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relations. In mature cortex, there is strong evidence for a basic 
vocabulary of shape primitives and elementary object parts in the 
TEO and TE areas of posterior and anterior IT (Fujita et al., 1992; 
Tanaka, 2003) as well as for identity and category specifi c neurons in 
anterior IT, PFC and hippocampus (Freedman et al., 2003; Quiroga 
et al., 2005). Further fi ndings indicate that the encoding of visual 
objects involves the formation of sparse clusters of distributed activ-
ity across the processing hierarchy within IT cortex (Tsunoda et al., 
2001; Reddy and Kanwisher, 2006). This seems to be a neuronal 
basis for the parts-based representation that the visual system 
employs to construct objects from their constituent part elements 
(Ullman et al., 2002; Hayworth and Biederman, 2006).

In the light of these fi ndings, we may ask ourselves whether 
the observed memory organization happens to be the outcome 
of a self-organization process that would have to fi nd solution to 
a number of developmental tasks. To provide a neural substrate 
for the parts-based representation, memory traces have to be 
formed and maintained in an unsupervised fashion to span the 
basic vocabulary for the visual elements and to defi ne associative 
links between them. Subsets of associatively linked complex fea-
tures can then be interpreted as coherent objects composed of the 
respective parts. As there is a virtually unlimited number of visual 
objects in the environment, the limited resources spent on forma-
tion of these memory traces have to be carefully allocated to avoid 
unfavorable interference effects and information loss caused by 

INTRODUCTION
A working hypothesis of cognitive neuroscience states that the higher 
functions of the brain require coordinated interplay of multiple cor-
tical areas distributed over the brain-wide network. For instance, 
the mechanisms of memory are thought to be subserved by various 
cortical and subcortical regions, including the medial temporal lobe 
(MTL), inferior temporal (IT) and prefrontal (PFC) cortex areas 
(Fuster, 1997; Miyashita, 2004) to name only few of them promi-
nent in the function of the visual memory. Studies of information 
processing going on in the course of encoding, consolidation and 
retrieval of visual representations reveal a hierarchical organization, 
sparse distributed activity and massive recurrent communication 
within the memory structure (Tsao et al., 2006; Konen and Kastner, 
2008; Osada et al., 2008). Here we focus our attention on develop-
mental issues and discuss the process of self-organization that may 
lead to the formation of the core structure responsible for fl exible, 
rapid and effi cient memory function, with organizational properties 
as inferred from the experimental works.

It is widely held that processes responsible for memory for-
mation rely on activity-dependent modifi cation of the synaptic 
transmission and on regulation of the intrinsic properties of single 
neurons (Bear, 1996; Miyashita, 1988; Zhang and Linden, 2003). 
However, it is far from clear how these local processes could be 
orchestrated for memorizing complex visual objects composed 
of many spatially distributed subparts arranged in stereotypic 
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potential memory content overlap. Thus, the system is permanently 
confronted with the problem of selecting the right small population 
out of the totally available, potentially confl icting synaptic facili-
ties which has to be modifi ed for acquisition and consolidation 
of a novel stimulus. Moreover, if objects stored in memory are 
supposed to share common parts, a regulation mechanism would 
be required to balance the usage load of part-specifi c units and 
minimize the interference, reassuring their optimal participation 
in memory content formation and encoding. Another issue is the 
timing of the modifi cations, which have to be coordinated properly 
if the correct relational structure of distributed parts constituting 
the object’s identity is to be stored in the memory.

The same selection problem arises on the fast time scale, during 
memory recall or for encoding of a novel object. Currently, there 
is a broad agreement on the sparseness of the activity patterns 
evoked by the presentation of a complex visual object, where only 
a small fraction of the available neurons in the higher visual cortex 
participate in the stimulus-related response (Rolls and Tovee, 1995; 
Olshausen and Field, 2004; Quiroga et al., 2008). In the context of 
the parts-based representation scheme, one possible interpretation 
of sparse activation would be the selection of few parts from a large 
overcomplete vocabulary for the composition of the global visual 
object. Considering the speed of object recognition measured in 
psychophysical experiments on humans and primates (Thorpe and 
Fabre-Thorpe, 2001), there have to be neural mechanisms allowing 
this selection procedure to happen within the very short time of a 
few hundred milliseconds. Moreover, if relations are to be repre-
sented by dynamic assemblies of co-activated part-specifi c neurons, 
such a combinatorial selection would require clear unambiguous 
temporal correlations between the constituent neurons to identify 
them and only them as being part of the same assembly encoding 
the object (Singer, 1999; von der Malsburg, 1999).

Hypothesizing that the process of neural resource selection 
and its coordination across distributed units is a crucial ingredi-
ent for successful structure formation and learning, we address in 
this study the neural mechanisms behind the selection process by 
incorporating them in a model of a layered visual memory. Here 
we take the competition and cooperation between the neuronal 
units as the functional basis for the structure formation (von der 
Malsburg and Singer, 1988; Edelman, 1993) and provide modi-
fi cation mechanisms based on activity-dependent bidirectional 
plasticity (Bienenstock et al., 1982; Artola and Singer, 1993) and 
homeostatic activity regulation (Desai et al., 1999). We confront 
the system with a task of unsupervised learning and human face 
recognition using a database of natural face images. Our aim is 
then to demonstrate the formation of synaptic memory structure 
comprising bottom-up, lateral and top-down connectivity.

Starting from an initial undifferentiated connectivity state, the 
system is able to form a representational basis for the storage of 
individual faces in a parts-based fashion by developing memory 
traces for each individual person over repetitive presentations of 
the face images. The memory traces are residing in the scaffold of 
lateral and top-down connectivity making up the content of the 
associative memory that holds the associatively linked local features 
on the lower and the confi gurational global identity on the higher 
memory layer. The recognition of face identity can then be explic-
itly signaled by the units on the higher memory layer (Figure 1). 

By performing this self-organization, the system solves a highly 
non-trivial and important problem of capturing simultaneously 
local and global signal structure in an unsupervised, open-ended 
fashion, learning not only the appearance of local parts, but also 
memorizing their combinations to represent the global stimulus 
identity explicitly in lateral and top-down connectivity. None of 
the previous works on unsupervised learning of natural object rep-
resentation were able to solve this problem in this explicit form 
(Wallis et al., 2008; Waydo and Koch, 2008).

As a consequence of this explicit representation, the local facial 
features are interpreted in the global context of the identity of a 
person, making use of the structure formed in the course of pre-
vious experience. This contextual structure can also be utilized 
in generative fashion to replay the memory content in absence 
of external stimuli, also supporting the mechanism of selective 
object-based attention. The binding of the local features and their 
identity label into a coherent assembly is done in the course of 
a decision cycle spanned by a common oscillatory rhythm. The 
rhythm modulates the competition strength and builds up a frame 
for repetitive local winner-take-all computation. As the agree-
ment between incoming bottom-up, lateral and top-down signals 
gets continuously improved during the competitive learning, the 
bound assemblies tend to refl ect more and more consistently the 
face identities stored in the memory, so that the recognition error 
progressively decreases. Moreover, the employment of the contex-
tual connectivity speeds up the learning progress and leads to a 
greater capability to generalize over novel data not shown before. 
The advanced view on the structure formation as an optimiza-
tion process driven by evolutionary mechanisms of selection and 
amplifi cation may also serve as a conceptual basis for studying 
self-organization of generic subsystem coordination, independent 
of the nature of the cognitive task.

MATERIALS AND METHODS
VISUAL MEMORY NETWORK ORGANIZATION
Our model is based on two consecutive interconnected layers 
(Figure 1), which we tend to identify with the hierarchically organ-
ized regions of IT and PFC, containing a number of segregated 
cortical modules that will be termed columns (Fujita et al., 1992; 
Mountcastle, 1997; Tanaka, 2003). The columns situated on the 
lower layer will be termed here bunch columns, as each of them 
are supposed to hold a set of local facial features acquired in the 
course of learning. The column on the higher memory layer will 
be called identity column as its task will be to learn the global face 
identity for each individual person composed out of distributed 
local features on the lower memory layer. Being a local processing 
module, each column contains further a number of subunits we 
call core units (or simply units), which receive common excitatory 
afferents and are bound by common lateral inhibition. Acting as 
elementary processing units of the network, the core units represent 
an analogy to a tightly coupled population of excitatory pyramidal 
neurons (“pyramidal core”) as documented in cortical layers II/III 
and V (Peters et al., 1997; Rockland and Ichinohe, 2004; Yoshimura 
et al., 2005). These populations are thought to be capable of sustain-
ing their own activity even if afferent drive is removed.

On the lower level of processing, each bunch column is attached 
to a dedicated landmark on the face to process the sensory signal 



Frontiers in Computational Neuroscience www.frontiersin.org September 2009 | Volume 3 | Article 15 | 3

Jitsev and von der Malsburg Formation of layered visual memory

represented by a Gabor fi lter bank extracted locally from the image 
(Daugman, 1985; Wiskott et al., 1997). The connections bunch 
units receive from the image constitute their bottom-up receptive 
fi elds (here, referring to a receptive fi eld we always mean the pat-
tern of synaptic connections converging on a unit). Furthermore, 
there are excitatory lateral connections between the bunch columns 
on the lower layer binding the core units across the modules. The 
bunch units also send bottom-up efferents to and get top-down 
afferent projections from the identity units situated on the higher 
level of processing. All the types of intercolumnar synapses are 
excitatory and plastic, the connectivity structure being all-to-all 
homogeneous in the initial state.

DYNAMICS OF A CORE UNIT
A cortical column module containing a set of n core units is mod-
eled by a set of n differential equations each describing the dynamic 
behavior of the unit’s activity variable p. The basic form of the equa-
tion, ignoring the afferent inputs for the time being, is motivated 
by a previous computational study on a cortical column (Lücke, 
2005):

τdp

dt
p p p p pt= − − − ( ) −( )α β λ2 31( ) max ,ν �

p
 

(1)

where τ is the time constant, α the strength of the self-excitatory, β 
the strength of self-inhibitory effects, λ the strength of the lateral 
inhibition between the units, ν the inhibitory oscillation signal and 
max (

→
P

t
) the activity of the strongest unit in the column module. 

In this study we set for all units τ = 0.02 ms, α = β = 1, λ = 2. As p 
refl ects the activity of a whole neuronal population receiving com-
mon afferents, we may assume a small time constant value, referring 
to an almost instantaneous response behavior of a suffi ciently large 
(n = 100 or more) population of neurons (Gerstner, 2000).

A crucial property of the column dynamics is the ability to 
change the structure of the stable activity states by variation of the 
parameter ν. We take the oscillatory inhibition activity ν (Figure 2) 
to be of a form:

ν ν
ν ν

( ) min (mod( , ) . ( ))
max min

t
k g t T T T

= +
⋅ + −( )− − + −

1
0 5 1e init

 

(2)

FIGURE 1 | Layered visual memory model. (A) Two consecutive 
interconnected layers for hierarchical processing. On the lower bunch layer 
(IT, each column contains n = 20 units), a storehouse of local parts linked 
associatively via lateral connections is formed by unsupervised learning. On the 
higher identity layer (PFC, column contains m = 40 units), symbols for person 
identities emerge, being semantically rooted in parts-based representations of 
the lower layer. The identity units provide further contextual support for the lower 

layer by establishing top-down projections to the corresponding part-specifi c 
units. (B) Different face views used as input to the memory (one person out of 
total 40 used for learning shown). Top left is the original view with neutral 
expression used for learning. Other views were used for testing the 
generalization performance (bottom row shows the duplicate views taken 
2 weeks after the original series.). (C) Facial landmarks used for the sensory input 
to the memory, provided by Gabor fi lter banks extracted at each landmark point.
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with its period T = 25 ms being in the gamma range. ν
min

 and ν
max

 
are the lower and upper bounds for oscillation amplitude, T

init
, k, g 

parameterize the form of the sigmoid activity curve. Here the values 
are set to ν

min
 = 0.005, ν

max
 = 1.0, T

init
 = 5 ms, g = 0.5, k = 2. With 

the rising strength of inhibition, the parameter ν crosses a criti-
cal bifurcation point of structural instability ν

c
, given by the ratio 

between the self-excitation and self-inhibition coupling strength:

νc=
α
λ  

(3)

so that here ν
c
 = 0.5. For the range ν < ν

c
 any units subset can 

remain active (with the stationary activity level p = α
α β+ ), as these 

states are stable given the low strength of lateral inhibition. After 
crossing the critical value ν

c
, all those states having more than one 

unit active loose stability, so that only a single winner unit can 
remain active on the level 

α
α β+ . The bifurcation property realizes 

winner-take-all behavior of the column acting as a competitive 
decision unit (Lücke, 2005) to select the best response alternative 
on the basis of the incoming input.

The qualitative dynamical behavior stays the same in the 
extended formulation of the activity equation, which is:

τ αω κ κ β

λω κ

dp

dt
I I p p p

p pt

= + +( ) − −

− ( ) −( ) +

1 12 3LAT LAT TD TD ( )

maxν �
p BUU BUI p p

pt

2+

+ +

θ

ωε ση ,  

(4)

where IBU, ILAT, ITD are the afferent inputs of respective bottom-up, 
lateral and top-down origin, κBU = κLAT = κTD = 1 are their coupling 
coeffi cients, ω is an excitatory oscillatory signal, θ an excitability 
threshold of the unit, σ = 0.001 is parameterizing the multiplicative 
Gaussian white noise η

t
 and ε is an unspecifi c excitatory drive. θ is 

a dynamic threshold variable used for homeostatic activity regula-
tion of the unit, it will be described later in detail; ε depends on the 
total number of core units n, ε = 1

5n .
An important modeling assumption is the separation of the 

synapses of different origin as implemented in Eq. 4. This separa-
tion causes different synaptic inputs to have different impact on the 

activity of the unit. The functional difference can be made explicit 
by taking a glance at the stable state of the winner unit (assuming 
for clarity σ = ε = θ = 0), which takes the value:

p
I I I

I I
stable

LAT LAT TD TD BU BU

LAT LAT TD TD
=

+ +( )+
+ +( )+

αω κ κ κ
αω κ κ

1

1 ββ
,

 
(5)

where bottom-up (BU) input IBU contributes to the activity level 
in a linear fashion, while the contribution of lateral (LAT) and 
top-down (TD) inputs ILAT and ITD is non-linear, resembling the 
purely driving and hybrid driving-modulating roles of afferents 
from different origin commonly assumed for cortical processing 
(Sherman and Guillery, 1998; Friston, 2005). Simply stated, the 
separation of incoming synapses across the cortical layers follows a 
generic scheme where bottom-up incoming afferents arrive in layer 
IV on the spiny stellate cells, while the vast majority of LAT and 
TD synapses contacts the apical dendrites of pyramidal neurons 
from the layers II/III and V (Felleman and Essen, 1991; Douglas 
and Martin, 2004; Thomson and Lamy, 2007). Here, we oppose 
the functional role of LAT and TD afferents to the purely driving 
character of BU input by using the former inputs for the modula-
tion of the self-excitation term in the unit’s dynamics (Eq. 4). The 
stronger the input from LAT or TD afferents, the stronger is the 
self-excitatory coupling within the core unit. This potentiates the 
core unit to amplify its activity stronger and faster than the units 
with lower coupling strength, thus favoring it in the competition. 
The course of the activity is also infl uenced by the excitatory oscil-
latory activity ω (Figure 2), which is given by:

ω ω ω ω( )
mod( , )

,min max mint
t T

T
= + −( )

 

(6)

where ω
min

 = 0.25 and ω
max

 = 0.75 are the lower and upper bounds 
for oscillation amplitude. The excitatory oscillation doesn’t have 
any impact on the critical bifurcation point ν

c
, as it modulates 

the self-excitation coupling strength α and the lateral inhibition 
strength λ to the same extent (Eq. 4). Instead, it elevates the activ-
ity level of the units as long as they manage to resist the rising 
inhibition and remain in the active state. In the state where lateral 
inhibition gets strong enough to shut down all but the strongest 
core unit, only this winner unit is affected by the elevating impact 
of the excitatory oscillation, being able to further amplify its activ-
ity at the cost of suppressing the others. Moreover, ω controls the 
impact of LAT and TD afferents on the unit’s activity, the impact 
being weak at the begin of the decision cycle with low ω, getting 
then stronger as ω grows and reaching maximum at the peak of 
the oscillation at the cycle’s end. Thus, the contextual infl uence 
on local decision making is gradually adjusted in tune with the 
amount of evidence available during the cycle. Both inhibitory and 
excitatory oscillations may have presumably different sources, the 
former being generated by the interneuron network of fast-spiking 
inhibitory cells (Whittington et al., 1995) and the latter having its 
origin in activities of fast rhythmic bursting, or chattering, excita-
tory neurons (Gray and McCormick, 1996).

In addition to the local competitive mechanism supported by the 
lateral inhibition within a column, we use a simple form of forward 
inhibition (FFI) acting on the incoming afferents (Douglas and 

FIGURE 2 | Excitatory (ω) and inhibitory (ν) oscillation rhythms defi ning a 

decision cycle in the gamma range.



Frontiers in Computational Neuroscience www.frontiersin.org September 2009 | Volume 3 | Article 15 | 5

Jitsev and von der Malsburg Formation of layered visual memory

Martin, 1991). To model this, the incoming presynaptic  activities 
are transformed as following before they make up the afferent input 
via the respective receptive fi eld of a unit:

i i
j

K

j

i

K

i

p p
K

p

w

pre pre pre

Source Source

pre BU LAT TDˆ = −

=

∑

∑

1 , ∈{ , , }

Ι
iip
pre

Source BU LAT TDˆ , ∈{ , , },
 

(7)

where ppre stands for raw presynaptic activity, 
pre

p̂  is the presynaptic 
activity transformed by FFI, K is the total number of incoming syn-
apses of a certain origin, the weights wi

Source constitute the receptive 
fi eld and ISource designates the fi nal computed value of the affer-
ent input from the respective origin. Although all plastic synaptic 
connections in the network are taken to be of excitatory nature, 
FFI allows units to exert inhibitory action across the columns. An 
important effect of this processing is the selection and amplifi -
cation of strong incoming activities at the cost of weaker ones, 
which can be interpreted as presynaptic competition among the 
afferent signals (Douglas and Martin, 1991; Swadlow, 2003). This 
is supposed to enhance the effect of competition between assem-
blies coding for different faces, as strong assemblies become able 
to disrupt cooperation within weaker ones. Another advantage of 
FFI is that it helps to avoid useless computation on the postsynaptic 
side by canceling the incoming excitation if the activity differences 
within the transmitting column are too small, indicating only little 
progress in the decision process. This functionality has roughly the 
meaning of “no decision – nothing to react to”.

An additional property of the dynamics is the natural restric-
tion of the population activity values p to the interval between 0 
and 1 (Eq. 5), given that the afferent input also stays in the same 
range. This allows both interpretations of the variable as either the 
population rate or the probability of an arbitrary neuron from the 
population to generate a spike.

HOMEOSTATIC ACTIVITY REGULATION
The activity dynamics equation (Eq. 4) contains the variable thresh-
old θ, which regulates the excitability of the unit. Here, higher values 
of θ stand for higher unit excitability, implying a greater potential 
to become active given a certain amount of input. The threshold 
is updated according to the following rule:

d

dt
p p

θ τθ= −( )−1
aim < > ,

 
(8)

where < > ( )p p t dtT t
t T= ∫ +1  is the average activity of the unit meas-

ured over the period T of a decision cycle, p
aim

 specifi es the target 
activity level and τθ

− − −=1 4 110 ms  is the inverse time constant. The 
target activity level p

aim
 depends on the number of units n in a 

column, p naim = .1  The initial value of the excitability threshold is 
zero, θ(0) = 0. As of its direct relation to the unit’s excitability, we 
will term θ simply excitability whenever it is more suitable in the 
context.

The motivation behind this homeostatic regulation of unit’s 
activity (Desai et al., 1999; Zhang and Linden, 2003) is to encour-
age a uniform usage load across units in the network, so that their 
participation on the formation of the memory traces is balanced. 

Bearing in mind the strongly competitive character of the columnar 
dynamics, the regulation of the excitability threshold changes the 
a-priori probability of a unit to be winner of a decision cycle. So, 
if a certain unit happens to take part too frequently in encoding of 
the memory content, violating the requirement of the uniform win 
probability across the units, its excitability will be downregulated 
so that the core unit becomes more diffi cult to activate, giving an 
opportunity for other units to participate in the representation. 
Reversely, a unit being silent for too long is upregulated, so it can 
get excited more easily and contribute to memory formation.

ACTIVITY-DEPENDENT BIDIRECTIONAL PLASTICITY
We choose a bidirectional modifi cation rule to specify how a syn-
apse connecting one core unit to another may undergo a change 
in its strength w:

dw

dt
p p A t p p= − −( ) −( )−

−
+

−
+ε χ θpre post post postH H H( ( )) 0 θ

 
(9)

with the sign switch functions H(x) and H−
+( )x  given as 

following:

H H( ) ( )
,

x
x

x
x

x

x
=

, ≥
, <

, =
, ≥

<
1 0

0 0

1 0

1 0

⎧
⎨
⎩ −

⎧
⎨
⎩

−
+

 

(10)

providing the bidirectional form of the synaptic modifi cation. 
The amplitude of the change is determined by the correlation 
between the presynaptic activity ppre and the postsynaptic activity 
ppost, both variables being non-negative due to the properties of the 
unit activity dynamics. The learning rate ε = 5 × 10−4 ms−1 specifi es 
the speed of modifi cation being the inverse time constant. Other 
variables determine the sign of the modifi cation. The threshold 
θ−
+ = max( )t

post�
p  is used to compare the postsynaptic activity against 

current maximum activity in the column. A(t) is the the total activ-
ity level in the postsynaptic column at time point t, A t p ti

n
i( ) ( )= ∑ =1 , 

where n is the number of units in the column and p
i
(t) their activi-

ties at time point t. A(t) is compared to a variable gating threshold 
χ, which pursues the average total activity level <A(t)> computed 
over the period T of a decision cycle:

d

dt
A t A t

T
A t dt

t

t Tχ τ χχ= < > − < >=− +

∫1 1
( ( ) ), ( ) ( )

 
(11)

with τχ
− − −=1 3 110 ms  as inverse time constant, the threshold initial 

value set to χ(0) = 0.5. Furthermore, the postsynaptic activity ppost 
is compared to the sliding threshold θ0

− that follows the average 
postsynaptic activity <ppost(t)> computed over the period T of a 
decision cycle:

d

dt
p t p t

T
p t dt

t

t Tθ τ θ
θ

0 1
0

0

1−
− − +

= −( ) >=− ∫< > , < ( ) ( )post post post( )
 

(12)

with the inverse time constant τ
θ0

1 3 12 10−
− − −= × ms , the initial value 

of the threshold θ0 0− =( ) paim being equal to the target postsynaptic 
activity level (see Eq. 8).

The rule employed here is a simplifi ed version of a bidirectional 
modifi cation assuming the existence of two sliding thresholds θ0

− 
and θ−

+ (Figure 3), which subdivide the range of postsynaptic activ-
ity into zones where no modifi cation, depression or  potentiation 
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may occur, resembling BCM and ABS learning rules rooted in 
neurophysiological fi ndings (Bienenstock et al., 1982; Artola and 
Singer, 1993; Bear, 1996; Cho et al., 2001). If the postsynaptic activ-
ity level is too low ( ),ppost < −θ0  no modifi cation can be triggered. 
A mediocre level of activation ( )θ θ0

−
−
+< <ppost  promotes long-

term depression (LTD, negative sign), and a high level of activity 
( )ppost > −

+θ  makes long-term potentiation (LTP, positive sign) pos-
sible. Combined with the winner-take-all-like behavior of the core 
units, the intended effect of the rule is to introduce the competition 
in synaptic formation across the receptive fi elds of the units, ena-
bling them to separate patterns even if they are highly similar and 
overlap strongly. If multiple core units are frequently co-activated 
by a stimulus, the winner unit gets an advantage in potentiating its 
stimulated synapses, while the stimulated synapses of the units with 
lower activity either do not change or are affected by the depres-
sion. If this situation occurs over and over, the receptive fi elds of 
previously co-activated units are supposed to drift apart preferring 
the structure where strong synapses are not in confl ict with each 
other anymore. This should dampen the overlapping features and 
emphasize the discriminative features of the patterns preferred by 
the units.

In addition, we here use multiplicative synaptic scaling applied 
to synapses grouped according to their origin (bottom-up, lat-
eral and top-down). We model this simply by L2-normalization 
of the receptive fi eld vector, � � �w wi i

Source Source= / ,wSource
2  with wi

Source 
as a weight of the receptive fi eld comprising the synapses of the 
respective origin Source ∈ {BU, LAT, TD}, and iw Source�  its normalized 
version. The normalizing procedure can be applied after a number 
of decision cycles, here we choose this number to be 10 cycles. The 
scaling mechanism promotes competition between synapses within 
the receptive fi eld, as the growth of one synapse happens at the cost 
of the weakening the others (Miller and MacKay, 1994).

OPEN-ENDED UNSUPERVISED LEARNING AND PERFORMANCE 
EVALUATION
Data format
To provide the system with natural image input, we choose the 
AR database containing grayscale human face photographs of 126 
persons in total (Martinez and Benavente, 1998). For each per-
son, there is a number of views taken under different conditions 
(Figure 1B). The original view with neutral facial expression is 
accompanied by a duplicate view depicting the same person at a 
later time point (2 weeks after the original shot). Furthermore, there 

are variations in emotional expression such as smiling or sad for 
both original and duplicate views. The images were automatically 
prelabeled with a graph structure put upon the face, positioning 
nodes on consistent landmarks across different individuals with a 
software (EAGLE) based on the algorithm described in (Wiskott 
et al., 1997). A subset of L = 6 facial landmarks was selected around 
the eyes, nose and mouth regions (Figure 1C), each landmark being 
subserved by a single bunch column. Being attached to a dedicated 
facial landmark, each bunch column is provided with a sensory 
image signal represented by a Gabor fi lter bank extracted locally. 
The Gabor wavelet family used for the fi lter operation is parameter-
ized by the frequency k and orientation ϕ of the sinusoidal wave 
and the width of the Gaussian envelope σ (Daugman, 1985). We use 
s = 5 different frequencies and r = 8 different orientations sampled 
uniformly to construct the full fi lter bank (for more details refer 
to Wiskott et al., 1997). The local fi ltering of the image produces 
a complex vector of responses, containing both amplitude and 
phase information. We use only the amplitude part consisting of 
s × r = 40 real coeffi cients to model the responses of complex cells. 
This amplitude vector is further normalized by L2-Norm to serve 
as bottom-up input for the respective landmark bunch column of 
the lower memory layer.

Network confi gurations
Selecting randomly P = 40 persons from a database, we allocate 
n = 20 core units for each bunch column to ensure that multiple 
persons have to share some common parts. The identity column 
then contains m = 40 units corresponding to the number of persons 
we want be able to recall explicitly. Two different confi gurations 
of the memory system are employed to test our hypothesis about 
the functional advantage of a fully recurrent structure over the 
purely feed-forward one. Each confi guration is supposed to form 
the memory structure in the course of the learning phase. While 
the fully recurrent confi guration learns bottom-up, lateral and 
top-down connectivity, the purely feed-forward confi guration is a 
stripped-off version using only the bottom-up pathways. Observing 
these different confi gurations during the learning phase and testing 
them on novel face views subsequently, we are able to compare both 
in terms of learning progress and performance on the recognition 
task to fi nd out potential functional differences between them.

Simulation
In order to run the memory network, the solutions for the dif-
ferential equations governing the behavior of dynamical variables 
have to be computed numerically in an iterative fashion. We use a 
simple Euler method with a fi xed time step Δt = 0.02 ms to do this. 
To save computational time, slow threshold variables are updated 
once in a decision cycle, correcting the time steps accordingly.

Open-ended unsupervised learning
The system starts with homogeneously initialized structure param-
eters, all threshold values and all synaptic weights being undiffer-
entiated, so that intercolumnar all-to-all connectivity is the initial 
structure of the memory network. During the iterative learning 
procedure, for each decision cycle a face image is selected from 
a database randomly and presented to the system, evoking a pat-
tern of activity on both memory layers and triggering synaptic 

FIGURE 3 | Bidirectional plasticity. (A) Experimentally grounded 
modifi cation rule (ABS, Artola and Singer, 1993). (B) A simplifi ed sign switch 
rule used in the model.
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and threshold modifi cation mechanisms. The learning procedure 
is open-ended as there is neither a stop condition nor an explic-
itly defi ned time-dependent learning rate variables which would 
decrease with time progress and freeze modifi cations at some point. 
The learning progress can be assessed directly by evaluating the 
recognition error on the basis of the previous network responses. 
Further, the inspection of the structure of the receptive fi elds deliv-
ers hints about their maturation progress. Investigating the rate 
of ongoing modifi cations of the synaptic weights and dynamic 
thresholds could give a hint on whether the changes in the network 
structure are still taking place in signifi cant proportion, providing 
a basis for a stop condition if necessary. In the later learning phase 
the general stability of the established structure can be also verifi ed 
by simple visual inspection.

Performance evaluation
To assess the recognition performance of the system, we make a 
distinction between the learning and generalization error. The 
learning error is defi ned as a rate of wrong responses to person 
identity from the training data set containing the original face views 
with neutral expression. The statistics of response behavior to each 
particular person is gathered for each identity core unit over the 
history of the network stimulation. The learning error rate can 
then be computed for each small interval during the learning phase 
by using the preferences the identity units have developed for the 
individual persons during the preceding stimulation. Opposed to 
this, the generalization error is computed on the set of novel views 
not presented before. During the test for generalization error, all the 
synaptic weights are frozen, which is done to exclude the possibil-
ity that recognition rate improves during the testing phase due to 
potential benefi t of synaptic modifi cations. The generalization error 
is assessed for each view type separately to see potential perform-
ance differences between different views (the duplicate view and 
the views with two different emotional expressions, smiling and 
sad). The history of network behavior during the learning phase is 
used again in the same way for the computation of the error rate, 
as done for the learning error evaluation.

ASSESSING NETWORK’S ORGANIZATION
To analyze the progress of structure formation, we use measures 
describing different properties of the receptive fi elds. The distance 
measure calculates the distance between two synaptic weight vec-
tors w
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where φ denotes the angle between the two synaptic weight vec-
tors each comprising a receptive fi eld. The value lies in the inter-
val between zero and one. If the weight vectors are the same, the 
distance value is zero, if their dissimilarity is maximal (φ = π), the 
value is one. Utilizing this basic distance measure, we further con-
struct a differentiation measure, which is supposed to refl ect the 
grade of differentiation between the receptive fi elds of the same 

type across the whole network. The differentiation grade Dk
Source is 

computed for each column for the receptive fi elds of a given type 
Source ∈ {BU, LAT, TD} and then an average differentiation value 
DSource is built from the values of all K columns:
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where n is the number of units in the column. The differentiation 
grade measure is evaluated separately for bunch columns on the 
lower memory layer and for the identity column on the higher 
memory layer.

Further we employ a measure refl ecting the property of the 
inner structure of a receptive fi eld to be sparse, that is, possessing 
few strong synapses and many weak synapses comprising the recep-
tive fi eld. If the inner receptive fi eld structure is poorly differenti-
ated the sparseness value will be low; if differentiation within the 
receptive fi eld is strong, then the value will be high. To assess the 
same property not only within, but also across receptive fi elds, the 
overlap measure is defi ned. If the receptive fi elds of the same type 
have many strong overlapping synapses in common the value will 
be high, if there are only few such overlapping synapses the value 
will be low. The overlap measure is thus closely related to the dif-
ferentiation grade between the receptive fi elds as assessed using 
the distance measure. Both sparseness denoted as ζ and overlap 
denoted as ξ have the same scheme behind their computation, with 
the only difference that the former is computed within while the 
latter across the receptive fi eld vectors using a common selectivity 
measure ASource(s) as defi ned in (Rolls and Tovee, 1995). Again, the 
computation is done for each column on receptive fi elds of the 
same type Source ∈ {BU, LAT, TD}, building then type-specifi c 
average values C Source and εSource over all K columns:
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where r is the number of synapses comprising a receptive fi eld of 
type Source ∈ {BU, LAT, TD}, n is the number of units in a column, 
and K is the total number of assessed columns. The evaluation is 
done separately for the bunch columns and the identity column.

RESULTS
STRUCTURE FORMATION
Facing a task of unsupervised learning, the system develops a struc-
tural basis for storing the faces of individual persons shown dur-
ing the learning phase. The vocabularies for the distributed local 
features are created on the lower memory layer to represent facial 
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parts. These vocabularies are formed by the bottom-up synaptic 
connections of the bunch columns attached to their facial land-
marks (Figure 4A). Each core unit of the bunch columns becomes 
thus sensitive to a particular local facial appearance due to the estab-
lished structure of its bottom-up receptive fi eld. At the same time, 
the lateral connectivity between the bunch columns gets shaped 
capturing the associative relations between the distributed features 
(Figure 4B). These relations are represented by associative links 
between those core units that are regularly used in the composition 
of a particular individual face. The same compositional information 

enters into the structure of bottom-up connectivity converging on 
the identity column units (Figure 4D), being also represented in 
the top-down connections projecting from the identity column 
back on the lower layer (Figure 4C).

Each person repeatedly presented to the system during the 
learning phase leaves a memory trace comprising the parts-based 
representation of its face on the lower layer and the explicit con-
fi gurational identity on the higher layer of the memory (Figure 4). 
The course of gradual differentiation of bottom-up, lateral and 
top-down connectivity reveals the ongoing process of memory 

FIGURE 4 | Time snapshots of structure formation. From left to right, 
snapshots from early, middle and late formation phase of (A) lower layer 
bottom-up connectivity containing local facial parts, (B) lower layer associative 

lateral connectivity, (C) top-down compositional connectivity projecting from the 
higher back on the lower layer, which is roughly the transposed version of the 
higher layer bottom-up connectivity visualized in (D), holding global identities.
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consolidation, where memory traces induced by the face images 
become more stable and get opportunity to amplify their struc-
ture. A common developmental pattern seems to underlie the 
time courses of structure organization (see Assessing Network’s 
Organization). There is an initial resting phase, where no structural 
changes appear, followed by a maturation phase, where massive 
reorganization occurs and change rate peaks at its maximum value 
(Figures 5 and 6). Finally a saturation phase is reached, where the 
structure stabilizes at a certain level of organization and the change 
rate goes down close to zero.

Different connectivity types get organized preferentially within 
a specifi c time window (Figures 5 and 6). There is a clear temporal 
sequence of connectivity development, starting with maturation 
of lower layer bottom-up connections, followed by maturation of 
lateral connections between the bunch columns and by the matu-
ration of bottom-up connectivity of the identity column, ending 
with the formation of top-down connectivity. Because the devel-
opment of different connectivity types is highly interdependent, 
their developmental phases are not disjunct in time, but overlap 

substantially. In parallel, there is a gradual increase in sparseness 
within the receptive fi elds and progressive reduction of the over-
lap between them (Figure 6). The remaining overlap in associa-
tive lateral and confi gurational bottom-up connectivity refl ects the 
extent to which the parts are shared among different stored face 
representations.

In the late learning phase, the state of the synaptic structure 
stabilizes until no substantial changes in the established memory 
structure can be observed (Figures 5 and 6). Remarkably, the 
 bottom-up connectivity of the bunch columns stays well behind 
other connectivity types in terms of differentiation grade, sparseness 
within the receptive fi elds and their overlap reduction achieved in 
the fi nal stable state (Figures 5 and 6). While being the latest to initi-
ate its maturation, the top-down connectivity reaches the highest 
grades of differentiation and sparseness, also being most successful 
in reducing the overlap. The lateral connectivity between the bunch 
columns and bottom-up connectivity of the identity column also 
show comparably high level of organization. These relationships 
refl ect the distinct functional roles the different connectivity types 
play in their contribution to the memory traces – capturing strongly 
similar local feature appearance in case of lower layer  bottom-up 
connectivity on the one hand and on the other hand storing weakly 
overlapping associative and confi gurational information for differ-
ent faces in case of lateral and top-down connectivity.

The changes in the synaptic structure are accompanied by the 
use-dependent regulation of the excitability thresholds of the core 
units across the network. Three developmental phases can be distin-
guished in the time course of excitability modifi cations (Figure 7). 
The fi rst phase is characterized by strong and rapid excitability 
downregulation in the network. This downregulation settles down 
the core units toward the range of the targeted average activity 
level p

aim
 (Eq. 8). In this phase, almost no differences between the 

individual thresholds are present (Figure 8). After downregulation 
crosses its peak, a common upregulation sets in and the differences 
between the excitability thresholds become much more prominent. 
The upregulation phase leads to a slight increase of the average 
excitability and is followed by a saturation phase where the average 
threshold value stabilizes around certain level.

Excitability regulation runs differently on different memory 
layers. On the lower layer the down- and upregulation phases are 

FIGURE 5 | Differentiation time course over 5 × 105 decision cycles for 

different connectivity types; on the left the grade of differentiation, on 

the right its rate. Clear is the general tendency to greater connectivity 
differentiation with the learning progress as well as the temporal sequence of 
connectivity maturation (see the text). BU, LAT, hBU, TD denote respectively 
lower layer bottom-up, lateral, higher layer bottom-up and top-down 
connectivity types.

FIGURE 6 | Overlap (A) and sparseness (B) time course over 5 × 105 decision 

cycles for different connectivity types. As the learning progresses, the overlap 
between the receptive fi elds is continuously reduced, the connectivity sparseness 

increases. Again, the temporal sequence of connectivity development is clearly 
visible (see the text). BU, LAT, hBU, TD denote respectively lower layer bottom-up, 
lateral, higher layer bottom-up and top-down connectivity types.
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FIGURE 7 | Time course of excitability regulation. Above the lower, below 
the higher memory layer. Obvious are the much stronger pronounced 
differences in excitability between the units on the lower layer.

shorter and occur earlier than the corresponding phases on the 
higher layer. Moreover, the differences in excitability between the 
units on the lower layer are much stronger pronounced compared 
to the rather equalized excitability levels of the higher layer units 
(Figures 7 and 8).

These differences refl ect the distinct functional roles the lower 
and higher layer play in the memory organization. The lower layer 
serves as a storehouse for associatively linked distributed facial parts 
that can be shared by multiple face representations, while the iden-
tity units are conjunction-sensitive units representing the confi gu-
rational identity of the face. Because each memorized person is 
equally likely to appear on the input, the long-term usage load of 
the identity units is essentially the same, so no need for a systematic 
differentiation of excitability thresholds arises there. Part sharing 
on the other hand imposes different usage frequency on different 
core units sensitive to different parts, leading to pronounced use-
dependent differences in excitability between the bunch column 
core units.

ACTIVITY FORMATION AND COORDINATION
The established synaptic structure supports the parts-based rep-
resentation scheme by encoding the relations between the parts in 
two alternative ways. First, the relations can be explicitly signaled 
by the responses of conjunction, or confi guration, specifi c iden-
tity core units on the higher layer, each responsible for one of the 
face identities stored in the memory. Second, the relations can be 
represented by dynamic assemblies of co-activated part-specifi c 
bunch core units, which can be constructed on demand to encode 

a novel face or to recall an already stored one as a composition of 
its constituent parts. The selection and binding of the parts-specifi c 
and identity-specifi c units into a coherent assembly coding for an 
individual face is done in the course of a decision cycle defi ned by 
common unspecifi c excitatory and inhibitory signals oscillating in 
the gamma range (Singer, 1999; Fries et al., 2007).

There, the global decision process which may be called binding 
by competition is responsible for assembly formation, providing 
clear and unambiguous temporal correlations between the selected 
units and setting them apart against the rest by amplifi cation of 
their response strength (Figure 9). The initial phase of the decision 
cycle, where the oscillatory inhibition and excitation are low, is char-
acterized by low undifferentiated activities of the network units. 
With both inhibition and excitation rising, only some of the units 
are able to resist the inhibition pressure and continue increasing 
their activity being selected as candidates for assembly formation 
in the selection phase. Ultimately, the growing competition leads 
to a series of local winner-take-all decisions across the columns 
sparsening the activity in the network by strong amplifi cation of a 
small unit subset at the cost of suppression of the others. In the late 
phase of a decision cycle, this amplifi ed subset of winner units can 
be then clearly interpreted as an individual face composed of the 
local features from respective landmarks and labeled with person’s 
identity, solving the assembly binding problem (Singer, 1999; von 
der Malsburg, 1999).

A combined view on the mean activity within the columns 
reveals once more the competitive nature of activity formation in 
the network (Figure 9). While the winner unit subset concentrates 
increasingly high activity, the mean network activation gets pro-
gressively reduced at the end of the decision cycle after crossing its 
peak in the selection phase, indicating that winner subset amplifi ca-
tion occurs at the cost of suppressing the rest. Generally, during the 
whole decision cycle the mean network activity stays at a low level 
(p = 0.08 − 0.09), far below the activity level reached by the winner 
units subset at the end of the cycle (p = 0.4 − 0.6).

One may ask to what extent the competitive activity formation 
becomes more organized or coherent in terms of representing the 
memory content as the learning progresses. In other words, we 
are interested in the level of coherence, or agreement, between the 
local competitive decisions made in the distributed columns and 
how it may change with the learning time. One indicator of such 
coherent behavior is the agreement achieved at the end of the deci-
sion cycle between the afferent signals that arrive at network units 
from different sources such as bottom-up, lateral or top-down. By 
computing the standard correlation coeffi cient ρ (DeGroot and 
Schervish, 2001), we obtain for each afferent signal pair of differ-
ent sources a course showing the development of the coordination 
between the signals over the learning time.

The coordination level between the bottom-up, lateral and top-
down signals increases gradually from the initially very low value 
close to zero toward higher and higher grade (Figure 10). The low 
coherence value in the early learning phase reveals the inability 
of the signals converging on the network units to be in consensus 
with each other about the local decision outcome, deranging the 
global decision making. As learning progresses, the signal pathway 
structure is gradually improved for the storage and representa-
tion of the content, leading to stronger and stronger consistency 
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FIGURE 8 | (A) Time course of average excitability regulation. Above the whole 
course, below the zoom into down- and upregulation phases. On the left for the 
bunch units, on the right for the identity units. Black solid curve is the average value, 
gray curves mark the standard deviation range.The same nomenclature applies for 

the time course of the average unit activity visualized in (B). As visible in (A), the 
differences in excitability between the units are more pronounced on the lower layer 
compared to the higher one. This is refl ected again in the greater dispersion of the 
unit activities around the average activity level on the lower layer, as shown in (B).

FIGURE 9 | Activity formation during the decision cycle. (A) A sequence of six 
successive cycles, each representing a successful recall of a stored individual 
face. On the top, the activity course is shown, arrows pointing to constituent parts 
shared by two different face identities. Second and forth cycles show recall of the 
same face identity. Below is the mean activity course for each column and the 

oscillation rhythms defi ning the decision cycle. (B) A zoom into a single decision 
cycle (on the top) to visualize the activity formation phases. Below is the mean 
activity course for each column and distribution of average unit activities over the 
decision cycle showing the highly competitive nature of activity formation, where 
winner units get amplifi ed at the cost of suppressing the others.
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in local signaling. The bottom-up and lateral signals are the fi rst 
to develop a signifi cant grade of coherence. Slightly later the lat-
eral and top-down signals reach a substantial coherence level and 
the latest to establish a coordinated cross-talk are the signals from 
bottom-up and top-down sources. Furthermore, the lateral and 
top-down signals establish the strongest fi nal grade of coherence 
that is signifi cantly higher than the coherence between bottom-
up and lateral as well as bottom-up and top-down signals. Their 
coherence still reaches substantial values though, the former being 
slightly above the latter.

During the course of a single decision cycle, a co-activation 
measure can be used to check whether the incoming signals are 
coordinated properly to make up the decisions. The relationship 
between the afferent signal coordination and the function of the 
memory is particularly clear if the coordination level in a success-
ful recall is compared to the coordination shown during a failed 
recall, where the identity of the person is misclassifi ed (Figure 11). 
In a successful recall, where the facial representation and person’s 
identity are correctly retrieved from the memory, a well-established 
coordination can be observed between the co-active afferent signals 
converging on the winner units. In a failed recall, the identity col-
umn making a wrong decision sends top-down signals that are not 
in agreement with the bottom-up and lateral signals conveyed by 
the bunch columns. As consequence, the signal coordination breaks 
down, serving as a reliable indicator of a recall failure (Figure 11D). 
This disagreement between the sensory and contextual signaling 
can be interpreted as an error signal, indicating a deviation between 
the bottom-up signal and the top-down prediction. Although cur-
rently not represented explicitly by the activity of a dedicated unit, 
this signal could be potentially of great use for determining the state 
of the recognition process and for guiding learning as an explicit 
reinforcement signal.

A further indicator that can help in differentiating a success-
ful from a partially or completely failed recall is the activity level 

of the winner units at the end of the decision cycle. A successful 
recall is accompanied by a high degree of cooperation between the 
participating winner units, so that the level of their fi nal activation 
is high. At the same time, the competitive action of the winner 
units subset suppresses strongly the rest activity, so that the overall 
network activity is substantially diminished. Contrarily, a failed 
recall has something to do with disagreement between some local 
decisions, resulting in decreased afferent signal coherence, which in 
turn leads to a much lower level of fi nal activity in the winner units. 
Their competitive infl uence is also weakened, leading to a higher 
overall network activity (Figure 11F). Thus, a simple comparison 
of the winner activities to their average level can already provide 
enough information to conclude about the quality of recall. The 
recall quality can be assessed on the global level of identity as well 
as on the component level, where either identity recognition failure 
or part assignment failure might be stated.

RECOGNITION PERFORMANCE
To assess the recognition capability of the memory, we evaluate 
the learning and generalization error of two different system con-
fi gurations. These different confi gurations, the fully recurrent and 
purely feed-forward one, are set up to substantiate the hypothesis 
stating the functional advantage of the recurrent memory struc-
ture over the structure with purely feed-forward connectivity. Both 
confi gurations were trained under equal conditions and then tested 
to compare their performance against each other (refer to Open-
Ended Unsupervised Learning and Performance Evaluation).

Both the purely feed-forward and fully recurrent confi gurations 
are able to successfully store the facial identities of the persons (40 
in total) in the memory structure. Strong decay of the learning 
error over the time is clearly evident for both network confi gura-
tions. The learning error rate falls rapidly in the early learning 
phase (fi rst 5 × 104 decision cycles) until it saturates at the values 
slightly below 5% in the later phase beyond 105 cycles (Figure 12). 
Although there is no signifi cant difference in the learning error 
rate between the both confi gurations after the saturation level is 
reached, the time needed to reach the saturation level is substan-
tially shorter for the fully recurrent confi guration (saturates around 
105 cycles) than for the purely feed-forward one (saturates around 
1.5 × 105 cycles). Thus, the learning progresses about 33% faster 
for the fully recurrent system than for the purely feed-forward one. 
The fully recurrent confi guration seems to speed-up the learn-
ing progress in the critical early learning phase, probably taking 
benefi t of additional assistance provided by lateral and top-down 
connectivity for the organization, amplifi cation and stabilization 
of the memory traces.

At fi rst glance, analysis of the learning error time course sug-
gests that the only functional advantage of the fully recurrent con-
fi guration is the learning speed-up observed in the early phase. 
However, another important functional advantage is revealed if the 
generalization error rates are compared. The generalization error is 
measured on the alternative face views not shown during the learn-
ing phase (see Table 1). A striking result is the signifi cant discrep-
ancy in performance between the two confi gurations manifested 
on the duplicate views containing emotional expressions (smiling 
and sad). There, the error rate difference is about 5% in favor of the 
fully recurrent memory confi guration. The generalization error of 

FIGURE 10 | Improvement of signal coordination in the course of 

learning. Standard correlation coeffi cients ρ were computed for each signal 
pair. BU, LAT, TD denote respectively bottom-up, lateral and top-down signals.
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FIGURE 11 | Coordination and activity formation in successful and failed 

recall. Two decision cycles showing failed and successful recall. (A) Network 
activity course. (B) Bottom-up afferent signals course. (C) Lateral and 
top-down afferent signals course. (D) Signal coordination course assessed by 
measuring the co-activation of bottom-up, lateral and top-down signals 
converging on the network units. In the failed recall, there is a clear 
break-down of signal coordination in afferents converging on the winner units. 

(E) Course of mean activity in the columns. In the failed recall, a substantially 
increased overall activation is clearly seen as well as the shift of its broader 
peak to a later time point. (F) Winner unit activities at the end of the decision 
cycle on the left and mean unit activities (excluding the winners) over whole 
cycle on the right for each column. In the failed recall, winner activities are 
consistently lower, while the mean rest unit activities are consistently higher 
than in the successful recall.

purely feed-forward confi guration is 38.46% larger on the duplicate 
smiling view and 62.5% larger on the duplicate sad view than the 
generalization error of the fully recurrent confi guration. On the 
other views, no signifi cant difference in error rate can be detected 
between both confi gurations.

These results highlight an interesting property of the functional 
advantage as it has been assessed for the fully recurrent memory 
confi guration. The purely feed-forward confi guration falls sig-
nifi cantly behind the fully recurrent one only on certain views, 

 performing comparably well on the others. Apparently, the stronger 
the deviation of the alternative view from the original view showed 
during the learning, the more evident is the enhancement in gen-
eralization capability. Even if given only a short time of a single 
decision cycle, the recurrent connectivity seems to gain benefi t par-
ticularly in novel situations, where purely feed-forward processing 
alone has more diffi culties in achieving correct interpretation of 
the less familiar face view. The purely feed-forward confi guration 
relies only on the local similarity computation, not being able to 
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utilize evidence for likely compositions of the local parts to sup-
port the local decision making. Therefore, the interpretation of the 
global identity made on the basis of the less familiar local features 
from the alternative face views is more probable to suffer from 
the mistakes in local feature detection that cannot be corrected in 
the absence of contextual support, provided otherwise by the fully 
recurrent confi guration.

DISCUSSION
To identify potential neural mechanisms that are responsible for 
the formation of parts-based representations in visual memory, 
we examined the process of experience-driven structure self-
 organization in a model of layered memory. We chose the task 
of unsupervised open-ended learning and recognition applied 
to human faces from a database of natural face images. The fi nal 
goal was to build up a hierarchically organized associative memory 
structure storing faces of individual persons in a parts-based fash-
ion. Employing slow activity-dependent bidirectional plasticity 

(Bienenstock et al., 1982; Artola and Singer, 1993; Cho et al., 2001) 
together with homeostatic activity regulation (Desai et al., 1999; 
Zhang and Linden, 2003) and a fast neuronal population dynamics 
with a strongly competitive nature, the proposed system performed 
impressively well on the posed task. It demonstrated the ability to 
simultaneously develop local feature vocabularies and put them in 
a global context by establishing associative links between the dis-
tributed features on the lower memory layer. On the higher layer, 
the system was able to use the confi gurational information about 
relatedness of the sparse distributed features to memorize the face 
identity explicitly in the bottom-up connectivity of identity units. 
The captured feature constellations were also projected back to the 
lower layer via top-down connectivity providing additional contex-
tual support for learning and recognition. The identity recognition 
performance of the system on the original and alternative face views 
confi rmed the functionality of the established memory structure.

GENERIC MEMORY ARCHITECTURE
When thinking about the processes underlying the memory forma-
tion and function, it is remarkable that the structure and activity 
formation in the model network can be governed by a set of local 
mechanisms which are the same for all neuronal units and all syn-
apses comprising the network. Saying that they are the same here 
means that for instance the bidirectional plasticity rule for any syn-
apse has not only the same functional description, but also shares 
a common set of parameter values such as time constant, etc. This 
supports the view that the synapses arriving from different origins 
and contacting their target neuron at different sites of the dendritic 
tree and soma are a kind of universal learning machines, which 
may well differ in their impact on the fi ring behavior of the neuron 
(Sherman and Guillery, 1998; Larkum et al., 2004; Friston, 2005), 
while obeying the same generic modifi cation rules. Whether this is 
indeed the case, is currently a subject of intense debates (Sjöström 
et al., 2008; Spruston, 2008). Overall, the organization of the system 
supports the idea of universal cortical operations involving strong 
competitive and cooperative effects (von der Malsburg and Singer, 
1988), which are building up on essentially the same local circuitry 
and the same plasticity mechanisms utilized in different cortical 
areas (Mountcastle, 1997; Phillips and Singer, 1997; Douglas and 
Martin, 2004).

COMPETITION AND COOPERATION IN ACTIVITY AND STRUCTURE 
FORMATION
In our study, it becomes clear that learning itself has to rely on 
certain important properties of the processing on the fast as well as 
on the slow time scale. To capture statistical regularities hidden in 
the local sensory inputs and their global compositions, there have 
to be mechanisms for selecting and amplifying only a small fraction 
of available neuronal resources, which then become dedicated to 
a particular object, specializing more and more for the processing 
of its local features and their relations. Without proper selection, 
no learning will succeed. However, without proper learning, no 
reasonable selection can be expected either. Here, we break this 
circularity by proposing strong competitive interaction between 
the units on the fast activity time scale. Given a small amount of 
neural threshold noise, this interaction is able to break the sym-
metry of the initial condition due to the bifurcation property of the 

Table 1 | Comparison of generalization error between the purely feed-

forward and fully recurrent memory confi guration. The confi gurations 

were tested after learning time of 5 × 105 cycles. Fully recurrent confi guration 

shows a signifi cantly better performance on the duplicate views with 

emotional expressions, while comparable performance is shown on the 

other views.

Confi guration Views, error rate

 Original Smiling Sad

Fully recurrent 0.1 ± 0.07% 6.06 ± 0.58% 4.02 ± 0.42%

Purely feed-forward 0.067 ± 0.0528% 5.72 ± 0.92% 3.75 ± 0.38% 

 Duplicate Duplicate, smiling Duplicate, sad

Fully recurrent 1.64 ± 0.16% 13.41 ± 0.94% 8.74 ± 0.38%

Purely feed-forward 1.75 ± 0.13% 18.42 ± 0.93% 13.68 ± 0.64%

FIGURE 12 | Learning error rate of feed-forward and fully recurrent 

memory confi guration.
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activity  dynamics (Lücke, 2005), enforcing the unit selection and 
amplifi cation in the initial learning phase even in the absence of 
differentiated structure. The response patterns enforced by compe-
tition offer suffi cient playground for the learning to ignite and move 
on to organize and amplify some synaptic structure that is suitable 
for laying down specifi c memory content via ongoing slow bidirec-
tional Hebbian plasticity. In combination with competitive activity 
dynamics, the bidirectional nature of synaptic modifi cation assists 
further the competition between memory traces as it attempts to 
reduce the overlap between the patterns the network units pref-
erentially respond to, segregating memory traces in the network 
structure whenever possible. The state of undifferentiated structure 
is however the worst-case scenario and not necessarily the initial 
condition for learning, as there may be basis structures prepared 
for the representation of many behavioral relevant patterns, like 
for instance faces (Johnson et al., 1991). Interestingly, the progress 
from an undifferentiated to a highly organized state via selection 
and amplifi cation of a small subset of totally available resources 
is a general feature in evolutionary and ontogenetic development 
of biological organisms. The notion that the very same principles 
may guide the activity and structure formation in the brain sup-
ports the view of learning as an optimization procedure adapting 
the nervous structure to the demands put on it by the environment 
(von der Malsburg and Singer, 1988; Edelman, 1993).

Noteworthy, there is a very important difference in the way 
how the unit selection, or decision making, is implemented by 
competition given the early, immature or late, mature state of the 
connectivity structure. In the immature state where the contextual 
connectivity is not established yet, the local decisions in the lower 
layer bunch columns are made completely independent from each 
other. On the contrary, decision making in the mature state involves 
interactions between the local decisions via already established 
lateral and top-down connections. These associative connections 
enable cooperation within and competition between unit assem-
blies, promoting a coordinated global decision. The separation of 
synaptic inputs enables decision making to use information from 
different origins according to its functional signifi cance –  carrying 
either sensory bottom-up evidence for a local appearance or pro-
viding clues for relational binding of distributed parts into a global 
confi guration (Phillips and Singer, 1997). The agreement between 
sensory and contextual signaling about the outcome of local deci-
sions improves continuously as learning progresses, while the 
disagreement between them can be interpreted as an error signal, 
offering the possibility to modulate plasticity in an explicit error-
dependent way. The initially independent local decision making 
becomes thus orchestrated by contextual support formed in the 
course of previous experience with visual stimuli.

SIGNAL AND PLASTICITY COORDINATION
The coherency of cooperative and competitive activity formation 
cannot be guaranteed by the contextual support alone, as the time 
coordination of decision making across distributed units also mat-
ters. The decision cycle, which defi nes a common reference time 
window for decision making, orchestrates not only the activities, 
but also bidirectional synaptic modifi cations across the units. 
This reassures that structure modifi cation amplifi es the connec-
tions within the right subset of simultaneously highly active units 

 encoding a particular face on the way to the peak of the decision 
cycle, while punishing the connections between the competitor 
units that were active during the cycle but were not able to survive 
until the end. The cortical processing seems to be reminiscent of 
oscillatory rhythms in the gamma range used here to model the 
decision cycle. Particularly, there is evidence that oscillatory activ-
ity may serve as reference signal coordinating plasticity mecha-
nisms in cortical neurons (Huerta and Lisman, 1995; Wespatat 
et al., 2004). There is also support for a phase reset mechanism 
locking the oscillatory activity on the currently presented stimulus 
(Makeig et al., 2002; Axmacher et al., 2006). Taken together, current 
evidence suggests the possible interpretation of the gamma cycle 
as a rapidly repeating winner-take-all algorithm as it is modeled 
in this work (Fries et al., 2007). The winner-take-all competition 
can be carried out rapidly due to low latencies of fast inhibition 
and its result can be read out fast (on the scale of few milliseconds) 
due to the response characteristics of the population rate code 
(Gerstner, 2000). Here, the synchronization imposed by the com-
mon rhythms is selectively restricted to the small clusters embodied 
by the columns that participate in encoding or retrieval of some 
particular coarse object category or class (a face). Such assembly 
recruiting is experimentally observed and is supposed to happen 
within a gamma cycle, which, in turn, can occur on the top of a 
slower rhythm, e.g. in the theta range as known from hippocam-
pal and cortical processing (Lisman, 2005; Sirota et al., 2008). So, 
decision cycles can be seen as fragments of a longer perception 
process, each fragment involving a selectively recruited assembly 
of synchronized units dedicated to the processing of that fragment. 
What neuronal processes are responsible for selective formation 
and coordination of the common rhythms is an important and 
challenging question, which has yet to be resolved and is a subject 
of our further studies.

HIERARCHICAL PARTS-BASED REPRESENTATION
An essential property of our memory system is parts sharing, as it 
allows the same basic set of the elementary parts to be used for the 
combinatorial composition of familiar and novel objects without 
the need to add new physical units into the system. Endowed with 
this ability, the memory network can be also interpreted as a lay-
ered neuronal bunch graph (Wiskott et al., 1997), without taking 
into account the topological information. Here, the graph nodes are 
columns, each holding a set of features with similar physical (visual 
appearance) or semantical (category or identity) properties (Tanaka, 
2003). In such a graph, new object representations can be instantiated 
in a combinatorial fashion by selecting candidate features from each 
node. The candidate selection here depends critically on the homeo-
static regulation of activity, which reassures that each unit is able to 
participate in memory formation to an equal extent. By introduc-
ing the hierarchy in the graph structure, higher order symbols, like 
identity of a person, can be explicitly represented by assigning the 
chosen set of candidate features from the lower memory layer to an 
identity unit on the higher layer. These higher symbols may be used 
for a compact representation of exceptionally important persons 
(VIPs), without discarding the information about their composi-
tion which is kept in the top-down connections projecting back to 
the lower layer. The identity column demonstrates the potential to 
develop this kind of representation in a restricted region of a higher 
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visual area, where a single unit becomes extremely specialized for a 
particular object, as observed experimentally in IT, PFC and MTL 
(Freedman et al., 2003; Quiroga et al., 2008). We believe that such 
VIP units may exist for entities extensively dealt with on day-to-day 
basis, like intimate persons or a favorite teddy bear. But in princi-
ple, the system’s functionality as associative memory doesn’t need to 
rely on such a representational scheme, and it could use exclusively 
the distributed coding, utilized on the lower layer, without creating 
dedicated, localist-fashioned representations.

Furthermore, each node itself is not stuck to the strict hard 
winner-take-all operation. Potentially, it would be also possible to 
select multiple candidates from a single node, or column, to encode 
a part of a particular face. Here we use very strong competition 
leading to a form of activity sparseness termed hard sparseness 
(Rehn and Sommer, 2007), limiting the number of active units to 
one per column. While this kind of sparse coding is advantageous 
for learning individual faces, it may be generally too sparse for 
representing coarser categories (like male of female). However, the 
competition strength can in principle be adjusted arbitrarily in a 
task-dependent manner, either by tuning the core unit gain or by 
balancing the self-excitation and lateral inhibition. The latter can be 
easily implemented by altering the amplitude of inhibitory or exci-
tatory oscillations. The alteration could be initiated by some kind 
of internal cortical signal or state, indicating the task- dependent 
need for the competition strength. The tuning of the competition 
strength would allow the formation of less sparse activity distri-
butions, representing the stimulus on a coarser categorical level 
(Kim et al., 2008). The intercolumnar cross-talk shouldn’t become a 
problem in case of multiple active units per column after a preced-
ing learning phase as long as the representation remains suffi ciently 
sparse, avoiding too much overall activation.

ATTENTIONAL AND GENERATIVE MECHANISMS IN THE MEMORY
Interestingly, contextual lateral and top-down connectivity endows 
the system with further general capabilities. For instance, selective 
object-based attention is naturally given in our model, because 
the priming of the identity units on the higher memory layer by 
preceding sensory or direct external stimulation would also prime 
and facilitate the part-specifi c units on the lower layer via top-down 
connections, providing them with a clear advantage in the compe-
tition against other candidates. This priming can mediate covert 
attention directed to a specifi c object, promoting the pop out of 
its stored parts-based representation while suppressing the rest of 
the memory content. Generally,the selection and amplifi cation by 
competition can be interpreted as an attentional mechanism, which 
focuses the neural resources on processing one object or category 
at the cost of suppressing the rest (Lee et al., 1999; Reynolds et al., 
1999). Although not exploited in this study, the network model is 
also able to self-generate activity patterns that correspond to the 
object representations stored in the memory content in absence 
of any external input. This ability relies heavily on the lateral and 
top-down connectivity established by previous experience with 
visual stimuli, placing the model in remarkable relation to genera-
tive approaches explaining construction of data representations in 
machine learning (Ulusoy and Bishop, 2005). From this perspective, 
each face identity can be interpreted as a global cause producing 
the specifi c activity patterns in the network. The identities are in 

turn composed of many local causes, i.e. their constituent parts. 
The memory structure captures all the relations between local and 
global causes, being able to reproduce data explicitly in an autono-
mous mode.

PERFORMANCE ADVANTAGE OVER THE PURELY FEED-FORWARD 
STRUCTURE
Finally, we presented sound evidence for the functional advantage 
of lateral and top-down connectivity over the purely feed-forward 
structure in the memory formation and recall. First, the recur-
rent context-based connectivity seems to speed-up the learning 
progress. Second, and at least as essential, recurrent confi guration 
outperforms signifi cantly the purely feed-forward confi guration 
on the test views which deviate strongly from the original views 
shown during learning. This suggests that contextual processing 
is able to generalize over new data better than the purely feed-
forward solution, which performs comparably on original or only 
slightly deviating views. This outcome indicates that different 
processing strategies may prove more useful in different situations. 
While the recurrent connectivity is mostly benefi cial in novel situ-
ations, which require additional effort for the interpretation and 
learning of less familiar stimuli confi gurations, the feed-forward 
processing already suffi ces to do a good and quick job when facing 
well-known, overlearned situations, where effortful disambigua-
tion is not required due to the strong familiarity of the sensory 
input. There, the feed-forward processing could benefi t from the 
 bottom-up pathway structures formed by previous experience 
and evoke clear, unambiguous, easily interpretable activity pat-
terns along the processing hierarchy without requiring additional 
contextual support from lateral and top-down connectivity. There 
are two predictions arising from this outcome, which can be tested 
in a behavioral experiment involving subordinate level recognition 
tasks. First, deactivation of lateral and top-down connectivity in 
the IT would not change performance for overlearned content, but 
would impair recognition for less familiar instances of the same 
stimuli viewed under different conditions, the impairment being 
the more visible the stronger the viewing condition deviates from 
the overlearned one. Second, the same deactivation should lead to 
a measurable decrease in the learning speed, increasing the time 
needed to reach a certain low level of recognition error.

MODEL PREDICTIONS
There are some more predictions that can be derived from the 
system’s behavior. One general prediction is that failed memory 
recall should be accompanied by the higher overall activation along 
the IT processing hierarchy within the gamma or theta cycle, with 
the activity of the strongest units at cycle’s peak being on contrary 
diminished. Reversely, a successful recall should be characterized by 
decreased overall activity in the IT and by increased activity in the 
winner units cluster. This is also interpretable in terms of signaling 
the degree of decision certainty, the successful recall being accom-
panied by greater certainty about the recognition result. Further, 
a failed recall should induce much more depression (LTD) than 
potentiation (LTP), a successful recall much more LTP than LTD 
on the active synapses. In addition, if required to memorize and 
distinguish very similar stimuli, the recall of such an item should 
lead to a higher overall activity in the IT network than for items 
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with less similar appearance. The winner units, on contrary, should 
exhibit a reduced activation due to the inhibition originating from 
the competing similar content. Again, certainty interpretation of 
the activity level is possible here: the more similar the stimuli to 
be discriminated, the lower is the winner activation signaling the 
decision made, indicating lower certainty about the recognition 
result. An interesting prediction concerning the bidirectional plas-
ticity mechanism is the erasure of a memory trace after repetitive 
stimulus-induced recall if LTD/LTP transition threshold is shifted 
to the higher values, for example due to an artifi cial manipulation, 
as performed in experiments of selective memory erasure in mice 
(Cao et al., 2008).

So far, we provided a demonstration of experience-driven 
structure formation and its functional benefi ts in a basic core 
of what we think can be further developed into a full-featured, 
hierarchically organized visual memory domain for all kind of 
natural objects. As usual, several open questions remain, such as 
invariant or  transformation-tolerant processing, development of a 
full hierarchy from elementary visual features to object  categories 

and  identities,  establishing the interface for behaviorally relevant 
 context as  proposed in the framework of reinforcement learn-
ing, incorporating the mechanisms of active vision and so on. 
Nevertheless, with this work we hope we succeeded not only to 
highlight the crucial importance of coherent interplay between the 
bottom-up and top-down infl uences in the process of memory for-
mation and recognition, but also to gain more insight into the basic 
principles behind the self-organization (von der Malsburg, 2003) 
of a successful subsystem coordination across different time scales. 
Aiming for real world applications, we believe that the incremental, 
unsupervised open-ended learning design instantiated in this work 
provides an inspiring and guiding paradigm for developing systems 
capable of discovering and storing complex structural regularities 
from natural sensory streams over multiple descriptional levels.

ACKNOWLEDGMENTS
We would like to thank Cristina Savin, Cornelius Weber and Urs 
Bergmann for the helpful corrections on this manuscript. This work 
was supported by the EU project DAISY, FP6-2005-015803.

Desai, N. S., Rutherford, L. C., and 
Turrigiano, G. G. (1999). Plasticity 
in the intrinsic excitability of cortical 
pyramidal neurons. Nat. Neurosci. 2, 
515–520. Available at: http://dx.doi.
org/10.1038/9165

Douglas, R. J., and Martin, K. A. (1991). 
A functional microcircuit for cat 
visual cortex. J. Physiol. (Lond.) 440, 
735–769.

Douglas, R. J., and Martin, K. A. C. (2004). 
Neuronal circuits of the neocortex. 
Annu. Rev. Neurosci. 27, 419–451. 
Available at: http://dx.doi.org/10.1146/
annurev.neuro.27.070203.144152

Edelman, G. M. (1993). Neural 
Darwinism: selection and reentrant 
signaling in higher brain function. 
Neuron 10, 115–125.

Felleman, D. J., and Essen, D. C. V. (1991). 
Distributed hierarchical processing 
in the primate cerebral cortex. Cereb. 
Cortex 1, 1–47.

Freedman, D. J., Riesenhuber, M., 
Poggio, T., and Miller, E. K. (2003). 
A comparison of primate prefrontal 
and inferior temporal cortices during 
visual categorization. J. Neurosci. 23, 
5235–5246.

Fries, P., Nikolic′, D., and Singer, W. (2007). 
The gamma cycle. Trends Neurosci. 30, 
309–316. Available at: http://dx.doi.
org/10.1016/j.tins.2007.05.005.

Friston, K. (2005). A theory of cor-
tical responses. Philos. Trans. 
R. Soc. Lond. B. Biol. Sci. 360, 
815–836. Available at: http://dx.doi.
org/10.1098/rstb.2005.1622

Fujita, I., Tanaka, K., Ito, M., and 
Cheng, K. (1992). Columns for 
visual features of objects in monkey 
inferotemporal cortex. Nature 360, 
343–346. Available at: http://dx.doi.
org/10.1038/360343a0

REFERENCES
Artola, A., and Singer, W. (1993). Long-

term depression of excitatory synap-
tic transmission and its relationship 
to long-term potentiation. Trends 
Neurosci. 16, 480–487.

Axmacher, N., Mormann, F., Fernández, G., 
Elger, C. E., and Fell, J. (2006). Memory 
formation by neuronal synchroniza-
tion. Brain Res. Rev. 52, 170–182. 
Available at: http://dx.doi.org/10.1016/
j.brainresrev.2006.01.007

Bear, M. F. (1996). A synaptic basis for 
memory storage in the cerebral cor-
tex. Proc. Natl. Acad. Sci. U.S.A. 93, 
13453–13459.

Bienenstock, E. L., Cooper, L. N., and 
Munro, P. W. (1982). Theory for the 
development of neuron selectivity: 
orientation specifi city and binocular 
interaction in visual cortex. J. Neurosci. 
2, 32–48.

Cao, X., Wang, H., Mei, B., An, S., 
Yin, L., Wang, L. P., and Tsien, J. Z. 
(2008). Inducible and  selective 
erasure of  memories in the mouse 
brain via chemical–genetic mani-
pulation. Neuron 60, 353–366. 
Available at: http://dx.doi.org/
10.1016/j.neuron.2008.08.027

Cho, K., Aggleton, J. P., Brown, M. W., and 
Bashir, Z. I. (2001). An experimental 
test of the role of postsynaptic calcium 
levels in determining synaptic strength 
using perirhinal cortex of rat. J. Physiol. 
(Lond.) 532(Pt 2), 459–466.

Daugman, J. G. (1985). Uncertainty rela-
tion for resolution in space, spatial fre-
quency, and orientation optimized by 
two-dimensional visual cortical fi lters. 
J. Opt. Soc. Am. A 2, 1160–1169.

DeGroot, M. H., and Schervish, M. J. 
(2001). Probability and Statistics, 3rd 
Edn. Boston, Addison Wesley.

Fuster, J. M. (1997). Network memory. 
Trends Neurosci. 20, 451–459.

Gerstner, W. (2000). Population dynam-
ics of spiking neurons: fast transients, 
asynchronous states, and locking. 
Neural Comput. 12, 43–89.

Gray, C. M., and McCormick, D. A. 
(1996). Chattering cells: superfi cial 
pyramidal neurons contributing to 
the  generation of synchronous oscil-
lations in the visual cortex. Science 274, 
109–113.

Hayworth, K. J., and Biederman, I. 
(2006). Neural ev idence for 
 intermediate representations in 
object recognition. Vision Res. 46, 
4024–4031. Available at: http://dx.doi.
org/10.1016/j.visres.2006.07.015

Huerta, P. T., and Lisman, J. E. (1995). 
Bidirectional synaptic plasticity 
induced by a single burst during-
cholinergic theta oscillation in ca1 
in vitro. Neuron 15, 1053–1063.

Johnson, M. H., Dziurawiec, S., Ellis, H., 
and Morton, J. (1991). Newborns’ 
preferential tracking of face-like 
stimuli and its subsequent decline. 
Cognition 40, 1–19.

Kim, Y., Vladimirskiy, B. B., and Senn, W. 
(2008). Modulating the granularity 
of category formation by global cor-
tical states. Front. Comput. Neurosci. 
2, 1. Available at: http://dx.doi.
org/10.3389/neuro.10.001.2008

Konen, C. S., and Kastner, S. (2008). 
Two hierarchically organized neural 
systems for object information in 
human visual cortex. Nat. Neurosci. 11, 
224–231. Available at: http://dx.doi.
org/10.1038/nn2036.

Larkum, M. E., Senn, W., and 
Lüscher, H.-R. (2004). Top-down den-
dritic input increases the gain of layer 
5 pyramidal neurons. Cereb. Cortex 14, 

1059–1070. Available at: http://dx.doi.
org/10.1093/cercor/bhh065

Lee, D. K., Itti, L., Koch, C., and 
Braun, J. (1999). Attention acti-
vates  winner-take-all competition 
among visual fi lters. Nat. Neurosci. 2, 
375–381. Available at: http://dx.doi.
org/10.1038/7286

Lisman, J. (2005). The theta/gamma 
discrete phase code occuring dur-
ing the hippocampal phase preces-
sion may be a more general brain 
coding scheme. Hippocampus 15, 
913–922. Available at: http://dx.doi.
org/10.1002/hipo.20121

Lücke, J. (2005). Dynamics of cortical 
columns – sensitive decision making. 
In Proceedings of the ICANN. LNCS 
3696, W. Duch, J. Kacprzyk, E. Oja, and 
S. Zadrozny, eds (Berlin, Springer), 
pp. 25–30.

Makeig, S., Westerfield, M., Jung, T. P., 
Eng hof f ,  S . ,  Tow nsend, J. , 
Courchesne, E., and Sejnowski, T. J. 
(2002). Dynamic brain sources of 
visual evoked responses. Science 295, 
690–694. Available at: http://dx.doi.
org/10.1126/science.1066168

Martinez, A., and Benavente, R. (1998). 
The AR Face Database. Technical 
Report 24. Barcelona, CVC.

Miller, K. D., and MacKay, D. J. C. 
(1994). The role of constraints in 
hebbian learning. Neural Comput. 6, 
100–126.

Miyashita, Y. (1988). Neuronal corre-
late of visual associative long-term 
memory in the primate tempo-
ral cortex. Nature 335, 817–820. 
Av a i l a b l e  a t :  h t t p : / / d x . do i .
org/10.1038/335817a0

Miyashita, Y. (2004). Cognitive memory: 
cellular and network machineries and 
their top-down control. Science 306, 



Frontiers in Computational Neuroscience www.frontiersin.org September 2009 | Volume 3 | Article 15 | 18

Jitsev and von der Malsburg Formation of layered visual memory

435–440. Available at: http://dx.doi.
org/10.1126/science.1101864

Mountcastle, V. B. (1997). The columnar 
organization of the neocortex. Brain 
120(Pt 4), 701–722.

Olshausen, B. A., and Field, D. J. 
(2004). Sparse coding of sensory 
inputs. Curr. Opin. Neurobiol. 14, 
481–487. Available at: http://dx.doi.
org/10.1016/j.conb.2004.07.007

Osada, T., Adachi, Y., Kimura, H. M., and 
Miyashita, Y. (2008). Towards under-
standing of the cortical network 
underlying associative memory. Philos. 
Trans. R. Soc. Lond. B. Biol. Sci. 363, 
2187–2199. Available at: http://dx.doi.
org/10.1098/rstb.2008.2271

Peters, A., Cifuentes, J. M., and Sethares, C. 
(1997). The organization of pyramidal 
cells in area 18 of the rhesus monkey. 
Cereb. Cortex 7, 405–421.

Phillips, W. A., and Singer, W. (1997). In 
search of common foundations for 
cortical computation. Behav. Brain 
Sci. 20, 657–683; discussion 683–722.

Quiroga, R. Q., Kreiman, G., Koch, C., and 
Fried, I. (2008). Sparse but not ‘grand-
mother-cell’ coding in the medial 
temporal lobe. Trends Cogn. Sci. 12, 
87–91. Available at: http://dx.doi.
org/10.1016/j.tics.2007.12.003

Quiroga, R. Q., Reddy, L., Kreiman, G., 
Koch, C., and Fried, I. (2005). Invariant 
visual representation by single neu-
rons in the human brain. Nature 435, 
1102–1107. Available at: http://dx.doi.
org/10.1038/nature03687

Reddy, L., and Kanwisher, N. (2006). 
Coding of visual objects in the ven-
tral stream. Curr. Opin. Neurobiol. 
16 , 408–414 . h t tp : / /dx .doi .
org/10.1016/j.conb.2006.06.004

Rehn, M., and Sommer, F. T. (2007). 
A network that uses few active neu-
rons to code visual input predicts 
the diverse shapes of cortical recep-
tive fields. J. Comput. Neurosci. 22, 
135–146. Available at: http://dx.doi.
org/10.1007/s10827-006-0003-9

Reynolds, J. H., Chelazzi, L., and 
Desimone, R. (1999). Competitive 
mechanisms subserve attention in 
macaque areas V2 and V4. J. Neurosci. 
19, 1736–1753.

Rockland, K. S., and Ichinohe, N. 
(2004). Some thoughts on cortical 
minicolumns. Exp. Brain Res. 158, 
265–277. Available at: http://dx.doi.
org/10.1007/s00221-004-2024-9

Rolls, E. T., and Tovee, M. J. (1995). 
Sparseness of the neuronal represen-
tation of stimuli in the primate tem-
poral visual cortex. J. Neurophysiol. 73, 
713–726.

Sherman, S. M., and Guillery, R. W. (1998). 
On the actions that one nerve cell can 
have on another: distinguishing “driv-
ers” from “modulators”. Proc. Natl. 
Acad. Sci. U.S.A. 95, 7121–7126.

Singer, W. (1999). Neuronal synchrony: 
a versatile code for the defi nition of 
 relations? Neuron 24, 49–65, 111–25.

Sirota, A., Montgomery, S., Fujisawa, S., 
Isomura, Y., Zugaro, M., and 
Buzsáki, G. (2008). Entrainment 
of neocortical neurons and gamma 
oscillations by the hippocam-
pal theta rhythm. Neuron 60, 
683–697. Available at: http://dx.doi.
org/10.1016/j.neuron.2008.09.014

Sjöström, P. J., Rancz, E. A., Roth, A., and 
Häusser, M. (2008). Dendritic excitabil-
ity and synaptic plasticity. Physiol. Rev. 
88, 769–840. Available at: http://dx.doi.
org/10.1152/physrev.00016.2007

Spruston, N. (2008). Pyramidal neu-
rons: dendritic structure and synap-
tic integration. Nat. Rev. Neurosci. 9, 
206–221. Available at: http://dx.doi.
org/10.1038/nrn2286

Swadlow, H. A. (2003). Fast-spike 
interneurons and feedforward inhi-
bition in awake sensory neocortex. 
Cereb. Cortex 13, 25–32.

Tanaka, K. (2003). Columns for com-
plex visual object features in the 
inferotemporal cortex: clustering of 
cells with similar but slightly different 
stimulus selectivities. Cereb. Cortex 13, 
90–99.

Thomson, A. M., and Lamy, C. (2007). 
Functional maps of neocortical 
local circuitry. Front. Neurosci. 1, 
19–42. Available at: http://dx.doi.
org/10.3389/neuro.01.1.1.002.2007

Thorpe, S. J., and Fabre-Thorpe, M. (2001). 
Neuroscience. Seeking categories in 
the brain. Science 291, 260–263.

modifications in oscillating cells 
of rat visual cortex. J. Neurosci. 24, 
9067–9075. Available at: http://dx.doi.
org/10.1523/JNEUROSCI.2221-
04.2004

Whittington, M. A., Traub, R. D., and 
Jefferys, J. G. (1995). Synchronized 
oscillations in interneuron networks 
driven by metabotropic glutamate 
receptor activation. Nature 373, 
612–615. Available at: http://dx.doi.
org/10.1038/373612a0

Wiskott, L., Fellous, J.-M., Krüger, N., 
and von der Malsburg, C. (1997). Face 
recognition by elastic bunch graph 
matching. IEEE Trans. Pattern Anal. 
Mach. Intell. 19, 775–779.

Yoshimura, Y., Dantzker, J. L. M., and 
Callaway, E. M. (2005). Excitatory 
cortical neurons form fine-scale 
functional networks. Nature 433, 
868–873. Available at: http://dx.doi.
org/10.1038/nature03252

Zhang, W., and Linden, D. J. (2003). The 
other side of the engram: experience-
driven changes in neuronal intrinsic 
excitability. Nat. Rev. Neurosci. 4, 
885–900. Available at: http://dx.doi.
org/10.1038/nrn1248

Conflict of Interest Statement: The 
authors declare that the research was 
conducted in the absence of any com-
mercial or financial relationships that 
could be construed as a potential confl ict 
of interest.

Received: 24 April 2009; paper pend-
ing published: 21 June 2009; accepted: 
08 September 2009; published online: 29 
September 2009.
Citation: Jitsev J and von der Malsburg C 
(2009) Experience-driven formation of parts-
based representations in a model of layered 
visual memory. Front. Comput. Neurosci. 
3:15. doi: 10.3389/neuro.10.015.2009
Copyright © 2009 Jitsev and von der 
Malsburg. This is an open-access article 
subject to an exclusive license agreement 
between the authors and the Frontiers 
Research Foundation, which permits unre-
stricted use, distribution, and reproduc-
tion in any medium, provided the original 
authors and source are credited.

Tsao, D. Y., Freiwald, W. A., Tootell, R. B. H., 
and Livingstone, M. S. (2006). A 
cortical region  consisting entirely 
of face- selective cells. Science 311, 
670–674. Available at: http://dx.doi.
org/10.1126/science.1119983

Tsunoda, K., Yamane, Y., Nishizaki, M., 
and Tanifuji, M. (2001). Complex 
objects are represented in macaque 
inferotemporal cortex by the combina-
tion of feature columns. Nat. Neurosci. 
4, 832–838. Available at: http://dx.doi.
org/10.1038/90547

Ullman, S., Vidal-Naquet, M., and 
Sali, E. (2002). Visual features of 
intermediate complexity and their 
use in classifi cation. Nat. Neurosci. 5, 
682–687. Available at: http://dx.doi.
org/10.1038/nn870

Ulusoy, I., and Bishop, C. M. (2005). 
Generative versus discriminative 
methods for object recognition. In 
CVPR ’05 Proceedings of the 2005 
IEEE Computer Society Conference 
on Computer Vision and Pattern 
Recognition (CVPR ’05), Vol. 2. 
Washington, DC, IEEE Computer 
Society, pp. 258–265.

von der Malsburg, C. (1999). The what 
and why of binding: the modeler’s 
perspective. Neuron 24, 95–104.

von der Malsburg, C. (2003). Self-
 organization and the brain. In The 
Handbook of Brain Theory and Neural 
Networks, M. Arbib, ed. (Cambridge, 
MA, MIT Press), pp. 1002–1005.

von der Malsburg, C., and Singer, W. (1988). 
Principles of cortical network organi-
zation. In Neurobiology of Neocortex, 
P. Rakic and W. Singer, eds (New York, 
NY, Wiley), pp. 69–99.

Wallis, G., Siebeck, U. E., Swann, K., 
Blanz, V., and Bülthoff, H. H. 
(2008). The prototype effect revis-
ited: evidence for an abstract feature 
model of face recognition. J. Vis. 8, 
20.1–2015. Available at: http://dx.doi.
org/10.1167/8.3.20

Waydo, S., and Koch, C. (2008). 
Unsupervised learning of individuals 
and categories from images. Neural 
Comput. 20, 1165–1178.

Wespatat, V., Tennigkeit, F., and Singer, W. 
(2004). Phase sensitivity of synaptic 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


