further sophistication. Here, one possibility might
be the incorporation of a model for cluster transitions. Fi-
nally, a wider data basis is required to obtain significant
statement concerning the clusters value for user profiles.
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