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Abstract

The production of 7, K*, and (p)p is measured in pp collisions at /s = 13 TeV in different topolog-
ical regions of the events. Particle transverse momentum (pt) spectra are measured in the “toward”,
“transverse”, and “away” angular regions defined with respect to the direction of the leading par-
ticle in the event. While the toward and away regions contain the fragmentation products of the
near-side and away-side jets, respectively, the transverse region is dominated by particles from the
Underlying Event (UE). The relative transverse activity classifier, Rr = Ny/(Nt), is used to group
events according to their UE activity, where Nt is the measured charged-particle multiplicity per
event in the transverse region and (Nt) is the mean value over all the analysed events. The first
measurements of identified particle pt spectra as a function of Rt in the three topological regions are
reported. It is found that the yield of high transverse momentum particles relative to the Ry-integrated
measurement decreases with increasing Rt in both the toward and the away regions, indicating that
the softer UE dominates particle production as Rt increases and validating that Rt can be used to
control the magnitude of the UE. Conversely, the spectral shapes in the transverse region harden
significantly with increasing Rt. This hardening follows a mass ordering, being more significant for
heavier particles. Finally, it is observed that the py-differential particle ratios (p+p)/(x" +77)
and (K™ +K7)/(n" + ) in the low UE limit (Rt — 0) approach expectations from Monte Carlo
generators such as PYTHIA 8 with Monash 2013 tune and EPOS LHC, where the jet-fragmentation
models have been tuned to reproduce e*e™ results.
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1 Introduction

In recent years, proton—proton (pp) and proton-lead (p—Pb) collisions, commonly denoted as small
collision systems, have attracted the heavy-ion community’s attention due to several measurements in
high-multiplicity pp and p—Pb collisions, which show similar features as those observed in heavy-ion
collisions. Observations of radial [1H4] and anisotropic [} 6] flows (collective phenomena), as well
as strangeness enhancement [1, [7, [8] in heavy-ion collisions, are associated with the formation of the
strongly interacting quark—gluon plasma (QGP). However, these signatures have also been observed in
pp and p—Pb collisions [2] 4} |8, O]]. In particular, the pr-differential baryon-to-meson ratios in small
collision systems showcase radial-flow like effects when studied as a function of the charged particle
multiplicity of the event [2[3]]. In order to pin down the origins of the effects observed in small collision
systems, it has been proposed to study particle production as a function of the Underlying Event (UE)
activity [10]. The UE is defined as the particles that do not originate from the fragmentation products of
the partons produced in the hardest scattering. It consists of the set of particles arising from initial- and
final-state radiation, beam remnants and multiple parton interactions (MPIs) [[11]]. In the context of MPI
models, the measurement of identified particle yields and ratios as a function of the UE activity allows
one to measure event properties in an MPI-suppressed (-enhanced) environment. Moreover, as shown
in [12f], these measurements can also provide insights into possible effects that give similar signatures as
radial flow but are produced by jet hardening with increasing multiplicity.

At the LHC energies, particles and anti-particles are produced in equal amounts [13]]. In the remaining
of this paper and unless stated otherwise, the notation 7, K and p is adopted to refer to (x4 77),
(K" +K7), and (p+p), respectively. In this study, the production of 7, K, and p is studied as a function
of the UE activity in pp collisions at centre-of-mass energy, /s = 13 TeV. The UE is examined using
the event topology defined by the leading charged particle in the event, which is defined as the charged

particle with the highest transverse momentum in the range 5 < plTeadmg < 40 GeV /¢, and reconstructed

in the pseudorapidity interval 1| < 0.8. The lower plfadi“g threshold corresponds to the onset of the

UE plateau in the transverse region (transverse to the direction of the leading particle) [14-17]. In the
plateau region, quantities such as the average charged-particle density, (Nep), and the average transverse

momentum sum, (Y pr), have little dependence on the pr of the leading particle or jet. This study uses a
leading

lower threshold on the py of 5 GeV/c to guarantee that the multiple soft scatterings that contribute
to the UE are largely independent of the p's*™"¢. In [18] a slow rise of the UE plateau is reported.

This can be explained by additional contributions from wide-angle radiation associated with the hard
scattering. Since wide-angle contamination becomes significant for jet pr > 50 GeV/c [18], an upper
limit on ps**™® of 40 GeV /c is used to reduce its effects.

To study the particle production associated with different underlying physics mechanisms, the conven-
tional division of the azimuthal (¢) plane into regions relative to the direction of the leading particle [19]
is used (see Fig. [I). The observables reported in this paper are measured in three different topological
regions, the toward, transverse, and away regions. These are defined based on the absolute difference in
azimuthal angle between the leading and associated particles, |A@| = |@'®24i"8 — @|. The associated parti-
cles are measured in the kinematic range 0.15 < pr <5 GeV/c and || < 0.8. The toward, transverse,
and away regions are defined by |[A@| < 60°, 60° < |A@| < 120°, and |A@| > 120°, respectively. The
particle production in the toward and away regions contains the constituents of the leading and away-side
jets, respectively, the transverse region is mainly sensitive to multiple parton interactions and initial- and
final-state radiations.

The UE activity is quantified using the relative transverse activity classifier Ry [[10], which is defined as
Nr/(Nt), where Nr is the measured charged-particle multiplicity per event in the transverse region and
(Nt) is the mean value over all the analysed events. By construction, Ry cleanly separates events with
“higher-than-average” UE from “lower-than-average” ones irrespective of the centre-of-mass energy. Of
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Figure 1: Illustration of the toward, transverse, and away regions in the azimuthal angle plane with respect to the
direction of the leading particle. The leading particle is represented with the longest upright arrow. The UE is
represented with the small arrows transverse to the leading particle. The red cones represent the jet and away-side
jet.

particular interest is whether events with very low UE activity, which are dominated by the jet activity,
exhibit particle ratios and spectra consistent with fragmentation models tuned to e*e~ data and whether
events with high UE activity exhibit any clear signs of flow or other collective effects [10]. Finally,
it is worth mentioning that this study is complementary to the measurements made using transverse
spherocity, in which global event properties are studied for jet-like and isotropic topologies [20][21]].

The structure of the paper is as follows: In Sec. 2] the data analysis is described, Sec. [3| discusses the
systematic uncertainties, and in Sec. ] the results are presented. Finally, in Sec.[5] the conclusions are
given.

2 Analysis procedure
2.1 Event and track selection

This study was carried out with the data collected in pp collisions at /s = 13 TeV by the ALICE
Collaboration during the LHC runs from 2016 and 2018. A detailed description of the ALICE apparatus
and its performance can be found in [22 23]]. The subdetectors used in this analysis are the VO [24]],
the Inner Tracking System (ITS) [25], the Time Projection Chamber (TPC) [26], and the Time-Of-Flight
(TOF) [27]. These subdetectors are located inside a B = 0.5 T solenoidal magnetic field. The VO detector
consists of two arrays of 32 scintillators each, covering the forward (VOA, 2.8 < 1 < 5.1) and backward
(VOC, —3.7 <n < —1.7) pseudorapidity regions. The ITS is the innermost barrel detector. It consists of
six cylindrical layers of high-resolution silicon tracking detectors: the two innermost layers of the Silicon
Pixel Detector (SPD) provide a digital readout and are also used as a trigger detector. The Silicon Drift
Detector (SDD) and the Silicon Strip Detector (SSD) compose the four outer layers of the ITS. Together,
they provide the amplitude of the charge signal, which is used for particle identification through the
measurement of the specific energy loss (dE/dx). The TPC is the primary detector for tracking and
particle identification. It is a large cylindrical drift detector with a diameter and length of about Sm,
which covers the pseudorapidity range || < 0.8 with full-azimuth coverage. Particle identification is
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accomplished via the measurement of the dE /dx. In pp collisions the resolution of the dE /dx is about
5%. The TOF is a large-area array of multigap resistive plate chambers (MRPC), which surrounds the
interaction point and covers the pseudorapidity region |n| < 0.9 with full-azimuth coverage. The time-
of-flight is measured as the difference between the particle arrival time and the event collision time.

The event selection in this study follows those of the previous studies to measure the production of 7,
K, and p as a function of the charged-particle multiplicity in [3} 28]]. The minimum-bias trigger requires
signals in both VOA and VOC scintillators in coincidence with the arrival of the proton bunches from both
directions. The primary vertex position is reconstructed using global tracks (reconstructed using ITS and
TPC information). For events with too few tracks to compute the vertex position, the primary vertex from
SPD tracklets (reconstructed using only SPD information) is used instead. Events are required to have a
vertex position along the z-axis (parallel to the beam axis) in |z| < 10 cm, where z = 0 corresponds to the
centre of the detector. The out-of-bunch pileup is rejected offline using the timing information from the
two VO subdetectors. Furthermore, events with multiple interaction vertices reconstructed are rejected.
Finally, events are required to have a leading particle with 5 < pll?admg < 40 GeV/c. The total number
of events after event and vertex selections amounts to about 827 million, while the number of analysed
events with a leading particle is about 8.1 million.

The distributions presented in this study correspond to primary charged particles, which are defined as
particles with a mean proper lifetime 7 larger than 1 cm/c, which are either produced directly in the
interaction or from decays of particles with T smaller than 1 cm/c, excluding particles produced in inter-
actions with material [29]. Primary charged particles are reconstructed using the ITS and TPC detectors,
which provide measurements of the track transverse momentum and azimuthal angle. In particular, tracks
are required to cross at least 70 TPC pad rows. They are also required to have at least two hits in the ITS,
out of which at least one is in the SPD layers. The fit quality for the ITS and TPC track points must satisfy
)(IZTS /Nhits < 36 and )(%PC /Nelusters < 4, respectively, where Nyies and Nejyseers are the number of hits in the
ITS and the number of clusters in the TPC associated to the track, respectively. Finally, tracks are also
required to have a transverse momentum larger than 0.15 GeV /¢ and to be reconstructed in |1| < 0.8. To
limit the contamination from secondary particles, a selection on the distance of closest approach (DCA)
to the reconstructed vertex in the direction parallel to the beam axis (z) of [DCA.| < 2cm is applied.
Also, a pr-dependent selection on the DCA in the transverse plane (DCA,,) of the selected tracks to
the primary vertex is applied. Moreover, tracks associated with the decay products of weakly decay-
ing kaons (“kinks”) are rejected. In ALICE, the set of tracks reconstructed with the above-mentioned
selection criteria is commonly referred to as “global tracks”.

The use of global tracks yields a significantly non-uniform efficiency as a function of the azimuthal
angle and pseudorapidity. In order to obtain a high and uniform tracking efficiency together with good
momentum resolution, “hybrid tracks” are used [30, 31]. Hybrid tracks correspond to the union of two
different sets of tracks selected with complementary criteria: (i) tracks containing at least one space-
point reconstructed in one of the two innermost layers of the ITS (global tracks) and (ii) tracks without
an associated hit in the SPD for which the position of the reconstructed primary vertex is used in the fit
of the tracks. Hybrid tracks are used to select the leading particle, as well as to measure Nt and the pt
spectra. Furthermore, in order to select high-quality high-pr tracks, a selection based on the geometrical
track length (L) is applied [32]]. This selection criterion excludes the information from the readout pads
at the TPC sector boundaries (= 3cm from the sector edges).

2.2 Particle identification

ALICE’s tracking and particle identification (PID) capabilities allow measuring the transverse momen-
tum spectra of 7, K, and p over a wide range of transverse momentum. In this study the pr spectra are
measured in the pt < plTe'ddmg interval, using the standard particle identification techniques which have

been reported in previous ALICE publications [3, 28, [33135]]. Table [I] shows the three techniques used
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for the PID and the p intervals each method covers.

Table 1: The name of the analysis technique and the transverse momentum ranges in which 7, K and p are
identified.

Analysis pr ranges (GeV/c)
T K p
TPC 025-0.7 03-06 045-1.0
TOF 0.7-3.0 06-30 1.0-3.0
rTPC 20-50 3.0-50 3.0-5.0

At low pr, the average energy loss, (dE/dx), is proportional to 1/(87)? and the relatively large = — K
and p — K separation power makes it possible to perform particle identification in this region on a track-
by-track basis [28]]. Thus in the TPC analysis, the relative particle abundances, which are defined as the
measured fractions of 7, K, and p with respect to all the measured primary charged particles are obtained
from fitting ns distributions in narrow intervals of transverse momentum. For each track, the ns is
defined as the difference between the measured and expected dE /dx values normalised to the resolution,
ng = (dE /dxmeasured — (AE /dXexpecied))/0. While the signal of 7 and p can be fitted with a Gaussian
parameterisation, the one for K uses the sum of two Gaussians as parameterisation to take into account
the contamination by electrons.

In the TOF analysis, the particle abundances are also measured on a track-by-track basis by fitting the
measured ﬁ distributions in momentum intervals. In the interval 1 < p < 2 GeV/c, the © — K and
p — K separation power of hadron identification is large enough [28] such that one can perform single
fits to the signal of &, K, and p using a Gaussian parameterisation convoluted with an exponential tail.
The parameters (1, ¢ and &, where p and o represent the mean and standard deviation of the Gaussian
paramerisation, and & represents the 8 value at which the exponential tail begins) of the single fits are
extracted from data in 1 < p <2 GeV/c and are used to extrapolate to higher momentum values. Finally,
the extrapolated functional forms are used to fit the 8 distributions with the sum of three contributions to
describe the signals of the three species simultaneously.

In the rTPC analysis, the method described in [33H35] is used. In the relativistic rise region of the TPC
(3 < By <1000), the (dE/dx) increases as log(y) and the 7 — K and p — K separation power for hadron
identification is almost constant [28]]. The knowledge of these two features makes it possible to perform
a two-dimensional fit of the correlation between dE /dx and momentum. In order to accomplish this,
the first step is to parameterise the Bethe-Bloch and resolution curves in the relativistic rise region. The
Bethe-Bloch parameterisation provides the relation between the (dE /dx) and By, and the parameterised
resolution gives the relation between 0y /q, and (dE /dx). For the parameterisation, high-purity samples
of identified hadrons are used, namely p(p) and 7= from A(A) and K3 decays, respectively, and e* from
Y-conversions [33H35]. Once the Bethe-Bloch and resolution curves are parameterised, they are used
to perform the two-dimensional fit. The two-dimensional fit is only used to improve the Bethe-Bloch
parameterisation in the transition to the plateau region. Then, the particle ratios are obtained from one-
dimensional fits to the dE/dx distributions in momentum intervals using the sum of four Gaussians as
a fit function to describe simultaneously the signal of 7, K, p, and e, where the 1t and ¢ of each of the
Gaussian distributions are fixed based on the (dE /dx) () and 64z /. ((dE/dx)) obtained with the above
procedure.

2.3 Corrections

The pr spectra of 7, K, and p are corrected for acceptance and reconstruction inefficiency. The spectra
measured with the TOF detector are also corrected for TPC-TOF matching inefficiency. The acceptance
and efficiencies are obtained from simulations using the PYTHIA8 Monte Carlo event generator with the

'8 = L/cAt, where L is the track length and At is the measured time-of-flight.
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Monash 2013 tune (indicated as PYTHIAS8 Monash in the following) [36]. Subsequently, the propagation
of simulated particles through the ALICE apparatus is carried out using GEANT3 [37]. The simulated
events are reconstructed using the same algorithms as for the data. The obtained acceptance and re-
construction efficiencies are independent of the charged-particle multiplicity. Hence, the Rr-integrated
values are applied for all the Rt classes. As GEANT3 does not fully describe the interaction of low-
momentum p and K™ with the detector material, an additional correction factor to the efficiency for these
two particles is estimated with GEANT4 [38]] and FLUKA [39]], respectively. These corrections are the
same as the ones applied in [3].

The pt spectra of 7 and p contain a large contribution from secondary particles from interactions in the
material and particle decays (7* from K(S) and p(p) from A and 7). Since the strangeness production is
underestimated in the Monte Carlo event generators, a data-driven approach is used to estimate the frac-
tion of non-primary particles as a function of pr so that it can be subtracted from the measured spectra.
The estimation of this correction is based on a multi-template fit method to describe the measured DCA,,
distributions [40]. In practice, three Monte Carlo templates representing the expected shapes of DCA,,
distributions of primary particles, secondaries from weak decays, and secondaries from interactions in
the material are used to fit the data DCA,, distributions. The fits are performed in [DCA,y| <3 cm and
in pr bins. Since the TOF analysis only uses tracks matched with the TOF detector, these corrections
are estimated separately for the low- and intermediate-pr regions. At pr = 0.45 GeV /c the contribution
from non-primary 7 (p) was found to be about 4%(20%) while at pr = 2.0 GeV /c it decreases to about
19%(4%). Furthermore the correction decreases asymptotically at higher pt. Therefore, the correction
for the TOF is extrapolated to higher pr and then applied.

2.4 Unfolding the charged-particle multiplicity distributions

The charged-particle multiplicity in the transverse region, Nt, is used to characterise the event activity.
However, the limited acceptance and finite resolution of the detector cause a smearing of the measured
charged-particle multiplicity distribution ¥ (Nt ). This section introduces the one-dimensional unfold-
ing method to correct for these detector effects and efficiency losses. The adopted approach is based on
the iterative Bayesian unfolding method by G. D’ Agostini [41]. Bayesian unfolding requires the knowl-
edge of the smearing matrix Sy, which comprises information about the limited acceptance and finite
resolution. It represents the conditional probability P(Nt,|Nt,) of an event with the true multiplicity
Nr, to be measured as one with multiplicity Nt . Figure [2] (left) shows the smearing matrix obtained
with simulated events using PYTHIA8 Monash. The values along the diagonal of the smearing matrix
represent the probability that a measured event is reconstructed with the true number of particles. At the
same time, the off-diagonal elements give the probability that fewer or more particles are reconstructed
due to detector inefficiencies and background, e.g., secondary particles misidentified as primary particles.

The one-dimensional unfolded distribution ¥ (Nt ) is given as the linear combination between the ele-
ments of the unfolding matrix M1y (see the right panel of Fig.[2)) and the measured distribution,

P(Ntm|Ntt) Po(NTm)
Y P(N1m|N1 ) Po(Ntm)

Y(Nrg) =Y MlmY (Nrm) ,where Ml = (1)
m

Py(Ntm) represents a prior probability distribution. It can be any arbitrary distribution at the start of
the unfolding process. Here, the measured multiplicity distribution is used as the prior distribution. An
updated prior distribution,

-~ o Y(NT,t)
A T @

is obtained from the second iteration and onwards. Thus, the unfolding matrix is improved as the prior
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Figure 2: (Left) Correlation between the true Nt and the measured Nt , multiplicity in the transverse region.
(Right) Unfolding matrix M1y,. The iteration step of the unfolding matrix corresponds to the third.

distribution is updated. Finally, a new unfolded distribution closer to the true one can be obtained using
Eq. T[] with the updated M1y,. The smearing in Fig. [2] left shows very few events below the main cor-
relation band between 7 < Nt < 15 and 15 < Nt , < 30. This small population comes from statistical
fluctuations of the response matrix. Since the unfolding matrix M1y is proportional to P(Ntm|Nt ),
these events show up in M1y, in the intervals 22 < Nt < 30 and 7 < N, < 17, as can be seen in Fig. |Z|
right. However, given their very small contribution, they are not affecting the unfolding process.

This iterative process makes the unfolded distribution to converge to the true one eventually. However, it
also compounds the effects of statistical uncertainties in the smearing matrix. Therefore, a larger number
of iterations does not guarantee a better result: eventually, the true distribution might be contaminated
by statistical fluctuations [42]. In order to decide when to stop the iterations, the Xz /Ngr between the
unfolded and the true distribution as a function of the number of iterations is computed for a Monte
Carlo generated sample. The minimum value of the ratio y2 /Ny indicates when to stop the iterative
process. This study found that the optimal number of iterations is three.

2.5 Unfolding the py spectra

Unfolding the transverse momentum spectra as a function of the multiplicity is treated differently de-
pending on the topological region. The toward and away regions are straightforward cases as there is
no overlap between the tracks used for the spectra and the tracks used for the multiplicity calculation as
the latter is measured in the transverse region. Therefore, the one-dimensional unfolding matrix M1y, is
directly applied in these two regions. This also makes it trivial to see that the same unfolding matrix can
be used for all identified particle spectra. Hence, the fully corrected pr spectra as a function of Nt are
obtained in a two-step procedure:

1. Correct the raw pr spectra at particle level for tracking inefficiency and secondary particle con-
tamination. The efficiency correction is applied here as the one-dimensional unfolding only affects
the classification of the events.

2. Apply the one-dimensional unfolding matrix. The spectra as a function of Nt are given by:

dY(Nro) _ dY (Nt.m)
deT - Zlitm dpz

The transverse region requires a more elaborate method since both pr spectra and multiplicity are mea-
sured using the same tracks. In other words, one is no longer dealing with the problem of rearranging
events but rather how tracks should be unshuffled to match the true transverse momentum distributions.
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This poses a multi-dimensional problem with two dimensions associated to the true and measured mul-
tiplicities and two additional dimensions (true and measured yields) for each pr bin. Instead of perform-
ing the full multi-dimensional unfolding, an approximate method is employed in which the multiplicity
smearing matrix is assumed to be independent of the transverse momentum. This is a very good ap-
proximation as the efficiency is essentially flat in pt for the track selection and pr ranges used here.
In this approach, a new response matrix is obtained by multiplying every column of the original mul-
tiplicity response matrix with the respective number of measured particles as weights. After row-wise
normalisation, the desired track smearing matrix is obtained.

The unfolding is done bin-by-bin in pt with this modified response matrix. For a particular transverse
momentum bin, the measured multiplicity distribution is unfolded using the iterative unfolding procedure
described in Sec.[2.4] This approach yields unfolding matrices that depend on the transverse momentum.
Henceforth, these matrices will be called M2, (pr). It should be stressed that this method works here
because the tracking efficiency does not depend strongly on the transverse momentum for hybrid tracks
and because the same tracks to measure Nt are used to obtain the spectra.

Similar to the toward and away regions, the two-step procedure is followed to obtain the fully corrected
transverse momentum spectra. The only difference is that in the transverse region the pr-dependent
M2 (pr) matrices are used

dY(NT“pT) dY(NT m7pT)
— P VY M2 (pr) — e 3
dpr ; n(P) dpr ®

The method described above unfolds the spectra of all charged particles and yields the unfolding ma-
trices M1y, and M2, (pr). When unfolding the spectra of identified particles (for example, 7 in the
transverse region), Eq. [3|is applied using the M2, (pr) matrices from charged particles and then ex-
changing dY (Nt m, pr)/dpt for dY* (Nt m, pr)/dpt. The unfolding of 7 spectra in the toward and away
regions is done with the same strategy but using M1y, instead.

3 Systematic uncertainties

In this section, the estimation of the systematic uncertainties is described. The systematic uncertainties
on the pr spectra are divided into two categories, Rt-dependent and Rr-independent uncertainties. The
total systematic uncertainty on the pr spectra is given as the sum in quadrature of all the individual
sources of uncertainty.

Rr-dependent systematic uncertainties

The unfolding method described in Sec. [2.4]shows deficiencies, mainly when unfolding the pt spectra for
low multiplicities in the transverse region. To account for these deficiencies, the following contributions
to the systematic uncertainty on the Nt distribution are considered:

— Monte Carlo (MC) non-closure: PYTHIAS Monash is the default tune for the generation of the
multiplicity response matrix and Nt distributions with and without the detector’s efficiency losses.
The unfolded Nt spectrum from the simulation is compared to the generated one. Thus, any
statistically significant difference between the generated and unfolded distributions is referred to
as MC non-closure and is added in quadrature to the total systematic uncertainty. During the
unfolding procedure, the MC closure improves with the number of iterations, with an optimal
number of three, which leads to a negligible MC non-closure.

— Dependence on the choice of the MC model: EPOS LHC [43] is used to generate a different mul-
tiplicity response matrix. This response matrix is used to unfold the Nt and prt spectra. The ratio
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between the final unfolded distributions using PYTHIA8 Monash and EPOS LHC was quantified
and added to the total systematic uncertainty. In the interval 0 < Nt < 18, the relative systematic
uncertainty is below 2 %, increasing to about 4 % at Nt ~ 18. Due to statistical limitations on the
response matrix, a constant 4 % relative systematic uncertainty for Ny > 18 was assigned.

— Track selection: This uncertainty is quantified by changing the track selection criteria with respect
to the nominal one. In particular, the minimum number of crossed rows in the TPC is set to 60 and
100 (the nominal is 70). The track fit quality in the ITS and TPC quantified by the )(IZTS /Nhits and
the x%PC /Nclusters must not exceed 25 and 49 (the nominal is 36), and 3 and 5 (the nominal is 4),
respectively. The maximum distance of closest approach to the vertex along the beam axis (DCA;)
is set to 1 and 5cm (the nominal is 2cm). Furthermore, the parameters of the geometrical length
cut to select the leading particle are also varied. For a particular parameter variation, the maximum
difference between the results obtained with the tighter and looser selections with respect to the
nominal value is quantified. The total systematic uncertainty from track variations is given as
the sum in quadrature of the different parameter variations. The relative systematic uncertainty
is on average 1% in the interval 0 < Nr < 18 and increases for higher Nt values. For Nt >
18, the statistical fluctuations become significant. Therefore, a constant 2% relative systematic
uncertainty was assigned.

Rr-independent systematic uncertainties

The Rr-independent systematic uncertainties are divided into two categories. The first category includes
the uncertainties common to the different analyses, such as those due to the track quality criteria and
the pr-dependent ITS-TPC matching efficiency. The ITS-TPC matching efficiency is derived from
matching ITS pure tracks with the corresponding ITS+TPC tracks (in the same phase-space region) and
by comparing the matching efficiency in data and Monte Carlo simulations. The second category groups
the analysis specific uncertainties. It includes the uncertainties on the secondary particle contamination
correction estimation, the signal extraction technique and the TPC-TOF matching efficiency.

As described in Sec. the secondary particle contamination correction is based on multi-template fits
to the DCA,, distributions in transverse momentum intervals. The estimation of the systematic uncer-
tainty follows the procedure described in [28]. Namely, the fitting range is changed from the nominal
values of £3cm to +£1.5cm.

To estimate possible systematic effects attributed to the signal extraction technique in the TPC analysis,
a similar procedure to the one described in [28]] was applied. The signal extraction technique changed
from fitting ny distributions to bin counting in the range of =30. The systematic uncertainty on the
particle fractions is given as the difference between the nominal particle fractions and the ones obtained
from bin counting.

As described in Sec[2.2] the measurement of the particle fractions in the TOF analysis is based on fits
to B distributions in momentum intervals. Hence, the systematic uncertainty is mainly driven by the
uncertainty in the parameterisation of the i, o, and & curves for 7, K, and p. The relative difference
between the fitted curves and the actual measured (1, 6, and & values was computed to evaluate the effect
of the parameterisations. Thus, the systematic uncertainty in the extraction of the particle fractions is
obtained by refitting the B distributions while randomly varying the constrained parameters u, o, and
& within the uncertainty of the parameterisations assuming a Gaussian variation centred at the nominal
value. The refitting was performed 1000 times, and the systematic uncertainty on the particle fractions as
a function of the transverse momentum is given as the standard deviation of the associated distributions.
This approach is motivated by work developed in [28, 33} [35]].

The measurement of the systematic uncertainty on the extraction of the particle fractions in the rTPC
analysis follows the method from [28| 33| [35]]. In this analysis, the primary source of systematic un-
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certainty comes from the imprecise description of the detector response, namely the Bethe-Bloch and
resolution parameterisations. To estimate the systematic effect, the relative difference between the pa-
rameterisations and the actual (dE /dx) and 0gg /4 values are measured. The particle fractions are mea-
sured following a fitting procedure where the constrained parameters, (dE/dx) and Gy /4y, are allowed
to vary randomly within the uncertainty of the parameterisations. The fitting procedure was repeated
1000 times and the systematic uncertainty in the particle fractions is given as the standard deviation of
the associated distributions.

When computing the pr-differential particle ratios, all the systematic uncertainties cancel out in the ratios
except those attributed to the signal extraction and feed-down. In the high pr region (fTPC analysis) the
procedure described in [33] is used to extract the signal extraction systematic uncertainty on the K/x
and p/ 7 ratios directly from fits to the dE /dx distributions.

Table 2] lists a summary of the systematic uncertainties at different pr values for the spectra and particle
ratios in the transverse region. The table is divided into common and analysis-specific uncertainties.
The values in the toward and away regions are the same as those of the transverse region. The only
topological-region-dependent uncertainty is the one attributed to the MC non-closure.

Table 2: Summary of systematic uncertainties on the 7, K, and p pr spectra. The uncertainties are shown for
different representative pr values. The last two rows show the total systematic uncertainty on the pt spectra and the
pr-differential particle ratios. These values correspond to the spectra in the transverse region in the 0 < Rt < 0.5
class.

Uncertainty (%)

Common source T K p

pr (GeV/ce) 0.3 2 5 0.3 2 5 0.45 2 5
ITS-TPC matching efficiency 14 26 29 14 26 29 14 26 29
MC non-closure 32 3.6 1.5

MC dependence 1 1.5 1.7 0.9 1.5 1.7 0.9 1.5 2
Track selection 1 1 1
Analysis-specific /4 K p

TPC, pr (GeV/c) 0.3 0.7 | 03 0.6 | 045 1
PID 0.1 1.8 | 7.3 59 | 0.1 34
Feed-Down 1 0.3 - - 10 1.1
TOF, pr (GeV/c) 1 2 1 2 1 2
PID negl. 1 0.3 34 | 0.2 0.7
Feed-Down 0.3 negl. - - 1 0.2
TOF matching efficiency 3 6 6 4 4
rTPC, pr (GeV/c) 5 3 5 3 5
PID 0.7 0.6 | 64 2.8 | 5.8 4.2
Feed-Down negl. negl. - - 0.2 0.2
Total Vs K p

pt (GeV/ce) 0.3 2 5 0.3 2 5 0.45 2 5
Total 39 55 47 | 83 83 57 | 102 53 57
Particle ratios K/m p/m

pr (GeV/c) 0.3 2 5 0.45 2 5
Total 74 4.1 32 | 101 1.5 4
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4 Results

This section presents the results of the production of 7, K, and p as a function of the relative transverse
activity classifier, Rt. The data are compared with predictions from PYTHIA8 Monash [36], PYTHIAS
with ropes hadronisation model (indicated as PYTHIAS ropes) [44], HERWIG7 [45, 46], and EPOS
LHC [43]. PYTHIAS8 with Monash tune is one of the most popular event generators at LHC energies for
most observables but lacks the QGP-like effects observed in small collision systems such as strangeness
enhancement, while the other three models are known to describe the strangeness enhancement in small
collision systems better [8, 44, 47]. Hence, these models allow for testing a broad range of possible
dynamic effects. In PYTHIAS8 Monash, the soft-inclusive particle production is based on multiple per-
turbative parton—parton interactions (MPI) [[11]. This model also includes a colour reconnection (CR)
mechanism [48]], allowing each MPI system’s partons to be colour connected with a higher-pr MPI
system. In particular, PYTHIA8 Monash describes the enhanced pr-differential proton-to-pion ratio at
intermediate pr [3] by introducing the colour reconnection mechanism and does not need to assume the
formation of a medium [49]. PYTHIAS ropes model allows strings to fuse in an environment with a
high density of strings and form “colour ropes”. Consequently, colour ropes are expected to produce
more strange hadrons and baryons, the latter via probabilistic collapses of ropes to string junctions.
EPOS LHC is a core-corona model, which assumes the formation of a QGP medium in the high-density
core regions in pp collisions. The hadronisation of the corona is based on string fragmentation, while
the particles associated with the core are thermally produced (grand-canonical thermal description). In
EPOS LHC, particle production in low-multiplicity events is mainly dominated by string fragmentation.
In contrast, high-multiplicity events are core dominated, and a large production of strange hadrons and
baryons is expected. Particle production in the HERWIG7 is based on cluster hadronisation and it has its
own colour reconnection mechanism where baryonic clusters are allowed to be produced in a geometric
manner. This model also includes a non-perturbative gluon splitting mechanism to create more ss pairs
to account for the strangeness enhancement [50].

The pr spectra as a function of Rt are normalised to the total number of events in each Rt class. The
relation between Rr intervals and Ny classes is given in Table[3] The Rt distribution is constructed using
the unfolded Ny distribution for which the (N) is equal to 7.366 +0.002 (stat.). For each Ry bin the
intervals under the Nt column are inclusive meaning that for 0 < Rt < 0.5, Nrisequal to 0, 1, 2 or 3.

Table 3: Relation between Rt intervals and Nt classes.
Rr=Nr/(Nr)  Nr  Number of events

0-0.5 0-3 2613151
0.5-1.5 4-11 4055410
1.5-2.5 12-18 1302116

2.5-5 19-30 180652

0-5 0-30 8151331

Figure [3|shows the unfolded Nt and Rt probability distributions in the transverse region integrated over
all the events with the leading particle along with different model predictions. For each model, the
(N1) corresponds to the mean value of the corresponding Ny spectrum. It is observed that PYTHIA8
Monash and PYTHIAS ropes give the best qualitative description of the Nt distribution, while EPOS
LHC (HERWIG7) overestimates (underestimates) the data for Nt > 10. However, when Rt is computed,
all the models underestimate the data for Ry = 2. This is because the models poorly describe the low-Nt
region, so they predict larger (Nt) values than the measured ones. Finally, the Rt probability distribution
is compared with the previous ALICE result [14], which used a limited data sample and applied the
unfolding at the level of the Ry distribution while in the current analysis the Rt spectrum is derived from
the Nt distribution. The new result is in agreement with the previous ALICE measurement within 1.5%.

Figures [] to [6] show the transverse momentum distributions of 7, K, and p as a function of Ry. The
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Figure 3: Nt (left) and Rt (right) probability distributions in the transverse region in events with the leading
particle. The data are represented with solid black markers and statistical and systematic uncertainties with error
bars and boxes, respectively. Model predictions are presented with colour lines and the bands around the model
predictions represent only the statistical uncertainty. The bottom panels show the model-to-data ratios. The grey
band centred at one in the bottom panel represents the systematic uncertainties of the data.

results in the toward, away, and transverse regions are shown on the left, middle, and right panels, re-
spectively. The lower panels show the ratios between the Rr-dependent pr spectra and the Rr-integrated
pr spectrum. The Rr-independent systematic uncertainties cancel out in the ratios. The Rr-dependent
systematic uncertainties are correlated and cancel out only partly. From the ratios to the Rr-integrated
spectrum, it is observed that the toward and away regions share a similar feature at low transverse mo-
mentum: a depletion of low-pt particles with increasing Rt. Furthermore, this effect follows a mass
ordering, being larger for heavier particles. This behaviour is reminiscent of radial flow effects, in which
the depletion of low-pr particles is compensated by an increasing number of particles at intermediate
pr- The particle production in the toward and away regions is dominated by the leading and away-
side jet fragmentation into high-pt particles. This can be observed in the ratio between the spectra in
0 <Rt < 0.5 and the Rr-integrated ones (bottom panels of Figures @] to [6), which increases with pr (in
the interval pr 2 2 GeV/c), and the effect is more evident for pions. The opposite is observed for the
spectral shapes at high R; they soften with increasing Rt for pr 2 2 GeV//c. This can be interpreted as
a “dilution” of the jet with increasing UE activity. When Rt — oo the particle multiplicity from the UE is
higher than the particle multiplicity from the jet in the toward region. Thus, average quantities like (p)
of pions and kaons in the toward region decreases at high Rt (see Fig. . The (pr) of protons increases
instead with increasing Rt because there other effects like radial flow are more relevant. This can also
be seen in the ratios to Rr-integrated spectrum, where they decrease with increasing pt for events with
high UE activity. The spectral shapes of all the species in the transverse region share a common feature:
they harden with increasing UE activity. This effect can be attributed to jet hardening with increasing
multiplicity.

Figure [7| shows model-to-data ratios for the pt spectra. The ratios are shown for two types of events:
low UE activity (0 < Rt < 0.5) and high UE activity (2.5 < Ry < 5). It is observed that the models
can describe the pion and kaon spectra for py > 2 GeV /c in the toward and away regions qualitatively
for events with low UE activity. This is expected since for small Rt values, one mainly observes the
jet fragmentation products, and the models are tuned to e*e~ data, which are jet-like. For this same Ry
interval, the models predict different yields in the transverse region. However, for pr 2 1 GeV/c all of
the models underestimate the data. Moreover, increasing the UE activity makes the agreement between
data and models worse.
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Figure 4: Transverse momentum spectra (top panels) of pions as a function of Rt and ratios to the Rr-integrated
spectrum (bottom panels). The toward, away, and transverse regions are shown from left to right. The statistical
and systematic uncertainties are represented with bars and boxes, respectively.
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Figure 5: Transverse momentum spectra (top panels) of kaons as a function of Rt and ratios to the Rr-integrated
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Figure (8| shows the pr-differential kaon-to-pion (K/7) and proton-to-pion (p/7) ratios for the four
different Ry intervals in the three topological regions. The Rr-dependent ratios are contrasted with the
inclusive ratios in minimum bias collisions at the same centre-of-mass energy [3]. Minimum bias means
integrated over Rt and the azimuthal angle, and without the leading particle requirement. The K/x
ratios in the toward and away regions show similar features: they increase with increasing UE activity.
However, this is true only for 1 < pr < 2 GeV/c. Conversely, the K/7 ratio in the transverse region
decreases with increasing Ry. One also observes that the minimum-bias result is very similar to those
measured in the transverse region. This suggests that the inclusive K/7 ratio is dominated by bulk
particle production. The p/ ratio in the toward and away regions measured in the lowest Rt intervals is
always below the inclusive one. Similar observations have been made for the A/ Kg ratio in jets [S1]. As
the UE increases, the toward and away regions become more UE dominated (jet dilution) and the p/7
ratio also increases. However, this is true only for pt = 1 GeV/c. The growth of the p/x ratio might be
attributed to a gradual increase of the collective radial flow with Rt. Furthermore, the baryon-to-meson
ratio for pr > 1 GeV/c in these two regions tends to increase with increasing Ry and to approach the
minimum bias ratio, which is similar to the one measured in the transverse region. The p/7 ratio in the
transverse region shows a mild dependence on Rrt. It is observed that the result in the highest UE activity
interval is below the one in the lowest UE activity interval for pr < 2 GeV/c, indicating a suppression of
low- pr protons possibly due to collective radial flow. Furthermore, the observed maximum in the highest
Ry interval (centred at pr ~ 3.5 GeV/c) is shifted to the right with respect to the one of the lowest Ry
interval (centred at pr ~ 2.5 GeV//c). This might be attributed to the jet hardening effect with increasing
multiplicity as discussed in [12].
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Figure 8: pr-differential particle ratios as a function of Ry. The top (bottom) row shows the K/ (p/m) ratio.
The results in the toward, away, and transverse regions are shown from left to right. Statistical and systematic
uncertainties are represented with error bars and boxes, respectively. The inclusive minimum-bias particle ratios
in pp collisions at the same centre-of-mass energy [3] are overlaid.

Figure |§| shows the pr-differential K/7 and p/7 ratios along with model predictions in two Ry inter-
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vals: 0 < Ry < 0.5 (low-UE activity) and 2.5 < Rt < 5 (high-UE activity). The K/x and p/7 ratios in
the toward and away regions in events at low Rt can be described qualitatively by PYTHIAS Monash.
However, this model predicts almost no evolution with Rt. On the other hand, the PYTHIAS ropes
hadronisation model, which allows for the formation of colour ropes, predicts p/ 7« ratios that evolve with
Rt, but overestimates the data, particularly for high-Rt events. EPOS LHC also describes both ratios
qualitatively in the limit of low UE activity and predicts an evolution with Ry. It describes the K/ ratio
but overestimates the p/7 ratio in events with high Rr. This was clear from the pr-integrated particle
ratios: the transition from string fragmentation to statistical hadronisation needs improvement. Finally,
HERWIGT also predicts an evolution with Rt and can describe rather well the K /7 ratio, while it misses
the py trend of the p/x ratio. The fact that all models do a better job at describing both ratios at low than
at high R is expected since they are tuned to e"e™ data. The model predictions in the away region are
similar to those of the toward.

In the transverse region, PYTHIA8 Monash and PYTHIAS ropes describe the splitting and ordering of
the K/ ratio between the two Ry classes qualitatively but underestimate the data. They can also describe
the p/ ratio qualitatively. Moreover, those models predict the lower p/ 7 ratio for pr <2 GeV/c in
events with high Rt compared to the low UE activity ratios. This effect, which can be attributed to the
radial flow effects, is likely induced by the CR and ropes in PYTHIAS8. EPOS LHC predicts the same
K/m ratio for both Ry classes, while the p/m ratio at low Ry agrees with the data. Still, as previously
mentioned, the transition from core-corona hadronisation is not well modeled. Finally, HERWIG7 gives
a good qualitative description of the evolution of the p/7x ratio with Ry in the transverse region.

The pr-integrated yield (AN /dy) and the average transverse momentum ({pr)) of pions, kaons, and pro-
tons are extracted from the pr-differential spectra in the different Rt intervals and topological regions.
Since the spectra are measured for pr > 0.3 GeV/c (7,K) and pt > 0.45 (p) GeV/c, they are first ex-
trapolated to pr = 0. The extrapolation procedure is carried out by fitting the spectra with Lévy-Tsallis
parameterisations [52, 153]]. The parameterisation is only used in the pt intervals with no data. For ex-
ample, for the 0 < Rt < 0.5 interval in the transverse region the fractions of extrapolated yields amount
to 38%, 19%, and 22% for =, K, and p, respectively. To estimate the systematic uncertainty associated
with the extrapolation procedure, several other parameterisations such as the Fermi-Dirac, Bose-Einstein,
Blast-Wave, and mr-exponential are used to estimate the extrapolated yield. The maximum difference
between the nominal and extrapolated yields is associated as the systematic uncertainty of the extrapo-
lation procedure. For example, the systematic uncertainties on the dN/dy ((pr)) amount to 2%(1.7%),
2.7%(2.3%), and 2%(1.5%) for &, K, and p, respectively, for the 0 < Rt < 0.5 interval in the transverse
region.

Figure [T0] shows the average transverse momentum as a function of Rt in the different topological re-
gions. The (pr) of @ and K in the toward region is the largest in the 0 < Ry < 0.5 (low UE activity)
interval. This feature reflects the presence of the jet fragmenting mainly into low-mass hadrons (7 and K)
with large transverse momentum. As the UE activity increases, the (pr) of 7 and K slowly decreases and
tends to flatten for Rt > 1.5 due to the jet dilution effect: the toward and away regions become dominated
by the UE. Conversely, the (pt) of protons increases with R, which can be attributed to the additional
radial flow effect. Moreover, the (pt) of all the species at high-Ry tend to approach the values measured
at high Ry in the transverse region. All models can describe the (pr) qualitatively in the toward region,
but EPOS LHC is the only one that predicts an increasing trend of the proton (pt). Particle production
in the away region is similar to that in the toward. It is primarily dominated by the away-side jet. It is
observed that the (pr) of all the species increases with Ry. Furthermore, the (pr) tends to approach the
values of the transverse region at large Rt where the UE dominates. PYTHIAS Monash and ropes give
a fair qualitative description of the evolution of (pr) of pions with Ry in the away region while the (pr)
of protons in the same region is only described by EPOS LHC.

The (pr) in the transverse region increases with Ry for all the species; however, the rate of increase
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Figure 9: Kaon-to-pion and proton-to-pion ratios as a function of pr for two Rt intervals: 0 < Rt < 0.5 (red
markers) and 2.5 < Rt < 5 (blue markers). The particle ratios in the toward, away and, transverse regions are shown
from left to right. The PYTHIA 8 Monash and PYTHIA 8 ropes (EPOS LHC and HERWIG7) predictions are
shown in the top (bottom) figure. The shaded regions around the model line represent the statistical uncertainties.
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exhibits a mass ordering, being more significant for heavier particles. Similar observations have been
made in multiplicity-dependent studies [2}[3]]. The rise of the (pr) with increasing Ry is likely attributed
to autocorrelation effects. Since Rt and the pr spectra are measured in the same A¢ region, the high
multiplicity requirement in the transverse region increases the probability to have a jet in the same region.
Finally, it is observed that all the models predict the increase of the (pr) with Rr.
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Figure 10: Average transverse momentum as a function of Ry. The (pr) in the toward, away, and transverse
regions are shown from left to right. The results for pion, kaon, and protons are shown in the first, second, and third
row, respectively. Statistical and systematic uncertainties are represented with error bars and boxes, respectively.
The shaded bands around the model lines represent the statistical uncertainties.

Figure [[T]shows the Rr-dependence of the pr-integrated particle ratios calculated from the extrapolated
dN/dy. As the UE activity increases, the yield of kaons and protons relative to that of pions increases in
the transverse region and in turn, the particle ratios grow until they saturate at Rt ~ 1.5. In contrast, in
the toward and away regions the K /7 ratio is constant as a function of Ry, while the p/x ratio decreases
with increasing UE activity. Furthermore, both ratios in the toward and away regions approach the
values of the transverse region at large Rt. All models predict the increasing trend of the particle ratios
with Rt in the transverse region. PYTHIA8 Monash and HERWIG?7 predict similar p/7 ratios to the
data. PYTHIAS ropes overestimates the p/7 by a large amount (almost a factor of 2) while EPOS
LHC, although overpredicting, is closer to the data. One can notice that while EPOS LHC precisely
describes the proton (pr) as a function of Ry in all the topological regions, the p/7 ratio is only described
in the low-UE limit (0 < Rt < 0.5), where string fragmentation dominates, indicating that the core
overestimates the production of protons. PYTHIA8 Monash overpredicts the p/7 ratio by about 10 %
over the entire Rt range and underestimates the K/x ratio. In the toward and away regions none of
the models reproduce the trend of both ratios: HERWIG7 and PYTHIAS Monash predict a strongly
decreasing trend for K/ that is not supported by the data. PYTHIAS ropes and EPOS LHC predict an
increasing trend for p/7 that is in contradiction with the data. Finally, it is noted that while all the models
capture most of the measured trends for (pr) in Fig. none of the models describes the particle ratio
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Figure 11: Transverse momentum-integrated particle ratios as a function of Ry. The particle ratios in the toward,
away, and transverse regions are shown from left to right. The top (bottom) row plots the K/ (p/7). The statistical
and systematic uncertainties are represented with error bars and boxes, respectively. The shaded bands around the
model lines represent the statistical uncertainties.

trends of Fig. [11]for both p/7 and K/ 7.

5 Conclusions

The production of &, K, and p was measured at mid-pseudorapidity in different topological regions as
a function of the relative transverse activity classifier, Rt in pp collisions at /s = 13 TeV containing a
high pr (5 < pi*™ < 40 GeV//c) leading particle. Ry has been utilised to investigate differentially in
different topological regions where the particle production is expected to be dominantly driven by pQCD-
like processes (toward and away regions and low Rt) and regions where soft non-perturbative QCD
processes dominate (transverse region or high Rt). In particular, since conventional UE (Underlying
Event) studies average over the event activity, this analysis allows us to get further insight into collective
effects and the interplay between hard and soft production in pp collisions. Furthermore, the models
can describe the new results in the toward and away regions when the UE is suppressed (0 < Ry < 0.5),
which was expected since they are tuned to reproduce jet-like ete™ measurements. However, when
the UE increases, all models fail to reproduce the data at both qualitative and quantitative level. This
demonstrates that by measuring the production of identified particles as a function of Rt, one can reveal
novel features of the UE. The new measurements presented here thus allow for substantial progress on
the model side to nail down the properties of the UE.
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