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Abstract

The study of the production of nuclei and antinuclei in pp collisions has proven to be a powerful tool
to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In
this paper, the production of protons, deuterons and 3He and their charge conjugates at midrapidity
is studied as a function of the charged-particle multiplicity in inelastic pp collisions at

√
s = 5.02

TeV using the ALICE detector. Within the uncertainties, the yields of nuclei in pp collisions at√
s = 5.02 TeV are compatible with those in pp collisions at different energies and to those in p–

Pb collisions when compared at similar multiplicities. The measurements are compared with the
expectations of coalescence and Statistical Hadronisation Models. The results suggest a common
formation mechanism behind the production of light nuclei in hadronic interactions and confirm that
they do not depend on the collision energy but on the number of produced particles.

*See Appendix A for the list of collaboration members
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1 Introduction

Light (anti)nuclei are abundantly produced in ultrarelativistic heavy-ion collisions [1–3] at the Large
Hadron Collider (LHC), but their measurement in pp collisions is challenging due to their lower produc-
tion yields. As a consequence, until few years ago there were only few measurements of the production
rates of (anti)nuclei in small collision systems [1, 4–6]. This has recently changed thanks to the large pp
data samples collected by ALICE at the LHC, which allow us to perform more precise and differential
measurements of the production of light (anti)nuclei. In this paper, we present the detailed study of the
multiplicity and transverse momentum dependence of (anti)proton, (anti)deuteron and (anti)3He produc-
tion in pp collisions at

√
s = 5.02 TeV. The results shown in the following are the most accurate obtained

so far in small systems and represent the full compilation of data available for pp collisions at different
energies at the end of the LHC Run 2.

The production mechanism of light (anti)nuclei in high-energy hadronic collisions is not fully under-
stood. The classes of models used for comparison with the experimental results are the Statistical Hadro-
nisation Models (SHM) and the coalescence models. SHMs assume that particles originated from an
excited region evenly occupy all the available states in phase space [7]. Pb–Pb collisions, characterised
by a large extension of the particle-emitting source and hence considered as large systems, are described
according to a grand canonical ensemble [8]. On the contrary, pp and p–Pb collisions, which are char-
acterised by a small size and are considered as small systems, must be described based on a canonical
ensemble, requiring the local conservation of the appropriate quantum numbers [9]. The expression
Canonical Statistical Model (CSM) is used to underline the canonical description.

An important observable that provides information on the production mechanism is the ratio between the
pT-integrated yields of nuclei and protons. The measured d/p and 3He/p ratios show a rather constant
behaviour as a function of centrality in Pb–Pb collisions. In contrast to that, they increase in pp and p–Pb
collisions with increasing multiplicity, finally reaching the values measured in Pb–Pb collisions [1, 10,
11]. The constant nuclei-to-proton ratios in large collision systems is predicted by the SHMs [12], while
the experimentally determined difference between small and large systems can be qualitatively explained
as an effect of the canonical suppression of the nuclei yields for small system sizes. The prediction of
the CSM saturates towards the grand canonical value at larger system size [13] .

In coalescence models, (anti)nuclei are formed by nucleons close in phase space [14]. In this approach,
the coalescence parameter BA relates the production of (anti)protons to the one of (anti)nuclei. BA is
defined as

BA
(

pp
T

)
=

1
2π pA

T

d2NA

dydpA
T

/(
1

2π pp
T

d2Np

dydpp
T

)A

, (1)

where p is the momentum, pT the transverse momentum, y the rapidity and N the number of particles.
The labels p and A are used to denote properties related to protons and nuclei with mass number A,
respectively. The production spectra of the (anti)protons are evaluated at the transverse momentum of
the nucleus divided by the mass number, so that pp

T = pA
T/A. Neutron spectra are assumed to be equal

to proton spectra, due to the isospin symmetry restoration in hadron collisions at the LHC. Since the
coalescence process is expected to occur at the late stages of the collision, the BA parameter is related
to the emission volume. In a simple coalescence approach, which describes the uncorrelated particle
emission from a point-like source, BA is expected to be independent of pT and multiplicity. In this
context, the measurements of the nuclei-to-proton ratios and of the BA parameters in pp collisions at√

s = 5.02 TeV reported in this paper are important to complete the present picture of the production
of light nuclei in small systems. In addition, the increased statistics exploited in the present analysis
will allow us to better constrain the models, thus to provide important inputs to both the theoretical and
experimental communities.
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2 The ALICE apparatus

A detailed description of the ALICE detectors can be found in [15, 16] and references therein. In the
following more information is given on the sub-detectors used to perform the analysis presented in this
work, namely the V0, the Inner Tracking System (ITS), the Time Projection Chamber (TPC) and the
Time-of-Flight (TOF). All of them are located inside a solenoidal magnet creating a magnetic fields
parallel to the beam line, with an intensity of 0.5 T for the data sample here considered.

The V0 detector [17] is formed by two arrays of scintillation counters placed around the beam pipe on
either side of the interaction point. They cover the pseudorapidity ranges 2.8 ≤ η ≤ 5.1 (V0A) and
−3.7 ≤ η ≤ −1.7 (V0C). The collision multiplicity is estimated using the signal amplitude in the V0
detector, which is also used as a trigger detector. More details will be given in Section 3.

The ITS [18] provides high resolution track points in the proximity of the interaction region and consists
of three subsystems. Going from the innermost to the outermost subsystem, we find: two layers of
Silicon Pixel Detectors (SPD), two layers of Silicon Drift Detectors (SDD) and two layers equipped with
double-sided Silicon Strip Detectors (SSD). The ITS extends radially from 3.9 cm to 43 cm, it is hermetic
in azimuth and it covers the pseudorapidity range |η |< 0.9.

The same pseudorapidity range is covered by the TPC [19], which is the main tracking detector, con-
sisting of a hollow cylinder whose axis coincides with the nominal beam axis. The active volume, filled
with a Ne/CO2/N2 gas mixture at atmospheric pressure, has an inner radius of about 85 cm and an outer
radius of about 250 cm. The trajectory of a charged particle is estimated using up to 159 combined mea-
surements (clusters) of drift times and radial positions of the ionisation electrons. The charged-particle
tracks are then reconstructed by combining the hits in the ITS and the measured clusters in the TPC. The
TPC is also used for particle identification (PID) by measuring the specific energy loss (dE/dx) in the
TPC gas. In pp collisions, the dE/dx in the TPC is measured with a resolution of ≈ 5.2% [15].

The TOF [20] covers the full azimuth for the pseudorapidity interval |η |< 0.9. The detector is based on
the Multigap Resistive Plate Chambers (MRPC) technology and is located, with a cylindrical symmetry,
at an average distance of 380 cm from the beam axis. The particle identification is based on the difference
between the measured time of flight and its expected value, computed for each mass hypothesis from
track momentum and length. A precise starting signal for the measurement of the time of flight by the
TOF is provided by the T0 detector, consisting of two arrays of Cherenkov counters, T0A and T0C,
which cover the pseudorapidity regions 4.61 ≤ η ≤ 4.92 and 3.28 ≤ η ≤ 2.97, respectively [21]. The
overall resolution on the particles time of flight, including the start time, is ≈ 80 ps.

3 Data sample

This analysis is based on approximately 900 million pp collisions (events) at
√

s = 5.02 TeV collected in
2017 by ALICE at the LHC. Events are selected by a minimum-bias (MB) trigger, requiring at least one
hit in each of the two V0 detectors. An additional offline rejection is performed to remove events with
more than one reconstructed primary vertex (pile-up events) and events triggered by interactions of the
beam with the residual gas in the LHC beam pipe [17].

The production of (anti)nuclei is measured around midrapidity, within a rapidity range of |y|< 0.5, and
within the pseudorapidity interval |η | < 0.5 to maximise the detector performance. The selected tracks
are required to have at least 70 reconstructed points in the TPC and two points in the ITS in order to
guarantee good track momentum and dE/dx resolution in the relevant pT ranges. In addition, at least
one hit in the SPD is required to ensure a resolution of the distance of closest approach to the primary
vertex better than 300 µm, both along the beam axis (DCAz) and in the transverse plane (DCAxy) [15].
The quality of the accepted tracks is checked by requiring the χ2 per TPC reconstructed point and per ITS
reconstructed point to be less than 4 and 36, respectively. Finally, tracks originating from kink topologies
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Table 1: Multiplicity classes for the different measurements, with the corresponding charged-particle multiplicity
density at midrapidity 〈dNch/dη〉 and percentiles of the INEL > 0 pp cross section, and pT-integrated yields dN/dy
for the different species. For protons, statistical uncertainties are negligible with respect to systematic uncertainties.

Class
V0 〈dNch/dη〉 dN/dy

percentile p (× 10−1) d (× 10−4) 3He (× 10−7)
I 0 – 1% 18.5 ± 0.2 5.0 ± 0.0 ± 0.3 10.7 ± 0.2 ± 0.7
II 1 – 5% 14.5 ± 0.2 4.0 ± 0.0 ± 0.2 8.10 ± 0.07 ± 0.39
III 5 – 10% 11.9 ± 0.2 3.4 ± 0.0 ± 0.2 6.36 ± 0.05 ± 0.32

IV – V 10 – 20% 9.7 ± 0.1 2.8 ± 0.0 ± 0.2 4.92 ± 0.03 ± 0.24
VI 20 – 30% 7.8 ± 0.1 2.2 ± 0.0 ± 0.1 3.60 ± 0.03 ± 0.18
VII 30 – 40% 6.3 ± 0.1 1.8 ± 0.0 ± 0.1 2.65 ± 0.03 ± 0.14
VIII 40 – 50% 5.2 ± 0.1 1.5 ± 0.0 ± 0.1 1.98 ± 0.02 ± 0.09
IX 50 – 70% 3.9 ± 0.1 1.1 ± 0.0 ± 0.1 1.28 ± 0.01 ± 0.06
X 70 – 100% 2.4 ± 0.1 0.6 ± 0.0 ± 0.1 0.48 ± 0.01 ± 0.06

I – III 0 – 10% 13.6 ± 0.2 5.4 ± 0.3 ± 0.7
IV – X 10 – 100% 4.9 ± 0.1 1.5 ± 0.1 ± 0.4

INEL > 0 0 – 100% 5.5 ± 0.1 1.5 ± 0.0 ± 0.1 2.29 ± 0.01 ± 0.12 1.7 ± 0.1 ± 0.4

of kaons and pions decays are rejected.

Data are divided into multiplicity intervals classified by a roman numeral from I to X, going from the
highest to the lowest multiplicity [10]. In order to achieve a higher statistical precision, classes are
merged into nine classes for (anti)protons and (anti)deuterons and into two classes for (anti)helion. The
multiplicity classes are defined from the mean of the V0 signal amplitudes as percentiles of the INEL > 0
pp cross section, where INEL > 0 events are defined as collisions with at least one charged particle in the
pseudorapidity region |η |< 1 [22]. The mean charged-particle multiplicities for each class, 〈dNch/dη〉,
are listed in Table 1.

4 Data analysis

4.1 Raw yield extraction

The first important step in the analysis is the particle identification. The identification of (anti)nuclei
is performed with two different methods, depending on the particle species and on the transverse mo-
mentum. For (anti)protons and (anti)deuterons with pT < 1 GeV/c, the identification relies on the mea-
surement of the dE/dx using the TPC. The number of signal candidates is extracted through a fit with
a Gaussian with two exponential tails to the nσ distribution for each pT interval. The nσ is defined as
the difference between the measured and the expected dE/dx for each particle species, divided by dE/dx
resolution of the TPC. For pT ≥ 1 GeV/c, it is more difficult to separate (anti)protons and (anti)deuterons
from other charged particles of |Z| = 1. Therefore, PID is performed using the TOF detector informa-
tion in addition. The squared mass of the particle is evaluated as m2 = p2

(
t2
TOF/L2−1/c2

)
, where tTOF

is the measured time of flight, L is the length of the track and p is the momentum of the particle. In
order to reduce the background, the tracks are in addition required to have |nσTPC | < 3. The squared
mass distributions of the signal are fitted with a Gaussian function with an exponential tail. Background
originating from other particle species or from the random match of a TOF hit with another track sig-
nificantly increases with pT and is modelled with the sum of Gaussian and exponential functions. For
(anti)helion, only the TPC dE/dx measurement is used, because their signal in the TPC can be easily
separated from the one of other particle species, due to the electric charge (Z = 2). The raw yield of
(anti)helion is obtained through a fit of the nσTPC with a Gaussian function for the signal and a Gaussian
function for the contamination coming from the (anti)triton, where present. When the background is
negligible, the raw yield is extracted by directly counting the (anti)nuclei candidates. Otherwise, the
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TPC dE/dx and TOF squared mass distributions are fitted with the aforementioned models, using an
extended-maximum-likelihood approach and the yield is obtained as a fit parameter.

4.2 Efficiency and acceptance correction

The raw yield must be corrected to take into account the tracking efficiency and the detector acceptance.
This correction is evaluated from Monte Carlo (MC) simulated events, which are generated using the
event generator PYTHIA8.21 (Monash2013 tune) [23]. However, since PYTHIA8 does not handle the
production of nuclei properly, it is necessary to inject (anti)nuclei on top of each generated event. In
each pp collision, one deuteron, one antideuteron, one helion or one antihelion are injected, randomly
chosen from a flat rapidity distribution in the range |y| < 1 and a flat pT distribution in the range pT
∈ [0,10] GeV/c. The GEANT4 [24] transport code is exploited to describe the hadronic interaction of
the particles propagating through the detector material. The correction is defined as the ratio between
the number of reconstructed (anti)nuclei in the rapidity range |y|< 0.5 and in the pseudorapidity interval
|η | < 0.8 and the number of generated ones in |y| < 0.5. The correction is computed separately for
each (anti)nucleus and for the TPC and TOF analyses. Moreover, the raw signal needs to be corrected
for trigger inefficiencies. The selected events are requested to have at least one charged-particle in the
pseudorapidity region |η | < 1 (INEL > 0) [22]. Some INEL > 0 events can be lost due to the finite
trigger efficiency (event loss) and all the particles produced in those events are lost as well (signal loss).
Hence, it is necessary to correct the spectra for the event and the signal losses. The correction must be
evaluated from MC simulations because the number of rejected events and lost particles is only known
there. For (anti)protons, this correction is directly computed from the MC simulation because their
production is handled by the event generator. On the contrary, (anti)nuclei are injected on top of a pp
collision and a direct estimation from the MC is not possible, because there would be a bias in the number
of lost (anti)nuclei. For this reason, the correction for pions, kaons and protons is evaluated in this case
in a different MC data set with no injected nuclei and the average value is used for (anti)deuterons and
(anti)helions. Further details on this method can be found in [10, 25]. This correction is negligible at
high multiplicity (< 1‰) and becomes relevant at low multiplicity (up to 14% for (anti)protons and
(anti)deuterons, 2% for (anti)helions, in the low pT region pT < 1 GeV/c).

4.3 Secondary (anti)nuclei contamination

The contribution of secondary (anti)nuclei, i.e. (anti)nuclei that are not produced directly in the collision,
must be subtracted from the total measured yields. Secondary nuclei are mostly produced in the interac-
tion of particles with the vacuum beam pipe and the detector material. Moreover, an important contribu-
tion to secondary (anti)protons is also given by the weak decay of heavier particles. (Anti)deuterons and
(anti)helions receive a negligible background contribution from weak decays, since the only known con-
tribution comes from the decays of hypertriton (3

Λ
H→ d + p + π and 3

Λ
H→ 3He + π) and their antimatter

counterparts, whose production is known to be suppressed in pp collisions [6]. Finally, the production of
secondary antideuterons and antihelions from material is extremely rare due to baryon number conser-
vation. The fraction of primary (anti)nuclei is evaluated through a template fit to the DCAxy distribution
of the data, as described in [1]. The templates for primary and secondary (anti)protons and deuterons are
obtained from MC simulations. For (anti)protons, two templates are used to describe both (anti)protons
from weak decays and from material. While the template for primary (anti)helions is extracted from
the MC as well, this is not possible for the template for secondaries, due to the very rare production of
antihelion. For this reason, the (anti)proton template at half the (anti)helion pT is used as a proxy for the
(anti)helion one. This procedure is based on the assumption that the DCAxy distributions of secondary
(anti)helions can be represented by the DCAxy distributions of (anti)protons at a transverse momentum
which is scaled with the rigidity p/z of (anti)helion, where z is the (anti)helion electric charge. The
contribution of secondary nuclei is observed to be more relevant at low pT (20% for protons, 40% for
deuterons and 90% for helions) and to decrease exponentially with increasing transverse momentum.
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4.4 Systematic uncertainties

One contribution of the systematic uncertainties comes from the adopted track selection criteria. This
uncertainty is evaluated by varying the selections, as done in [10]. The effect of the subtraction of sec-
ondary (anti)nuclei is studied with the variation of the DCAz and DCAxy selections as well. This is the
most relevant contribution for (anti)helion at low pT, decreasing with pT. The estimation of the system-
atic uncertainty related to the raw signal extraction depends on the considered species. For (anti)protons,
the difference between the signal extracted by direct count and the one extracted from the fit is taken
into account. For (anti)deuterons, this is obtained by varying the interval in which the direct counting of
(anti)deuterons is performed. Finally, for (anti)helion a toy MC has been developed in order to generate
10000 TPC dE/dx samples that are compatible with the default one. A possible bias in the signal extrac-
tion process is investigated by refitting each distribution and looking into the variation of the extracted
yields. Another source of systematic uncertainty is given by the incomplete knowledge of the material
budget of the detector in the MC simulations. This is evaluated by comparing different MC simulations
in which the material budget of the ALICE detector was varied by ±4.5% [15] after conversions. This
value corresponds to the uncertainty on the determination of the material budget obtained by measuring
photon conversions. The imperfect knowledge of the hadronic interaction cross section of (anti)nuclei in
the material contributes to the systematic uncertainty as well and depends on the particle species. Sim-
ilarly, an uncertainty related to the ITS-TPC matching is considered and evaluated from the difference
between the ITS-TPC matching efficiencies in data and MC. Finally, the trigger inefficiency is also a
source of systematic uncertainties. The uncertainty is assumed to be half of the difference between the
signal loss correction (described in section 4.2) and unity. It strongly depends on the event multiplicity:
it is negligible at high multiplicity and contributes up to 7% in the lowest event class for (anti)deuterons
and (anti)helions. Where present, it decreases with increasing pT. The list of all the sources of system-
atic uncertainty for the INEL > 0 multiplicity class is reported in Table 2. The average values between
matter and antimatter are reported for (anti)protons, (anti)deuterons and (anti)helions, for the lowest and
highest pT values of the measured spectra.

Table 2: Summary of the contributions to the systematic uncertainties of the yield for the INEL > 0 event class
for the different species.

p d 3He
pT (GeV/c) 0.3 3.5 0.7 3.4 0.9 4.2

Track selection < 1% 9.5% < 1% 2% < 1% 4%
Secondary particles 3.5% 5% 1% < 1% 16% 2.5%
Signal extraction 1% 1.5% < 1% 7.5% < 1% 4%
Material budget 2% < 1% < 1% < 1% 4.5% < 1%
Hadronic interaction < 1% < 1% 1.5% 2% 1% < 1%
ITS-TPC matching 1% 2.5% 1% 2.5% 2% 2.5%
Trigger inefficiency 2% < 1% < 1% < 1% < 1% < 1%

Total 4.5% 11% 3% 9% 17% 7%

5 Results and discussion

The transverse-momentum spectra for (anti)protons, (anti)deuterons and (anti)helions are shown in Fig. 1.
In each pT interval, the reported yield is the average between matter and antimatter. Both of them
are compatible, as already observed in previous measurements carried out by ALICE [1, 10, 11, 25].
The measured spectra are fitted in order to extrapolate the yields in the unmeasured pT-region. For
(anti)protons and (anti)deuterons, data are fitted with a Lévy-Tsallis function [26], while for (anti)helion
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Figure 1: Transverse-momentum spectra of (anti)protons (left), (anti)deuterons (center) and (anti)helions (right)
in the different multiplicity classes, reported in Table 1. (Anti)deuteron and (anti)proton spectra are fitted with a
Lévy-Tsallis function [26], while (anti)helion spectra are fitted with an exponential function with respect to the
transverse mass mT.

a simple exponential depending on mT is used because it provides a better description of the data. The
fraction of the yield obtained from the extrapolation depends on the considered particle species and on
the multiplicity class, since the pT-coverage is generally different, being maximum (minimum) at high
(low) multiplicity. For (anti)protons, the extrapolation contributes with a fraction of 10% (20%) of the
total yield for the highest (lowest) multiplicity class, while for (anti)deuterons and (anti)helions it con-
tributes with a fraction of 25% (55%) and 35% (40%) of the total yield, respectively. The pT-spectra are
also fitted with a Boltzmann function and a simple exponential depending on pT, in order to quantify
the effect of the chosen function on the pT-integrated yield. The difference between the yields obtained
with the reference and the alternative functions is taken as systematic uncertainty and it is ≈ 2% for
(anti)protons and (anti)deuterons and ≈ 15% for (anti)helions. The pT-integrated yields dN/dy are re-
ported in Table 1. Figure 2 shows the mean transverse momentum 〈pT〉 as a function of charged-particle
multiplicity. The results are compared with those obtained in previous measurements and they confirm
the increasing trend with multiplicity. Moreover, a clear mass ordering is present, as already observed
for other light-flavoured particle species and for different collision systems and energies [30, 32].

Combining the information from the production spectra of protons and nuclei, the coalescence parameter
can be evaluated according to Eq. 1. Figure 3 shows the coalescence parameter as a function of transverse
momentum for (anti)deuterons (B2) and (anti)helions (B3). The B2 and B3 values in the fine multiplic-
ity classes are consistent with a flat trend, while for the multiplicity-integrated sample the coalescence
parameter increases with pT. This behaviour was already observed in other measurements by ALICE
in pp collisions [10, 25] at different energies. In particular, it is now understood that the increase with
transverse momentum of the coalescence parameter in INEL > 0 collisions is, in large part, due to the
change in shape of the transverse momentum spectra of protons in different multiplicity intervals [10].
It is also worth mentioning that in pp collisions at high multiplicity (HM) [27], where the system size
is larger than the one resulting from INEL > 0 collisions, the raise with pT cannot be neglected even in
fine multiplicity classes. In [27], it was shown that the BA as a function of transverse momentum can be
described by coalescence predictions, assuming a Gaussian wave function for the nuclei.
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Figure 2: Mean transverse momentum of (anti)protons (left), (anti)deuterons (center) and (anti)helions (right) in
pp collisions at

√
s = 5.02 TeV, in high-multiplicity pp collisions at

√
s = 13 TeV [27], in INEL > 0 pp collisions

at
√

s = 13 TeV [25, 27, 28] and at
√

s = 7 TeV [6, 10, 29], and in p–Pb collisions at
√

sNN = 5.02 TeV [11, 30,
31]. The statistical uncertainties are represented by vertical bars while the systematic uncertainties are represented
by boxes.
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Figure 3: Coalescence parameters B2 for (anti)deuterons (left) and B3 for (anti)helions (right) for different multi-
plicity classes. The multiplicity increases moving from the bottom up. The statistical uncertainties are represented
by vertical bars while the systematic uncertainties are represented by boxes. BA is shown as a function of pT/A,
being A = 2 the mass number of the deuteron and A = 3 the mass number of the helion.

Insights into the dependence of the production mechanisms on the system size can also be obtained by
studying the evolution of BA with charged-particle multiplicity. Indeed, as shown in [33], the charged-
particle multiplicity 〈dNch/dη〉 can be considered as a proxy of the system size. Figure 4 shows B2 and B3
as a function of charged-particle multiplicity for different collision systems and energies. The presented
measurements are obtained for pT/A = 0.75 GeV/c for B2 and pT/A = 0.78 GeV/c for B3, but the trend
is alike for other values. The measurements are compared with the theoretical predictions from [33],
where two different parameterisations of the source radius as a function of multiplicity are used (see [33]
for details). It is evident that there is no single parameterisation of the system size that is able to fit both
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the measured B2 and B3. However, as stated also in [27], charged-particle multiplicity is not a perfect
proxy for the system size, because for each multiplicity the source radius depends also on the transverse-
momentum of the particle of interest. Anyhow, the data corresponding to the different collision systems
and energies confirm a trend with multiplicity, which can be interpreted as an effect of the interplay
between the size of the system and that of the nucleus. Indeed, at low charged-particle multiplicity, the
system size is comparable with the size of the nucleus (about 2 fm, depending on the nuclear species and
on the parameterisation of the model), determining the slow decrease with multiplicity. On the contrary,
increasing the multiplicity the system size becomes larger and larger than the nucleus size, making the
coalescence process less and less probable [1, 33].
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Figure 4: Left: B2 as a function of multiplicity in INEL > 0 pp collisions at
√

s = 5.02 TeV, in high-multiplicity
pp collisions at

√
s = 13 TeV [27], in INEL > 0 pp collisions at

√
s = 13 TeV [25] and at

√
s = 7 TeV [10],

and in p–Pb collisions at
√

sNN = 5.02 TeV [11]. Right: B3 as a function of multiplicity in INEL > 0 pp
collisions at

√
s = 5.02 TeV, in high-multiplicity pp collisions at

√
s = 13 TeV [27], in INEL > 0 pp collisions

at
√

s = 13 TeV [27] and at
√

s = 7 TeV [6], and in p–Pb collisions at
√

sNN = 5.02 TeV [31]. The statistical
uncertainties are represented by vertical bars while the systematic uncertainties are represented by boxes. The two
lines are theoretical predictions of the coalescence model based on two different parameterisations of the system
radius as a function of multiplicity.

Figure 5 shows the ratios between the pT-integrated yields of nuclei and protons as a function of charged-
particle multiplicity. A common trend as a function of the charged-particle multiplicity is seen, mono-
tonically increasing for pp and p–Pb collisions and eventually saturating for Pb–Pb collisions [27]. This
is the effect of the interplay between the different evolution with the charged-particle multiplicity of the
source size and of the particle yields [27]. The systematic uncertainties in this analysis are reduced with
respect to the previous ALICE measurements thanks to the recent studies on the interaction cross section
of antideuteron with the material [34]. The experimental data are compared with the predictions of both
Thermal-FIST [13] CSM and coalescence model [35]. The CSM prediction is provided for different cor-
relation volumes VC, from 1 to 3 times the volume dV /dy. For both (anti)deuterons and (anti)helions, the
CSM and the coalescence model can qualitatively describe the observed trend. A detailed study of the
VC value is required to determine if the CSM is able to describe simultaneously the deuteron and helion
measurement here reported. The coalescence model seems to describe better the data points, and better
for (anti)deuterons than for (anti)helions, where some tension at intermediate multiplicity is visible.

6 Conclusions

The LHC demonstrated to be an unprecedented antimatter factory. The production of nuclei and antin-
uclei has been explored at all energies delivered by the LHC during its Run 2 [6, 10, 11, 25, 27, 31]
and a clear pattern emerged: the production of nuclei is tightly driven by the underlying event multiplic-
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Figure 5: Ratio between the pT-integrated yields of nuclei and protons as a function of multiplicity for
(anti)deuterons (left) and (anti)helions (right). Measurements are performed in INEL > 0 pp collisions at√

s = 5.02 TeV, in high-multiplicity pp collisions at
√

s = 13 TeV [27], in INEL > 0 pp collisions at√
s = 13 TeV [25, 27] and at

√
s = 7 TeV [6], and in p–Pb collisions at

√
sNN = 5.02 TeV [11, 31]. The statisti-

cal uncertainties are represented by vertical bars while the systematic uncertainties are represented by boxes. The
two black lines are the theoretical predictions of the Thermal-FIST statistical model [13] for two sizes of the cor-
relation volume VC. For (anti)deuterons, the green band represents the expectation from a coalescence model [35].
For (anti)helion, the green and blue lines represent the expectations from a two-body and three-body coalescence
models [35].

ity. Other variables, like the collision energy or even the colliding system (pp or p–Pb), are essentially
irrelevant in the description of the nucleosynthesis processes in hadronic collision.

The CSM can explain qualitatively the observed trend in the nucleus-to-proton ratios as a function of
multiplicity. On the other hand, coalescence connects the hadron-emitting source size with the observed
production of nuclei. The size of the hadron-emitting source increases with multiplicity and decreases
with momentum as demonstrated by recent particle correlation measurements [36]. Through this ob-
servation, coalescence can predict the yield of nuclei as a function of both multiplicity and momentum
starting from the measured proton spectrum. In this paper, it is shown that the coalescence prediction
agrees quantitatively with the measured deuteron-to-proton ratio, while the helion-to-proton ratio in pp
collisions at 5.02 TeV confirms the trend of the previous measurements deviating from the coalescence
prediction at intermediate multiplicities. However, the comparison between the coalescence parameters
with coalescence predictions show great sensitivity to different source size parameterisations, suggesting
that some of the observed discrepancies might be due to the source size determination. During the LHC
Run 3, the ALICE experiment targets an integrated luminosity of 6 pb−1 for pp collisions at 5.02 (or 5.5)
TeV and up to 200 pb−1 at 13 TeV [37], which corresponds to a sample larger by at least a factor 400
with respect to Run 2. This sample will enable a simultaneous study of the production of nuclei and the
size of the system, similarly to what has already been done in high-multiplicity pp collisions at

√
s = 13

TeV [27].
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