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Abstract

Antimatter particles such as positrons and antiprotons abound in the cosmos. Much less common
are light antinuclei, composed of antiprotons and antineutrons, which can be produced in our galaxy
via high-energy cosmic-ray collisions with the interstellar medium or could also originate from the
annihilation of the still undiscovered dark-matter particles. On Earth, the only way to produce and
study antinuclei with high precision is to create them at high-energy particle accelerators like the
Large Hadron Collider (LHC). Though the properties of elementary antiparticles have been studied in
detail, knowledge of the interaction of light antinuclei with matter is rather limited. This work focuses
on the determination of the disappearance probability of 3He when it encounters matter particles and
annihilates or disintegrates. The material of the ALICE detector at the LHC serves as a target to
extract the inelastic cross section for 3He in the momentum range of 1.17 ≤ p < 10 GeV/c. This
inelastic cross section is measured for the first time and is used as an essential input to calculations
of the transparency of our galaxy to the propagation of 3He stemming from dark-matter decays and
cosmic-ray interactions within the interstellar medium. A transparency of about 50% is estimated
using the GALPROP program for a specific dark-matter profile and a standard set of propagation
parameters. For cosmic-ray sources, the obtained transparency with the same propagation scheme
varies with increasing 3He momentum from 25% to 90%. The absolute uncertainties associated to
the 3He inelastic cross section measurements are of the order of 10%–15%. The reported results
indicate that 3He nuclei can travel long distances in the galaxy, and can be used to study cosmic-ray
interactions and dark-matter decays.

*See Appendix A for the list of collaboration members
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1 Introduction

There are no natural forms of antinuclei on Earth, but we know they exist because of fundamental sym-
metries in particle physics and their observation in interactions of high-energy cosmic rays and of ac-
celerated beams. Light antinuclei, objects composed of antiprotons (p) and antineutrons (n), such as d
(pn), 3He (ppn) and 4He (ppnn), have been produced and studied at various accelerator facilities [1–17],
including precision measurements of the mass difference between nuclei and antinuclei [18, 19]. The
interest in the properties of such objects is manifold. From the nuclear physics perspective, the produc-
tion mechanism and interactions of antinuclei can elucidate the detailed features of the strong interaction
that binds nucleons into nuclei. From the astrophysical standpoint, natural sources of antinuclei may
include annihilation of dark-matter particles such as weakly interacting massive particles (WIMPs) [20]
and other exotic sources such as antistars [21, 22]. Dark matter (DM) constitutes about 27% of the total
energy density budget within our universe [23] and is believed to accumulate throughout the galaxy due
to its gravitational interaction with ordinary matter [24]. This is demonstrated by the measurement of the
fine structure of the cosmic microwave background [25, 26], gravitational lensing of galaxy clusters [24]
and the rotational curves of some galaxies [21]. Another possible source of antinuclei in our universe are
high-energy cosmic-ray collisions with atoms in the interstellar medium.

The observation of antinuclei such as 3He is one of the most promising signatures of dark-matter an-
nihilation [20, 27–30]. The kinetic-energy distribution of antinuclei produced in dark-matter annihila-
tion peaks at low kinetic energies (Ekin per nucleon . 1 GeV/A) for most assumptions of dark-matter
mass [20]. In contrast, for antinuclei originating from cosmic-ray interactions the spectrum peaks at
much larger Ekin per nucleon ' 10 GeV/A. Thus, the low-energy region is almost free of background for
dark-matter searches.

To calculate the expected flux of antinuclei near Earth, one needs to know precisely the antinucleus
formation and annihilation probabilities in the galaxy. The formation probability of light antinuclei
(up to mass number A = 4) is currently studied at accelerators. By now, several models successfully
describe light-antinuclei production yields [31–35]. Such models are based on either the statistical-
hadronization [12, 36, 37] or coalescence approach [38, 39].

Another crucial aspect in the search of antinuclei in our galaxy is the knowledge of their disappearance
probability when they encounter matter and annihilate or disintegrate. Antinuclei generated in our galaxy
may travel thousands of light years [40] before reaching the Earth and being detected. The journey
of antinuclei through the galaxy can be modelled by propagation codes, which incorporate the initial
distribution of antinucleus sources, the interstellar gas distribution in the galaxy, the elastic scatterings,
and the inelastic hadronic interactions with the interstellar medium. The antinucleus flux in the Solar
System is further modulated by solar magnetic fields. During the entire journey, antinuclei can encounter
matter and disappear. The disappearance probability is quantified through the inelastic cross section. It
is normally studied employing particle beams of interest impinging on targets of known composition
and thickness, but antinuclei beams are very challenging to obtain. Today, the LHC is the best facility
to study nuclear antimatter since its high energies allow one to produce on average as many nuclei as
antinuclei in proton–proton (pp) and lead–lead (Pb–Pb) collisions [12, 41]. The detector material can
serve as a target and the disappearance probability can be determined experimentally [42].

This work presents the first measurement of the 3He inelastic cross section σinel(
3He), obtained using

data from the ALICE experiment. These results are used in model calculations to assess the effect of the
disappearance of antinuclei during their propagation through our galaxy. The associated uncertainties are
estimated for the first time based on experimental data. The transparency of our galaxy to the propagation
of 3He nuclei stemming from a specific dark-matter source and from interactions of high-energy cosmic
rays with the interstellar medium is determined, providing one of the necessary constraints for the study
of antinuclei in space.
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2 Determination of the inelastic cross section

The measurement of the inelastic cross sections under controlled conditions requires a beam with a well-
defined momentum and a target whose material and its spatial distribution are well-known. Since no 3He
beams are available, we exploit the antimatter production at the LHC and the excellent identification and
momentum determination for 3He in ALICE as an equivalent setup. In our study, the ALICE detector
itself serves as a target for the inelastic processes. A detailed description of the detector and its perfor-
mance is available in Refs. [43, 44]. 3He and 3He nuclei, serving as probes herein, are produced in pp
and Pb–Pb collisions. At LHC high energies, 3He and 3He are produced in same amounts on average.
The exact primordial ratio can be derived from precise antiproton-to-proton measurements [41, 45] and
in pp collisions at the centre-of-mass energy of

√
s = 13 TeV corresponds to 0.994± 0.045. The AL-

ICE subdetectors that are considered as targets are the Inner Tracking System (ITS), the Time Projection
Chamber (TPC) and the Transition Radiation Detector (TRD). A schematic representation of the ALICE
detector is shown in panel a) of Fig. 1. The material composition of the three subdetectors is diverse.
The detailed knowledge of the detector geometry and composition [46] allows one to determine the ef-
fective target material. σinel(

3He) is estimated for three effective targets. The first one is constituted by
the average material of the ITS+TPC systems (with averaged atomic mass and charge numbers of 〈A〉=
17.4 and 〈Z〉= 8.5), the second one corresponds to the ITS+TPC+TRD systems (〈A〉= 31.8 and 〈Z〉=
14.8) [42], and the third one corresponds to the TRD system only (〈A〉 = 34.7 and 〈Z〉 = 16.1). The
values are obtained by weighting the contribution from different materials with their density times length
crossed by particles.

Figure 1 shows a schematic representation of the analysis steps necessary to extract σinel(
3He). Panel a)

of Fig. 1 shows 3He and 3He tracks crossing the ALICE detector, with the annihilation occurring for the
3He. The momentum p is measured via the determination of the track trajectory and curvature radius in
the ALICE magnetic field (B = 0.5 T). 3He and 3He are first identified when they reach the TPC by the
measurement of their specific energy loss (dE/dx) in the detector gas. The excellent separation power
of this measurement is shown in panel b) of Fig. 1, where the dE/dx is presented as a function of the
particle rigidity (p/z), where z denotes the charge of the particle crossing the TPC in units of the electron
charge. The red dots represent all nuclei that are reconstructed in the TPC, while the green dots show the
nuclei that survive up to the time-of-flight (TOF) detector where they are matched to a TOF hit. A more
detailed description of the employed particle identification methods can be found in Methods.

We use two methods to evaluate σinel(
3He). The first method, applied to pp data sample at

√
s = 13 TeV,

relies on the comparison of the measured 3He and 3He yields (antibaryon-to-baryon method). In this
case, the experimental observable is constituted by the reconstructed 3He/3He ratio analogously to the
method used in Ref. [42] for (anti)deuterons. The inelastic process that takes place in the ITS, TPC or
TRD material manifests itself by the fact that less 3He than 3He candidates are detected, as depicted in
panel c) of Fig. 1. The full circular blue symbols in this panel show the momentum-dependent 3He/3He
ratio measured in pp collisions as a function of the particle rigidity reconstructed at the primary vertex
(pprimary/|z|). The discontinuity of the 3He/3He ratio observed at pprimary/|z| = 1 GeV/c is due to the
additional requirement of a hit in the TOF detector for momenta above this value. This ratio can also be
evaluated by means of a full-scale Monte Carlo simulation of antinuclei and nuclei traversing the ALICE
detector.

The measured observables are compared in each momentum interval with simulations where σinel(
3He)

is varied to obtain the inelastic cross sections. We performed several full-scale simulations with vari-
ations of σinel(

3He) with respect to the standard parametrization implemented in the GEANT4 pack-
age [47, 48] as shown in panel c) of Fig. 1. Panel e) presents the simulated ratio as a function of
σinel(

3He) parametrized using the Lambert–Beer law [49]. For each momentum interval, the uncer-
tainties of σinel(

3He) are obtained by requiring an agreement at ±1σ with the measured observables,
where σ represents the total experimental uncertainty (statistical and systematic uncertainties added in
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Fig. 1: Schematic representation of the inelastic processes within the ALICE detector and steps followed for
the extraction of σinel(

3He). (a) Representation of the ALICE detectors at midrapidity (in the plane perpendicular
to the beam axis) with a 3He undergoing annihilation in the TPC gas (in red) and a 3He that does not undergo an in-
elastic reaction and reaches the TOF detector (in green). (b) Identification of (anti)nuclei by means of their specific
energy loss dE/dx and momentum measurement in the TPC. The red points show all (anti)3He nuclei reconstructed
with the TPC detector, green points correspond to (anti)3He with TOF information; other (anti)particles are shown
in black. (c) Experimental results for the raw ratio of 3He to 3He in pp collisions at

√
s = 13 TeV; the black and red

lines show the results from the Monte Carlo simulations with varied σinel(
3He). (d) Experimental ratio of 3He with

TOF information over all reconstructed 3He in Pb–Pb collisions at
√

sNN = 5.02 TeV. The black and red lines show
the results from the Monte Carlo simulations with varied σinel(

3He). (e) The raw ratio of 3He to 3He in a particular
rigidity interval as a function of σinel(

3He) for 〈A〉 = 17.4. The fit shows the dependence of the observable on
σinel(

3He) according to the Lambert–Beer formula. The horizontal dashed blue lines show the central value and
1σ uncertainties for the measured observable and their intersection with the Lambert–Beer function determines
σinel(

3He) limits (orange lines). (f) Extraction of σinel(
3He) for 〈A〉= 34.7 analogous to the panel e.
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quadrature).

The second method, employed in the Pb–Pb data analysis at a centre-of-mass energy per nucleon pair√
sNN = 5.02 TeV, measures the disappearance of 3He nuclei in the TRD detector only (TOF-to-TPC

method). The ratio of 3He with TOF information to all 3He candidates is considered as an experimental
observable. Panel d) of Fig. 1 shows the momentum-dependent ratio of 3He with a reconstructed TOF
hit to all 3He candidates extracted from Pb–Pb collisions. As with the first method, this observable is
also evaluated by means of a full-scale Monte Carlo GEANT4 simulation assuming different σinel(

3He).
Panel f) shows the extraction of σinel(

3He) and its related uncertainties for one rigidity interval following
the same procedure as the one used in the first method.
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Fig. 2: Results for σinel(
3He) obtained from pp collisions at

√
s = 13 TeV (left) and from Pb–Pb collisions at

√
sNN = 5.02 TeV (right). The dashed curves represent the GEANT4 cross sections corresponding to the effective

material probed by the different analyses.

The final results are shown in Fig. 2. The left panel shows the σinel(
3He) results from the pp data analysis

with the yellow boxes representing the ±1σ uncertainty intervals. In the right panel, the histogram with
the magenta error boxes shows σinel(

3He) extracted from the Pb–Pb data analysis. The results are shown
as a function of the momentum p at which the inelastic interaction occurs. Due to continuous energy loss
inside the detector material, this momentum is lower than pprimary reconstructed at the primary vertex
(Methods). The copious background below p = 1.5 GeV/c prevents from applying the antibaryon-to-
baryon ratio method in Pb–Pb collisions (Methods). Additionally, the large energy loss and bending
within the magnetic field exclude the employment of the TOF-to-TPC method, since low-momentum 3He
tracks don’t reach the TOF detector. On the other hand, for momentum values larger than p = 1.5 GeV/c,
the yield of produced 3He is substantially larger in Pb–Pb collisions, thus leading to higher statistical
precision for this colliding system. The evaluation of systematic uncertainties is described in Methods.
The two independent analysis methods therefore provide access to slightly different momentum ranges
and to different 〈A〉 values while delivering consistent results in the common momentum region. This is
the first experimental measurement of σinel(

3He).

The cross section used by GEANT4 for the average mass number 〈A〉 of the material is shown by the
dashed lines in Fig. 2. It is obtained from a Glauber model parametrization [48] of the collisions of
3He with target nuclei in which the antinucleon–nucleon cross section value is taken from measured pp
collisions [50]. Agreement with the experimental σinel(

3He) is observed within two standard deviations
in the studied momentum range.

3 Propagation of antinuclei in the interstellar medium

To estimate the transparency of our galaxy to 3He nuclei, we consider two examples of 3He production
sources. Results of Ref. [51] are used as input for the production cross section of 3He from cosmic-
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ray collisions with interstellar medium. As a dark-matter source of 3He we consider WIMP candidates
with a mass of 100 GeV/c2 decaying into W+W− pairs followed by hadronization into (anti)nuclei [27].
In both cases, the yields of produced 3He are determined employing the coalescence model that builds
antinuclei from antineutrons and antiprotons that are close-by in phase space [38, 39, 52]. More details
about the cosmic-ray and dark-matter sources are discussed in Methods. Additional 3He sources such as
supernovae remnants [53], antistars [21, 22] and primordial black holes [54–56] have not been included
in this work.

We consider the dark matter density distribution in our galaxy according to the Navarro–Frenk–White
profile [57] as illustrated in the upper panel of Fig. 3 where also a schematic representation of the 3He
production from cosmic-ray interaction with the interstellar gas or dark-matter annihilations is shown.

…

p + p → 3He + X
AMS-02

Voyager

3He + p → Y

χ + χ → W+W− → 3He + X GAPS

Sun

p+4He → 3He + X

, 3He p
= DM

ρ D
M

(G
eV

cm
−3

)

Fig. 3: (Upper Panel) Dark-matter distribution in our galaxy as a function of the distance R from the galactic centre
according to the Navarro–Frenk–White profile [57]. (Lower panel) Graphical illustration of the 3He production
from cosmic-ray interactions with the interstellar gas or dark-matter (χ) annihilations. The yellow halo represents
the heliosphere, Earth, Sun and the positions of the Voyager 1, AMS-02 and GAPS experiments are depicted as
well.

The propagation of charged particles within galaxies is driven by magnetic fields. The propagation is
commonly described by a transport equation which includes the following terms: i) a source function, ii)
diffusion, iii) convection, iv) momentum variations due to Coulomb scattering, diffusion and ionization
processes, v) fragmentation, decays and inelastic interactions. This equation, discussed in more details
in Methods, can be solved numerically employing several propagation models [58–61]. In this work the
publicly available GALPROP code 1 [61] is employed. In the context of this calculation, our galaxy is
approximated by a cylindrical disk filled with an interstellar gas composed of hydrogen (≈ 90%) and 4He
(≈ 10%) with an average hydrogen number density of∼ 1 atom/cm3 [62]. The gas distribution within our
galaxy is constrained by several astronomical spectroscopy measurements [63–66]. GALPROP provides
the propagation of particles up to the boundaries of the Solar System. To estimate the particle flux
inside the Solar System, the effect of the solar magnetic field must be taken into account. This can be
achieved by employing the Force Field approximation or dedicated models like HelMod [67, 68]. The
whole propagation chain is benchmarked using several species of cosmic rays, including protons and
light nuclei (up to Z = 28) [40]. The cosmic-ray injection spectra and the propagation parameters are

1We use GALPROP version 56 available at https://galprop.stanford.edu.
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tuned to match the measurements of protons and light nuclei both outside [69] and within the Solar
System [70–72].

After their production, the 3He nuclei need to travel a distance of several kpc to reach the Earth [40, 57].
During this passage, they might encounter protons or 4He nuclei in the interstellar gas and interact in-
elastically. To model the cross section of this process, we scale the momentum-dependent GEANT4
parametrization of the 3He–p inelastic cross section with the correction factors obtained from our mea-
surements. For the low-momentum range (1.17 ≤ p < 1.5 GeV/c) we consider the results from pp
collisions and for the high-momentum range (1.5 ≤ p < 10 GeV/c) the results from Pb–Pb collisions.
The correction factors from the ALICE measurements and their uncertainties are parametrized with a
continuous function employing a combination of polynomial and exponential functions. The additional
uncertainty due to scaling with A is estimated to be lower than 8% [48] (Methods). For the extrapolation
to momenta above the measured momentum range, we consider the correction factor corresponding to
the last measured momentum interval (Fig. 2 right). The resulting 3He-p inelastic cross section as a
function of the 3He kinetic energy per nucleon is shown in Fig. 5 in Methods together with the GEANT4
parametrization and the model employed in Ref. [28]. The same procedure is applied to describe the
3He–4He inelastic processes. These scaled inelastic cross sections have been implemented for the first
time in GALPROP.
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Fig. 4: Expected 3He flux near Earth before (left panel) and after (right panel) solar modulation. The latter is
obtained using Force Field with modulation potential φ = 400 MV. Upper panels show the fluxes for dark-matter
signal χ (in red) and cosmic-ray background (in blue) antihelium nuclei for various cases of inelastic cross section
used in the calculations. Bottom panels show the transparency of our galaxy to the propagation of 3He outside
(left) and inside (right) the Solar System. Shaded areas on the top right panel show the expected sensitivity of the
GAPS [73] and AMS-02 [28] experiments. The top panels also shows the fluxes obtained with σinel(

3He) set to
zero. Only the uncertainties relative to the measured σinel(

3He) are shown.

The expected 3He flux near Earth after all propagation steps (Methods) with and without the effect of
solar modulations is shown in the right and left panels of Fig. 4, respectively. The solar modulation
is implemented using the Force Field method [67]. The effect of inelastic interactions is demonstrated
showing the full propagation chain once with σinel(

3He) set to zero and once with the inelastic cross sec-
tion extracted from the ALICE measurement. Only the uncertainties relative to the measured σinel(

3He)
are propagated and presented in Fig. 4. It also shows the expected flux computed considering an alter-
native parametrization for σinel(

3He) proposed in Ref. [28] (Methods). The resulting flux obtained with
this parametrization is very similar to the results using σinel(

3He) from GEANT4. The inelastic collisions
of 3He with the interstellar gas lead to a significant reduction of the expected flux for both the signal

7



First measurement of 3He absorption in matter ALICE Collaboration

candidates from dark matter and the background from cosmic-ray collisions.

The transparency of our galaxy to the 3He passage is defined by the ratio of the flux obtained with and
without inelastic processes in GALPROP. The transparency values as a function of the kinetic energy ob-
tained with σinel(

3He) from the GEANT4 parametrization and from the ALICE measurements are shown
in the lower panels of Fig. 4 by the coloured lines and bands, respectively. The transparency profile at
low kinetic energies (≤ 300 MeV) outside the Solar System (bottom left panel of Fig. 4) is washed out
by the solar modulation that shifts down the more abundant high-momentum particles to lower energies
(bottom right panel in Fig. 4). A transparency of the galaxy of about 50% is estimated for 3He from
the considered dark-matter source [27] and of about 25% for low-energy 3He from cosmic-ray interac-
tions [51]. The latter increases further up to full transparency at higher energies. The different behaviour
in the two cases is caused both by the different underlying spectral shape and by the different distribution
of production points of the two sources, underlining the importance of full propagation studies. The
employment of an alternative set of propagation parameters described in Ref. [74] results in 40− 60%
lower transparency at low Ekin than using the propagation parameters from Ref. [40] (Methods).

The calculated 3He transparency is found to be consistent, within its newly established uncertainties,
with the GEANT4 parametrization. It must be clearly noted that previously it was not possible to quan-
tify the uncertainty of the parametrizations employed in GEANT4 or proposed in Ref. [28] due to the
lack of experimental data. In order to quantify the improvement originating from our study, we therefore
simply compare the full difference between no inelastic interaction and the alternative parametrizations
(∼ 50% for the signal from dark matter and up to 75% for background) to our newly established uncer-
tainties of about 10%–15% after the solar modulation. Note that the propagation example provided in
this work does not cover the full range of uncertainties related to 3He flux modelling (see the discussion
in Methods), rather it delivers a clear road map for future studies. Since a large separation between signal
and background is retained for low kinetic energies, our results clearly underline that the search for 3He
in space remains a very promising channel for the discovery of dark matter.

4 Summary

Studying antinuclei in laboratories on Earth and searching them in space belong to the most interest-
ing research topics in modern nuclear and astroparticle physics. For the first observation of antinuclei
in cosmic rays from dark matter, several ingredients have to be under precise control: their production
mechanism, their interaction probability with the interstellar gas, and their detection in satellite or balloon
experiments. Thanks to the unique capabilities of the ALICE experiment, we were able to quantify the
inelastic cross section of 3He based on experimental data. Our results confirm previous theoretical esti-
mates and provide experimental uncertainties for σinel(

3He) and the resulting transparency of our galaxy.
A transparency of the galaxy of about 50% is estimated for the employed dark-matter source [27] and
within 25%–90% for 3He produced in cosmic-ray interactions [51] using the GALPROP code with prop-
agation parameters from Ref. [40]. The associated uncertainties stemming only from the measurement
presented in this paper are about 10%–15%. We have thus verified that the uncertainty related to nuclear
absorption is subleading with respect to other possible contributions in the cosmic-ray and dark-matter
modelling, in particular production mechanism and propagation description [27–29, 51]. The newly
measured σinel(

3He) and the developed methodology can be employed to carry out the propagation of
3He using any dark-matter or cosmic-ray interaction modelling as a source. We found that 3He nuclei
can travel distances of several kpc in our galaxy without being absorbed and thus provide an excellent
probe for new physics that awaits discovery.
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5 Methods

5.1 Event selection

The inelastic pp and Pb–Pb events were recorded with the ALICE apparatus at collision energies of√
s = 13 TeV and

√
sNN = 5.02 TeV, respectively. Events are triggered by the V0 detector comprising

two plastic scintillator arrays placed on both sides of the interaction point and covering the pseudorapidity
intervals of 2.8< η < 5.1 and−3.7< η <−1.7. The pseudorapidity is defined as η =− ln[tan(Θ

2 )] with
Θ being the polar angle of the particle with respect to the beam axis. The trigger condition is defined
by the coincidence of signals in both arrays of the V0 detector. Together with two innermost layers of
the ITS detector, the V0 is also used to reject background events like beam–gas interactions or collisions
with mechanical structures of the beam line. For the analysis of pp data, a high-multiplicity trigger
is employed to select only events with the total signal amplitude measured in the V0 detector above
a certain threshold, which leads to a selection of about 0.17% of the inelastic pp collisions with the
highest V0 signal. In these events the number of charged particles produced at midrapidity |η | < 0.5
is about 6 times higher than 〈dNch/dy〉 = 5.31± 0.18 measured in inelastic pp collision at

√
s = 13

TeV [75]. This facilitates the analysis of rarely produced (anti)3He nuclei. As for Pb–Pb experimental
data, 10% of all inelastic events with the highest signal amplitude in the V0 detector are considered for
the analysis. In these events the average charged-particle multiplicity at midrapidity |η | < 0.5 amounts
to 〈dNch/dy〉= 1764±50 [76]. In total 147.9×106 Pb–Pb and 109 pp events were analysed.

5.2 Particle tracking and identification

Trajectories of charged particles are reconstructed in the ALICE central barrel from their hits in the
Inner Tracking System (ITS) and Time Projection Chamber (TPC). The detectors are located inside
a solenoidal magnetic field (0.5 T) bending the trajectories of charged particles. The curvature and
direction of the charged-particle trajectories in the magnetic field is used to reconstruct their momentum.
The detectors provide full azimuthal coverage in the pseudorapidity interval |η | < 0.9. This η range
corresponds to the region within ±42 degrees of the transverse plane that is perpendicular to the beam
axis. Typical resolution of the transverse momentum reconstructed at the primary vertex (pT,primary) for
protons, pions and kaons varies from about 2% for tracks with pT,primary = 10 GeV/c to below 1% for
pT,primary ≤ 1 GeV/c.

Specific energy loss in the TPC gas is used to identify charged particles. Due to their electric charge
= 2, high mass and the quadratic dependence of the specific energy loss on the particle charge, 3He and
3He nuclei have larger energy loss than most of other (anti)particles produced in the collision (like pions,
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kaons, protons and deuterons) and can be clearly identified in the TPC. The selected 3He candidates
include substantial amount of background from secondary nuclei which originate from spallation reac-
tions in the detector material. This contribution is estimated via a fit to the distribution of the measured
distance of closest approach (DCA) between track candidates and the primary collision vertex using tem-
plates from Monte Carlo simulations. Since primary particles point back to the primary vertex, they are
characterized by a distinct peak structure at zero DCA, whereas secondary particles correspond to a flat
DCA distribution and their contribution can therefore be separated. More details on this procedure can be
found in Ref. [41, 52]. For 3He candidates in pp collisions at

√
s = 13 TeV this contribution amounts to

∼ 75% in the lowest analysed momentum interval 0.65≤ pprimary/z < 0.8 GeV/c and is negligible in the
momentum range above pprimary/z = 1.5 GeV/c. For 3He nuclei there is no contribution from spallation
processes. In total there are 16801±130 primary 3He reconstructed in the TPC in the Pb–Pb data sample.
In the sample of pp collisions, the total number of reconstructed primary candidates amounts to 773±46
3He and 652±30 3He. The uncertainties for these values result from the fit to the TPC signal which is
used to reject (small) background from (anti)triton nuclei misidentified as (anti)3He at low momenta.

5.3 Corrections and evaluation of the systematic uncertainties

Due to continuous energy-loss effects in the detector material, inelastic interaction of 3He with the de-
tector material happens at a momentum p, which is lower than the momentum pprimary reconstructed at
the primary collision vertex. The corresponding effect is taken into account utilising Monte Carlo (MC)
simulations in which one has precise information about both momenta for each (anti)particle. In the
analysis of pp collisions, the average values of p/pprimary distributions in each analysed pprimary inter-
val are used to consider the energy loss. The root mean square (RMS) of these distributions is used to
determine the uncertainty of the momentum p, which is propagated to the uncertainty of the measured
cross section. For the analysis of Pb–Pb data sample, the MC information on the momenta of daughter
tracks originating from the 3He annihilation is used to estimate the corresponding effect and the resulting
uncertainty.

The systematic uncertainties due to tracking, particle identification and the description of material budget
in MC simulations are considered, and the total uncertainty is obtained as the quadratic sum of the
individual contributions. The material budget of the ALICE apparatus [46] is varied by ±4.5% in MC
simulations, and the deviations of the final results from the default case are considered as an uncertainty.
The precision of ∼ 4.5% of the MC parametrization is validated for the ALICE material with photon
conversion analyses (up to the outer TPC vessel [44]) and with tagged pion and proton absorption studies
(for the material between TPC and TOF detectors [77]).

For the Pb–Pb analysis the total systematic uncertainty amounts to ∼ 20% in the highest and lowest
momentum intervals considered in the analysis and decreases to ≤ 10% in the momentum interval of
3≤ p< 7 GeV/c. For the analysis of pp data which is based on the antibaryon-to-baryon ratio method, an
additional uncertainty due to primordial antibaryon-to-baryon ratio produced in collisions is considered
as a global uncertainty. The primordial antiproton-to-proton ratio of 0.998± 0.015 is extrapolated for√

s = 13 TeV collision energy from available measurements [41, 45], and, under the assumption that the
(anti)3He yield is proportional to the cube of (anti)proton yield [39], the primary 3He/3He ratio amounts
to 0.994±0.045. This uncertainty is the dominant contribution to the total systematic uncertainty for the
pp analysis which amounts to ∼ 8%.

5.4 Monte Carlo Simulation

The results presented in this paper are compared with detailed MC simulations of the ALICE detector.
The simulations start with the generation of (anti)particles at the primary collision vertex and the pro-
duction of raw detector information, taking into account also inactive subdetector channels. The same
reconstruction algorithms applied to real experimental data are employed to analyse the raw simulated
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data. For the pp analysis based on antimatter-to-matter ratio, the primordial 3He/3He ratio of 0.994 is
used as an input for the MC simulations. For the propagation of (anti)particles through the detector ma-
terial the simulations rely on the GEANT4 software package [47], in which the inelastic cross section of
3He nuclei is based on Glauber calculations. Since the Glauber model simulations are computationally
too extensive to be performed during the propagation steps through the material, they are parameterized
as a function of the atomic mass number A of the target nucleus as described in Ref. [48]:

σ
inel
hA = πR2

A ln
(

1+
Aσ tot

hN

πR2
A

)
. (1)

Here h denotes the nucleus in question (the formula is used for h = p, d, 3He and 4He), and A is the
atomic number of the target nucleus with radius RA. σ tot

hN is the total (elastic plus inelastic) cross section
of hadron h on nucleon N, which is estimated with the help of Glauber calculations by extrapolating the
measured pp values [50] to larger antinuclei. We performed several full-scale Monte Carlo simulations
with varied inelastic cross sections of 3He with matter, and the simulated observables used in this analysis
are studied as a function of the inelastic cross section re-scaling. This dependence is parametrized using
the Lambert–Beer law as shown in panels (e) and (f) in Fig. 1. The parametrization reads as Nsurv =
N0× exp(−σinelρL), where N0 corresponds to the number of incident particles, Nsurv to the number of
survived particles that did not get absorbed, σinel to the inelastic cross section, ρ to the density of the
material crossed, and L to the length of the particle trajectory in the material. The free parameter given
by the product of ρL is determined by a fit to the simulated observables.

In order to model the inelastic cross section of 3He nuclei in the interstellar medium, the GEANT4
parametrization of the 3He–p inelastic cross section are scaled with the correction factors obtained from
the ALICE measurements. The additional uncertainty that originates from re-scaling a measurement at
〈A〉= 17.4 and 〈A〉= 34.7 to A = 1 and A = 4 is taken from the difference between the parametrization
for the dependence on A in GEANT4 and in full Glauber calculation and amounts to < 8% [48]. The
resulting 3He–p inelastic cross section is shown in Fig. 5 together with the model employed in Ref. [28].
The latter is based on the approximation which uses available measurements to estimate the inelastic
antideuteron–proton cross section in the following way:

σ
dp
inel ≈

σ
dp
tot

σ
pp
tot

(σ
pp
tot −σ

pp
el ). (2)

By symmetry the total antideuteron–proton cross section σ
dp
tot is equal to the total deuteron–antiproton

cross section which is taken from Ref. [78]. For antihelium the inelastic cross section is scaled from
antideuterons according to the mass number as σ

3Hep
inel = 3

2 σ
dp
inel.

The results on inelastic 3He cross section are also tested against the modifications of elastic cross sec-
tions of 3He nuclei. Both 3He and 3He elastic cross sections are varied independently by 30%, which
led to ≤ 1% modifications of the final results. For the analysis of proton–proton collisions based on the
antibaryon-to-baryon ratio method, the results are additionally investigated for the sensitivity to the 3He
inelastic cross section. The latter is varied by 10% which is the uncertainty of the GEANT4 parametriza-
tions obtained from fits to experimental data [79]. This variation yields a modification of ≤ 2.3% in the
reconstructed antihelium-to-helium ratio.

5.5 Propagation modelling

The possible sources of antinuclei in our galaxy are either cosmic-ray interactions with nuclei in the
interstellar gas or more exotic sources such as dark-matter annihilations or decays. Cosmic rays consist
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Fig. 5: Inelastic cross section for 3He on protons. The green band shows the scaled ALICE measurement (see text
for details), the red line represents the original GEANT4 parametrization and the black line the parametrization
employed in Ref. [28]. The blue band on the x axis indicates the kinetic energy range corresponding to the ALICE
measurement for σinel(

3He).

mainly of protons and originate from supernovae remnants while dark matter so far escaped direct or
indirect detection but its density profile can be modelled [80].

The propagation in the galaxy can be carried out using the publicly available propagation models [58–
61]. We choose the GALPROP code (version 56) for the implementation of 3He cosmic-ray propagation,
which is discussed in details in [81]. GALPROP numerically solves a general transport equation for all
included particle species [61]. This transport equation reads as

∂ψ

∂ t
= q(r, p)+∇ · (Dxxgradψ−Vψ)+

∂

∂ p
p2Dpp

∂

∂ p
ψ

p2 −
∂

∂ p

[
ψ

dp
dt
− p

3
(∇ ·V)ψ

]
− ψ

τ
. (3)

Here, ψ =ψ(r, p, t) is the time dependent 3He density per unit of the total particle momentum and q(r, p)
is the source function for 3He . The second and third terms describe the propagation of 3He where the
Dxx, V and Dpp are the spatial diffusion coefficient, convection velocity and the diffusive re-acceleration
coefficient, respectively. While the effect of the galactic magnetic field is not explicitly modelled, it is
accounted for by these terms of the transport equation. These coefficients are the same for all particle
species and can be constrained using available cosmic-ray measurements. We use the best fit values
of these parameters provided in Ref. [40]. The fourth term accounts for momentum losses via cosmic-
ray interactions with interstellar gas (dp/dt) and the adiabatic momentum losses (∇ ·V). The last term
represents the 3He inelastic collisions with interstellar gas, where 1/τ is the fragmentation rate. It is
related to the inelastic cross section as:

1
τ
= βc

(
nH(r)σ

3Hep
inel (p)+nHe(r)σ

3He4He
inel (p)

)
(4)

Only the first and last terms require particle specific information. 3He nuclei can be produced when
cosmic-ray (CR) particles interact with protons or 4He nuclei in the interstellar medium (ISM). The 3He
source function in this case is:

q(r, p) = ∑
CR=H,He

∑
ISM=H,He

nISM(r)
∫

dp′CR βCR c
dσ (p, p′CR)

dp
nCR

(
r, p′CR

)
. (5)
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The density of hydrogen and helium gas is represented by nISM(r), and p′CR, βCR and nCR(r, p′CR) are
the momentum, the velocity and the density of the cosmic rays, while p is the momentum of the pro-
duced 3He. dσ(p, p′CR)/dp is the 3He differential production cross section for the specific collision and
includes primary 3He as well as the products of t decays. The most abundant cosmic rays are protons and
helium, thus this source function must be calculated for both species and summed up. In Ref. [51] all
relevant types of collisions between protons and 4He nuclei with projectile beam energies from 31 GeV
to 12.5 TeV are considered, and the so-called spherical approximation is used in which antinucleons with
a momentum difference smaller than p0 are forming an antinucleus [51, 82]. The parameter p0 depends
on collision energy and is constrained by several accelerator-based measurements [1–17], including mea-
surements at the LHC [83, 84]. The resulting injection spectra obtained from the collisions of cosmic
rays with the ISM peak above 7 GeV/A [51].

In the case of 3He nuclei produced from dark-matter annihilations, the source function depends on the
thermally averaged inelastic cross section times velocity (〈σv〉), the density (ρDM) of the dark matter, the
mass (mχ ) of the dark-matter particle and the resulting 3He spectrum (dN/dEkin) [27]:

q(r,Ekin) =
1
2

ρ2
DM(r)
m2

χ

〈σv〉 dN
dEkin

. (6)

Here Ekin is the kinetic energy of the produced 3He including those which are the products of t decays.
The spectrum is calculated utilising the PYTHIA 8.156 event generator [85] and a coalescence model
with a coalescence momentum p0 = 357 MeV/c, as described in more detail in Ref. [27]. We set 〈σv〉=
2.6×10−26 cm3s−1 as provided in Ref. [28]. We implemented in GALPROP the Navarro–Frenk–White
profile which is one of the most commonly used dark-matter density profiles:

ρ(r) =
ρ0

r
Rs

(
1+ r

Rs

)2 . (7)

Here r is the distance to the galactic centre. ρ0 is an overall normalization such that ρ(r) is equal to
the local density ρ� = 0.39 GeV/cm3 at r = 8.5 kpc and Rs = 24.42 kpc is a scale radius as given in
Ref. [27]. In contrast to the spectra of 3He from collisions of cosmic rays with the interstellar medium,
the resulting spectrum for 3He originating from dark-matter annihilation peaks at low kinetic energies
around 0.1 GeV/A [27].

5.6 Discussion of uncertainties on 3He cosmic-ray modelling

The results presented in this paper focus on the impact of the ALICE measurements for σinel(
3He) on

cosmic-ray 3He flux and the corresponding transparency of the galaxy. To this purpose, we have consid-
ered two models of 3He source described in the text and propagated only the uncertainty of the σinel(

3He)
measurement. This Section briefly discusses other possible uncertainties related to the 3He cosmic-ray
modelling.

As for the dark-matter source, it is apparent that a different dark-matter mass assumption changes the
antinuclei flux profile near Earth [20, 27, 29]. The DM mass assumptions around mχ ∼ 100 GeV are
favoured by recent AMS-02 antiproton data [29]; for very different values of mχ the 3He flux and the
corresponding transparency can be studied as described in this work. Variation of the dark-matter an-
nihilation cross section 〈σv〉 leads to a constant scaling of 3He flux according to Eq. 6 and therefore to
identical transparency values. While the Navarro–Frenk–White profile is used in this work to describe
the distribution of dark matter in the galaxy, other profiles are also available such as Einasto [20], Burk-
ert [86] or the isothermal one [87]. The effect of different DM profiles is degenerate with 〈σv〉, and the
overall impact on the antinuclei flux is minor [28, 56]. If the isothermal profile is employed instead of
the Navarro–Frenk–White one, the obtained 3He transparency is shifted up by 10−15%.
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Although the coalescence-based models can successfully describe the antinuclei production, the model
uncertainties are still relatively large, which leads to significant changes of the magnitude of antinuclei
fluxes [20, 28, 56]. In general, as long as different coalescence models retain the shape of the produced
antinuclei momentum spectrum, the resulting transparency is not affected. For example, the change
of coalescence parameter p0 leads to constant scaling of the antinuclei flux and identical transparency
values.

The GALPROP parameters used in this work are tuned to reproduce the available experimental data on
cosmic-ray nuclei (up to Z = 28). The obtained uncertainties on the nuclei fluxes of . 10% [40] are not
considered in this work, since they result in a negligible change to the 3He fluxes. An alternative set of
propagation parameters has been obtained in Ref. [74] by considering a subsample of available cosmic-
ray data. The comparison between the two sets is discussed in more details in Ref. [56]. The employment
of these alternative parameters decreases the 3He background flux by one order of magnitude at the lowest
Ekin considered in this work and results in about 60% lower transparency. For dark-matter signal the
corresponding flux is up to a factor 5 higher at the lowest Ekin with about 40% lower transparency. These
differences in fluxes and transparencies are obtained before the solar modulation and become minor for
Ekin & 10 GeV/A, both for dark-matter signal and for the background.
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A. Modak4, A.P. Mohanty62, B. Mohanty87, M. Mohisin KhanV,16, M.A. Molander44, Z. Moravcova90,
C. Mordasini106, D.A. Moreira De Godoy145, I. Morozov63, A. Morsch34, T. Mrnjavac34, V. Muccifora52,
E. Mudnic35, D. Mühlheim145, S. Muhuri142, J.D. Mulligan80, A. Mulliri22, M.G. Munhoz121, R.H. Munzer68,
H. Murakami133, S. Murray124, L. Musa34, J. Musinsky64, J.W. Myrcha143, B. Naik132, R. Nair86, B.K. Nandi49,
R. Nania54, E. Nappi53, A.F. Nassirpour81, A. Nath105, C. Nattrass131, A. Neagu20, A. Negru135, L. Nellen69,
S.V. Nesbo36, G. Neskovic39, D. Nesterov113, B.S. Nielsen90, E.G. Nielsen90, S. Nikolaev89, S. Nikulin89,
V. Nikulin99, F. Noferini54, S. Noh12, P. Nomokonov75, J. Norman128, N. Novitzky134, P. Nowakowski143,
A. Nyanin89, J. Nystrand21, M. Ogino83, A. Ohlson81, V.A. Okorokov94, J. Oleniacz143, A.C. Oliveira Da
Silva131, M.H. Oliver147, A. Onnerstad126, C. Oppedisano59, A. Ortiz Velasquez69, T. Osako46, A. Oskarsson81,
J. Otwinowski118, M. Oya46, K. Oyama83, Y. Pachmayer105, S. Padhan49, D. Pagano141,58, G. Paić69,
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