NOTIZEN

Zur Reaktion von PhSSiMe₃ mit [$CoCl_2(PPh_3)_2$] und (NBu_4)[$CoCl_3(PPh_3)$]. Die Kristallstrukturen von (NBu_4)₂[$Co_4(SPh)_6Cl_4$], [$Co_4(SPh)_6Cl_2(POPh_3)(PPh_3)$] und (NBu_4)[$Mn_2(SPh)_3(CO)_6$]

Reaction of PhSSiMe₃ with [CoCl₂(PPh₃)₂] and (NBu₄)[CoCl₃(PPh₃)]. The Crystal Structures of (NBu₄)₂[Co₄(SPh)₆Cl₄], [Co₄(SPh)₆Cl₂(POPh₃)(PPh₃)] and (NBu₄)[Mn₂(SPh)₃(CO)₆]

Dieter Fenske*, J. Meyer und K. Merzweiler

Institut für Anorganische Chemie der Universität Frankfurt, Niederurseler Hang, D-6000 Frankfurt am Main 50

Z. Naturforsch. **42b**, 1207–1211 (1987); eingegangen am 18. Mai 1987

X-Ray Crystal Structures of Co- and Mn-Clusters, Thiolate Ligands

(NBu₄)[Mn₂(SPh)₃(CO)₆] (4). Each Mn atom is bound to three CO and three μ_2 -SPh ligands. The Mn-Mn contact (318.5 pm) does not indicate metal-metal bonding.

Einleitung

Bei Umsetzungen von [MCl₂(PPh₃)₂] (M = Co, Ni) mit E(SiMe₃)₂ (E = S, Se) entstehen Komplexe wie z.B. [Co₄Se₄(PPh₃)₄], [Co₆E₈(PPh₃)₆], [Co₉E₁₁(PPh₃)₆], [Ni₆Se₅(PPh₃)₆], [Ni₁₂Se₁₂(PEt₃)₆], [Ni₁₅Se₁₅(PPh₃)₆] und [Ni₃₄Se₂₂(PPh₃)₁₀] [1]. Die Charakterisierung größerer Cluster wird dadurch erschwert, daß deren Löslichkeit mit steigendem Molekulargewicht abnimmt. Wir haben nun versucht, durch Verwendung von PhSSiMe₃ besser lösliche Derivate zu synthetisieren.

Ergebnisse

Bei der Reaktion von (NBu₄)[CoCl₃(PPh₃)] (Bu = n-C₄H₉) [2] mit PhSSiMe₃ erfolgt in Toluol als Lösungsmittel eine langsame Verfärbung von blau nach grün. Nach mehreren Stunden fällt ein grünes Öl aus, das sich in einen grünen Niederschlag (1) umwandelt.

Durch Überschichtung einer Lösung von $\mathbf{1}$ in $C_2H_4Cl_2$ mit Heptan erhält man ein grünes kristallines Produkt. Setzt man dagegen $[CoCl_2(PPh_3)_2]$ mit PhSSiMe₃ (in THF) um, so bildet sich ein olivgrüner Niederschlag der Zusammensetzung $\mathbf{2}$. $\mathbf{2}$ kristallisiert aus $C_2H_4Cl_2$ in Form grüner Kristalle aus und reagiert sehr rasch mit O_2 unter Bildung von $\mathbf{3}$.

$$\begin{array}{c} (NBu_4)_2[Co_4(SPh)_6Cl_4] & \underbrace{(NBu_4)[CoCl_3(PPh_3)]}_{ \textbf{1}} PhSSiMe_3 \end{array}$$

$$\frac{[CoCl_2(PPh_3)_2]}{[Co_4(SPh)_6Cl_2(PPh_3)_2]} = [Co_4(SPh)_6Cl_2(POPh_3)(PPh_3)]$$

$$3$$

Die Reaktion von 1 mit NaMn(CO)₅ führt nicht zur Bildung eines Heterometallclusters, sondern zur Synthese des zweikernigen Mangankomplexes 4.

$$\begin{array}{c} (NBu_4)_2[Co_4(SPh)_6Cl_4] \xrightarrow{4[NaMn(CO)_5]} \\ \textbf{1} \\ (NBu_4)[Mn_2(SPh)_3(CO)_6] \\ \textbf{4} \end{array}$$

4 entsteht in Ausbeuten von 80% und bildet aus Essigsäureethylester gelbe Kristalle.

In 1–3 besitzt Co die Ladung 2+, dementsprechend sind diese Komplexe paramagnetisch und in den $^{31}\text{P-}$ und $^{1}\text{H-}\text{NMR-}\text{Spektren}$ erkennt man nur sehr breite Signale. Ein ESR-Signal kann bis zu einer Temperatur von -150 °C nicht beobachtet werden. Dieser Befund ist in Übereinstimmung mit Resultaten, die bei vielen d⁷-high-spin-Komplexen gefunden wurden. Im diamagnetischen 4 (Mn¹⁺) findet man im $^{1}\text{H-}\text{NMR-}\text{Spektrum}$ die Resonanzsignale der Phenylprotonen bei $\delta = 8,0$ (d) und 7,1-7,3 (m); die Protonen der (NBu₄)-Gruppe erscheinen bei 0,94,1,30 und 2,73 ppm (in CDCl₃). Im IR-Spektrum (KBr-Verreibung) von 4 erkennt man 3 $\tilde{\nu}$ -CO-Schwingungen bei 1987, 1905 und 1985 cm $^{-1}$.

Zur Klärung der strukturellen Verhältnisse bestimmten wir von 1, 3 und 4 die Kristallstrukturen. Eine Kristallstrukturanalyse von 2 war nicht durchführbar, da keine geeigneten Kristalle zu erhalten waren.

^{*} Sonderdruckanforderungen an Prof. Dr. Dieter Fenske. Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932–0776/87/0900–1207/\$ 01.00/0

Kristallstrukturen von 1, 3 und 4 [3]

Tab. I gibt die kristallographischen Daten von **1**, **3** und **4** wieder. Die Abbildungen 1–3 enthalten die Molekülstrukturen dieser Verbindungen.

Danach besteht 1 aus isolierten NBu₄-Kationen und einem vierkernigen Co-Cluster (Abb. 1). Im Clusteranion werden die vier Co-Atome (Co 1–Co 4) durch sechs μ_2 -SPh-Brücken (S1–S6) verbunden. Als Folge davon entsteht ein Adamantan-ähnlicher Käfig, in dem alle Co-Atome verzerrt tetraedrisch von jeweils einem Cl⁻- und drei SPh⁻-Liganden umgeben sind. Erst kürzlich konnte von Krebs und Henkel eine zu 1 analoge Verbindung synthetisiert werden [4].

Die in **1** gefundene Struktur gehört zu einem häufig beobachteten Strukturtyp der Zusammensetzung $[M_4(SR)_{10-n}X_n]^{2-}$ (M^{2+} = Fe, Co, Cd, Zn; X = Cl, Br, SR) [5]. In Übereinstimmung mit den dort beobachteten Bindungsverhältnissen ist das Co₄-Tetraeder leicht verzerrt (Co···Co: 376,0-392,9 (2) pm). Abb. 2 gibt die Molekülstruktur von **3** wieder [6]. Danach ist **3** ein Derivat von **1**, bei dem durch Substi-

tution von zwei Cl⁻-Liganden durch eine PPh₃- und eine POPh₃-Gruppe das neutrale **3** gebildet wird. Die Bindungslängen und Bindungswinkel im "Adamantan-Käfig" (Co1–Co4, S1–S6) sind nahezu identisch mit den in **1** gefundenen Werten. Der ungewöhnlich lange Abstand Co1–P1 (249,0 (14) pm) läßt sich mit einer schwachen Wechselwirkung erklären [1]. Durch die Koordination des POPh₃-Liganden an Co2 wird der P–O-Abstand (P2–O1: 149,8 (24) pm) gegenüber dem freien POPh₃ praktisch nicht beeinflußt [7].

Die Molekülstruktur des [Mn₂(SPh)₃(CO)₆]⁻-Anions zeigt Abb. 3. Der gleiche Komplex wurde bereits von McDonald durch Reaktion von Mn₂(CO)₁₀ mit (NEt₄)SPh dargestellt, eine Strukturbestimmung konnte jedoch nicht durchgeführt werden [8]. Betrachtet man SPh⁻ als 4-Elektronendonator, so erhalten die Mn-Atome (Mn1, Mn2) mit den drei CO-Liganden jeweils 18 Valenzelektronen. In Übereinstimmung damit liegt keine Mn-Mn-Bindung vor (Mn1···Mn2: 318,5 (2) pm). Die Struktur des zweikernigen Anions enthält zwei schwach verzerrt okta-

Tab. I. Kristallographische Daten von 1, 3 und 4.

Formel	$C_{68}H_{102}Cl_4Co_4N_2S_6$	$C_{72}H_{60}Cl_2Co_4OP_2S_6$	$C_{40}H_{51}Mn_2NO_6S_3$
Raumgruppe	$P2_1/n$	C2/c	P Ī
Zahl der Formeleinheiten	4	8	2
Meßtemperatur [K]	293	293	293
Gitterkonstanten [pm] [°]	a = 1345.9(9)	a = 4036,9 (23)	a = 1092,4(3)
	b = 4205.8 (40)	b = 1779,7 (16)	b = 1165,7(4)
	c = 1368,2 (8)	c = 2518.8 (20)	c = 1796.6(5)
	$\alpha = 90.0$	$\alpha = 90.0$	$\alpha = 108,33(2)$
	$\beta = 91,19(4)$	$\beta = 105,48 (6)$	$\beta = 90.08(2)$
	$\gamma = 90.0$	$\gamma = 90.0$	$\gamma = 91,60(2)$
Zellvolumen [Å ³]	7743.1	17439.8	2174,1
D _{ber.} [g/cm ³]	1.31	1.15	1,30
Datensammlung	4-Kreisdiffraktometer Siemens AED II, Mo(K _a)-Strahlung		
g	Graphitmonochromator, θ -scan		
Meßbereich	3-55°	3-45°	$3-60^{\circ}$
Zahl der gemessenen Reflexe	18808	13108	12948
für die Verfeinerung benutzt			
$(I > 2\sigma(I))$	7849	3721	7290
Absorptionskorrektur		Psi-Scan	
$\mu(MoK_a)$ [cm ⁻¹]	10,7	9,8	28,6
Atomformfaktoren		neutrale Atome	
Verfeinerung	Co, S, Cl anisotrop	Co anisotrop	Mn, S, C, N, O aniso-
	N, C isotrop	P, S, C isotrop	trop
	Die C-Atome der	Ph als starre Gruppe	H isotrop
	(NBu ₄)-Gruppe sind	verfeinert.	
	fehlgeordnet.		
R-Wert	0.082	0,12	0,056
	* =		
$R = \frac{\Sigma F_o - F_c }{\Sigma F_o }$			
$R_{\rm w}$	0,078	0,11	0,048
Verwendete Programme	SHELX 76, MULTAN 80	, SHELXS 86	SHELXTL

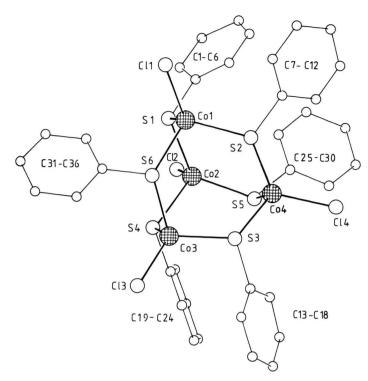


Abb. 1. Molekülstruktur des $[\text{Co}_4(\text{SPh})_6\text{Cl}_4]^{2-}$ Anions im Kristall. Wichtigste Bindungslängen [pm] und Bindungswinkel [°]: Co-Cl: 223,0-225,3 (3), Co-S: 230,2-234,5 (3), Co1-Co2: 376,1 (2), Co1-Co3: 392,9 (2), Co1-Co4: 388,1 (2), Co2-Co3: 382,6 (2), Co2-Co4: 378,6 (2), Co3-Co4: 381,5 (2), S-C(Ph): 177,4-180,4 (10), S-S: 344,7-403,3 (3); Co-Co-Co: 58,0-62,4 (1), C1-Co-S: 105,3-113,5 (1), S-Co-S: 97,4-120,9 (1). Im (NBu₄)-Kation: N-C: 150-155 (1), C-C: 151-156 (2).

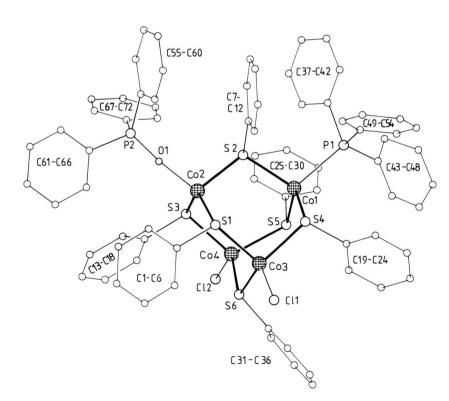
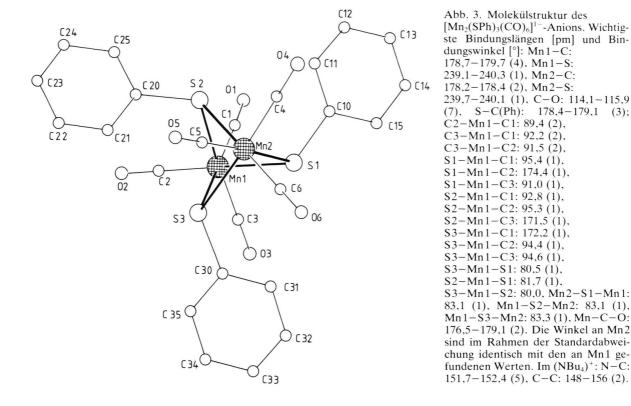



Abb. 2. Molekülstruktur des [Co₄(SPh)₆Cl₂(POPh₃)(PPh₃)] im Kristall. Wichtigste Bindungslängen [pm] und Bindungswinkel [°]: Co-Cl: 220,4-220,8 (11), Co-S: 225,3-236,7 (10), Co1-Co2: 377,2 (5), Co1-Co3: 373,7 (5), Co1-Co4: 380,2 (5), Co2-Co3: 374,5 (6), Co2-Co4: 373,2 (6), Co3-Co4: 374,5 (6), S-S: 339,6-404,9 (10), Co1-P1: 249,0 (13), Co2-O1: 192,1 (28), S-C(Ph): 176-182 (2), P2-O1: 149,8 (24), P-C(Ph): 174-181 (2); Cl-Co-S: 105,3-116,0 (5), S-Co-S: 98,1-122,3 (4), P-Co-S: 106,1-112,7 (4), O-Co-S: 107,6-110,3 (9).

edrisch koordinierte Manganatome, die über drei μ_2 -SPh-Liganden (S1–S3) verknüpft werden. Die Mn–S-Bindungen liegen mit 239,1–240,3 (1) pm im zu erwartenden Bereich [9]. Auch die übrigen Bindungslängen weisen keine Besonderheiten auf. Im diamagnetischen [Mn₂(SPh)₃(CO)₆]⁻ liegt Mn in der Oxidationsstufe 1+ vor. Durch Oxidation von 4 mit AgBF₄ (in CH₂Cl₂) entsteht eine rote Lösung, die sich bereits nach wenigen Minuten wieder entfärbt. Bei dem intermediär gebildeten Oxidationsprodukt könnte es sich um eine gemischt valente Verbindung handeln, die neben Mn¹⁺ Mn²⁺ enthält. Im ESR-Spektrum beobachtet man ein Signal von elf Linien ($a_{Mn} = 32\,G$, g = 2,01) [8, 10].

Experimenteller Teil

 $(NBu_4)_2[Co_4(SPh)_6Cl_4]$ (1)

6,00 g (8,96 mmol) (NBu₄)[CoCl₃(PPh₃)] werden in 100 ml Toluol suspendiert. Dazu tropft man eine Lösung von 5 g (27,42 mmol) PhSSiMe₃. Die Lösung verfärbt sich langsam von blau nach grün. Nach 2 d Reaktionszeit filtriert man den grünen Niederschlag

von ${\bf 1}$ ab (Ausbeute 3,2 g). Durch Überschichtung einer Lösung von ${\bf 1}$ (in $C_2H_4Cl_2$) mit Heptan erhält man ${\bf 1}$ in Form grüner Kristalle.

```
C<sub>68</sub>H<sub>102</sub>Cl<sub>4</sub>Co<sub>4</sub>N<sub>2</sub>S<sub>6</sub> (1517,5)
Ber. C 53,82 H 6,78 Co 15,53,
Gef. C 53,40 H 6,70 Co 15,38.
```

 $[Co_4(SPh)_6Cl_2(PPh_3)_2]$ (2)

10 g (16,88 mmol) [CoCl₂(PPh₃)₂] werden in 100 ml THF suspendiert und mit einer Lösung von 5 g (27,42 mmol) PhSSiMe₃ in 20 ml THF versetzt. Nach einigen Stunden verfärbt sich die Lösung von blau nach grün und ein grüner Niederschlag fällt aus. Der Rückstand (13 g) wird abfiltriert und aus 80 ml $C_2H_4Cl_2$ umkristallisiert. Dabei gehen etwa 4 g 2 in Lösung. Das Filtrat wird mit Heptan überschichtet. An der Phasengrenze kristallisiert 2 in Form großer, flächiger Kristalle aus, die jedoch nicht geeignet sind für eine Kristallstrukturanalyse. In Gegenwart von Sauerstoff erhält man aus einer Lösung von 2 (in THF) grüne Kristalle von 3.

```
C<sub>72</sub>H<sub>60</sub>Cl<sub>2</sub>Co<sub>4</sub>P<sub>2</sub>S<sub>6</sub> (1485,81)
Ber. C 58,20 H 4,07 Co 15,86,
Gef. C 58,38 H 4,12 Co 15,68.
```

1211

$(NBu_4)[Mn_2(SPh)_3(CO)_6]$

0,65 g (1,66 mmol) $Mn_2(CO)_{10}$ werden in 50 ml THF mit Natriumamalgam (0,15 g Na in 20 g Hg gelöst) umgesetzt. Die Lösung von NaMn(CO)₅ gibt man danach tropfenweise zu 1,20 g (0,791 mmol) 1 (gelöst in 50 ml THF). Dabei verändert sich die Farbe von grün nach braun. Nach Filtration des Rückstandes wird das Lösungsmittel abkondensiert und das verbleibende Öl in Essigsäureethylester aufgelöst. Durch Überschichtung mit Heptan entstehen an

der Phasengrenze große, gelbe Kristalle von **4.** Ausbeute 0,3 g (83%).

 $C_{40}H_{51}Mn_2NO_6S_3$ (847,9)

Ber. C 56,66 H 6,06 Mn 12,96, Gef. C 56,40 H 5,92 Mn 12,84.

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie unterstützt.

- D. Fenske, J. Hachgenei und J. Ohmer, Angew. Chem. 97, 684 (1985); Angew. Chem., Int. Ed. Engl. 24, 706 (1985); D. Fenske, J. Ohmer und J. Hachgenei, Angew. Chem. 97, 993 (1985); Angew. Chem., Int. Ed. Engl. 24, 993 (1985); D. Fenske und J. Ohmer, Angew. Chem. 99, 155 (1987); Angew. Chem., Int. Ed. Engl. 26, 148 (1987).
- [2] M. F. Rettig und R. S. Drago, J. Am. Chem. Soc. 88, 2966 (1966); A. Hantzsch, Z. Anorg. Allg. Chem. 159, 298 (1926).
- [3] Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 52566, der Autoren und des Zeitschriftenzitats angefordert werden.
- [4] B. Krebs, W. Tremel, K. Greiwe und G. Henkel, Inorg. Chem., zur Publikation eingereicht.
- [5] P. J. Blower und J. R. Dilworth, Coord. Chem. Rev. **76**, 121 (1987); D. Coucouvannis, M. Kanatzidis,

- E. Simhon und N. C. Baenziger, J. Am. Chem. Soc. **104**, 1874 (1982); P. A. W. Dean und J. J. Vittall, Inorg. Chem. **26**, 278 (1987); I. A. Dance, A. Choy und M. L. Scudder, J. Am. Chem. Soc. **106**, 6285 (1984); P. A. W. Dean und J. J. Vittall, Inorg. Chem. **24**, 3722 (1985).
- [6] Die Strukturlösung wird durch zwei fehlgeordnete Moleküle THF/Formeleinheit erschwert. Als Folge davon war nur eine Verfeinerung bis zu einem R-Wert von 0,11 möglich.
- [7] E. Bye, W. B. Schweizer und J. D. Dunitz, J. Am. Chem. Soc. 104, 5893 (1982).
- [8] J. W. McDonald, Inorg. Chem. 24, 1734 (1985).
- [9] T. Costa, J. R. Dorfmann, K. S. Hagen und R. H. Holm, Inorg. Chem. 22, 4091 (1983); G. Christou und J. C. Haffmann, J. Chem. Soc. Chem. Commun. 1983, 558.
- [10] Herrn Priv.-Doz. Dr. W. Kaim danken wir für die Messung des ESR-Spektrums.

