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Abstract

Results on the transverse spherocity dependence of light-flavor particle production (π , K, p, φ , K∗0,
K0

S, Λ, Ξ) at midrapidity in high-multiplicity pp collisions at
√

s = 13 TeV were obtained with the
ALICE apparatus. The transverse spherocity estimator (SpT=1

O ) categorizes events by their azimuthal
topology. Utilizing narrow selections on SpT=1

O , it is possible to contrast particle production in colli-
sions dominated by many soft initial interactions with that observed in collisions dominated by one
or more hard scatterings. Results are reported for two multiplicity estimators covering different pseu-
dorapidity regions. The SpT=1

O estimator is found to effectively constrain the hardness of the events
when the midrapidity (|η |< 0.8) estimator is used.

The production rates of strange particles are found to be slightly higher for soft isotropic topologies,
and severely suppressed in hard jet-like topologies. These effects are more pronounced for hadrons
with larger mass and strangeness content, and observed when the topological selection is done within
a narrow multiplicity interval. This demonstrates that an important aspect of the universal scaling of
strangeness enhancement with final-state multiplicity is that high-multiplicity collisions are domi-
nated by soft, isotropic processes. On the contrary, strangeness production in events with jet-like
processes is significantly reduced.

The results presented in this article are compared with several QCD-inspired Monte Carlo event
generators. Models that incorporate a two-component phenomenology, either through mechanisms
accounting for string density, or thermal production, are able to describe the observed strangeness
enhancement as a function of SpT=1

O .

*See Appendix A for the list of collaboration members
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1 Introduction

Studies of high-multiplicity proton–proton (pp) and proton–lead (p–Pb) collisions have revealed that
small collision systems exhibit signatures previously considered unique features of heavy-ion collisions.
Some of these signatures, such as the enhanced production of strange hadrons [1], and collective flow [2,
3], can be explained by the formation of a strongly interacting medium. However, the formation of
a medium in these small systems challenges current theoretical frameworks, because their initial small
volumes imply lifetimes so short that it is unclear to what degree the systems can equilibrate (see Ref. [4]
and references therein).

The observation of collective flow, as well as strangeness enhancement in particular, implies that pp col-
lisions at LHC and RHIC energies can no longer be described as semi-incoherent sums of parton–parton
collisions, an idea that has been central to most general-purpose quantum chromodynamics (QCD)-
inspired Monte-Carlo event generators, such as PYTHIA [5] and Herwig [6]. “Jet Universality” is
another long-standing idea for the phenomenological understanding of QCD assuming that, while the
partonic processes vary with system and beam energy, the produced color fields and their hadronization
are universal. In the context of Lund strings, this implies that the string tension and string-fragmentation
parameters are the same regardless of collision system. For a recent discussion, we refer to Ref. [7]. The
discovery of strangeness enhancement scaling with the multiplicity [8][9] violates the assumptions of jet
universality, and for this reason QCD-inspired generators have incorporated additional phenomenolog-
ical final-state pre-hadronization mechanisms, such as string percolation [10], color ropes [11], baryon
junctions [12] and/or new types of baryon-favored color reconnection [13]. Furthermore, charm fragmen-
tation fractions in pp collisions also differ significantly from the values measured in e+e− collisions [14].

In contrast, quark–gluon plasma (QGP)-inspired models include a system evolution with volume and
multiplicity and so the qualitative features of both collective flow and strangeness enhancement are ex-
pected. EPOS-LHC is an event generator where the initial interactions lead to a two-phase state (core–
corona) consisting of a dense core of QGP, and a diluted corona [15]. Strangeness enhancement in
EPOS-LHC is due to a change in the relative contribution of the corona (low strangeness production
from pomerons) and core (high thermal strangeness production from QGP) with multiplicity.

As can be seen from the previous discussion, strange-particle production appears to be a powerful probe
for QGP-like effects in small systems, and the origin of the strangeness enhancement constitutes an
important open question. Therefore, results on strangeness production in small systems can facilitate
progress in the understanding of both QCD dynamics and hadronization, in addition to putting constraints
on phenomenological models.

ALICE has previously reported that strangeness enhancement as a function of the average multiplicity
at midrapidity does not depend on the collision system nor center-of-mass energy per nucleon–nucleon
collision, ranging from pp to p–Pb and

√
sNN = 2.76 TeV to

√
s =13 TeV [16]. This universality implies

a strong correlation between the underlying physics processes that drive both the enhancement and the
multiplicity. In this article, we have tested if the observed universality can be broken by contrasting
high-multiplicity events dominated by one or more hard scatterings, with events dominated by multiple
softer interactions.

At high transverse momentum (pT), strangeness production in hadronic collisions tends to originate from
“hard”, perturbative QCD processes. These hadrons are either produced directly through flavor creation
(XX → ss̄) or flavor excitation (sX → sX), or indirectly as a result of radiation and/or hadronization
associated with hard processes, e.g., through gluon splitting following the partonic evolution (g → ss̄).
In contrast, the production of “soft”, low-pT strange hadrons (pT ≤ 2 GeV/c) is dominated by non-
perturbative QCD processes, where novel QCD dynamics could be found. The final-state azimuthal
topology is expected to reflect which of these QCD processes are primarily driving particle production
for a given event. Events dominated by one or more hard scatterings will presumably lead to pronounced
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back-to-back jet structures, while events that contain several softer scatterings will result in isotropic
distributions. We note that previous results obtained by ALICE, both utilizing the same event shape
estimator [17] and a similar one, the transverse sphericity [18], found evidence for this behavior in the
way that ⟨pT⟩ would depend on the event topology.

To identify the final-state azimuthal topology, we will here use a modified variant of the transverse
spherocity (SO) estimator proposed in Ref. [17], for being more sensitive to the underlying processes.
The lower bound of SO aims to distinguish “Jet-like” events, which in this study are events characterized
by an azimuthal topology similar to a pair of back-to-back jets (implying a tight clustering of particles
with a difference in azimuthal angle ∆φ ≈ 0 or π [17]), which on average produces a larger number of
high-pT hadrons compared with the SO–integrated distribution, thereby “hardening” the pT-differential
spectra. Conversely, the upper bound of SO selects “Isotropic” events, defined by an azimuthal topology
which is close to symmetric, with an absence of preferred direction. The hypothesis is that SO, by
contrasting events with these different topologies, can be used to control the degree of QGP-like effects,
like strangeness enhancement and radial flow, in high-multiplicity pp collisions [19, 20].

In this article, we present the first results on strangeness production in high-multiplicity pp collisions at√
s = 13 TeV as a function of the transverse spherocity. The results obtained for the light-flavor hadrons

are presented as the sum of particles and anti-particles, explicitly as π+ + π−, K+ + K−, K∗0 + K∗0, p +
p, Λ + Λ, Ξ− + Ξ+ where the exceptions are K0

S and φ . Hereinafter, the sum of particle and anti-particles
will be referred to as π , K, K0

S, K∗0, p, φ , Λ, and Ξ, unless otherwise explicitly mentioned.

The article is organized as follows. The ALICE main detectors used in this analysis are detailed in
Section 2. Section 2.1 describes the high-multiplicity definitions used throughout this article. The trans-
verse spherocity observable, along with caveats, is defined in Section 3. The details concerning particle
identification (PID), yield extraction, and correction procedures are discussed in Section 4. The details
regarding experimental corrections and systematic uncertainties are discussed in Sections 5 and 6, re-
spectively. The results are reported in Section 7, and finally the summary and conclusions of our study
are discussed in Section 8.

2 Experimental setup and event selection

A detailed description of the ALICE apparatus in its Run 1 and 2 configuration, as well as its perfor-
mance, can be found in Refs. [21, 22]. This section will briefly describe the main ALICE detectors used
for the event selection, SpT=1

O determination, and extraction of particle spectra. All radii in the following
are given as distances from the beam axis.

The detectors of the ALICE apparatus can be grouped as follows: the central barrel at midrapidity, the
muon arm at forward rapidity, and the forward global detectors. To be able to efficiently trigger on inelas-
tic pp collisions, ALICE employs two forward scintillator arrays, V0A and V0C, with a pseudorapidity
coverage of 2.8 < η < 5.1 and −3.7 < η <−1.7, respectively.

Both SpT=1
O and particle yields are determined by using tracks in the central barrel. The main detectors

for tracking in the central barrel are the Inner Tracking System (ITS) and the Time Projection Chamber
(TPC). The ITS detector is composed of six layers of cylindrical silicon detectors with full azimuthal
acceptance, where the radius of the innermost (outermost) layer is 3.9 cm (43 cm). The innermost lay-
ers consist of two arrays of hybrid silicon pixel detectors (SPD), whose fine granularity provides high
precision tracking closest to the primary vertex. The SPD is also used to reconstruct tracklets, short two-
point track segments covering the pseudorapidity region |η | < 1.4. The tracklets provide both efficient
primary vertex determination and a precise estimate of the charged-particle multiplicity. The remaining
layers of the ITS are only used for tracking in the analyses presented here. The TPC is the primary
tracking device in ALICE that provides a full three-dimensional trajectory for each track. It is a large
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cylindrical detector that surrounds the ITS detector with an inner and outer radii of 85 cm and 250 cm,
respectively. It has full azimuthal acceptance and a pseudorapidity coverage of −0.9 < η < 0.9 for full-
length tracks. The ITS and TPC are situated inside the solenoidal L3 magnet with a uniform magnetic
field of 0.5 T. For global tracks, where the full information of the ITS and TPC are used together, a
momentum resolution of 1–10 % is achieved for momenta ranging from 0.05 to 100 GeV/c.

The ALICE apparatus utilizes a broad range of different particle identification techniques to identify the
mass of each analyzed particle. For weakly-decaying V 0 (K0

S, Λ) and Cascades (Ξ), the TPC tracking is
able to provide with topological track matching of the decay products, where particles are then identified
through peaks in invariant mass distributions. For the other particles, the PID is provided by the specific
energy loss, dE/dx, measured in the TPC and the particle’s velocity (given a measured momentum in the
TPC) is provided by the Time-of-flight (TOF) detector. The TOF consists of Multi-Gap Resistive Plate
Chambers (MRPC), which are used for the particle identification by measuring the total time of flight
of the identified hadrons. It is located at about 3.7 m from the interaction point, with a full azimuthal
acceptance and has a pseudorapidity coverage of −0.9 < η < 0.9. Details of the particle identification
procedure are given in Sec. 4.

2.1 Event selection

Data used in this analysis were collected with a minimum bias trigger, which requires one or more hits
in both V0 scintillator arrays in coincidence with proton beams from both directions. The contamination
from beam-induced background is removed offline by using the timing information in the V0 detectors
and taking into account the correlation between tracklets and clusters in the SPD detector, as discussed
in detail in [22]. The primary vertex is reconstructed by correlating hits in the two SPD layers and only
events with a primary vertex within ±10 cm of the nominal interaction point along the beam direction are
accepted for this analysis. Due to the fast readout time of the SPD, any contamination from out-of-bunch
pile-up is rejected. The contamination from in-bunch pile-up events is removed offline by excluding
events with multiple vertices reconstructed in the SPD. Any remaining pile-up will be from collisions
which produce little or no particles. Due to the required high-multiplicity event-selection, this will have
a negligible impact on the final results presented in this article,

The measurements reported here were performed on minimum-bias triggered events that additionally
have at least one charged particle measured in the pseudorapidity interval |η |< 1 (INEL > 0) [23], cor-
responding to about 75 % of the total inelastic cross section. Two different multiplicity estimators are
used, the total charge deposited in the V0 detectors (V0M), and the number of SPD tracklets within
|η | < 0.8 (N|η |< 0.8

tracklets ). For each of these estimators, the multiplicity is classified as a percentile, where
0% corresponds to the highest and 100% to the lowest multiplicity. The high-multiplicity events used
throughout this article include the top-1% (10%) multiplicity percentile, with a minimum of 10 recon-
structed charged primary tracks at midrapidity (|η | < 0.8).

3 Unweighted transverse spherocity SpT=1
O

In this analysis, the unweighted transverse spherocity SpT=1
O is used to quantify the topology in the az-

imuthal plane. It is calculated as

SpT=1
O =

π2

4
min

n̂

(
Σi| ˆpT,i × n̂|

Ntrks

)2

. (1)

The sum is calculated over all charged particles with pT > 0.15 GeV/c, where p̂T represents the transverse
momentum unit vector, Ntrks is the number of charged particles in a given event and n̂ is the unit vector
that minimizes SpT=1

O .
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Loose selection criteria were chosen for primary tracks to ensure a high efficiency and uniform az-
imuthal acceptance over the full TPC volume. At least 50 or more measured clusters are required for
a track in the TPC. Furthermore, the TPC tracks must be matched to hits in the ITS, but, to ensure ho-
mogeneous azimuthal acceptance, the tracks are not explicitly required to have hits in the SPD. These
requirements improve the tracking precision, and reject tracks from out-of-bunch pile-up. Finally, selec-
tions of distance of closest approach (DCA) along the beam axis (|DCAz|< 3.2 cm), and in the xy-plane
(|DCAxy|< 2.4 cm) are applied, ensuring that the reconstructed TPC track points to the primary vertex.

Unlike the traditional transverse spherocity estimator discussed in [24], the transverse momentum (pT)
of each track in this article is normalized to 1 (pT = 1) when measuring the SpT=1

O . This modification
was required to have similar sensitivity between neutral and charged particles. Otherwise, there would
be significant differences between the production of neutral and charged kaons in jet-like events. This
can be understood considering that for the traditional spherocity, a single high-pT track will have a large
weight in the spherocity calculation, which can occur for a charged kaon but never for a neutral kaon.
By assigning the same weight to all measured primary charged tracks, one reduces the possible charged-
vs-neutral biases.

However, this also means that results obtained with the two different spherocity estimators (traditional
and unweighted) can only be qualitatively compared. Furthermore, as SpT=1

O is independent of the pT of
the particles, it requires a substantial amount of particles to be a good measure of the event topology. For
this reason, the number of charged tracks is required to be greater or equal to 10 for events included in
this analysis, which limits the applicability of the unweighted spherocity estimator to high-multiplicity
pp collisions.

The values of SpT=1
O will, by construction, lie between 0 and 1. Having events with SpT=1

O ≈ 0 imply that
|p̂T × n̂| ≈ 0 for all tracks, which indicates that all tracks are parallel in the azimuthal plane, suggesting
that the event is dominated by a single back-to-back dijet. Events where SpT=1

O → 1 imply that all particles
are uniformly distributed azimuthally, suggesting the absence of a preferred direction. Note that part of
the isotropy of the event can be affected by anisotropic flow [2]. The unfolded SpT=1

O distributions are
presented in Fig. 1, along with model predictions, for the three different multiplicity selections used in
this article. The correction of the SpT=1

O distributions is based on the Bayesian unfolding technique [25].
The same unfolding method used in previous ALICE publications [26] is applied here.

A key aspect of the analysis presented in this article is the capability to compare the measured results
with MC generator predictions. Extensive studies were performed to understand and mitigate any exper-
imental biases due to the SpT=1

O selection. The experimental bias is evaluated by generating PYTHIA 8 1

events, that are propagated through a full ALICE simulation of the experimental apparatus.

The SpT=1
O definition has been constructed to require that the generated events agree with the recon-

structed simulated events, where the pT spectra have been corrected for the minimum bias reconstruc-
tion efficiency2. This ensures that the measured and generated results are directly comparable. The
experimental uncertainty is minimized by adopting the following criteria, making SpT=1

O a robust and
model-independent observable:

– SpT=1
O selection in quantiles.

One major source of experimental bias is the smearing of the measured SpT=1
O distribution by de-

tector effects. It was verified through MC studies that one can minimize the effect of the smearing
by measuring SpT=1

O in quantiles, similar to how multiplicity classes are defined in ALICE [17].
The stability of the quantiles is due to the fact that spherocity distribution does not have large

1The fully simulated PYTHIA events are the same used to obtain the tracking efficiency correction discussed in Sec. 4. We
refer to this section for technical details on the simulation.

2Secondary particles were rejected using MC information.
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gradients. A robust model-to-data comparison is achieved by calculating the model comparison in
measured percentiles, rather than for the numerical SpT=1

O ranges we report in this article.

– Exclusion of neutral decay modes for resonance particles
The decay daughters of both φ and K∗0 meet the standard ALICE definition of primary parti-
cles [27], subsequently leading to the resonance daughters entering the measurement of SpT=1

O for
a given event. These daughters will contribute to the multiplicity estimate if measured at midra-
pidity, and as both the φ and K∗0 resonances have charged and neutral decay modes, the branching
ratio for the charged decay mode will artificially inflate in high-multiplicity events. This bias can
be completely avoided by only including (and correcting for) the following charged decay modes
for resonance particles in the resulting spectra: φ → K+K− and K∗0 → Kπ .

– Contamination of secondary particles
There is an effect that comes from the loose selection criteria for primary tracks used in this
analysis. The loose DCA selections, which are there to maintain a full azimuthal acceptance,
consequently lead to some decay daughters from V 0s and cascades to be incorrectly reconstructed
as primary particles. To minimize the experimental bias from this effect, we include the primary Λ,
K0

S, and Ξ directly into the calculation of SpT=1
O for the generated MC predictions. The inclusion of

these particles at the generator level makes the results presented in this article directly comparable
to model predictions.

Note that the SpT=1
O distribution is the same across all presented particle species in this article. The imple-

mentation of these corrections reduce the experimental bias to a few percent, presented in Table 1, which
lists the remaining fractional systematic uncertainties due to the SpT=1

O selection. The only exception is
for low pT Λ (Λ̄) and K0

S, where we do not present results for pT < 1 GeV/c. Our understanding is that
for these very low pT tracks, the azimuthal angles of the decay daughters that enter the SpT=1

O measure-
ment are too different from their mother to give a precise result. Charged pions, kaons and (anti)protons
are the most abundant particles, as well as the particles that enter directly into the SpT=1

O measurement,
ensuring that these particle species are more robust against experimental biases.

Table 1: The fractional systematic uncertainties used to estimate the experimental bias introduced when triggering
on SpT=1

O . The uncertainties are pT-independent, and are applied to both jet-like and isotropic event selections,
unless otherwise specified.

π K p φ and K∗ K0
S and Λ Ξ

pT > 1 GeV/c
SpT=1

O pT spectra 0% 0% 0% 3% Isotropic: 1% 3%
jet-like: 4%

pT > 1 GeV/c
SpT=1

O h/π ratio N/A 0% 0% 3% Isotropic: 1% 3%
jet-like: 4%

The quantiles used for the experimental measurements are listed in Table 2. The roman numerals rep-
resent the multiplicity labels for these percentiles reported in earlier ALICE publications [17][26]. It is
important to stress that the SpT=1

O selections for the model comparisons presented throughout this article
are done on their corresponding SpT=1

O quantiles.
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Figure 1: Upper panels: The measured and fully corrected SpT=1
O distributions. Lower panels: Ratio between

model calculations and experimental data. These are presented for N|η |< 0.8
tracklets 0–1% (top), 0–10% (middle) and

V0M 0–1% (bottom). The curves represent different model predictions, where the shaded area represents the
statistical uncertainty of the models. The relative systematic uncertainty is shown as a gray area around unity in
the lower panels.
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Table 2: Values corresponding to the SpT=1
O range of the different quantiles obtained from the uncorrected SpT=1

O
distribution used for the event selections in this analysis.

Multiplicity: N|η |< 0.8
tracklets I–III (0–10%) N|η |< 0.8

tracklets I (0–1%) V0M I (0–1%)

Jet-like

SpT=1
O 0–1% < 0.408 < 0.487 < 0.433

SpT=1
O 0–5% < 0.508 < 0.577 < 0.535

SpT=1
O 0–10% < 0.561 < 0.624 < 0.589

SpT=1
O 0–20% < 0.625 < 0.680 < 0.651

Isotropic

SpT=1
O 80–100% > 0.833 > 0.859 > 0.846

SpT=1
O 90–100% > 0.871 > 0.892 > 0.882

SpT=1
O 95–100% > 0.896 > 0.913 > 0.905

SpT=1
O 99–100% > 0.930 > 0.942 > 0.936

4 Measurements of transverse momentum spectra

In this section, the procedure for the pT spectra measurements will be presented. First, the analyses
utilizing only primary charged tracks are discussed in Section 4.1, followed in Section 4.2 by the analyses
which utilize the weak decay topology, reconstructed via secondary tracks. All particle spectra are
measured in the exact same pseudorapidity interval (|η |< 0.8) for which the SpT=1

O is defined, to ensure
maximal correlation between event topology and particle production. This allows for a clear, one-to-one
comparison between MC generators and data.

4.1 Particle identification utilizing primary charged tracks

This subsection discusses analyses regarding the production of π,K,p, and the resonances φ and K∗0.
For these analyses, global tracks are reconstructed using the combined information from the ITS and
TPC to achieve high precision. Track selection criteria are applied to limit the contamination from
secondary particles, to maximize tracking efficiency and to improve the dE/dx and momentum resolution
for primary charged particles. The number of crossed pad rows in the TPC is required to be at least 70
(out of a maximum of 159); the ratio of the number of crossed pad rows to the number of findable clusters
(the number of geometrically possible clusters which can be assigned to a track) is restricted to be greater
than 0.8, see Ref. [22] for details. The goodness-of-fit values χ2 per cluster (χ2/Nclusters) of the track fits
in the TPC must be less than 4. Tracks must be associated with at least one cluster in the SPD, and the χ2

values per cluster in the ITS are restricted in order to select high-quality tracks. The DCA to the primary
vertex in the plane perpendicular to the beam axis (DCAxy) is required to be less than seven times the
resolution of this quantity; this selection is pT dependent, i.e. DCAxy < 7× (0.0015± 0.05pT) cm. A
loose selection criterion is also applied for the DCA in the beam direction (DCAz), by rejecting tracks
with DCAz > 2 cm, to remove tracks from possible residual pileup events. The transverse momentum
of each track must be greater than 0.15 GeV/c and the pseudorapidity is restricted to the range |η |< 0.8
to avoid edge effects in the TPC acceptance. Additionally, tracks produced by the reconstructed weak
decays of pions and kaons (the “kink" decay topology) are rejected.

The Particle Identification (PID) technique adopted for these analyses is based on a selection on the nσ

distributions, which are defined as

nσ =
Signalmeasured −⟨Signalexpected⟩

σ
,

where the Signal can be either the measured dE/dx in the TPC, or the extracted 1/β in the TOF, and σ is
the corresponding resolution.
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4.1.1 Charged pions, kaons and (anti)protons

Primary π,K,p are measured in the range of 0.3–20.0 GeV/c, and yields are extracted following stan-
dard particle identification techniques reported in previous ALICE publications [26][28]. At low pT the
particles are identified with high purity through the TPC dE/dx by fitting the nσ distributions [29]. In
this pT range, the large separation power between π–K and p–K allows for a particle identification on
a track-by-track basis. The relative particle abundances are obtained by fitting the nσ distributions in
narrow intervals of transverse momentum. For the kaons a two-Gaussian parameterization is used to
correct for contamination of electrons.

At intermediate pT, the TOF detector is used for identification by fitting the β distribution [30]. Particle
identification in this pT range is also performed on a track-by-track basis, by fitting the convolution of
a Gaussian parameterization and an exponential function to the β distribution. Similarly to low pT, the
identified particle yield is extracted through the nσ of these fits.

Finally, the TPC dE/dx is used to identify the relativistic high-pT particles (rTPC), with a technique
described in Ref. [31]. Unlike the methods used for lower pT intervals, this technique does not allow for
track-by-track identification of π,K,p. Instead, the relative particle abundances are measured by fitting
a four-Gaussian parameterization to the dE/dx distributions, in η and momentum intervals, where each
Gaussian corresponds to the signal of π,K,p and electrons. The fractional yields in each Gaussian are
then used to extract the identified particle abundances from the full charged primary particle pT spectra in
η and momentum intervals. The explicit momentum intervals for each particle identification technique
are found in Table. 3.

Table 3: A breakdown of the momentum intervals for the different PID techniques used in the π,K,p analysis.

Analysis PID technique pT ranges (GeV/c)
π K p

TPC nσ fits 0.3–0.7 0.3–0.6 0.45–1.0
TOF β fits 0.7–3.0 0.6–3.0 1.0–3.0
rTPC dE/dx fits 3.0–20 3.0–20 3.0–20

4.1.2 Resonance particles φ and K∗0

Resonance particles cannot be directly detected by the experimental apparatus, but one can extract their
yield by analyzing the invariant mass Minv distribution, obtained by correlating all pairs of possible decay
daughters. For the analyses presented here, the relevant decays are:

φ → K++K− B.R. = (49.2±0.5)%,

K∗0(K̄∗0)→ K+(K−)+π
−(π+) B.R. = (66.503±0.014)%. (2)

The extraction technique summarized in the following is similar to previously published procedures, see
for example Ref. [32] for further details.

The Minv distribution is constructed utilizing π and K hadrons, identified via selections on the TPC
and TOF nσ distributions. This is critical to reduce the contamination of pions in the kaons sample.
The combinatorial background is estimated by creating a mixed-event Minv sample for each resonance
decay channel. The Minv is then calculated for pairs of daughter candidates originating from different
events, which is then subtracted from the signal distribution. The precision with which the mixed-event
distribution can describe the combinatorial background depends significantly on the event topology. For
events with jet-like topologies, this description is very poor, as the mixed events have a completely
different event topology if the “jet axes” are not aligned. One can easily understand this by expressing
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the Minv (with masses m1,2 and momentum p1,2, and energies E1,2) in terms of the angle between the two
momentum vectors, θ ,

M2
inv = m2

1 +m2
2 +2E1E2 −2|p⃗1||p⃗2|cos(θ). (3)

By similar reasoning one can deduce that the description of the combinatorial background in isotropic
events is very good. Therefore, one needs significant statistics to precisely estimate the remaining back-
ground, so that the yield extraction is accurate. Relative to the other analyses presented in this article,
the resonance analyses are consequently limited in terms of how narrow one is able to make SpT=1

O event
selection. This also results in a significant SpT=1

O dependence of the systematic uncertainty.

The reconstructed resonance particle yield is extracted, in pT-differential intervals, using a Voigtian peak
function for the signal and a 2nd-degree polynomial for the remaining combinatorial background. The
yield extractions for φ and K∗0 are then performed in two separate steps: First, by counting the entries
after subtraction of the 2nd-degree polynomial in the invariant mass ranges 0.995–1.07 GeV/c and 0.76–
1.12 GeV/c, respectively. Second, the Voigtian tails are integrated outside the aforementioned counted
mass intervals to correct for the missing tails, which represents a minor fraction of the total yield. The
final yields are obtained by the summation of the bin counted estimate and the integrated Voigtian tails.

4.2 Particle identification utilizing weak decay topology

The details regarding the reconstruction of the weakly decaying particles, K0
S, Λ, and Ξ, which utilize

secondary tracks, are reported here. The relevant decays are:

K0
S → π

+
π
− B.R. = (69.20±0.05)%,

Λ(Λ̄)→ p(p̄)+π
−(π+) B.R. = (63.9±0.5)%,

Ξ
−(Ξ

+
)→ Λ(Λ̄)+π

−(π+) B.R. = (99.887±0.035)%. (4)

As a substantial fraction of secondary particles from the decays are produced outside the ITS, the track
criteria are different for these secondary tracks than for primary particles: no ITS information is required,
and the tracks are required to not point directly back to the collision vertex. The data sample used in these
analyses contained a significant contribution of out-of-bunch pile up that had to be accounted for.

The topological constraints, as well as the track quality requirements, are summarized in Table 4 and
Table 5 for V 0 and Ξ candidates, respectively. Topological constraints are applied on the reconstructed
decay geometry to reduce background, specifically the distances of the daughters to the primary vertex
(PV), the DCA of the daughters to the secondary vertex, and the pointing angle of the V 0 candidate with
respect to the PV. The topological identification starts with the formation of V 0 candidates, consisting of
two secondary tracks that:

– do not point to the PV (DCA of daughters to PV),

– appear to share the same secondary production vertex (V 0 DCA),

– do point back to the PV (from the secondary vertex) when the momentum vectors are summed up
(pointing angle).

To calculate the Minv, the masses of the secondary tracks are assigned based on Eq. 4 after testing the
PID consistency. This yields up to three different hypotheses, K0

S, Λ, and Λ̄, for the Minv of each V 0.
If a V 0 candidate has its invariant mass compatible to other V 0 masses under the respective competing
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Table 4: Topological selection criteria used in the identification of the K0
S, Λ, and Λ̄ particles.

Selection variable Selection criteria for K0
S (Λ, Λ̄)

Topology
DCA between daughters < 1.0 cm
Cosine of pointing angle > 0.97(0.995)
Transverse decay radius Rxy > 0.5 cm

Daughter tracks selection

DCA of daughters to PV > 0.06 cm
TPC PID of daughters < 5σ

Track pseudorapidity |η | < 0.8
TPC crossed rows Ncr > 70
TPC crossed rows to findable ratio Ncr/Nf > 0.8

Candidate selection

V 0 pseudorapidity |η | < 0.8
Transverse momentum 1.0 < pT < 25.0 GeV/c
Proper lifetime (transverse) (Rxy ×m(Λ,Λ̄)/pT )< 30 cm
Competing mass > 4σ

hypotheses, it is rejected. Additionally, for Λ and Λ̄, a selection on an experimental estimate of the par-
ticle’s proper lifetime is also used to reduce the background. All selection criteria used are summarized
in Table. 4.

For cascades (Ξ), secondary V 0 candidates are matched to secondary bachelor tracks and by assuming
the relevant masses one can test the cascade hypothesis for a Ξ. Secondary V 0 are identified by means of
a selection on the distance of the PV from the pointing direction of the candidate.

Table 5: Summary of the topological selection values used for the Ξ candidate selection. All impact parameter
requirements on tracks are 2D (xy).

Selection variable Selection criteria

Topology of Ξ

DCA between daughters (V 0 and π) < 1.6 cm
Cosine of pointing angle > 0.97
Cascade transverse decay radius > 0.8 cm
DCA of bachelor to PV > 0.05 cm

Topology of secondary Λ

DCA between daughters (p and π) < 1.6 cm
V 0 impact parameter > 0.07 cm
V 0 transverse decay radius > 1.4 cm
Window around Λ mass < 0.006 (GeV/c2)
DCA of daughters to PV > 0.04 cm

Common bachelor/daughter track selection

Track pseudorapidity |η | < 0.8
TPC clusters > 70
TPC PID of daughters < 5σ

As the TPC is a relatively slow detector with a readout time of ≈100 µs, it is possible to accidentally ac-
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cept secondary tracks from V 0 or cascades produced in earlier or later events. To reject these candidates,
we require that at least one decay daughter is either associated to a cluster in the ITS or is matched to a
hit in the TOF detector.

5 Corrections

The pT spectra of φ , K∗0, and Ξ are only corrected for acceptance and tracking efficiencies, while the
study of π,K,p, Λ, and K0

S requires more sophisticated corrections to account for the contamination
from secondary particles. The pT spectra of π , K and p are corrected for acceptance, reconstruction inef-
ficiency, TPC–TOF matching efficiency (only in the TOF analysis) and secondary particle contamination.
The reconstruction efficiencies are obtained from event simulations using the PYTHIA8 (Monash-2013
tune) Monte Carlo event generator [33]. Then, the propagation of the simulated events through the AL-
ICE apparatus is described with GEANT 3.21 [34]. Finally, the simulated events are reconstructed and
analyzed using the same procedure as for data. This study found that the reconstruction efficiencies are
independent of the multiplicity and spherocity selections. Thus, the values from the minimum-bias sam-
ple were applied. In addition, since low-momentum interactions of K− and p with the detector material
are not completely described by GEANT 3, an additional correction to the reconstruction efficiencies of
these two particles is estimated with GEANT 4 [35] and FLUKA [36].

The secondary particle contamination correction takes into account the contamination to the pT spectra
of π and p from weak decays: K0

S → π+ + π−,Λ → p + π+,Σ+ → p + π0 (and charge conjugates)
and material interactions. This correction is estimated from a multi-template fit to data distributions of
the transverse distance-of-closest approach (DCAxy) [37]. Three templates that represent the expected
shapes of DCAxy distributions of primary and secondary (from weak decays) particles, and of particles
from interactions with the detector material are used. The fits are constrained in the interval ±3 cm. Since
the TPC and TOF analyses employ different track selections, these corrections are estimated separately
for the TPC and TOF analyses. At pT = 0.45 GeV/c the contribution from non-primary π+(p) was found
to be about 4%(20%), while at pT = 2.0 GeV/c it decreases to about 1%(4%). Since this correction
decreases asymptotically, an extrapolation from the TOF measurement is applied in the rTPC analysis.

Secondary production of Λ (Λ̄) from Ξ± and Ξ0 baryons were determined from measured Ξ± spectra in
data and the feed-down matrix obtained from MC simulations, which gives the probabilities of Ξ± and
Ξ0 decaying into Λ (Λ̄) at given transverse momenta. The feed-down matrix is calculated in minimum
bias events and the Ξ± pT spectra used for the final correction come from the same high-multiplicity and
spherocity event selections. The secondary yields do not exceed 25% of the total yields across the entire
pT-range.

6 Systematic uncertainties

The estimation of the total systematic uncertainties for each SpT=1
O distribution is performed using the

methods described in Ref. [26]. Two sources of systematic uncertainty are considered, and the total
uncertainty is given as the sum in quadrature of the two components:

– Monte Carlo non-closure: PYTHIA8 with Monash tune is the default model used to generate the
spherocity response matrix and SpT=1

O distributions with and without the detector efficiency losses.
The generated SpT=1

O distributions are defined as previously described in Sec. 3. The unfolded
SpT=1

O spectrum from the simulation is compared to the generated one. Thus, any statistically
significant difference between the generated and unfolded distributions is referred to as MC non-
closure and is added in quadrature to the total systematic uncertainty. This uncertainty is within
2%.
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– Dependence on the choice of the MC model: EPOS-LHC is used as the alternative model to
generate a different spherocity response matrix. This response matrix is used to unfold the SpT=1

O
distributions. The ratio between the final unfolded distributions using PYTHIA8 and EPOS-LHC
was quantified and added to the total systematic uncertainty. This uncertainty has a spherocity
dependence. While in the interval SpT=1

O > 0.8 this uncertainty is about 3%, for the interval
SpT=1

O < 0.6 the uncertainty is of about 5.8%.

Similar to prior sections, the systematic uncertainties for analyses depending on primary charged par-
ticles are discussed in Section 6.1. Likewise, the systematic uncertainties for longer-lived particles are
discussed in Section 6.2. We note that in all cases, careful studies in the spirit of Ref. [38] were performed
to remove possible statistical effects from the systematic uncertainties.

6.1 Systematic uncertainties for analyses utilizing primary charged particles

The total systematic uncertainty on the pT spectra of π,K,p is divided into two categories. The first
class includes the uncertainties that are common among the different PID techniques: the track selection
criteria, the ITS–TPC and TPC–TOF matching efficiencies. These uncertainties are species and pT
dependent. The second class includes systematic uncertainties that are technique dependent: signal
extraction method and the estimation of the secondary particle correction. This study utilizes the same
methods used in previous ALICE analyses [26, 29–31]. Most of the systematic uncertainties cancel in
the pT-differential particle ratios (K/π and p/π) except the ones attributed to the signal extraction and
feed-down correction. Moreover, at high transverse momentum (rTPC analysis) the procedure described
in [31] is used to extract the signal extraction systematic uncertainty on the K/π and p/π ratios directly
from fits to the dE/dx distributions. Table 6 shows a summary of the relative systematic uncertainties on
the pT spectra of π , K, p, and the particle ratios. The results are shown for the spherocity classes: Jet-like
and Isotropic [0–1]%, and the SpT=1

O unbiased case. The multiplicity class corresponds to N|η |<0.8
tracklets I−III.

Similar results are obtained for the other multiplicity classes.

The main contributions to the systematic uncertainty on the spectra of the resonance particles are listed
in Table 7. The uncertainties are evaluated in groups, where each group contains sources of systematic
uncertainties that cannot be evaluated individually. The systematic uncertainties are pT-dependent, and
the ranges listed in the table represent the minimum and maximum values. The maximum uncertainties
for φ and K∗0 are obtained at low pT (pT < 1.5 GeV/c), with the uncertainties reaching local minima at
intermediate pT (1.5 < pT < 4.0 GeV/c), and then approaching towards the maximum value at high pT
(pT > 4.0 GeV/c). Both the correlated and uncorrelated sources defined in Tab 7 are used to account for
the uncertainty in the pT-differential particle spectra, but only the uncorrelated sources are considered
for the SpT=1

O -dependent-to-SpT=1
O -integrated ratios.

The uncertainties related to signal extraction are estimated through variations of the fit range, constraints
to the peak fit, and variations of the residual background function. “Track selection & PID” consists
of varying the nσ requirements for valid resonance daughter candidates, as well as variations in the
track quality criteria. This includes variations of the required crossed rows in the TPC, the initial ver-
tex position along the beam axis, and the DCA along the beam axis (DCAz). Finally, the background
estimation includes changes in how the combinatorial background is evaluated (event-mixing, reflected
mass hypothesis, like-charge pairs).
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Table 7: The most relevant systematic uncertainties for the resonance analysis as a function of SpT=1
O . “HM” in

this table represents the SpT=1
O -integrated spectra. Uncertainties are pT-dependent, and ranges listed represent the

minimum and maximum values presented in the final spectra (see text for details).

Hadron: φ K∗0

Topology: Jet-like HM Iso Jet-like HM Iso

Uncorrelated sources

Signal extraction 1–3% 1–2% 1.5–2.5% 3–7% 2–4% 1–5%
Track selection & PID 2–6% 1–5% 1–5% 1–5% 1–4% 1–4%
Background estimation 1–3% 0–1% 1–2% 1–3% 1–4% 1–4%

Correlated sources

Tracking efficiency 2% 2%
Branching ratio 1% 2%
Hadronic interaction 2–3% 0–2%
Material budget 0–5% 0–5%

Total uncertainty 5–9% 5–8% 5–8% 5–9% 4–8% 4–8%

Table 8: The most relevant systematic uncertainties for the long-lived particles K0
S, Λ (Λ̄), and Ξ, as a function

of SpT=1
O . “HM” in this table represents the SpT=1

O -unbiased spectra. Uncertainties are pT-dependent, and ranges
listed represent the minimum and maximum values presented in the final spectra (see text for details).

Topology: Jet-like Iso HM Jet-like/HM Iso/HM

K0
S

Selection cuts 3% 3–4% 3–4% Negl. 1%
Track pile–up 1% 1–3% 1% 0–2% 0–2%
Signal extraction 1–3% 1–3% 1–3% Negl. Negl.
Efficiency 2% 2% 2% 2% 2%
Material budget 4% 4% 4% – –
Experimental bias 4% 1% – 4% 1%
Total uncertainty 7% 6–7%% 5–6% 5% 2–3%

Λ(Λ)
Selection cuts 1–5% 2–6% 4–5% 0–1% 0–3%
Track pile–up 4–5% 5% 3–5% 0–1.5% 0–1%
Signal extraction 2–6% 2–6% 2–6% 0–2% 0–1%
Feed-down correction 1.0–1.5% 1.0–1.5% 1.0–1.5% Negl. Negl.
Efficiency 2% 2% 2% 2% 2%
Material budget 4% 4% 4% – –
Experimental bias 4% 1% – 4% 1%
Total uncertainty 8–10% 8–9% 7–9% 5% 3–4%

Ξ±

Selection cuts 0–1% 0–1% 0–1% Negl. Negl.
Track pile–up 2–3% 2–3% 2–3% 2% Negl.
Signal extraction 0–1% 0–1% 0–1% 1% Negl.
Efficiency 2% 2% 2% 2% 2%
Material budget 1–9% 1–9% 1–9% – –
Experimental bias 3% 3% – 3% 3%
Total uncertainty 5–10% 5–10% 4–10% 4% 3.5%
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The correlated sources apply equally across the different SpT=1
O selections, and cancel in the ratio. The

hadronic interaction and material budget represent the uncertainties in interactions between particles and
the ALICE detector, and the uncertainty in the hadronic interaction cross section of particles traversing
material in ALICE.

6.2 Systematic uncertainties on analyses of long-lived particles

The systematic uncertainties on long-lived weakly decaying particles, K0
S, Λ (Λ̄), and Ξ, are reported in

Table 8 and have similar components for all particle species:

– Selection criteria: estimated by carrying out the analysis using looser and tighter variations of the
selections in Tables 4 and 5.

– Track pile-up: assigned due to the requirement that at least one daughter (or bachelor track for Ξ)
has a fast-detector signal (ITS or TOF), see Sec. 4.2. This systematic uncertainty was found by
varying the number of required tracks and fast signals, and reflects how well these conditions are
modelled in the MC simulation.

– Signal extraction: estimated by varying the range in Minv for signal and background and the shape
of the background.

– Efficiency: accounts for possible variations of the tracking efficiency with multiplicity. The same
uncertainty, 2%, as used in a previous detailed study of multiplicity-dependent strangeness pro-
duction in

√
s = 13 TeV pp collisions [8] is assigned here.

– Material budget: estimated by varying parameters in the Monte Carlo description of the ALICE
apparatus, see Ref. [22] for details.

– Experimental bias: taken from Table 1. See discussion in Sec. 3 for details.

In addition to the above-mentioned uncertainties, there is also a contribution from evaluating the sec-
ondary yields for Λ (Λ̄) particles. It was determined by varying Ξ yields within their uncertainties, using
an alternative method of constructing the feed-down matrix only from charged Ξ baryons, as well as a
flat systematic uncertainty to account for the possible multiplicity dependence of the matrix (shown in
Table8 as “Feed-down correction").

Finally, we note that some of the systematic uncertainties cancel when we compare results in the same
multiplicity class but with various SpT=1

O selections. This uncertainty is shown in Table 8 as “jet-like/HM"
and “Iso/HM" and was estimated by doing the systematic variations for a jet-like selection and an unbi-
ased (same multiplicity) selection in parallel and comparing the ratios of pT spectra with and without the
variation. The studies were performed for various SpT=1

O and multiplicity selections. No strong depen-
dence was found inside the relevant selections (e.g. for tighter or looser jet-like selections). However, one
should note that such a dependence is hard to pin down with good precision due to the limited number
of candidates for very tight selections.

7 Results and discussion

The results presented in this section include the transverse momentum spectra, integrated yields, ⟨dN/dy⟩,
and mean transverse momentum, ⟨pT⟩, as a function of SpT=1

O , as well as pT-differential ratios between
particle species (mainly with respect to pions), and the pT-differential ratios-to-π relative to the SpT=1

O
unbiased baseline (referred to as the “double ratio”). Finally, the strangeness enhancement as a function
of SpT=1

O is investigated.
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In the following, the ⟨dN/dy⟩ and ⟨pT⟩ are calculated in the measured kinematic range, and corrected for
the limited range by extrapolating the spectra to the unmeasured pT regions using Levy–Tsallis fits. To
account for the additional systematic uncertainties arising from this procedure, modified fit ranges and
alternative parameterization of the spectra such as Boltzmann, mT-exponential, pT-exponential, Fermi-
Dirac (only for fermions) and Bose–Einstein statistics (only for bosons), and Boltzmann–Gibbs blast-
wave functions are used as variations. The resulting differences are added in quadrature to the system-
atic uncertainties obtained from the measured pT ranges to get the final systematic uncertainties for the
⟨dN/dy⟩ and ⟨pT⟩. More details about this procedure can be found in Ref. [8].

The experimental measurements will be compared with a broad selection of pp MC models, namely
PYTHIA 8.2 [7] (both the default Monash tune and a rope hadronization tune), Herwig 7.2 [6], and
EPOS-LHC [15]. PYTHIA 8.2 is a QCD-inspired model that is built around the Lund-string model for
hadronization [33]. The default Monash tune is unable to describe the strangeness enhancement in small
systems, while the rope extension (layers of overlapping strings that increase the string tension) of the
Lund-string model [11] has been introduced to accommodate this. For the PYTHIA 8.2 Ropes, note
that this article only utilizes the "Flavour Ropes" for the model predictions, without the string-shoving
mechanism [39] incorporated in the rope hadronization framework. Similarly, Herwig is a QCD-inspired
pp generator centered around a cluster hadronization model [6], which has recently been extended to
be able to describe the strangeness enhancement [40]. On the contrary, EPOS-LHC is a two-component
core-corona model, which incorporates QGP features in the core to explain the strangeness enhancement.

The effect of the SpT=1
O selection is discussed in Sec. 7.1 for the two multiplicity estimators. It is shown

that the spherocity selection for the events with the highest midrapidity multiplicity, 0–1% N|η |< 0.8
tracklets ,

gives the best control of the event “hardness”, i.e. select events with a large ⟨pT⟩. Results obtained using
this estimator are therefore first presented in Secs. 7.2– 7.4, followed by results obtained using other
multiplicity estimators in Sec. 7.5.

7.1 High-multiplicity estimators and SpT=1
O

If one considers a high-multiplicity pp collision to be built up from independent subcollisions (a tra-
ditional MPI picture [41]), then there will be a trivial isotropization with increasing multiplicity. As
previous ALICE measurements indicate a strong correlation between multiplicity and QGP-like effects,
such as strangeness production [1], it is important for the study presented here to disentangle this possible
trivial bias from the underlying physical properties of interest. To understand the impact of this on the
SpT=1

O selection, the ⟨pT⟩ and the average pion yield ⟨dNπ/dy⟩, with different multiplicity and spherocity
selection criteria are shown in Fig. 2. Results are shown for both the forward (V0M) and midrapidity
(N|η |< 0.8

tracklets ) multiplicity estimators (described in Sec. 2.1). A clear distinction is observed with respect to
how the different multiplicity estimators relate to the SpT=1

O selection. This effect is solely driven by the
rapidity region where the multiplicity is estimated, and not by properties of the ALICE apparatus.

It is observed that the V0M multiplicity selection maintains a similar ⟨pT⟩, but contains large variations
in ⟨dNπ/dy⟩ for the different SpT=1

O selections. In contrast, the N|η |< 0.8
tracklets selected events are characterized

by large differences in ⟨pT⟩ among the event classes, selecting events according to their hardness. The
implicit multiplicity dependence of SpT=1

O is minimized by sharply constraining the multiplicity using a
midrapidity multiplicity estimation. This implies that the N|η |< 0.8

tracklets multiplicity estimator, in tandem with
a SpT=1

O selection, is best at separating events based on their hardness.

Moreover, PYTHIA 8.2 model studies of the correlation between the average transverse momentum
transfer of the hardest parton–parton interaction, ⟨p̂T⟩, and the average number of multi-parton interac-
tions ⟨nMPI⟩ is presented in Fig. 3 for multiplicity and SpT=1

O intervals of 0–1%. For each estimator,
the multiplicity is calculated as the number of primary charged particles in the pseudorapidity interval(s)
covered by that estimator. Figure 3 shows that the hardest scattering for the events in the jet-like SpT=1

O
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Figure 2: Correlation between ⟨pT⟩ and ⟨dNπ/dy⟩ as a function of SpT=1
O , in the 0–10% and 0–1% V0M and

N|η |< 0.8
tracklets multiplicity classes. The total systematic uncertainties are represented by empty boxes. The statistical

uncertainty is smaller than the reported marker sizes.

0–1% event category is significantly harder than for the SpT=1
O -integrated, high-multiplicity reference.

This is observed both for the default PYTHIA 8.2 Monash, and with the rope hadronization framework
enabled. This feature is present when the multiplicity is estimated both in the N|η |< 0.8

tracklets and V0M pseu-
dorapidity regions, but the effect is particularly strong when the multiplicity is estimated at midrapidity.
Furthermore, the isotropic SpT=1

O 99–100% events are slightly softer than overall high-multiplicity events.
In conjunction with the softer ⟨pT⟩ presented in Fig. 2, these findings suggest that the isotropic topologies
are formed by multiple softer interactions, while the jet-like topologies have at least one hard scattering
that is significantly harder than for the SpT=1

O -integrated selection.

In the following, a complete set of results will be presented using N|η |< 0.8
tracklets 0–1% to highlight the im-

pact on the QCD dynamics of the extreme event topologies, while minimizing the effects of any trivial
multiplicity (system size) dependence. The results are first presented for jet-like and isotropic events,
utilizing a 0–10% and 90–100% SpT=1

O selection, respectively, to have a complete set of particle spectra.
Furthermore, selected results are also presented for the most extreme 1% percentiles of SpT=1

O .

7.2 Results of SpT=1
O -differential pT spectra at N|η |< 0.8

tracklets 0–1%

The pT spectra for jet-like and isotropic events are presented in Figures 4 and 5 for N|η |< 0.8
tracklets 0–1%

together with the SpT=1
O unbiased reference. The trends of the spectral shapes are consistent between

all observed particle species, showcasing a significant hardening (softening) of the pT in the low (high)
SpT=1

O selection, relative to the inclusive high-multiplicity event class, respectively. These trends are
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Figure 3: PYTHIA 8.2 correlation study between ⟨p̂T⟩ and ⟨nMPI⟩ as a function of SpT=1
O , in 0–1% V0M and

N|η |< 0.8
tracklets multiplicity classes. The default PYTHIA 8.2 Monash variation is compared to PYTHIA 8.2 with color

rope hadronization. The total systematic and statistical uncertainties are smaller than the marker sizes. The grey
band is an interpolation between the points, to more clearly illustrate the trend of each multiplicity and model
variation.

also well reflected in the model predictions. The PYTHIA 8.2 default Monash tune can describe the
qualitative trends of the SpT=1

O selection. However, a large quantitative deviation from data is observed in
the pT differential production of light-flavor hadrons, in particular the non-strange hadrons. The PYTHIA
8.2 rope tune is able to describe the measured data for strange hadrons very well, but overestimates the
total amount of produced non-strange hadrons. These large deviations are well known from previous
studies [16].

The SpT=1
O -differential average pT (⟨pT⟩) and yield ⟨dN/dy⟩ are reported in Fig 6 as a function of the

extracted particle masses. The measured ⟨pT⟩ values confirms what is qualitatively observed in the pT-
differential spectra: there is a significant pT-hardening in jet-like events, and this trend is consistent
across all measured light-flavor particle species. Furthermore, the ⟨pT⟩ of the integrated SpT=1

O high-
multiplicity events are consistent with the ⟨pT⟩ of the isotropic sample. This observation indicates that
average high-multiplicity events and SpT=1

O selected isotropic events are dominated by similar underlying
physics processes. This shows that the SpT=1

O -integrated event class is not the arithmetic average of
the jet-like and isotropic subsamples, indicating that jet-like events are rare outliers of a much more
homogeneous group of high-multiplicity events. This observation is of particular interest, and we will
focus on exploring it in further detail in the following. Furthermore, it also suggests that the isotropic
events are similar to the average high-multiplicity events before SpT=1

O selection and, contrarily, that the
jet-like events are rare outliers dominated by jet-like physics, and that QGP-like effects, such as radial
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Figure 4: Transverse momentum distribution of π,K,p, K∗0, φ , K0
S, Λ and Ξ for SpT=1

O classes selected for events
at high-multiplicity, determined by events in the top 1% of N|η |< 0.8

tracklets . The lower panels present the ratio between
the SpT=1

O -integrated and SpT=1
O -differential events. Statistical and total systematic uncertainties are shown by error

bars and boxes, respectively. The curves represent PYTHIA 8.2 model predictions of the same measurement.

flow and strangeness enhancement, are therefore suppressed for jet-like events.

The bottom panels of Fig. 6 show that the top-1% N|η |< 0.8
tracklets estimator constrains the variance in ⟨dN/dy⟩

between the different SpT=1
O classes, for all measured particles. Hence, any observed deviations in com-

parisons between N|η |< 0.8
tracklets 0–1% jet-like and isotropic events are unlikely to be driven by a trivial dif-
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Figure 5: Transverse momentum distribution of π,K,p, K∗0, φ , K0
S, Λ and Ξ for SpT=1

O classes selected for events
at high-multiplicity, determined by events in the top 1% of N|η |< 0.8

tracklets . The lower panels present the ratio between
the SpT=1

O -integrated and SpT=1
O -differential events. Statistical and total systematic uncertainties are shown by error

bars and boxes, respectively. Fig. 4 and Fig. 5 both show the same experimental data. The curves represent Herwig
7.2 and EPOS-LHC predictions of the same measurement.

ference in multiplicity. This is not only true for the π mesons as reported in Section 7.1, but across all
measured particle masses as a function of SpT=1

O .

Most of the presented models overestimate the ⟨pT⟩ for all particle species except K∗0, however, this
effect can be partially explained by the fact that the models and data are compared at different midrapidity
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Figure 6: The ⟨pT⟩ and ⟨dN/dy⟩ as a function of particle masses obtained for the various particle species in SpT=1
O

classes selected for high-multiplicity events, determined by the events in the 0–1% of N|η |< 0.8
tracklets . Upper (lower)

panels show the ⟨pT⟩ (⟨dN/dy⟩). The total systematic uncertainty is represented by the shaded regions. The
measured data is compared to predictions from PYTHIA8 Monash, PYTHIA8 Rope, EPOS-LHC, and Herwig 7.2.
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charged particle multiplicities [40]. Moreover, the models give a reasonable description of the particle
specie differences when one normalizes the ⟨pT⟩ relative to that of pions. Furthermore, one can note
that the PYTHIA 8.2 predictions, in particular with the enabled color rope framework, overestimates
the production of protons and pions, but qualitatively describes the production of most strange hadrons.
Moreover, the color rope framework seems to primarily affect the baryons, as the resonance particles
show only a small difference in the integrated yield between PYTHIA 8.2 color rope framework and the
default PYTHIA 8.2 Monash, in particular for the K∗0. In contrast, EPOS-LHC describes the production
rates of most particles within the uncertainties of the data, but is unable to capture the trend seen for
charged kaons. Herwig 7.2 is unable to capture most of the trends observed in the measured data.

7.3 Particle ratios for N|η |< 0.8
tracklets 0–1%

QGP-like effects, such as collective flow and strangeness enhancement, affect hadrons of heavier species
distinctly. Collective flow will boost heavier particles to larger pT than lighter particles, and strangeness
enhancement in previous measurements was found to scale with the number of strange quarks [1][8].
Due to its low mass, abundant production and lack of strangeness, the pion constitutes a good reference
for the QCD physics we are less interested in. Therefore, by studying the pT-differential particle-to-pion
ratios, we can potentially identify QGP-like features in the data.

To be able to observe the quantitative trends with the highest precision, we construct double ratio (DR),
as defined in Eq. 5 (

dN/dpT

dNπ/dpT

)
SpT=1

O

/(
dN/dpT

dNπ/dpT

)∫
SpT=1

O

, (5)

where the denominator represents the SpT=1
O -integrated, high-multiplicity event sample. The advantage of

the double ratio from an experimental standpoint is that most of the systematic uncertainties will cancel
in the ratio between the SpT=1

O -differential and SpT=1
O -integrated spectra, for the same species. The double

ratios therefore have the best precision in terms of systematic uncertainties of all the data presented in
this section. For the comparison with MC models, the DR means that focus can be shifted away from the
large discrepancies between data and model that exists for most particle species, to test if the quantitative
relative trends are the same in data and MC. Therefore, we advocate that these comparisons are the ones
that are most sensitive to the physics of SpT=1

O selection.

The pT-differential relative yield of identified light-flavor hadrons to π mesons, as well as the DR, for
the N|η |< 0.8

tracklets 0–1% multiplicity events are presented for the 10% SpT=1
O percentiles in Fig. 7 and Fig. 8,

compared with PYTHIA 8.2 predictions in the former, and EPOS-LHC and Herwig 7.2 predictions in
the latter.

The DR is presented in the lower panels, showcasing a clear enhancement of strangeness yield in
isotropic topologies, and a suppression in jet-like topologies. Remarkably, the DR for all presented
particle species decrease significantly for jet-like events. This can be interpreted as most particle ratios
being shifted towards higher pT in jet-like events, i.e. as the pT of the partonic sub-collisions increase,
the same hadrons will be produced with larger pT. The hadron-to-π ratios exhibit a small enhancement of
strange-hadron ratios in isotropic events, and a pronounced suppression in jet-like events. This suggests
that strange particle production is favored in isotropic topologies.

In Fig. 7, the default Monash tune of PYTHIA 8.2 quantitatively predicts the interplay between the SpT=1
O -

integrated high-multiplicity events and the SpT=1
O -differential event classes, but shows large quantitative

deviation for most of the measured data. The rope tune does slightly better, in particular for baryons, but
the deviation is for both tunes particularly large for the two resonance particles φ and K∗0. In contrast,
neither Herwig 7.2 or EPOS-LHC are able to quantitatively describe the pT-differential particle-to-π
ratios, as seen in Fig. 8.
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The PYTHIA 8.2 Monash tune and the rope hadronization framework are both able to qualitatively cap-
ture the trend between isotropic and jet-like topologies in the DR for all presented light-flavor particles.
Remarkably, there is no difference between the PYTHIA 8.2 Monash and the PYTHIA 8.2 Rope curves.
Even though the production rates of light-flavor hadrons are different, both variations are able to de-
scribe the trends presented for the SpT=1

O characterized events. EPOS-LHC and Herwig 7.2 are able to
qualitatively describe some trends, but are not able to describe the full evolution, mainly towards larger
pT.

By utilizing a narrower event selection, we present the pT-differential relative yield of identified light-
flavor hadrons to π mesons, as well as the DR, for the N|η |< 0.8

tracklets 0–1% multiplicity with 1% SpT=1
O per-

centiles in Fig. 9 and Fig. 10. The resonances are excluded from this measurement due to the low
number of events in the narrow SpT=1

O and multiplicity selection. This is an experimental challenge that
particularly affects both φ and K∗0, as the signals are contaminated by large combinatorial backgrounds.
Likewise, the large fluctuations in the MC predictions present in Fig. 9 and Fig. 10 are driven by an in-
sufficient amount of events in the double-differential selection, compounded by the low production rate
of the rare particle yields in the various models.

For all measured particles, the effect of the enhancement and suppression of light-flavor particles relative
to pions is stronger when approaching more extreme topologies, in particular the suppression of yield in
jet-like events. This is clearly seen both through the single particle-to-π ratio, and in the DR, contrasting
Fig. 7 with Fig. 9. In particular, one can note a large suppression of strange hadrons across the entire
measured pT range for events with jet-like topologies. This novel feature suggests that the abundance of
strange hadrons in high-multiplicity events are produced in events that are associated to soft physics in
terms of the azimuthal topology. This observation also implies that there is a significant amount of high-
multiplicity events that reflect the same rates of strangeness production found in low-multiplicity events.
ALICE has previously published studies of differential Λ/K0

S production in jets relative to the underlying
event (UE), where it was found that the ratio in the jet was far below that of the ratio in the UE [42]. This
is qualitatively similar to what we observe for the most extreme jet-like events in this study. One could
therefore understand the results obtained here as a generalization to jet-dominated events.

The p/π peak present for the 99–100% most isotropic events, as well as in the average 0–1% high-
multiplicity events, is significantly suppressed in 0–1% jet-like event sample. In conjunction with
strangeness suppression, this hints towards a decrease of QGP-like effects in events with extremely jet-
like topologies. Furthermore, the discrepancy between the p/π and K/π ratios at high-pT is interesting
to note, where the isotropic/jet-like ratios meet for the p/π while diverging for the K/π . The underlying
mechanism of this effect is currently not fully understood.
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Figure 7: Top panels show hadron-to-π ratios for 0–10% SpT=1
O classes selected for the 0–1% N|η |< 0.8

tracklets multi-
plicity events. Bottom panels present the hadron-to-π double ratios of SpT=1

O classes relative to SpT=1
O integrated

high-multiplicity events. Statistical and systematic uncertainties are shown by bars and boxes, respectively. Ex-
perimental results are compared with predictions from PYTHIA 8.2 Monash and Ropes.
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Figure 8: Top panels show hadron-to-π ratios for 0–10% SpT=1
O classes selected for the 0–1% N|η |< 0.8

tracklets multiplicity
events. Figure 7 and Fig. 8 both contain the same experimental data, but the vertical ranges are modified to
accommodate the model predictions. Bottom panels present the hadron-to-π double ratios of SpT=1

O classes relative
to SpT=1

O integrated high-multiplicity events. Statistical and systematic uncertainties are shown by bars and boxes,
respectively. Experimental results are compared with predictions from Herwig 7.2 and EPOS-LHC
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Figure 9: Top panels show hadron-to-π ratios for 0–1% SpT=1
O classes selected for the 0–1% N|η |< 0.8

tracklets multi-
plicity events. Bottom panels present the hadron-to-π double ratios of SpT=1

O classes relative to SpT=1
O integrated

high-multiplicity events. Statistical and systematic uncertainties are shown by bars and boxes, respectively. Ex-
perimental results are compared with predictions from PYTHIA 8.2 Monash and Ropes.
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Figure 10: Top panels show hadron-to-π ratios for 0–1% SpT=1
O classes selected for the 0–1% N|η |< 0.8

tracklets multiplicity
events. Figure 9 and Fig. 10 both contain the same experimental data, but the vertical ranges are modified to
accommodate the model predictions. Bottom panels present the hadron-to-π double ratios of SpT=1

O classes relative
to SpT=1

O integrated high-multiplicity events. Statistical and systematic uncertainties are shown by bars and boxes,
respectively. Data are compared with PYTHIA 8.2 Monash predictions, and the PYTHIA 8.2 rope hadronization
framework. The large fluctuations present in the Herwig 7.2 predictions are due to statistical limitations.
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In Fig. 9, the two PYTHIA 8.2 predictions are qualitatively able to describe some of the particle-to-π
ratios for the 1% SpT=1

O percentiles, but remarkably underestimate the pT-differential production of Ξ

baryons, as well as the isotropic production of both charged and neutral kaons. However, PYTHIA 8.2
is still able to qualitatively describe the interplay between high-multiplicity events, isotropic and jet-like
topologies in the DR. Similar to what was observed in Fig. 8 for the broader SpT=1

O selection, EPOS-LHC
and Herwig 7.2 are unable to accurately capture the interplay of the DR towards larger pT. EPOS-LHC
and Herwig 7.2 are both able to qualitatively describe most of the observed trends for the charged and
neutral kaons in Fig. 10, with a slight underestimation of the absolute production rates. However, both
model predictions are unable to describe the observed trends for the presented baryons.

In Fig. 11, baryon-to-meson ratios are presented for p/π , Λ/K0
S and Ξ/φ . These ratios are known to

be interesting observables, able to highlight features of radial flow and possible recombination [28].
While the Ξ/φ ratio is not usually associated to measurements of radial flow, phenomenological models
have different views of the effective net-strangeness of the φ meson. In Lund-string-like models, such
as PYTHIA 8.2, the φ meson is produced from the fragmentation of ss̄ pairs, making it effectively
double strange. On the other hand, statistical thermal models typically treats the φ meson as having no
strangeness, where the production instead is driven by the hadron mass.

The overall trends among the three ratios are qualitatively similar, even as the strangeness content in-
creases from p (|S|= 0) to Ξ (|S|= 2). Furthermore, one can apply a traditional hypothesis of radial flow
in larger collision systems, i.e., that a radial expansion of the system boosts heavier baryons out to high
pT, resulting in a depletion of baryons at low-pT. In this context, Fig. 11 highlights an abundance or
suppression of isotropic (jet-like) protons at intermediate pT in the p/π ratio, without the depletion (en-
hancement) of isotropic (jet-like) protons at low pT. The origin for the difference in the low-pT behavior
is still unclear, but we suspect that there is an interplay between soft radial flow and the hard suppression
in the ratios to pions, observed in the jet-like events through Figs. 7– 10. One should keep in mind that
the relative systematic uncertainties are smaller than the total systematic uncertainties reported in Fig. 11,
c.f., Sec. 6 for further discussion.

Similar trends are observed in the Λ/K0
S ratio, although systematic uncertainties in the lower panel does

not allow for a clear conclusion on the interplay between jet-like and isotropic events. The Ξ/φ ratio
suggests that there is a constant enhancement of Ξ baryons relative to produced φ mesons, within sys-
tematic uncertainties. The rope hadronization framework in PYTHIA 8.2 predicts both the single and
double ratios reasonably well. It is remarkable that even though PYTHIA 8.2 Monash fails to predict
the single ratios, both PYTHIA 8.2 Monash and Rope predictions show no significant deviations for the
double ratios. The K0

S/K ratios for the different multiplicity estimators are presented in Fig. 12. The
ratios highlight a consistency with unity, and showcase no significant SpT=1

O dependence. These results
verify that the modified SpT=1

O estimator is robust through a data-driven approach, complementing the
studies discussed in Sec. 3.

7.4 Integrated yields as a function of SpT=1
O

The integrated double ratio over the full pT range is presented in Fig. 13, for p, Λ, and Ξ. The fully inte-
grated yields are obtained by extrapolating the measured pT spectra for each particle species. Therefore,
the systematic uncertainties shown in Fig. 13 also account for the added uncertainty due to the extrapo-
lation procedure. This added uncertainty is particle species dependent given the different measured pT
ranges for each particle species, particularly affecting the Λ yields, which, as shown in Tab. 1, can only
be measured down to 1.0 GeV/c after SpT=1

O selection.

The results demonstrate that the strange-hadron yield increases as a function of SpT=1
O , with indications

of an ordering with strangeness content. In previous ALICE publications it was observed that in pp
collisions at

√
s = 13 TeV the charge particle density, dNch/dη , is a driving quantity for the enhancement
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Figure 11: p/π , Λ/K and Ξ/φ ratios for different SpT=1
O classes are obtained for 0 − 1% events measured by

the N|η |< 0.8
tracklets . Lower panels show the ratio to SpT=1

O -integrated event selection. Statistical and total systematic
uncertainties are shown by bars and boxes, respectively. The curves represent different model predictions of the
same measurement.
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Figure 12: The neutral-to-charged K0
S/K ratios as a function of different multiplicity estimators and SpT=1

O . Statis-
tical and total systematic uncertainties are shown by bars and boxes, respectively. The curves represent PYTHIA
8.2 model predictions of the same measurement.

of strange hadrons [1]. For the results presented in Fig. 13, the dNch/dη at midrapidity is restricted (see
Fig. 2), which allows one to directly test if SpT=1

O is directly sensitive to strangeness enhancement. We
find that the strangeness production is suppressed in events with jet-like topologies, and slightly enhanced
in softer, isotropic event topologies.
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Figure 13: The double ratios of integrated yields as a function of SpT=1
O for the spectra of top-1% N|η |< 0.8

tracklets . The
yield is estimated by extrapolating the spectra over the full pT range. Statistical and systematic uncertainties are
shown by bars and boxes, respectively. The grey band around unity represents the systematic uncertainty of the
pion measurement.

In order to make the most precise comparison between the measured data and model predictions, the
integrated double ratios are presented as a function of SpT=1

O for the measured pT ranges in Fig. 14 and
Fig. 15, for p, Λ and Ξ. The two figures contain the same data points, but use different ordinate ranges
in the ratio to accommodate the MC-generator predictions. The yields for the measured pT ranges are
estimated by counting the bin entries in each pT spectra, without the use of the Levy–Tsallis extrapola-
tion. Therefore, the systematic uncertainties for the integrated yields utilizing the measured pT ranges
are significantly reduced compared to the extrapolated yields presented in Fig. 13. Moreover, while the
fraction of yields gained from the extrapolation is species dependent, it was tested that the relative in-
crease of yields is consistent across all spherocity classes and the high-multiplicity reference. As the
integrated yields presented in Figs. 13 – 15 are self-normalized, the relative yields obtained from the
extrapolation therefore largely cancels. As such, one obtains the same physics conclusions by utilizing
either extrapolated or measured pT ranges, which is reflected in the comparison between Fig. 13 and
Fig. 14.
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Figures 14 and 15 highlight that the relative decrease of Ξ production in the most jet-like events is of
order 20%. We estimate, based on Ref. [1], that to obtain a similar effect driven solely by multiplicity,
one would have to decrease the multiplicity by approximately 60 to 70%. Given that the difference in
multiplicity between the spherocity event classes is roughly 10%, this indicates a substantial lifting of
the strangeness suppression due to the event topology selection.
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Figure 14: The double ratios of integrated yield as a function of SpT=1
O are represented in the top-1% of N|η |< 0.8

tracklets .
The yields are integrated in the measured pT ranges for each particle species. Statistical and systematic uncer-
tainties are shown by bars and boxes, respectively. The curves represent different model predictions of the same
measurement. The grey band around unity represents the systematic uncertainty of the pion measurement.

This novel feature can help to further elucidate the underlying mechanism(s) that drives the strangeness
enhancement. Remarkably, these findings suggest that charged particle production is not driven by a
single source, but instead driven by several sources with varying strangeness-to-π production rates, with
the jet-like events showcasing a level of strangeness production usually found at lower multiplicities. In
combination with the pT-differential ratios from Figs. 7 – 10, as well as the baryon-to-meson ratios in
Fig. 11, one can characterize jet-like events as exhibiting a large decrease of relative production at inter-
mediate pT, with an overall high degree of strangeness suppression in the total yields. Isotropic events
can be characterized completely opposite to jet-like events, containing a boost of particles at interme-
diate pT, with enhanced strangeness production in the pT-integrated yields. These findings suggest that
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Figure 15: The double ratios of integrated yield as a function of SpT=1
O are represented in the top-1% of N|η |< 0.8

tracklets .
The yields are integrated in measured pT ranges for each particle species. Statistical and systematic uncertainties
are shown by bars and boxes, respectively. Figure 14 and Fig. 15 both contain the same experimental data, but
the vertical ranges are modified to accommodate the model predictions. The curves represent different model
predictions of the same measurement. The grey band around unity represents the systematic uncertainty of the
pion measurement.

one is able to control the degree of QGP-like effects in small systems by categorizing events based on
the azimuthal topology. Furthermore, it demonstrates that SpT=1

O -integrated high-multiplicity events are
dominated by soft processes, and provides an important input to understanding the ALICE observation
of universal scaling of strangeness enhancement with multiplicity [1].

The PYTHIA 8.2 Rope hadronization framework and EPOS-LHC models, which incorporate two-component
phenomenologies, are able to predict the qualitative trend of enhancement and suppression of strange par-
ticle production as a function of SpT=1

O , albeit with a different mass-ordering for Λ and Ξ. In contrast,
both the PYTHIA8 Monash and Herwig 7.2 predictions are unable to describe the reported experimental
observation. Surprisingly, Herwig 7.2 predicts the opposite trend; enhancement of all three baryons in
jet-like events and a suppression in isotropic events. If this is a generic feature of the new strangeness-
enhancement process introduced in Herwig 7. 2[6], then the results presented in this article appear to
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rule out this mechanism. Furthermore, it might seem counterintuitive that there can be large differences
between model predictions in Fig. 14 and Fig. 15, while those same models had similar trends for the
pT-differential double-ratios presented in Figs. 7–10. However, it is important to note that the integrated
double-ratios are weighted by the relative yields in each pT interval. Therefore, the ⟨pT⟩ of each particle
species play a major part in the integrated particle yields, see Fig. 6.

The comparison between model and data suggests that models without a universal hadronization scheme,
either through the core–corona in EPOS-LHC, or through the color ropes in PYTHIA 8.2, are able to
qualitatively reproduce the observed trends. In contrast, the default PYTHIA 8.2 Monash variation,
based on the concept of jet universality, is unable to capture the feature presented in the data.

7.5 SpT=1
O results with a broadened multiplicity range

In Sec. 7.3, it was shown that the 0–1% topology selection produced the largest effects, seen in Fig. 9 and
Fig. 10. However, the resonance particles had to be excluded in those measurements due to statistical
limitations related to the signal extraction. Therefore, in this Section, we report on SpT=1

O measurements
with a broader multiplicity selection for the different SpT=1

O classes. We implement the broadening of the
multiplicity estimation in two different ways:

1. First, we broaden the midrapidity multiplicity estimation to 0–10%, while simultaneously con-
stricting the SpT=1

O event selection to the top 1% quantile. This allows for a broader multiplicity
range, while retaining the extreme topology selection, gaining a factor 10 in the number of events.

2. Secondly, we investigate top-1% multiplicity at forward rapidity in 0–10% SpT=1
O quantiles. This is

to study the impact of a broader ⟨dNπ/dy⟩, as well as being able to compare midrapidity to forward
rapidity multiplicity estimation between roughly similar dNch/dη , as is seen in Fig. 2.

Fig. 16 illustrates the SpT=1
O -differential ratios to (π++π−) with multiplicity measured at midrapidity,

with a simultaneous broadened multiplicity (N|η |< 0.8
tracklets 0–10%) and tightened SpT=1

O selection criteria,
compared to the measurement presented in Sec. 7.3.

The double ratios for K∗0 suggest that the production in isotropic topologies is similar to that of average
high-multiplicity events. In contrast, there is a pronounced structure of the ratio for jet-like topologies,
highlighting an overall suppression of K∗0 production. The φ has similar features: suppression in jet-
like events (qualitatively the same trend as for Ξ), and consistent with unity for isotropic events. For
all presented particle species, an overall narrower SpT=1

O selection highlights a large suppression of the
pT-differential yield of strange hadrons relative to pions in events with extreme jet-like topologies. Fur-
thermore, there is a larger deviation among the four different models compared to the more constrained
multiplicity quantile, in particular in jet-like topologies for protons, Ξ, and K∗0. However, the overall
trends are well predicted. Both resonance particles favor production in softer events containing QGP-like
features, where the decrease of K∗0 production in jet-like events could potentially be due to a rescattering
effect. While the origin of the suppression of φ production in jet-like events is not fully understood, the
behavior is consistent with the strange particles measured in this study.

The particle ratios to (π++π−) for events with forward rapidity multiplicity estimations are presented
in 0–10% SpT=1

O event classes in Fig. 17. The reported effects of SpT=1
O event-selection while estimating

multiplicity through the V0M is comparatively weak to either percentile of tracklets, both for the looser
and stricter multiplicity SpT=1

O criteria. Both PYTHIA models and Herwig 7.2 are able to accurately
describe the interplay between different SpT=1

O event classes, while estimating multiplicity in the forward
rapidity region. In contrast, EPOS-LHC overestimates the relative enhancement and suppression of Ξ

and Λ in isotropic and jet-like topologies, respectively. The midrapidity multiplicity estimations (both
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0–1% and 0–10%) showcase an increased sensitivity of strange hadron production as a function of SpT=1
O

compared to the forward rapidity multiplicity estimation, even though the fractional ⟨dNπ/dy⟩ difference
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Figure 16: Top panels show hadron-to-π ratios for 0–1% SpT=1
O classes selected for the 0–10% N|η |< 0.8

tracklets multi-
plicity events. Bottom panels present the hadron-to-π double-ratios of SpT=1

O classes relative to SpT=1
O integrated

high-multiplicity events. Statistical and systematic uncertainties are shown by bars and boxes, respectively. Ex-
perimental results are compared with predictions from PYTHIA 8.2 Monash and Rope variants.
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Figure 17: Top panels show hadron-to-π ratios for 0–10% SpT=1
O classes selected for the 0–1% V0M multi-

plicity events. Bottom panels present the hadron-to-π double-ratios of SpT=1
O classes relative to SpT=1

O integrated
high-multiplicity events. Statistical and systematic uncertainties are shown by bars and boxes, respectively. Ex-
perimental results are compared with predictions from PYTHIA 8.2 Monash and Rope variants.
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between the SpT=1
O event classes in this case are similar. This finding suggests that the effects of the

relative enhancement (suppression) of light-flavor hadron production to π mesons in isotropic (jet-like)
topologies are smaller while estimating multiplicity with V0M, and that one can study different physical
properties relative to the rapidity ranges in which the multiplicity is estimated.

Finally, in Fig. 18 the pT-integrated yields are presented as a function of SpT=1
O following the two ex-

panded multiplicity estimations. It was shown in Sec. 7.4 that the results utilizing the measured pT ranges
were consistent with yields obtained from integrating over the full, extrapolated pT range. Therefore, for
the sake of brevity, this section will only include yields integrated over the measured pT ranges, to allow
for maximal precision when compared with model predictions. Remarkably, the SpT=1

O -dependent en-
hancement of strange hadrons seems to vanish once the multiplicity estimation is performed at forward
rapidity. Similarly to Figs. 14 and 15, the effect of strangeness enhancement is consistent between dif-
ferent ranges of the midrapidity multiplicity estimation, and the effect is suggested to be slightly stronger
in the more extreme multiplicity case.
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Figure 18: The double ratios of integrated yield as a function of SpT=1
O are presented for V0M 0–1% (upper) and

N|η |< 0.8
tracklets 0–10% (lower). Left and right panels show the same data points, but with different model predictions.

Statistical and total systematic uncertainties are shown by bars and boxes, respectively. The curves represent
different model predictions of the same measurement.

Both EPOS-LHC and the PYTHIA 8.2 rope hadronization framework are able to qualitatively describe
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the enhancement of Λ and Ξ with increasing SpT=1
O , while simultaneously predicting the insensitivity of

strange particle production as a function of SpT=1
O when estimating multiplicity at forward rapidity.

Finally, due to the increase of the number of events from the broader multiplicity interval, it is possible
to measure the integrated φ over the full SpT=1

O range. This is presented in Fig. 19, where integrated
φ yields are compared to Ξ yields as function of SpT=1

O , for N|η |< 0.8
tracklets 0–10%, relative to the equivalent

(π+π−) yields. It is observed that there is no significant modification of the relative φ meson yield as a
function of SpT=1

O within systematic uncertainties. This is in clear contrast to the features exhibited when
measuring the relative Ξ production. Given the similarity of the proton curves in Fig. 18, these results
imply that the φ meson has the properties of particles with net-zero strangeness content, when measured
as a function of SpT=1

O . The resulting suppression or enhancement of relative hadron yields as a function
of SpT=1

O are therefore suggested to be driven by the hadron mass, rather than by the effective strangeness
of the hadron.

The experimental data is compared with both PYTHIA 8.2 Ropes and EPOS-LHC, which, as shown in
previous sections of this article, give the most accurate predictions of the observed trends. Both generator
models are also able to quantitatively predict the dynamics of the relative φ yields as a function of SpT=1

O .
However, in PYTHIA 8.2, one would naively expect that the φ dynamics should follow the same trend
as Ξ, as both are effectively double-strange. This observed difference suggests that the Ξ enhancement
in the PYTHIA 8.2 rope model can mainly be attributed to addition of Junction formations, which only
enhances baryon production.

8 Summary and conclusions

In this article, we have presented the production of strange and non-strange light-flavor particles at midra-
pidity (|η | < 0.8) in high-multiplicity pp collisions at

√
s = 13 TeV, as a function of the unweighted

transverse spherocity SpT=1
O . In order to account for the biases between weakly-decaying and charged

primary hadrons, we elaborate on how the observable was updated from the traditional transverse sphe-
rocity.

The multiplicity was estimated in two different kinematic regions: at midrapidity (|η | < 0.8) by mea-
suring the activity in the SPD (N|η |< 0.8

tracklets ), and at forward rapidities (2.8 < η < 5.1 and −3.7 < η <−1.7)
by measuring the activity in both sides of the V0 forward detector (V0M amplitude). In Fig. 2, we report
that the different SpT=1

O event classes have a large variance in local charged particle density when esti-
mating the multiplicity through the V0M, while being roughly equal in terms of ⟨pT⟩. In contrast, the
N|η |< 0.8

tracklets -selected SpT=1
O events are constrained in terms of ⟨dNπ/dy⟩ within 10%, while having a large

variance in ⟨pT⟩. We conclude that estimating multiplicity at midrapidity allows one to isolate and study
the dynamics of particle production in events that are driven by either soft or hard-QCD physics.

The main features of this analysis are reported in the particle-to-pion ratios in Figs. 7– 10, highlighting
an enhancement of strange hadrons in events with an isotropic topology, and a strong suppression in
events with a jet-like topology. This indicates that events with an isotropic topology describe the average
high-multiplicity event fairly well, while events heavily influenced by jet-like physics are outliers. For
the baryon-to-meson ratios presented in Fig. 11, the SpT=1

O selection also highlights an enhancement at
intermediate pT in the p/π , Λ/K0

S and Ξ/φ ratios, but without a depletion of low-pT particles for jet-like
events. The effects are consistent among the three ratios, and the φ exhibits a behavior similar to the
other strange particles. However, the pT-integrated yield of φ as a function of SpT=1

O presented in Fig. 19
highlights features similar to other non-strange particles, reporting no observed modification of relative
φ meson production as a function of SpT=1

O .

The presented models are not able to describe the quantitative observations found in data for the particle
ratios, but are overall able to describe the interplay between SpT=1

O classified events at high-multiplicity
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Figure 19: The double ratios of integrated yield as a function of SpT=1
O in N|η |< 0.8

tracklets 0–10% for φ and Ξ. Statistical
and total systematic uncertainties are shown by bars and boxes, respectively. The curves represent different model
predictions of the same measurement

with good accuracy in the double ratios. Remarkably, even though the production mechanisms for the
PYTHIA 8.2 Monash and PYTHIA 8.2 Ropes variations (ropes formed by layers of overlapping strings)
are qualitatively different, they both predict the interplay with only minor differences between them.

Finally, we report the relative integrated strange particle yield to pions as function of SpT=1
O in Fig. 14.

It is found that one can achieve a similar strangeness enhancement found in multiplicity differential
analyses, by fixing the local charged particle density and varying the azimuthal topology, instead of
only varying the charged-particle density. This indicates that particle production at high multiplicities
is driven by more than a single source, with different strangeness-to-pion production rates. The same
measurement is then performed in high-multiplicity events selected at forward rapidities. Fig. 2 high-
lights that the differential-SpT=1

O selection in this event-class primarily varies the local charged particle
density approximately a factor of two. Therefore, when contrasted to the multiplicity-dependent ALICE
measurements in Ref. [1], one could naively expect to observe strangeness suppression and enhancement
due to the difference in charged particle density alone. Surprisingly, we show in Fig. 18 that this effect
is negligible when estimating multiplicity in the forward-rapidity region, with no significant strangeness
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enhancement or suppression within systematic uncertainties. This goes contrary to expectations based
on previous ALICE publications, and the effect is currently not well understood. PYTHIA 8.2 Monash
and Herwig 7.2 are unable to describe this effect, but PYTHIA 8.2 Ropes and EPOS-LHC qualitatively
capture the trend, showcasing a large suppression of strangeness production in jet-like events, although
with a mass ordering that is incompatible with the experimental data.

We conclude that with SpT=1
O , one is able to categorize events into classes based on characteristic az-

imuthal topologies, from jet-like events associated with hard-QCD physics, to isotropic events associ-
ated with soft-QCD physics. Furthermore, the findings presented in this article suggest that average
high-multiplicity events, even in the most extreme cases, are dominated by soft processes, where rare
hard processes play little or no role for bulk observables.
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