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Abstract

The production of prompt D0, D+
s , and Λ+

c hadrons, and their ratios, D+
s /D0 and Λ+

c /D0, are mea-
sured in proton–proton collisions at

√
s = 13 TeV at midrapidity (|y|< 0.5) with the ALICE detector

at the LHC. The measurements are performed as a function of the charm-hadron transverse mo-
mentum (pT) in intervals of charged-particle multiplicity, measured with two multiplicity estimators
covering different pseudorapidity regions. While the strange to non-strange D+

s /D0 ratio indicates
no significant multiplicity dependence, the baryon-to-meson pT-differential Λ+

c /D0 ratio shows a
multiplicity-dependent enhancement, with a significance of 5.3σ for 1 < pT < 12 GeV/c, comparing
the highest multiplicity interval with respect to the lowest one. The measurements are compared with
a theoretical model that explains the multiplicity dependence by a canonical treatment of quantum
charges in the statistical hadronisation approach, and with predictions from event generators that
implement colour reconnection mechanisms beyond the leading colour approximation to model the
hadronisation process. The Λ+

c /D0 ratios as a function of pT present a similar shape and magnitude
as the Λ/K0

S ratios in comparable multiplicity intervals, suggesting a potential common mechanism
for light- and charm-hadron formation, with analogous multiplicity dependence. The pT-integrated
ratios, extrapolated down to pT = 0, do not show a significant dependence on multiplicity within the
uncertainties.
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1 Introduction

Heavy-flavour hadrons are produced in high-energy particle collisions through the hadronisation of the
corresponding heavy-flavour quarks, which in turn typically originate from early hard scattering pro-
cesses. The most common theoretical approach to describe this production is based on the quantum
chromodynamics (QCD) factorisation theorem [1]. In this framework, the production of hadrons con-
taining charm or beauty quarks is calculated as a convolution of three independent terms: the parton
distribution functions of the incoming protons, the cross sections of the partonic scatterings produc-
ing the heavy quarks, and the fragmentation functions that parametrise the non-perturbative evolution
of a heavy quark into a given species of heavy-flavour hadron. Calculations based on the factorisation
approach rely on the assumption that fragmentation functions, which are typically measured in electron–
positron (e+e−) or electron–proton (e−p) collisions [2], are universal across all collision systems and
energies. Systematic measurements of the relative production of heavy-flavour hadrons performed in
different collision systems provide an excellent experimental benchmark to test this assumption.

Perturbative calculations at next-to-leading order, with next-to-leading-log resummation [3–6], can suc-
cessfully describe the production cross section of strange and non-strange charm mesons and their ratios,
as a function of transverse momentum (pT) and rapidity in proton–proton (pp) collisions, over a wide
range of centre-of-mass energies [7–11]. In contrast, these calculations, which are based on collinear
factorisation and fragmentation functions tuned on e+e− and e−p collision measurements, provide a
poor description of heavy-flavour baryon production in hadronic collisions. Measurements of the Λ+

c
production cross section in pp collisions at centre-of-mass energies of

√
s = 7, 5.02, and 13 TeV [12–15]

have shown a larger pT-differential cross section in the measured pT range, compared to QCD calcula-
tions [3, 4, 16] as well as higher values for the Λ+

c /D0 ratio with respect to e+e− collision data from
LEP [17]. Similarly, a Λ+

c /D0 ratio larger than expectations from e+e− collisions was measured in p–
Pb collisions at the LHC, both at midrapidity by ALICE [12, 13] and at forward rapidity by the LHCb
experiment [18].

In particular, the measurements in pp collisions at
√

s = 5.02 and 13 TeV provided the statistical pre-
cision to discriminate among different theoretical approaches. The measurements show, with good ac-
curacy, a decrease of the Λ+

c /D0 ratio from about 0.6 in the interval 1 < pT < 2 GeV/c to about 0.3 for
8 < pT < 12 GeV/c. Calculations based on PYTHIA 8 [19] with Monash tune [20] and HERWIG 7 [21],
in which the charm fragmentation is tuned to e+e− and e−p measurements, cannot describe the experi-
mental results since they predict a pT-independent Λ+

c /D0 ratio of about 0.1. The Monash tune is based
on the Lund string fragmentation model [22, 23], where quarks and gluons, connected by colour strings,
fragment into hadrons, and colour reconnection allows for partons created in the collision to interact via
colour strings. A much better agreement is achieved by PYTHIA 8 calculations that include colour recon-
nection mechanisms beyond the leading-colour approximation [24] (CR-BLC in the following). These
hadronisation mechanisms are implemented in addition to those included in the standard Monash tune.
The CR-BLC calculations introduce new colour-reconnection topologies enhancing the contribution of
“junctions” that fragment into baryons, thus providing an augmented baryon production. Calculations
based on the statistical hadronisation model [25] or calculations that include mechanisms of charm-
hadron formation through coalescence of constituent quarks in the presence of a colour-deconfined state
of matter [26], also provide a satisfactory description of the Λ+

c /D0 ratio in pp collisions. This suggests
the presence of modified or additional hadronisation mechanisms in small hadronic collision systems
with respect to fragmentation in vacuum. Similar conclusions are drawn from recent measurements of
higher-mass charm-baryon states, Ξ

0,+
c and Σ

0,++
c , in pp collisions at

√
s = 5.02, 7, and 13 TeV [15, 27–

29]. The fragmentation fractions, i.e. the probabilities for a charm quark to hadronise into a specific
charm hadron, computed for the first time from hadronic collision measurements at the LHC including
the charm baryon states, are found to be different than those measured in e+e− and e−p collisions. This
observation confirms that the hadronisation of charm quarks into charm hadrons is not a universal process
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among different collision systems [30].

The measurements of the Λ+
c /D0 and D+

s /D0 ratios also play an important role in the study of heavy-
ion collisions, where a hot and dense quark–gluon plasma, characterised by the presence of free colour
charges, is formed [31]. In heavy-ion collisions, measurements of baryon-to-meson ratios and of strange
to non-strange hadron production ratios [14, 32–39] are sensitive to the mechanisms of hadronisation
from the quark–gluon plasma [40]. A first measurement of the Λ+

c /D0 ratio in Pb–Pb collisions, in the
80% most central collisions, was performed at

√
sNN = 5.02 TeV [34] by ALICE. The measurement is

consistent with the hypothesis of an enhancement of the Λ+
c /D0 ratio with respect to pp collisions in

the intermediate pT region 6 < pT < 12 GeV/c, although the limited statistical precision does not yet
allow for a firm conclusion to be drawn. The Λ+

c /D0 ratio in heavy-ion collisions was also measured by
CMS, in Pb–Pb collisions at

√
sNN = 5.02 TeV for 10 < pT < 20 GeV/c [14], and by STAR, in Au–Au

collisions at
√

sNN = 200 GeV for 2.5< pT < 8 GeV/c [35]. While the STAR result is significantly higher
than PYTHIA 8 calculations with different tunes [20, 24], the CMS ratio at higher pT is consistent with
the pp result. A hint of enhancement of the D+

s /D0 ratio in central Pb–Pb collisions with respect to pp
collisions was also observed at

√
sNN = 5.02 TeV in the intermediate pT region 4 < pT < 8 GeV/c, as

expected in the presence of a sizeable contribution of coalescence processes and increased strangeness
production in the medium [37, 38]. A similar conclusion is drawn by STAR from the measured D+

s /D0

ratio in the 10% most central Au–Au collisions at
√

sNN = 200 GeV relative to PYTHIA simulation of
pp collisions [39]. A measurement performed in high-multiplicity pp collisions could shed light on the
possible presence of similar effects also in smaller collision systems with large particle densities.

In this Letter, we present the first measurement of the production yields of prompt D0, D+
s and Λ+

c
(i.e. produced in the hadronization of charm quarks or from the decay of excited open charm and char-
monium states) as well as corresponding ratios, D+

s /D0 and Λ+
c /D0, in pp collisions at

√
s = 13 TeV, as

a function of the charged-particle pseudorapidity density 〈dNch/dη〉. The aim of this study is to charac-
terise the evolution of the aforementioned ratios from very low to moderate charged-particle density and
provide new experimental constraints on the nature of these modifications in pp collisions. The study
was performed considering events selected according to the charged-particle density at mid- and forward
rapidities, in order to investigate the effects of possible biases originating from the determination of the
multiplicity in the same pseudorapidity region in which charm hadrons are reconstructed. Comparisons
with theoretical calculations and Monte Carlo simulations are also provided. In addition, the Λ+

c /D0

results are compared to Λ/K0
S measurements in similar multiplicity intervals [41]. The pT-integrated

Λ+
c /D0 yield ratios, extrapolated down to pT = 0, are also presented.

2 Experimental apparatus and data samples

The ALICE experiment and its performance are presented in detail in Refs. [42, 43]. The main detectors
considered for the measurements discussed in this paper are the Inner Tracking System (ITS) for tracking,
vertex reconstruction, event multiplicity estimation, and trigger purposes; the Time Projection Chamber
(TPC) for tracking and particle identification; the Time-Of-Flight (TOF) for particle identification; and
the V0 detector for event multiplicity estimation as well as for trigger purposes.

The event multiplicity selection was based on two estimators. At midrapidity (|η | < 1) the multiplicity
was estimated via the number of tracklets (Ntrkl) defined as track segments built by associating pairs of
hits in the two Silicon Pixel Detector (SPD) layers, which are the two innermost layers of the ITS. The
acceptance of the SPD in pseudorapidity changes with the longitudinal position of the vertex zvtx and,
in addition, the acceptance-times-efficiency changes with time due to variations of the inactive channels.
Therefore, a data-driven correction procedure was applied on an event-by-event basis to Ntrkl, depending
on the zvtx position and the data taking period, as further described in Ref. [44]. The event multiplicity in
the forward rapidity region was estimated from the percentile distribution pV0M of the V0M amplitude,
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which is the sum of signal amplitudes in the V0A and V0C scintillators. They are the two detecting
components of the V0 detector on opposite sides of the interaction point along the beam axis, covering
the pseudorapidity regions of 2.8 < η < 5.1 and −3.7 < η < −1.7, respectively. The pV0M values
towards 0 correspond to the highest multiplicity events, while the lowest are assigned a value towards
100%.

The data from pp collisions at
√

s = 13 TeV used for this analysis were collected in the years 2016, 2017,
and 2018. Three trigger setups were employed. The minimum-bias (MB) trigger required signals in both
V0A and V0C in coincidence with the proton bunch arrival time. To enrich the data sample in the highest
multiplicity regions, high-multiplicity triggers based on a minimum selection of the number of hits in the
SPD (HMSPD) or of V0 amplitudes (HMV0) were used, which were fully efficient for Ntrkl > 65 and
pV0M < 0.1%, respectively.

Offline selection criteria were applied in order to remove background events from beam–gas collisions
and other machine-induced background as described in Ref. [45]. To reduce the contamination from
events with superposition of more than one collision within the colliding bunches (pile-up), events with
multiple reconstructed primary vertices were rejected. The impact of potentially remaining pile-up events
is on the percent level and does not influence the final results of the present analysis. Only events with
a vertex position of |zvtx| < 10 cm around the nominal interaction point were considered to ensure a
uniform acceptance. In addition, events were required to have at least one reconstructed tracklet within
the pseudorapidity region |η | < 1 (INEL > 0 event class). This class of events minimises diffractive
corrections and has a high trigger efficiency. It corresponds to about 75% of the total inelastic cross
section [45, 46]. After the aforementioned selections, the integrated luminosity of the data sample is
about 32 nb−1 for the MB triggered events. Only the data periods granting an uniform efficiency of the
HMV0 and HMSPD triggers, inside the range covered by the multiplicity intervals considered in the
analysis, were used, resulting in an integrated luminosity of about 7.7 pb−1 with HMV0 and 0.8 pb−1 for
the HMSPD trigger sample.

The events were assigned to multiplicity intervals based on the corresponding observables Ntrkl and
pV0M, as presented in Table 1. The last Ntrkl and pV0M intervals contain data collected with the HMSPD
and HMV0 triggers, respectively. To account for a possible trigger inefficiency for HMSPD triggered
events in the range 60 < Ntrkl < 65, a correction was applied with a data-driven reweighting procedure,
as described in Ref. [44].

The mean multiplicity density (〈dNch/dη〉|η |<0.5) of charged primary particles, whose definition is given
in Ref. [47], was obtained by converting the measured event multiplicities as described in Ref. [45]. For
the pV0M percentiles the values reported in Ref. [45] were used. The conversion of the specific Ntrkl

intervals used in this analysis was performed by means of a PYTHIA [19] Monte Carlo (MC) simula-
tion, with particle transport based on the GEANT3 package [48], and by selecting the charged primary
particles measured at midrapidity in the events corresponding to the given Ntrkl intervals. Throughout the
analysis reported in this paper, PYTHIA 8.243 with Monash tune [20] was used; the version will not be
reported later for the sake of simplicity.

A summary of the above information is given in Table 1 together with the trigger correction ε INEL to
account for those events which fulfil the INEL > 0 requirement but were not selected by the trigger, as
specified in Ref. [45].

3 Data Analysis

The D0, D+
s , and Λ+

c hadrons and their charge conjugates were reconstructed via the hadronic decay chan-
nels D0 → K−π+ (branching ratio BR = (3.950± 0.031)%), D+

s → φπ+ → K+K−π+ (BR = (2.24±
0.08)%), Λ+

c → pK−π+ (BR = (6.28±0.32)%), and Λ+
c → pK0

S → pπ+π− (BR = (1.10±0.06)%) [49].
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Table 1: Summary of the multiplicity event classes at midrapidity (Ntrkl) and forward rapidity (pV0M [%]), the
latter corresponding to the visible V0M cross section. The average charged-particle densities 〈dNch/dη〉|η|<0.5 at
midrapidity are shown, together with the value corresponding to the INEL > 0 event class. The trigger efficiency
ε INEL is also reported for each multiplicity interval, as estimated in Ref. [45].

Mult. estimator Mult. interval 〈dNch/dη〉|η |<0.5 ε INEL

Ntrkl

[1,9] 3.10±0.02 0.862±0.015

[10,29] 10.54±0.01 0.997±0.002

[30,59] 22.56±0.07 1 (negl. unc.)

[60,99] 37.83±0.06 1 (negl. unc.)

pV0M [%]

[30,100] 4.41±0.05 0.897±0.013

[0.1,30] 13.81±0.14 0.997±0.001

[0,0.1] 31.53±0.38 1 (negl. unc.)

INEL > 0 6.93±0.09 0.920±0.003

The analysis was performed for the different multiplicity intervals, as defined in Table 1. Transverse-
momentum intervals between 1 and 24 GeV/c were chosen to guarantee a large statistical significance
in all multiplicity event classes. In order to minimise systematic effects, which could have a different
impact in the different multiplicity intervals considered in the analysis, the same event and candidate
selection criteria were used in all the multiplicity classes. The charm-hadron decay tracks were excluded
from the Ntrkl estimation at midrapidity, in order to reduce the effects of auto-correlation that could arise
from the measurement of the charged-particle distribution in the same pseudorapidity region as the charm
hadrons. A possible remaining bias could be induced by the charged particles produced in the fragmen-
tation of the charm quarks or by decays of excited charm states that are not subtracted from the Ntrkl

count.

Candidates of D0 → K−π+, D+
s → φπ+ → K+K−π+, and Λ+

c → pK−π+ were defined by combining
pairs or triplets of tracks with the proper charge signs, while the reconstruction of the Λ+

c → pK0
S can-

didates relied on reconstructing the V-shaped decay of the K0
S meson into two pions, which was then

combined with a proton-candidate track. Track-quality selections were applied to the candidate daugh-
ters as explained in Ref. [13]. As a consequence of these track-selection criteria, the detector acceptance
for D mesons and Λ+

c baryons varies as a function of rapidity, falling steeply to zero for |y| > 0.5 at
low pT and for |y| > 0.8 at pT > 5 GeV/c. For this reason, a fiducial acceptance selection was applied
on the rapidity of the candidates, |y| < yfid(pT), where the factor yfid(pT) was defined as a second-order
polynomial function, increasing from 0.5 to 0.8 in the transverse-momentum range 0 < pT < 5 GeV/c,
and as a constant term, yfid = 0.8, for pT > 5 GeV/c. The correction factors for the acceptance were
computed accordingly. Further selections on the charm-hadron decay topology and on the particle iden-
tification (PID) of their decay products were exploited to reduce the combinatorial background. The
same selection criteria described in Refs. [11, 13] were used for D0 and Λ+

c → pK−π+, while for the D+
s

and Λ+
c → pK0

S analyses, a machine-learning approach with Boosted Decision Trees (BDTs), using the
toolkit from XGBoost [50], was employed. Binary BDT classifiers were used and the training sample
was assembled considering the background from the sidebands of the candidate invariant-mass distribu-
tion in data, and the prompt signal candidates from MC simulations based on the PYTHIA Monash event
generator. Independent BDTs were trained for each pT interval in the multiplicity-integrated sample. The
most prominent variables that were used in the training for the Λ+

c analysis are related to the PID of the
proton decay track, the reconstructed invariant mass and cτ of the K0

S candidate, the cosine of the point-
ing angle between the line of flight of the K0

S meson (the vector connecting the primary and secondary
vertices) and its reconstructed momentum vector, and the distance between the K0

S-meson decay vertex

5



Charm-hadron yield ratios versus multiplicity in pp at
√

s = 13 TeV ALICE Collaboration

and the primary vertex. For the D+
s analysis, the variables provided to the BDTs are the same as reported

in Ref. [51]. The selections on the BDT outputs were tuned to provide a large statistical significance for
the signal.

The signal extraction was performed via binned maximum-likelihood fits to the invariant-mass distribu-
tions of candidates in each pT and multiplicity interval. For all analyses, a Gaussian function was used to
describe the signal peak. To model the background, an exponential function was used for the D0 mesons
and for D+

s mesons with a transverse momentum higher than 4 GeV/c, while a second-order polynomial
function was used for both Λ+

c decay channels as well for the lowest two pT intervals of the D+
s -meson

analysis. Due to the limited number of candidates in some multiplicity classes and the large combinato-
rial background, it was not possible to extract the raw yield in the full pT range for all the multiplicity
intervals: the range 1 < pT < 2 GeV/c in the low and high multiplicity classes and 12 < pT < 24 GeV/c
in the low multiplicity class are missing, respectively, for the D+

s and Λ+
c analyses. Examples of the

invariant-mass distributions for D0, D+
s , Λ+

c → pK−π+, and Λ+
c → pK0

S candidates for the different pT

and multiplicity intervals are reported in Ref. [52].

The corrected per-event yields were computed for each pT and multiplicity interval as

1
Nev

mult

d2Nhadron
mult

dydpT
=

ε INEL
mult

Nev
mult

1
c∆y(pT)×∆pT

1
BR

fprompt(pT)× 1
2 ×N

hadron,raw
mult (pT)

∣

∣

∣

|y|<yfid(pT)

(Acc× ε)prompt,mult(pT)
, (1)

where N
hadron,raw
mult is the raw yield (sum of particles and antiparticles) extracted in a given pT and multi-

plicity interval. It is multiplied by the prompt fraction fprompt in order to correct for the corresponding
beauty-hadron decay contribution, and divided by the multiplicity-dependent prompt acceptance-times-
efficiency, (Acc×ε)prompt,mult. It is further divided by a factor of two to obtain the charge-averaged yield,
by the BR of the decay channel, the pT-interval width (∆pT), and the correction factor for the rapidity
coverage c∆y, computed as the ratio between the generated heavy-flavour hadron yield in ∆y = 2yfid and
that in |y|< 0.5. The factor Nev

mult denotes the number of recorded events in each multiplicity class, which
is then corrected for the fraction of INEL > 0 events that were not selected by the trigger, ε INEL

mult , whose
values are reported in Table 1.

The geometrical acceptance of the detector times the reconstruction efficiency (Acc× ε) includes the
tracking, the PID, and the topological selection efficiencies, and it was obtained separately for prompt and
feed-down hadrons. It was determined from pp collisions simulated with PYTHIA with Monash tune,
with particle transport based on the GEANT3 package [48]. To account for the multiplicity dependence
of the efficiency, which is driven by the primary-vertex resolution improving with increasing multiplicity,
the generated events were weighted based on the number of tracklets in order to match the distribution
observed in data. The generated Λ+

c pT spectrum used to calculate the efficiencies was weighted to
reproduce the shape obtained from the PYTHIA CR-BLC tune, which describes the measured spectra
better than the Monash tune as observed in Ref. [13].

The estimated (Acc × ε)prompt,mult varies between 0.5% and 60% depending on pT and species, and
increases with multiplicity [52]. The largest difference with respect to the efficiency computed in the
INEL > 0 class is observed in 1< pT < 2 GeV/c, where it reaches 30% for D+

s , while it steeply decreases
to few percents with increasing pT.

The fprompt fraction was estimated as reported in Refs. [13, 51], using (i) the beauty-quark production
cross section from FONLL calculations [5, 6], (ii) the (Acc × ε) for feed-down charm hadrons, (iii)
beauty-quark fragmentation fractions determined from LHCb data [53] for b → Λ0

b and from e+e− mea-
surements [17] for b → B, and (iv) modelling the decay kinematics with PYTHIA simulations. The
fprompt fraction was assumed to be independent of the event multiplicity and therefore computed for the
minimum-bias event class. This assumption is justified by the expected weak dependence of the feed-
down fraction with multiplicity [44], predicted also by PYTHIA, and the small variations of the efficiency
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for the feed-down component of charm hadrons observed in the simulation for the different multiplicity
intervals. The values of fprompt range from 0.81 to 0.97 depending on pT and particle species.

4 Systematic uncertainty evaluation

Sources of systematic uncertainty on the measured corrected yields were studied following procedures
similar to those described in detail in Refs. [11, 13] for the minimum-bias Λ+

c and D-meson analyses.
The multiplicity-independent sources, i.e. those related to the tracking efficiency, the PID selection and
the simulated charm-hadron pT spectra, are discussed first, and then those related to the multiplicity
dependence of the analyses are addressed.

The systematic uncertainties on the track-reconstruction efficiency depend on the candidate pT and num-
ber of decay tracks of the candidate, and range from 3% to 5% for the D0, and from 4% to 8% for the D+

s
and Λ+

c . The contribution due to the PID was investigated by varying the selection criteria. For the D0

and the Λ+
c → pK−π+ analyses, the studies were performed as described in Refs. [11] and [13], respec-

tively, resulting in a negligible uncertainty for the D0, and a 5% uncertainty for the Λ+
c → pK−π+. In the

D+
s and Λ+

c → pK0
S analyses, where topological and PID selection variables are used simultaneously in

the BDT, the uncertainties coming from the two sources are treated in a combined procedure as described
further below.

The possible differences between the real and simulated charm-hadron pT spectra result in a further
source of systematic uncertainty. It was evaluated by reweighting the pT shape from PYTHIA Monash
for the D0 and D+

s analyses and from PYTHIA CR-BLC for the Λ+
c analyses to match the one from

D-meson FONLL calculations [5, 6]. This contribution ranges from 1% to 6% for pT < 4 GeV/c, while
it is negligible at higher pT.

The selection efficiencies of the various hadron candidates rely on the description of the detector reso-
lution and alignment in the simulation. Systematic effects arising from imperfections in the simulation
are studied by repeating the D0 and Λ+

c → pK−π+ analyses using different selection criteria on the dis-
placed decay topology. In the D+

s and Λ+
c → pK0

S analyses, the selections on the BDT outputs were
varied instead, covering both the PID and the decay-topology selection efficiency. For both approaches,
the variations are performed separately for the different multiplicity and pT intervals. The assigned sys-
tematic uncertainties are larger at low pT where the selection criteria are strict, reaching 5% for the D0

meson and 10% for the D+
s and Λ+

c analyses. The uncertainty due to the multiplicity dependence of
the selection efficiency was evaluated as well, by changing the weight functions used to reproduce the
measured charged-particle multiplicity in the simulation [54]. A maximum deviation of about 4% is
observed at low pT and low multiplicity.

The systematic uncertainty on the raw-yield extraction was evaluated in each combination of the studied
pT and multiplicity intervals by repeating the fit to the invariant-mass distributions varying the fit range
and the background fit function as done in Ref. [11]. In order to test the sensitivity to the functional form
of the fit function of the signal, the same strategy was performed using a bin-counting method, in which
the signal yield was obtained from integrating the background-subtracted invariant-mass distribution.
This systematic uncertainty ranges between 2% and 14% depending on the hadron species, the pT, and
the multiplicity interval.

As described above, a data-driven event reweighting procedure was applied for the HMSPD triggered
data sample to account for the trigger inefficiency. Three strategies were explored to ensure normalised
weights as outlined in Ref. [44]. The different normalisation procedures were propagated to the raw
yield calculation resulting in a relative systematic difference of 1% to 4% compared to the central values
depending on the particle species, independent of their pT.

Possible differences between the primary-vertex position distributions along the beam axis, zvtx, in sim-
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ulations and in data were investigated, since a slight dependence of the efficiencies with zvtx is ob-
served. Hence, a further data-driven reweighting procedure was performed, taking this effect into ac-
count. A pT-dependent systematic uncertainty was estimated, resulting in a contribution of about 0.5%
for pT < 4 GeV/c, and negligible elsewhere. This systematic source is considered particle dependent
because the weights are defined by selecting events with a charm-hadron candidate in a given invariant-
mass range, for each hadron independently.

Systematic effects due to the dependence of the efficiency on the Ntrkl interval limits were also studied.
These effects were a consequence of removing the reconstructed candidate’s decay tracks from the mul-
tiplicity in data but not in MC, which was done as the efficiencies have little dependence on multiplicity.
The systematic uncertainty was evaluated by comparing the efficiency computed in a Ntrkl interval shifted
by one or two units (for two- or three-body decays, respectively) with the one in the default intervals. It
was observed to range from 2% to 8%, especially affecting the lowest pT and multiplicity interval.

Two systematic uncertainties were assigned to the prompt fraction calculations, coming from the FONLL
calculations of the b-quark production [5, 6] and the assumed multiplicity independence of the fprompt

factor. The FONLL parameters (b-quark mass, factorisation, and renormalisation scales) were varied
as prescribed in Ref. [6]. The assigned uncertainty values for the D mesons range from 3% to 12%.
In the Λ+

c analyses, the additional contribution from the fb→Λ0
b

fragmentation fraction is considered, as
discussed in detail in Ref. [13]. It leads to more asymmetrical values of the uncertainty, ranging from
+2
−4% at low pT to +6

−8% at high pT. As mentioned above, Eq. 1 describes the corrected prompt yields
under the assumption that fprompt does not vary with multiplicity. To estimate the uncertainty related to
this assumption, PYTHIA simulations where employed, with Monash and CR-BLC tunes. The feed-
down contribution from beauty-hadron decays, ffeed-down = 1− fprompt, was varied in each multiplicity
interval based on the observed f mult

feed-down/〈 ffeed-down〉 trends in simulations. The feed-down contributions
were found to be compatible for the D and Λ+

c hadrons and show a global increasing trend from 0.7 to
1.5 from the lowest to the highest multiplicity event class. The resulting systematic uncertainties depend
on the charm-hadron species, the pT interval, and the multiplicity classes considered in the analyses. For
the part related to the fprompt multiplicity-dependence assumption, typical values for the uncertainty for
intermediate pT are +8

−0% at low multiplicity and +0
−15% at high multiplicity.

The statistical uncertainty on the selection efficiency is assigned as systematic uncertainty. It strongly de-
pends on the pT and multiplicity intervals, especially affecting the pT < 4 GeV/c and highest multiplicity
intervals, where it reaches 1% for the D0, 4% for the D+

s and Λ+
c → pK−π+, and 5% for the Λ+

c → pK0
S

analysis. Finally, an overall normalisation systematic uncertainty induced by the branching ratios [49]
was considered.

The sources of systematic uncertainty described above are assumed to be uncorrelated among each other
and the total systematic uncertainty in each pT and multiplicity interval is calculated as the quadratic sum
of the estimated values. Depending on the pT and multiplicity intervals, the resulting values range from
7% to 13% for the D0, from 10% to 17% for the D+

s , from 7% to 24% for the Λ+
c → pK−π+, and from

8% to 17% for the Λ+
c → pK0

S analyses.

5 Results

The pT-differential corrected yield of the Λ+
c baryon was obtained in the different event-multiplicity

classes, averaging the results from the two decay channels Λ+
c → pK−π+ and Λ+

c → pK0
S to obtain a

more precise measurement, for which the inverse of the quadratic sum of the relative statistical and
uncorrelated systematic uncertainties were used as weights. In the propagation of the uncertainties, the
correlation between the statistical and systematic uncertainties was taken into account, with the strategy
explained in Ref. [13]. In addition, the multiplicity-dependent systematic sources were considered as
correlated between the two decay channels. In the rest of this section, Λ+

c will refer to the weighted
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Figure 1: Transverse-momentum spectra of D0, D+
s , and Λ+

c hadrons measured in pp collisions at
√

s = 13 TeV for
different multiplicity classes selected with the Ntrkl estimator at midrapidity. The corresponding ratios to INEL > 0
are shown in the bottom panels.

average of the Λ+
c → pK−π+ and Λ+

c → pK0
S decay channels.

The pT-differential spectra of D0, D+
s , and Λ+

c hadrons, measured in |y| < 0.5, are shown in Fig. 1 for
the INEL > 0 class and the four multiplicity classes selected using the Ntrkl estimator at midrapidity.
The statistical and total systematic uncertainties are shown by vertical error bars and boxes, respectively,
as for all the figures in this section. The pT spectra of the individual decay channels Λ+

c → pK−π+

and Λ+
c → pK0

S, as well as the D0, D+
s , and Λ+

c yields in the multiplicity classes selected using the
pV0M estimator at forward rapidity, are reported in Ref. [52]. The bottom panels of Fig. 1 present the
ratios to the INEL > 0 class, for which the multiplicity-dependent systematic sources were considered as
uncorrelated among different multiplicity classes and the contributions of the tracking and PID efficiency,
the shape of MC pT spectra and zvtx distribution, the beauty feed-down, and the branching ratio as
correlated. The statistical uncertainties and the systematic uncertainties related to the selection efficiency
and to the raw-yield extraction were considered partially correlated with respect to the measurement
performed in the INEL > 0 class.

The measured pT-differential yields increase from the lowest to the highest multiplicity class for the
three hadron species. Their ratios to INEL > 0 increase (decrease) with increasing pT for the highest
(lowest) multiplicity class, suggesting a plateau towards pT > 10 GeV/c, as recently observed for the
light-flavour hadrons in Refs. [41, 55, 56], where it was explained as a hardening of the measured pT

spectra with increasing 〈dNch/dη〉. Different MPI models were able to describe such effects [57], and
it was shown to be more pronounced for protons than for kaons and pions, while similar for strange
baryons and mesons.

In order to investigate potential differences in the 〈dNch/dη〉 dependence of the D0-meson production
with respect to the D+

s meson and Λ+
c baryon, the D+

s /D0 and Λ+
c /D0 yield ratios are compared in differ-

ent multiplicity event classes in Fig. 2, considering both forward and midrapidity multiplicity estimators.
The sources of uncertainty assumed to be uncorrelated between different charm-hadron species included
the raw-yield extraction, the selection efficiency, the shape of the MC pT spectra, the zvtx distribution, and
the branching ratio. The systematic uncertainty deriving from the variation of the multiplicity-interval
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Figure 2: The D+
s /D0 (top) and Λ+

c /D0 (bottom) ratios measured in pp collisions at
√

s = 13 TeV for different
multiplicity classes at mid- (left) and forward (right) rapidity.

limits was propagated as partially correlated, while the other systematic uncertainties were assumed to
be fully correlated.

Within the current experimental uncertainties, the D+
s /D0 ratios are independent of pT in the measured pT

range. They are compatible with measurements performed in pp collisions at
√

s = 5.02 and 7 TeV [11],
and also with the average of the pT-integrated results from experiments at e+e− and e−p colliders, 0.17±
0.03 [17, 58]. A dependence of these ratios with multiplicity, as seen for the ratio of (multi-)strange
hadrons to π± [41, 59], is not observed within the uncertainties.

The pT-differential Λ+
c /D0 ratios show an evident dependence on multiplicity, and a hierarchy is ob-

served going from the lowest to the highest multiplicity intervals, for both the Ntrkl and pV0M estimators,
for all but the first pT bin. The increasing trend with 〈dNch/dη〉 for the Λ+

c /D0 ratio is consistent among
the measurements done with the two multiplicity estimators, indicating that the enhancement between
low and high multiplicity intervals is not a consequence of a possible bias arising from the coinciding
rapidity regions between the multiplicity estimator and the measurement of interest at midrapidity. It
is worth noticing that the measured Λ+

c /D0 ratio in the lowest multiplicity class is still higher, in the
measured pT range, than the average of corresponding ratios measured in e+e− collisions at LEP, which
was found to be 0.113±0.013(stat)±0.006(syst) [13, 17].

In order to estimate a significance level for the difference observed in the two extreme multiplicity classes
at midrapidity, the highest multiplicity (HM) over the lowest multiplicity (LM) Λ+

c /D0 ratio was com-
puted. The probability of the measured double-ratio DR = (Λ+

c /D0)HM/(Λ+
c /D0)LM > 1, corresponds

to a significance of 5.3σ in the 1 < pT < 12 GeV/c interval, considering as null hypothesis DR = 1.
This estimate was performed taking into account statistical and systematic uncertainties, for which the
raw-yield extraction, the selection efficiency, the shape of the MC pT spectra, and the zvtx distribution
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sources were considered as uncorrelated, the multiplicity-interval limits as partially correlated, while the
other sources cancelled out in the double ratio. With the aim of investigating the least favourable case,
the measured values in all pT intervals were shifted down by one standard deviation, by considering the
sources of systematic uncertainties correlated with pT that do not cancel out in the double ratio, i.e. those
arising from the selection efficiency and the generated pT spectra.

The measured charm-hadron ratios for the lowest and highest multiplicity class for the Ntrkl multiplicity
estimator are compared to model predictions from MC generators and a statistical hadronisation model in
Fig. 3. The simulations with the PYTHIA event generator were performed with the Monash and the CR-
BLC tunes. For the latter, three modes are suggested by the authors, applying different constraints on the
allowed reconnections among colour sources, in particular concerning the causality connection among
strings involved in a reconnection, and time dilation caused by relative boosts of the strings [24]. The
simulations are shown in intervals of primary particle multiplicities selected at midrapidity, evaluated
by studying the correlation between Ntrkl intervals and Nch values. The estimated intervals are 1 ≤
Nch ≤ 12 and Nch > 75 for the lowest and highest multiplicity event classes, respectively. The measured
D+

s /D0 ratios at low and high multiplicity are compatible with PYTHIA with Monash and CR-BLC
tunes. The Monash tune, however, does not reproduce the Λ+

c /D0 ratio, and furthermore it does not show
a multiplicity dependence. By contrast, the CR-BLC tunes describe the Λ+

c /D0 decreasing trend with pT,
and are closer to the overall magnitude, as also observed for minimum-bias pp collisions at

√
s= 5.02 and

13 TeV [13, 15]. The CR-BLC tunes show a clear dependence with multiplicity, qualitatively reproducing
the trend observed in data.

The measurements in Fig. 3 are also compared with the predictions of a canonical-ensemble statistical
hadronisation (CE-SH) model [60], where the authors generalise the grand-canonical statistical hadro-
nisation model (SHM) [25] of charm-hadron production to the case of canonical SHM, and explore the
multiplicity dependence of charm-hadron particle ratios. The version of the SHM model based on the
measured charm-baryon spectrum reported by the PDG [49] was observed to strongly underestimate the
Λ+

c /D0 measurements in minimum-bias pp collisions [13]. For this reason, for the Λ+
c /D0 case, the

underlying charm-baryon spectrum in the calculations is augmented to include additional excited baryon
states predicted by the Relativistic Quark Model (RQM) [61]. For the D+

s /D0 predictions, only the PDG
case is shown, since the RQM does not modify the D-meson yields with respect to the PDG set. The
model calculations describe the Λ+

c /D0 ratios, reproducing the multiplicity dependence. The D+
s /D0

prediction is compatible with the measurement for the low multiplicity class, while it overestimates the
data in the highest multiplicity interval. The CE-SH model explains the multiplicity dependence as deriv-
ing from the reduced volume size of the formalism towards smaller multiplicity, where a decrease of the
Λ+

c /D0 ratio is a consequence of the strict baryon-number conservation. Such behaviour is also predicted
for charm-strange mesons relative to charm mesons, based instead on strangeness-number conservation.

Figure 4 shows the comparison of the Λ+
c /D0 and the Λ/K0

S [41] baryon-to-meson ratios as a function
of pT in pp collisions at

√
s = 13 TeV, in similar low and high Ntrkl and pV0M multiplicity classes. In

the vacuum-fragmentation scenario, the light-flavour hadron production has a significant contribution
from gluon fragmentation, whereas heavy-flavour hadrons are primarily produced through the fragmen-
tation of a charm quark, which is in turn produced in the initial hard scattering. In addition, at low pT,
light-flavour hadrons originate mainly from small-momentum soft scattering processes. Despite these
differences, the light- and heavy-flavour baryon-to-meson ratios, Λ+

c /D0 and Λ/K0
S, show a remarkably

similar trend as a function of 〈dNch/dη〉. The measurements also suggest a similar shift of the baryon-
to-meson ratio peaks towards higher momenta, with increasing multiplicity. These similarities, observed
as well in minimum-bias pp and p–Pb collisions at

√
sNN = 5.02 TeV both in terms of shape and mag-

nitude [62], hint at a potential common mechanism for light- and charm-baryon formation in hadronic
collisions at LHC energies.

The pT-integrated yields of Λ+
c and D0 were computed by integrating the pT-differential spectra in their

11



Charm-hadron yield ratios versus multiplicity in pp at
√

s = 13 TeV ALICE Collaboration

5 10 15 20

0.1

0.2

0.3

0.4

0.5

 0
 / 

D
+ s

D

ALICE
| < 0.5y = 13 TeV, |spp, 

 multiplicity classestrklN
:  ALICE;   PYTHIA;  SH model〉 η/dchNd 〈

         3.1;          2.9;           3.1
       37.8;        40.6;         37.8

5 10 15 20

0.1

0.2

0.3

0.4

0.5
PYTHIA 8.243

Monash
CR-BLC Mode 0
CR-BLC Mode 2
CR-BLC Mode 3

Y. Chen and M. He
CE-SH model

5 10 15 20
)c (GeV/

T
p

0.2

0.4

0.6

0.8

1

 0
 / 

D
+ c

Λ

5 10 15 20
)c (GeV/

T
p

0.2

0.4

0.6

0.8

1
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measured range and extrapolating them down to pT = 0 in each multiplicity interval. In the integration,
the systematic uncertainties were propagated considering the uncertainty due to the raw-yield extraction
and the statistical uncertainty on the efficiency as fully uncorrelated and all the other sources as fully
correlated among pT intervals. The PYTHIA predictions with CR-BLC Mode 2 were used for the ex-
trapolation in each multiplicity interval, for both Λ+

c and D0, following a similar procedure as the one
described in Ref. [13]. The extrapolation factor was computed as the ratio of the PYTHIA spectrum
integrated in the full pT range to the integral in the visible pT range. The Λ+

c and D0 yields in the full
pT range were obtained by integrating the yield in the visible pT interval and scaling by the extrapo-
lation factor. The fraction of extrapolated yield from the lowest to the highest multiplicity interval is
about 39% (31%), 28% (22%), 20% (16%), and 15% (13%) for Λ+

c (D0). The procedure was repeated
considering also the CR-BLC Mode 0 and Mode 3 as well as two different functions fitted to the spec-
tra (a Tsallis-Lévy [63] and a power-law function). The fits were performed considering the statistical
and pT-uncorrelated sources of systematic uncertainties, and also shifting up and down the data by one
sigma of the pT-correlated systematic uncertainties. The envelope of the extrapolation factors obtained
with all the trials was assigned as the extrapolation uncertainty on Λ+

c and D0, and it was propagated
to the Λ+

c /D0 ratio, resulting in a value that ranges from 2% to 21% depending on multiplicity. The
same procedure was used to estimate the pT-integrated D+

s yields and D+
s /D0 yield ratios in the different

multiplicity intervals, reported in Ref. [52]. The Λ+
c and D0 pT-integrated yields are also reported in

Ref. [52], together with the pT-integrated Λ+
c /D0 yield ratios in the visible pT range, and the tables with

the numerical values of the pT-integrated ratios. The pT-integrated Λ+
c /D0 yield ratio as a function of

〈dNch/dη〉 is shown in Fig. 5, where the systematic uncertainties from the extrapolation (shaded boxes,
assumed to be uncorrelated among multiplicity intervals) are drawn separately from the other sources of
systematic uncertainties (empty boxes). The sources related to the raw-yield extraction, the multiplicity-
interval limits, the high-multiplicity triggers, the multiplicity-independent prompt fraction assumption,
and the statistical uncertainties on the efficiencies are also considered uncorrelated with multiplicity.
The other systematic uncertainties are assumed to be correlated. The measurements performed in pp and
p–Pb collisions at

√
s = 5.02 TeV [13] are also shown. The result does not favour an increase of the

yield ratios with multiplicity and the trend is compatible with a constant function. The same trend was
also observed for the Λ/K0

S ratio in Ref. [41]. This suggests that the increasing trend observed for the
1< pT < 24 GeV/c range comes from a re-distribution of pT that acts differently for baryons and mesons,
while this is not observed in the meson-to-meson ratios, as shown in Fig. 3 for D+

s /D0 and in Ref. [56]
for K/π . The results are compared to the pT-integrated PYTHIA predictions. The measurements exclude
the Monash prediction in the whole multiplicity range, and tend to be significantly below the CR-BLC
Mode 2 for the three highest multiplicity intervals.

6 Conclusions

The first measurement of D+
s /D0 and Λ+

c /D0 ratios as a function of charged-particle multiplicity in pp
collisions at

√
s = 13 TeV was presented. The pT-differential D+

s /D0 yield ratio does not show a de-
pendence on multiplicity, within uncertainties. In contrast, the charm baryon-to-meson ratio, Λ+

c /D0,
measured as a function of pT, shows a significant increase (5.3σ ) when comparing the measurements
performed in the lowest and highest multiplicity intervals in 1 < pT < 12 GeV/c. In addition, the Λ+

c /D0

ratio measured in the lowest multiplicity interval (〈dNch/dη〉 = 3.1) is higher, at low and intermediate
pT, than the values measured at e+e− colliders at lower centre-of-mass energies. These observations im-
ply a modification of the hadronisation mechanisms that is collision-system and multiplicity dependent,
further confirming the limited validity of the assumption of universality of the fragmentation functions.
The measurements are compared with two calculations. Those based on PYTHIA with CR-BLC de-
scribe the D+

s /D0 measurements and capture the trend of the Λ+
c /D0 ratio, qualitatively describing the

increasing magnitude of the baryon-to-meson ratios with multiplicity. Calculations based on a statisti-
cal hadronisation model, with the multiplicity dependence originating from the canonical treatment of
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quantum-charge conservation, describe the Λ+
c /D0 measurements in the lowest and highest multiplicity

intervals. The prediction is also in agreement with the D+
s /D0 ratio for the low multiplicity interval, while

it overestimates the data in the high-multiplicity class. The baryon-to-meson ratios in the charm sector,
Λ+

c /D0, are also compared to those in the light-flavour sector, Λ/K0
S, in similar multiplicity classes,

showing a remarkably similar trend as a function of pT and similar enhancement with 〈dNch/dη〉. These
similarities hint at a possible common mechanism for light- and charm-baryon formation in pp collisions
at LHC energies. The pT-integrated Λ+

c /D0 ratios, extrapolated to pT = 0 based on spectral shapes from
PYTHIA with CR-BLC, show no significant dependence on multiplicity, suggesting that the increase in
the baryon-to-meson yield ratio observed in the measured pT range is due to a different redistribution
of pT between baryons and mesons, rather than to an enhancement in the overall baryon yield. More
precise measurements with the data sample collected in Run 3 of the LHC, that is planned to start late
spring 2022, will allow us to further investigate the shape of the pT-integrated baryon-to-meson ratios
versus multiplicity, extending the multiplicity reach to lower and higher multiplicity intervals.
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