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Abstract

Measurements of inclusive and direct photon production at mid-rapidity in pp collisions at
√

s =
2.76 and 8 TeV are presented by the ALICE experiment at the LHC. The results are reported in
transverse momentum ranges of 0.4 < pT < 10 GeV/c and 0.3 < pT < 16 GeV/c, respectively.
Photons are detected with the electromagnetic calorimeter (EMCal) and via reconstruction of e+e−

pairs from conversions in the ALICE detector material using the central tracking system. For the
final measurement of the inclusive photon spectra the results are combined in the overlapping pT
interval of both methods. Direct photon spectra, or their upper limits at 90% C.L. are extracted
using the direct photon excess ratio Rγ , which quantifies the ratio of inclusive photons over decay
photons generated with a decay-photon simulation. An additional hybrid method, combining photons
reconstructed from conversions with those identified in the EMCal, is used for the combination of
the direct photon excess ratio Rγ , as well as the extraction of direct photon spectra or their upper
limits. While no significant signal of direct photons is seen over the full pT range, Rγ for pT > 7
GeV/c is at least one σ above unity and consistent with expectations from next-to-leading order
pQCD calculations.

∗See Appendix A for the list of collaboration members
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1 Introduction

Major experimental efforts are undertaken at the Relativistic Heavy Ion Collider (RHIC) [1–4] and the
Large Hadron Collider (LHC) [5–13] to study the conditions for the creation and the properties of the
quark-gluon plasma (QGP), a deconfined partonic state predicted by the theory of strong interaction,
Quantum ChromoDynamics (QCD) [14, 15]. Direct photons, which are defined as all photons that
are produced directly in scattering processes and therefore do not originate from hadronic decays, are a
powerful tool for exploring the QGP. They are produced during all stages of the collision and are basically
unaffected by final state interactions as they only participate in electromagnetic interactions [16]. Hence,
they are sensitive to the early stages of the collision’s evolution. Since a variety of QGP signatures are
also present in high multiplicity p–Pb or pp collision at the LHC [17], it is interesting to study if a direct
photon signal at low pT can be observed already in minimum bias pp collisions, as predicted for

√
s = 7

TeV [18]. Experimentally, however, the main challenge for direct photon measurements is to distinguish
them from the large background of decay photons.

Depending on their production mechanism, direct photons are usually classified into two main categories:
prompt and thermal photons. Prompt photons carry information about parton distributions in nuclei [19,
20] as they are produced in hard scatterings of incoming partons, such as Compton scattering q+ g→
q+γ or annihilation q+q→ g+γ , as well as bremsstrahlung emission from quarks which undergo a hard
scattering [21–23]. These processes are described by perturbative QCD (pQCD) in leading and next-to-
leading order, which are dominant at LHC energies. One of the purposes of direct photon measurements
is to improve the accuracy of such calculations in various collision systems. At RHIC at center of mass
energies per nucleon-nucleon pair of

√
sNN = 0.2 TeV and at the LHC at

√
sNN = 2.76 TeV, direct photons

with transverse momenta (pT) above about 3 and 15 GeV/c, respectively, were found to be dominated
by prompt photons and to follow a power law spectral shape in small systems (pp, pA, dA) [24–27] as
well as in heavy-ion collisions [27–30], as described by pQCD.

In heavy-ion collisions, additionally, thermal photons are expected to be radiated off the locally ther-
malized, hot QGP and hadronic matter, which provide information about the temperature, collective
expansion, as well as the space-time evolution of the medium [31], and are expected to dominate the
direct photon spectrum at low transverse momenta (pT . 3 GeV/c) [32, 33]. Further direct photon pro-
duction mechanisms, like interactions of hard scattered partons with dense partonic matter (“jet-photon
conversion”) [34, 35], as well as production of photons from non-equilibrated phases [36], may also play
a role in the low and intermediate pT region from 3 to ∼10 GeV/c.

In the following, we present first results from the measurement of direct photon production at mid-
rapidity in 0.4 < pT < 10 GeV/c and 0.3 < pT < 16 GeV/c in pp collisions at

√
s = 2.76 and 8 TeV,

respectively. These data, which are the first direct photon data below 15 GeV/c in pp collisions at
the LHC, enable pQCD calculations to be tested in this low pT regime. Furthermore, they provide an
important baseline for the interpretation of initial- and final-state effects observed in direct photon data
from heavy-ion collisions [37, 38], because event generators and perturbative calculations are generally
not reliable at pT . 3.

The direct photon yield is extracted by comparing the measured inclusive photon spectrum to the spec-
trum of photons from hadron decays via a double ratio, obtained from the so-called “direct photon excess
ratio” Rγ [39, 40]. The double ratio, defined on the level of fully corrected quantities, can be written as

Rγ =
Yγ incl

Yγdecay

≈
(

Yγ incl

Yπ0

)
meas

/

(
Yγdecay

Yπ0

)
sim

, (1)

where the numerator denotes the measured inclusive photon yield, Yγ incl , divided by the measured neutral
pion yield, Yπ0 , and the denominator is constructed in the same way, but with the photon yield obtained
by a decay-photon simulation and a parameterization of the neutral pion yield. With Rγ , the direct photon
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Fig. 1: (a) Measured identified particle yields per inelastic event in pp collisions at
√

s = 2.76 TeV [41–44] includ-
ing their modified Hagedorn parametrization used as input for the cocktail simulation. Statistical uncertainties are
shown with vertical lines and systematic uncertainties with boxes. See the text for references to the data. (b) Ratio
of primary decay photons from different sources to all primary decay photons in the decay photon simulation for
pp collisions at

√
s = 2.76 TeV. From top to bottom at high pT the different sources are π0, η , ω , η ′, ρ0, φ , K0

L,
ρ±, K0

S, ∆0/+, Σ0 and Λ.

yield can then be obtained from the inclusive photon yield as

Yγdir = Yγ incl−Yγdecay =

(
1− 1

Rγ

)
Yγ incl . (2)

The yields in Eq. 1 and Eq. 2 are implicitly defined at midrapidty as a function of pT of the corresponding
particle. The cross sections can be obtained by replacing the inclusive photon yield with the inclusive
photon cross section in Eq. 2. The advantage of using Rγ (rather than trying to directly quantify the differ-
ence of inclusive and decay photons) is the partial or full cancellation of several systematic uncertainties
in the double ratio. The photon reconstruction is performed independently using either conversions in
the inner detector material reconstructed with the central tracking system and for the first time with the
Electromagnetic Calorimeter (EMCal). Combined inclusive and direct photon spectra are determined
based on the individual inclusive photon spectra and direct photon excess ratios. The direct photon spec-
tra, or respectively their upper limits at 90% C.L., are finally compared to next-to-leading order pQCD
calculations.

The paper is structured as follows: Section 2 describes the photon-decay simulation at generator level,
usually known as “cocktail simulation”. Section 3 describes the relevant ALICE detectors for the photon
and neutral meson measurements, the data taking conditions, and the event selection. Section 4 describes
the data analysis with emphasis on the photon reconstruction via the Photon Conversion Method (PCM)
and using the EMCal. The systematic uncertainties are summarized in Section 5, whereas Section 6
presents the results. Section 7 concludes with a short summary.

2 Generator-level decay-photon simulation

The decay photon spectra are obtained by a particle decay simulation, also called “cocktail simulation”,
needed for the secondary decay photon correction as well as for the calculation of Rγ . The decay sim-
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ulation is based on the PYTHIA 6.4 particle decayer [45] with random generation of mother particles
uniform in azimuth and pT. Parametrizations of the transverse momentum spectra of the mother particles
measured by ALICE are used as weights in order to obtain the correct abundances.

For the
√

s= 2.76 TeV cocktail, measured pT differential yields per inelastic event of π0 [41], K±, p [42],
φ [43] and ρ0 [44] as well as the η/π0 [41] ratio are parametrized as inputs, and are shown in the left
panel of Fig. 1. Neutral kaons, which constitute an important background for secondary decay photons,
are approximated by the average of the charged kaon yields. The particle decay simulation for

√
s = 8

TeV uses measured pT differential yields from π0 and η [46] as input. Furthermore, pT differential yields
for K±, φ , and p are extrapolated using the measured spectra at

√
s = 2.76 and 7 TeV [47–49] as inputs.

The extrapolation is done on a bin-by-bin basis in pT assuming a power-law evolution of the particle
yields with increasing center-of-mass energy. For the parametrization, the pT differential particle yields
are fitted with a modified Hagedorn function [50, 51] whose functional form is given by

d2N
dydpT

= pT ·A ·
(

exp
(
apT +bp2

T
)
+

pT

p0

)−n

. (3)

In order to obtain a stable parametrization for the η particle yields up to high pT, the η/π0 ratios at√
s = 2.76 and 8 TeV are fitted with an empirical function that describes contributions from soft and

hard processes [51], given as

η

π0 (pT) =

A · exp
(

β pT−mη

T

T
√

1−β 2

)
+N ·B ·

(
1+
(

pT
p0

)2
)−n

exp
(

β pT−mπ0
T

T
√

1−β 2

)
+B ·

(
1+
(

pT
p0

)2
)−n , (4)

with a relative normalization factor B between the soft and hard part of the parametrization and the
constant ratio value N between the two particle species that is approached at high pT. All spectra are
described by their parametrization within a maximum of 10% deviation over the full transverse momen-
tum range. For particles that are neither measured nor extrapolated, the parametrization is obtained via

transverse mass scaling, mT =
√

p2
T +m2

0, with the neutral pion as basis (B) for mesons and the proton

as basis for baryons. The mT scaling factors, CX
mT

= (dNX/dmT)/(dNB/dmT), for each particle X are
derived from the respective spectra in PYTHIA. These particles are η ′ (CmT = 0.4), Λ (CmT = 1.0), Σ0

(CmT = 0.49), ∆0,+ (CmT = 1.0) and ω (CmT = 0.85) at
√

s = 2.76 TeV and additionally ρ0 (CmT = 1.0)
at
√

s = 8 TeV. The limitations of transverse mass scaling [51] at low pT can be neglected for this mea-
surement as the transverse mass scaled particles contribute only a tiny fraction to the total decay photon
yield as seen in Fig. 1.

For the particle decay simulation, particles are generated uniformly in the transverse momentum range
of 0 ≤ pT ≤ 50 GeV/c, for the rapidity range of |y| < 1.0 as well as the full azimuth of 0 < φ < 2π .
For each particle, the full decay chain is simulated which allows the decay simulation to be used for
the secondary photon correction for photons produced following weak decays of primary hadrons as
well as the extraction of the decay photon spectrum. After generation, only decay photons are kept,
which fulfill |y|< 0.9, to match the hadron rapidity range that is used in the measurements. Furthermore,
the mother particles as well as all decay products are weighted with the parametrization of the mother
particle. The contribution of each individual decay photon source to all decay photons of the cocktail
simulation is shown in the right panel of Fig. 1. Decay photons originating from π0 decays are the
dominant contribution with ∼ 86% of total decay photons at high pT. Contributions from the η meson
decay photons represent∼ 10% whereas decay photons from ω and η ′ mesons contribute below 3% and
1.5%, respectively. All other, remaining sources are basically negligible as shown in Fig. 1.
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3 Experimental setup and data taking conditions

Two different methods using independent detector systems of ALICE [52] are employed to measure
photons in this analysis. In the first method, PCM, photons are reconstructed from e+e− pairs, which are
created by photon conversions in the inner detector material. The inner material includes the full active
and passive material of the beampipe, the Inner Tracking System (ITS) as well as the inner field cage
vessel of the Time Projection Chamber (TPC) and part of the TPC gas. The main tracking systems in
ALICE at mid-rapidity, the ITS and the TPC, are used for the reconstruction of these electron-positron
pairs, which originate from secondary vertices (V0). In the second photon reconstruction method, EMC,
the energy deposit in the EMCal is used to measure photons. With PCM, a high momentum resolution at
low pT is achieved, but the method is limited by statistics at high transverse momenta. The EMC method
benefits from large statistics up to high pT but has a decreasing resolution towards low pT. The necessary
detector systems are described in the following with emphasis on the detector configurations in both pp
data taking periods of

√
s = 2.76 TeV in 2011 and

√
s = 8 TeV in 2012.

The ITS [53] consists of three sub-detectors each with two layers to measure the trajectories of charged
particles and to reconstruct primary [54] and secondary vertices [55]. The two innermost layers are the
Silicon Pixel Detectors (SPD) positioned at radial distances of 3.9 cm and 7.6 cm relative to the beam
line, followed by two layers of Silicon Drift Detectors (SDD) at 15.0 cm and 23.9 cm, and completed
by two layers of Silicon Strip Detectors (SSD) at 38 cm and 43 cm. The two layers of SPD cover
pseudorapidity ranges of |η | < 2 and |η | < 1.4, respectively. The SDD and SSD cover |η | < 0.9 and
|η |< 1.0, accordingly.

The TPC [56] is a large (90 m3) cylindrical drift detector filled with Ne-CO2 (90%-10%) gas mixture. It
covers a pseudorapidity range of |η |< 0.9 over the full azimuth, providing up to 159 reconstructed space
points per track. A magnetic field of B = 0.5 T is generated by a large solenoidal magnet surrounding
the central barrel detectors. Charged tracks originating from the primary vertex can be reconstructed
down to pT ≈ 100 MeV/c and charged secondaries down to pT ≈ 50 MeV/c with a tracking efficiency of
≈ 80% for tracks with pT > 1 GeV/c [57]. In addition, the TPC provides particle identification via the
measurement of energy loss dE/dx with a resolution of ≈5%. The ITS and TPC are complemented by
the Transition Radiation Detector (TRD) [58] and a large Time-Of-Flight (TOF) [59] detector.

The EMCal detector [60] is an electromagnetic sampling calorimeter covering ∆φ = 100◦ in azimuth
and |η |< 0.7 in pseudorapidity, located at a radial distance of 4.28 m from the nominal collision vertex.
During the data taking periods in 2011 and 2012, it consisted of a total of 11,520 active elements, or
cells, each of which comprise 77 alternating layers of lead and plastic scintillator providing a radiation
length of 20.1X0. Attached perpendicular to the face of each cell are wavelength shifting fibers that
collect the scintillation light in each layer. Avalanche Photo Diodes (APDs) with an active area of
5×5 mm2 are connected to the fibres to detect the generated scintillation light. The size of each cell is
∆η ×∆φ = 0.0143× 0.0143 rad (≈ 6.0× 6.0 cm2), corresponding to approximately twice the Molière
radius. The EMCal consists of ten supermodules, where each supermodule is composed of 12× 24
modules, consisting of 2× 2 cells apiece. It has an intrinsic energy resolution of σE/E = 4.8%/E ⊕
11.3%/

√
E ⊕ 1.7% where the energy E is given in units of GeV [61]. The energy calibration of the

detector is performed by measuring, in each cell, the reconstructed π0 mass in the two-photon invariant
mass distribution with one photon associated with the given cell. An estimated calibration level of better
than 3% is achieved with this method, which adds up quadratically to the constant term of the energy
resolution. Between 2011 and 2012 an additional TRD module in front of EMCal was installed which
results in a slightly different outer material budget between the 2.76 and 8 TeV data sets. The material
budget differences due to the TRD will be studied in detail for the estimation of the associated systematic
uncertainties.

As trigger for minimum bias pp collisions and to reduce beam-induced background and pileup events the
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V0 detector [62] is used. It consists of two scintillator arrays (V0A and V0C) covering 2.8 < η < 5.1
and −3.7 < η < −1.7. The probability of collision pile-up per triggered event was below 2.5% and
below 1% at

√
s = 2.76 and 8 TeV, respectively. Background events from beam-gas interactions or de-

tector noise are rejected based on the timing information from V0A and V0C [57]. Events containing
more than one pp collision within a single bunch crossing are rejected based on the information re-
constructed in the SPD. In these events, either multiple primary vertices could be reconstructed within
the acceptance [57] or an excess of SPD clusters with respect to the number of SPD tracklets could
be observed. In addition, the primary vertex is required to be reconstructed within |z| < 10 cm from
the nominal interaction point. In 2011, the minimum bias trigger condition required a hit in either the
SPD, the V0A or the V0C (MBOR condition), whereas in 2012 a hit in the V0A and the V0C (MBAND
condition) was required. The latter was necessary due to the higher beam intensities in 2012. The corre-
sponding cross section for the minimum bias triggers are obtained from van der Meer scans [63] yielding
σMBOR = 55.4± 3.9stat+syst mb [64] and σMBAND = 55.8± 1.2stat± 1.5syst mb [65] for the data taking
campaigns at

√
s = 2.76 TeV and

√
s = 8 TeV, respectively. For the conversion-based measurements,

integrated luminosities of Lint = 0.96± 0.07norm nb−1 at
√

s = 2.76 TeV and Lint = 2.17± 0.06norm
nb−1 at

√
s = 8 TeV are analyzed. The calorimeter-based measurements sample 50% and, respectively,

10.6% smaller integrated luminosities, since the EMCal was not always active during data taking.

Further information about the performance of these and other detector systems can be found in Ref. [57].

4 Photon reconstruction

Inclusive photons are reconstructed in two ways; either using photon conversions between 0.4 (0.3) and
8 (16) GeV/c or using the EMCal between 1.5 and 10 (16) GeV/c for

√
s = 2.76 (8) TeV. Photons convert

within the inner detector material of ALICE with a probability of about 8.9%, and are reconstructed with
the PCM method as follows: (i) tracking of charged particles and secondary vertex finding [55]; (ii)
particle identification and (iii) photon candidate reconstruction and subsequent selection. The secondary
vertices used in this analysis are obtained during data reconstruction by employing the full tracking
capabilities of ITS and TPC. For the daughter tracks, a minimum of 60% of the maximum possible
findable TPC clusters, that a particle track can create in the TPC along its path, and a minimum track
pT of 50 MeV/c are required. The contamination from Dalitz decays is reduced by rejecting conversion
candidates with reconstructed vertices with a radial distance of less than 5 cm with respect to the nominal
center of the detector. Furthermore, only secondary tracks and vertices with |η | < 0.9 are accepted. In
addition, we restrict the geometrical η distribution of the V0s in order to remove photon candidates
that would otherwise appear outside the angular dimensions of the detector. To do so, the condition
Rconv > |Zconv|SZR− 7 cm is applied with SZR = tan(2arctan(exp(−ηmax))) ≈ 0.974 for ηmax = 0.9,
where Rconv and Zconv denote the radial and longitudinal coordinate of the conversion point, respectively.
The coordinates Rconv and Zconv are determined with respect to the center of the detector and are set to
Rconv < 180 cm and |Zconv| < 240 cm to ensure a high quality secondary track reconstruction inside the
TPC.

Electrons and positrons are identified via their energy deposit in the TPC, dE/dx, by employing the differ-
ence of the measured dE/dx to the expected value for electrons and positrons [57]. For the measurement
at
√

s = 2.76 TeV, the dE/dx of the charged tracks is required to be within −4 < nσe < 5 of the expected
electron/positron energy loss, where nσe = (dE/dx− 〈dE/dx〉e)/σe is pT-dependent with the average
energy loss of the electron/positron, 〈dE/dx〉e, and the Gaussian width of the fit to the measured dE/dx
distribution, σe. This condition is tightened for the measurement at

√
s = 8 TeV to −3 < nσe < 5. To

reduce the contamination from pions, an additional selection based on the separation from the charged
pion energy loss hypothesis is required in nσπ

. A rejection of tracks with energy losses closer to the pion
line than |nσπ

| < 1 is applied up to a pT of 3.5 GeV/c. In the
√

s = 2.76 TeV analysis, this rejection is
continued above pT > 3.5 GeV/c with an |nσπ

| < 0.5 in order reduce the contamination even further in
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the momentum region where the two dE/dx bands of the pion and electron merge.

Further contamination from non-photonic V0 candidates is suppressed by a triangular two-dimensional
selection range of |Ψpair| < Ψpair,max(1− χ2

red/χ2
red,max) with χ2

red,max = 30 and Ψpair,max = 0.1 rad. As
explained in Ref. [41], this selection is based on the reduced χ2 of the Kalman-Filter hypothesis [66, 67]
for the e+e− pair and on the angle Ψpair between the plane perpendicular to the magnetic field of the
ALICE magnet and the e+e− pair plane extrapolated 50 cm beyond the reconstructed conversion point.
An additional selection based on the cosine of the pointing angle with cos(θPA)> 0.85 is applied, where
the pointing angle, θ PA, is the angle between the reconstructed photon momentum vector and the vector
joining the collision vertex and the conversion point. A selection in the Armenteros-Podolanski plot [68]
which contains the distribution of qT = pdaughter× sinθmother−daugther versus the longitudinal momentum
asymmetry (α = (p+L − p−L )/(p+L + p−L )) with qT < qT,max

√
1−α2/α2

max where qT,max = 0.05 GeV/c
and αmax = 0.95 removes the remaining contamination from K0

S, Λ and Λ. Additionally, as explained
in Ref. [69], an out-of-bunch pileup correction is required for the PCM measurement, which estimates
the contamination of photon candidates from multiple overlapping events in the TPC. The correction is
obtained from a study of the longitudinal distance of closest approach (DCA) of the conversion pho-
ton candidates which is the smallest distance in beam direction (z) between the primary vertex and the
momentum vector of the photon candidate. Photon candidates from different events generate a broad
underlying Gaussian-like DCA distribution, which is described with a background estimator to describe
the out-of-bunch pileup contribution. This correction is found to be transverse momentum dependent
and ranges from 12% at low pT (≈ 0.5 GeV/c) to 4% at high pT (≈ 7 GeV/c) at both center-of-mass
energies.

Photons and electrons/positrons produce electromagnetic showers as they enter an electromagnetic ca-
lorimeter and their deposited energy can be measured. By design, these showers usually spread over
several adjacent calorimeter cells in the EMCal. Therefore, the reconstruction of the full energy of
particles requires the grouping of such adjacent cells into clusters, for which a clusterization algorithm
is used. The cell with the highest deposited energy, exceeding a given seed energy, Eseed, is used by the
algorithm as a starting point. The cluster is then formed by addition of all adjacent cells with individual
energy above a minimum energy, Emin. This aggregation of cells continues as long as the energy of an
adjacent cell is smaller than the energy of the previous cell. Otherwise the clusterization algorithm stops
the aggregation process. The clustering procedure is repeated until all cells are grouped into clusters.
The energy deposited in the individual cells of the cluster is summed to obtain the total cluster energy.
For the presented EMC analyses, the values of Eseed = 500 MeV and Emin = 100 MeV are chosen, which
are determined to suppress out-of-bunch background, as well as the general noise level of the front-end
electronics. Finally, a correction for the difference of relative energy scale and position of the EMCal
between data and simulation is applied, which was obtained by reconstructing in data and simulation the
average neutral pion mass peak as a function of the EMCal photon energy, pairing photon candidates
from PCM with those of the EMCal [41, 46].

To select true photon candidates from the sample of reconstructed clusters, photon identification criteria
are applied. Clusters are required to have a minimum energy Ecluster > 0.7 GeV and should consist of
at least two cells. EMCal clusters are accepted only if they are within |η | < 0.67 and 1.40 rad < ϕ <
3.15 rad. A cluster timing selection relative to the collision time of −35 < tcluster < 30 ns at

√
s = 8

TeV (|tcluster| < 50 ns at
√

s = 2.76 TeV) is imposed to remove pileup from multiple events that may
occur within the readout interval of the front-end electronics. This constraint removes photon candidates
from different bunch crossings with an efficiency of better than 99%.

Clusters, which may have a significant contribution from energy deposited by charged hadrons, are re-
jected by propagating charged particle tracks to the EMCal surface and associating them to clusters
based on geometrical criteria, generally called “track matching” in what follows. Track matching is ap-
plied in η and ϕ depending on track momentum, from |∆η | < 0.04 and |∆ϕ| < 0.09 rad for lowest pT
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to |∆η |< 0.01 and |∆ϕ|< 0.015 rad at highest pT. Parameterized as |∆η |< 0.01+(pT +4.07)−2.5 and
|∆ϕ| < 0.015+(pT + 3.65)−2 rad, with pT in units of GeV/c, these criteria result in a track matching
efficiency of more than 95% over the full pT range. Furthermore, the photon purity is significantly im-
proved by the application of a cluster shape selection of 0.1 < σ2

long < (0.32+0.0072×E2
clus/GeV2) for

Eclus ≤ 5 GeV and 0.1 < σ2
long < 0.5 for Eclus > 5 GeV, used to suppress the contamination caused by

overlapping clusters. Here, σ2
long stands for the larger eigenvalue of the dispersion matrix of the shower

shape ellipse defined by the corresponding cell indices in the supermodule and their energy contributions
to the cluster [41, 70]. In addition, by applying σ2

long > 0.1 the contamination caused by neutrons hitting
the APDs of the readout electronics is removed.

Corrections for reconstruction efficiencies, conversion probability and purity are evaluated using the
PYTHIA8 [71] and PHOJET [72] MC event generators. Particles generated by the event generator are
propagated through the ALICE detector using GEANT3 [73]. The same reconstruction algorithms and
analysis selection ranges are applied as those in data. The correction factors for both MC productions
are found to be consistent, and are therefore combined to reduce the statistical uncertainties. Before the
efficiency correction, pT-scale and resolution effects are corrected using Bayesian unfolding [74] with the
detector response is used to convert from the reconstructed to the true pT of the photons. Consequently,
the reconstruction efficiency is calculated as a function of the true transverse momentum by dividing the
reconstructed Monte Carlo (MC) validated photon spectrum by all photons from the simulation. The
reconstruction efficiency is found to be largest at pT ≈ 3 GeV/c with 73% for PCM and 56% at pT ≈ 5
GeV/c for EMC in the respective detector acceptance, decreasing with lower and higher pT for both
methods. For the photons reconstructed with PCM, a further correction based on MC information is
applied to account for the conversion probability of the photons in the detector material, which increases
from 5.6% at the lowest to 8.9% at the highest measured pT, mainly due to the minimum electron track
momentum requirement.

A correction based on MC information for the contamination of the photon sample from falsely identified
and subsequently combined tracks of electrons, pions, kaons or muons is applied for the conversion
method. The purity of the photon sample reconstructed with PCM is found to be 99% up to 3 GeV/c
and decreases down to 96% at high transverse momentum due to the increasing contamination from
electron-pion pairs. For the calorimeter-based method, a similar purity correction is applied but for
falsely identified photon candidates mainly from clusters created by neutrons and antineutrons at low pT
and by neutral kaons at high pT. The purity correction is the largest for pT < 3 GeV/c where purities
between 87% and 97% rising with pT were found, while at high pT the purities reach values of 97%.

For the inclusive photon measurements, contributions of secondary photons from weak decays and
hadronic interactions are estimated and removed. The main source of photons from weak decays are
K0

S decays, however contributions from K0
L and Λ are also considered. The correction uses the decay

photon cocktail simulation described in Sec. 2 which provides the secondary photon yields. Taking into
account the detector response and detection efficiency for the different reconstruction techniques, these
photons are removed from the photon sample. The remaining correction factor for secondary photons,
for example due to interactions with the detector material, are obtained purely from MC information.
The secondary corrections are of the order of 1–3% for K0

S, . 0.05–0.2% for K0
L, . 0.02% for Λ and

0.1–2.5% for material interactions depending on pT and on the photon reconstruction technique within
the given ranges. In general the correction factors tend to be larger for the EMC reconstruction technique,
due to the worse pointing resolution of the photons.

The neutral pion and η meson measurements, which are needed to extract Rγ from Eq. 1, are described in
detail in Refs. [41, 46]. The meson yields are obtained for PCM, EMC and a hybrid method (PCM-EMC),
in which photon candidates reconstructed with PCM are paired with those reconstructed in the EMCal.
For the measurement of Rγ with the PCM-EMC method, it is beneficial to measure the inclusive photons
with PCM. However, to be consistent with the corresponding meson measurements [46], a wider selec-
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pT interval (GeV/c) 0.4−0.6 1.6−1.8 6.0−8.0
Method PCM PCM P-E EMC PCM P-E EMC
Measurement Yγ incl Rγ Yγ incl Rγ Rγ Yγ incl Rγ Yγ incl Rγ Rγ Yγ incl Rγ

Inner material 4.5 4.5 4.5 4.5 – – – 4.5 4.5 – – –
Outer material – – – – 2.1 2.1 3.0 – – 2.1 2.1 3.0
PCM track rec. 0.3 3.3 0.3 1.6 1.3 – – 0.3 8.4 1.3 – –
PCM electron PID 0.5 1.4 0.6 1.8 0.4 – – 1.3 13.4 3.8 – –
PCM photon PID 0.4 5.4 0.6 2.5 1.1 – – 2.2 11.4 3.1 – –
Cluster description – – – – 2.6 2.7 4.1 – – 5.5 2.7 4.0
Cluster energy calib. – – – – 2.0 1.4 2.0 – – 2.6 2.0 2.5
Track match to cluster – – – – 1.5 0.7 0.7 – – 5.7 0.7 1.4
Efficiency – – – – 2.0 1.5 2.5 – – 2.0 1.5 2.5
Signal extraction π0 – 5.0 – 2.7 2.1 – 2.5 – 4.9 3.7 – 2.4
Cocktail – 0.9 – 2.2 1.3 – 1.4 – 3.4 3.1 – 2.3
Pileup 2.4 2.6 1.1 1.2 0.9 0.3 – 1.6 1.7 0.9 0.3 –
Total syst. uncertainty 5.1 9.7 4.7 6.7 5.6 4.0 6.7 5.4 20.9 11.3 4.3 7.1
Statistical uncertainty 0.2 7.8 0.7 4.3 4.4 0.5 5.0 6.3 23.1 18.3 4.6 8.6
Measurement Yγ incl Rγ Yγ incl Rγ Yγ incl Rγ

Comb syst. uncertainty 5.1 9.7 3.1 4.6 2.9 7.1
Comb stat. uncertainty 0.2 7.8 0.4 2.7 3.9 7.2

Table 1: Summary of relative systematic uncertainties in percent for selected pT bins for the reconstruction of
inclusive photons and the Rγ measurement at

√
s = 2.76 TeV. The hybrid method PCM-EMC is abbreviated as P-E

in this table. The statistical uncertainties are given in addition to the total systematic uncertainty as well as the
uncertainties after combination of the independent measurements. The visible cross section uncertainty for σMBOR

of 2.5% is independent from reported measurements and is separately indicated in the figures below.

tion range of −4 < nσe < 5 on the energy loss hypothesis of the electron/positron in the
√

s = 8 TeV
measurement is used, and the charged pion dE/dx based rejection is applied independent of pT in both
collision systems for the corresponding inclusive photon measurement with PCM.

5 Systematic uncertainties

Systematic uncertainties are summarized for the measurements of Yγ incl and Rγ in Tab. 1 for
√

s =
2.76 TeV and in Tab. 2 for

√
s = 8 TeV and shown for three transverse momentum bins used in the

analyses. The uncertainties are given in percent and for each reconstruction method individually. The
detailed description of uncertainties related to the π0 meson measurements that enter into the calculation
of the direct photon excess ratios Rγ can be found in [41] for

√
s = 2.76 TeV and in [46] for

√
s = 8 TeV.

All uncertainties are evaluated on the fully corrected spectra of Yγ incl or directly on Rγ . In case of Rγ , the
systematic uncertainties therefore also contain the effects of the systematic variations on the measured
neutral pion spectrum, thus benefiting from partial cancellations of common uncertainties.

For the PCM measurements, the material budget uncertainty is the main contributor to the total uncer-
tainty and its value of 4.5% was previously determined in [57, 75]. Systematic uncertainties associated
with “track reconstruction” are the uncertainties that are estimated from variations of required TPC clus-
ters as well as minimum transverse momentum requirements of tracks. Particle identification (PID)
uncertainties are determined by variation of the PID selection ranges of electrons and photons as de-
scribed in Sec. 4. A systematic uncertainty is estimated for the pileup corrections that are applied in the
analyses. It is dominated by the contribution from the DCA background description for the out-of-bunch
pileup estimation but also contains the uncertainty from the SPD in-bunch pileup rejection due to its
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pT interval (GeV/c) 0.4−0.6 1.6−1.8 9.0−12.0
Method PCM PCM P-E EMC PCM P-E EMC
Measurement Yγ incl Rγ Yγ incl Rγ Rγ Yγ incl Rγ Yγ incl Rγ Rγ Yγ incl Rγ

Inner material 4.5 4.5 4.5 4.5 – – – 4.5 4.5 – – –
Outer material – – – – 2.1 2.1 3.0 – – 2.1 2.1 3.0
PCM track rec. 0.2 0.5 0.1 0.5 0.2 – – 0.1 0.5 0.2 – –
PCM electron PID 1.1 2.4 0.6 0.8 0.3 – – 0.7 0.8 0.8 – –
PCM photon PID 1.8 1.2 1.3 1.0 1.0 – – 2.3 5.5 1.7 – –
Cluster description – – – – 2.5 2.6 3.0 – – 3.0 2.6 1.9
Cluster energy calib. – – – – 2.3 1.4 2.3 – – 1.8 0.9 1.8
Track match to cluster – – – – 0.2 1.8 1.5 – – 1.9 1.8 1.6
Efficiency 0.5 0.5 0.5 0.5 2.1 1.8 2.7 0.5 0.5 2.1 1.8 2.7
Signal extraction π0 – 4.9 – 1.6 1.8 – 2.7 – 6.6 3.1 – 1.9
Cocktail 0.2 1.7 0.1 0.7 1.0 0.3 0.8 0.1 0.5 1.9 0.3 1.4
Pileup 3.8 4.3 2.7 4.2 2.7 0.1 – 4.3 4.4 3.0 0.1 –
Total syst. uncertainty 6.3 8.5 5.4 6.6 5.7 4.4 6.4 6.4 10.7 7.1 4.3 5.6
Statistical uncertainty 0.1 4.3 0.3 2.2 2.1 0.2 2.7 3.3 17.2 9.9 2.1 4.7
Measurement Yγ incl Rγ Yγ incl Rγ Yγ incl Rγ

Comb syst. uncertainty 6.3 8.5 3.5 4.5 3.6 5.9
Comb stat. uncertainty 0.1 4.3 0.2 1.4 1.8 4.3

Table 2: Summary of relative systematic uncertainties in percent for selected pT bins for the reconstruction of
inclusive photons and the Rγ measurement at

√
s = 8 TeV. The hybrid method PCM-EMC is abbreviated as P-E

in this table. The statistical uncertainties are given in addition to the total systematic uncertainty as well as the
uncertainties after combination of the independent measurements. The visible cross section uncertainty of 2.6% is
independent from reported uncertainties and is separately indicated in the figures below.

limited efficiency.

The systematic uncertainty of the EMC measurement contains a large contribution from the limited
knowledge of the outer material budget, which is composed by all detector components from the radial
center of the TPC up to the EMCal. This uncertainty is determined by comparing the effects on the
corrected spectra using inputs from data taking campaigns with and without TRD modules in front of the
EMCal. This could be done as the EMCal was masked only partially by the TRD during the data taking
in 2011 and 2012. The material budgets of TRD and TOF are roughly similar and therefore the quoted
uncertainty is taken as

√
2 times the difference of the corrected spectra with and without TRD modules

in front of the EMCal. Systematic uncertainties contributing to the “cluster description” category are the
uncertainties associated to the description of clusters in simulation which influence the reconstruction
efficiencies. The associated variables are the minimum cluster energy, shower shape, number of cells,
time and clusterization seed as well as minimum energy selection variations. The uncertainty of non-
linearity effects as well as the energy scale of clusters are incorporated in the “cluster energy calibration”.
To assess this uncertainty different parametrizations for the MC π0 mass peak position correction are
considered to account for the residual differences between data and MC. The “efficiency” uncertainty
reflects the differences between the MC generators that are used for the efficiency calculation. The
pileup systematic uncertainty reflects the finite efficiency of the SPD for in-bunch pileup rejection.

The hybrid method PCM-EMC requires the same evaluation of uncertainties as its individual standalone
methods. However, most systematics show a different size or behavior on Rγ as the contained inclu-
sive photon measurement is PCM-based whereas for the neutral pion one photon candidate of each
reconstruction approach is used. In addition, the “track matching to cluster” uncertainty includes the
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Fig. 2: Ratio of inclusive photon invariant cross sections obtained with the PCM and EMC methods to the TCM fit,
Eq. 6 of the combined inclusive photon spectrum in pp collisions at

√
s = 2.76 TeV (a) and 8 TeV (b). Statistical

uncertainties are given by vertical lines and systematic uncertainties are visualized by the height of the boxes, while
the bin widths are represented by the widths of the boxes.

uncertainties associated with the matching of V 0 tracks or primary tracks with the cluster, which is an
important ingredient for the hybrid method.

The uncertainty on the decay photon simulation is obtained by varying the parametrizations of the neutral
pion and η meson for each reconstruction technique within the pT-uncorrelated systematic and statistical
uncertainties. This leads to an associated uncertainty of 0.9− 3% and 0.5− 2% for pp collisions at√

s = 2.76 and 8 TeV, respectively, which strongly depends on pT. Furthermore, a variation of the mT
scaling constants has been considered for the remaining mesons which yields an uncertainty below 0.1%.

Partial systematic uncertainty cancellations are present for the direct photon excess ratio Rγ . The material
budget uncertainty in the PCM measurement, which enters once in the inclusive photon measurement and
twice in the neutral pion measurement, cancels once in Rγ . A similar cancellation is present in the EMC
measurement, where the outer material budget uncertainty cancels partially in the double ratio as well.
For the hybrid method, the inner material budget uncertainty cancels fully in the double ratio and only
the outer material budget uncertainty enters once in the total uncertainty, which is the main advantage of
using this reconstruction method for Rγ .

The final estimated systematic uncertainties on the inclusive photon cross section amount to 5–7% for the
conversion method and 4–9% for the EMC measurement in the measured pT range. The material budget
uncertainty of the conversion method is the dominant source, whereas the calorimeter-based method
shows a strong dependence on the cluster description in the simulation and the associated efficiency
estimates. With statistical uncertainties below 1% for pT < 3 GeV/c the inclusive photon measurement
is therefore limited by the systematic uncertainties.

The systematic uncertainties on the direct photon excess ratio Rγ are larger than for the inclusive photons
due to the addition of the neutral pion related uncertainties. For PCM, the systematic uncertainties
amount to 6–20% dominated by the material budget uncertainty and the neutral pion signal extraction
uncertainties at low and high pT. Systematic uncertainties for the EMC measurements are smaller at high
transverse momentum compared to PCM with values of 7–9% at

√
s = 2.76 TeV and 6–8% at

√
s = 8

TeV with dominant contributions of the outer material budget, the cluster description and neutral pion
signal extraction uncertainties. Mostly due to the cancellation of the inner material budget uncertainty,
the hybrid method PCM-EMC exhibits the smallest systematic uncertainty at intermediate pT with values
of 6% at

√
s = 2.76 TeV and 5.4% at

√
s = 8 TeV.
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Fig. 3: Direct photon excess ratios obtained with the PCM, EMC and PCM-EMC methods in pp collisions at√
s = 2.76 TeV (a) and 8 TeV (b). Statistical uncertainties are given by vertical lines and systematic uncertainties

are visualized by the height of the boxes, while the bin widths are represented by the widths of the boxes.

6 Results

The invariant cross sections for inclusive photons at mid-rapidity (|y|< 0.9) are given as

E
d3

σ pp→γ+X

dp3 =
1

2π pT

1
Lint

εpur

PconvεrecA
Fpile-up ·Nγ −Nγ

sec

∆y∆pT
, (5)

where εpur, Pconv and εrec are the purity, conversion probability and reconstruction efficiency correction
factors, respectively, and Lint is the integrated luminosity. The conversion probability as well as the
out-of-bunch pileup correction factor (Fpile-up) only apply for the PCM measurement. The acceptance
correction factor, A, is only applied for EMCal to account for the limited azimuth coverage. In addition,
the inclusive photon raw yield is given by Nγ and the summed secondary photon raw yields by Nγ

sec.
Furthermore, the interval ranges in rapidity and transverse momentum are given by ∆y∆pT.

The double ratios are measured by combining the individual inclusive photon and neutral pion spectra
from the same reconstruction methods with a cocktail simulation based on the same neutral pion spec-
trum. In this way, possible biases can be removed, since they would affect both the inclusive photon and
the neutral pion measurements.

The individually measured inclusive photon invariant differential cross sections of the PCM and EMC
as well as the double ratios of the PCM, PCM-EMC and EMC reconstruction methods are combined
to obtain the final spectra and double ratios, respectively. For the combination, the “Best Linear Un-
biased Estimates” (BLUE) method [84–88] with full treatment of statistical and systematic uncertainty
correlations was used. For the inclusive photon measurement, the EMC measurement is assumed to be
fully independent of the PCM measurement both statistically and systematically. However, for Rγ the
statistical uncertainties show partial correlation between the PCM and PCM-EMC which are determined
to be ∼ 20− 50% depending on pT, since both measurements are based on the PCM inclusive photon
measurement using different subsets of the data; however, the statistical uncertainties of the neutral pion
measurements are fully independent due to their different reconstruction methods. The systematic un-
certainty correlations were approximated via pT dependent correlation factors. It has been found that
the largest correlations of the systematic uncertainties are among the PCM-EMC and the PCM or EMC
methods, respectively. The fraction of correlation among the systematic uncertainties of the PCM-EMC
and EMC method has been estimated to be between 60–80%, which can be attributed to the common
uncertainty regarding the cluster reconstruction and efficiency uncertainties as well as the outer material
budget. For the PCM and PCM-EMC methods the uncertainties regarding the PCM photon identification

12



Direct photon production at low pT in pp at
√

s = 2.76 and 8 TeV ALICE Collaboration

)c (GeV/
T

p
0.3 0.4 1 2 3 4 5 6 7 8 910 20

γ
R

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5 ALICE

PDF: CT10, FF: GRVNLO pQCD, 
PDF: CTEQ6.1M, FF: BFG2NLO pQCD, 

PDF: NNPDF2.3QED, FF: BFG2JETPHOX, 
PDF: NNPDF2.3QED + PYTHIA8 PSPOWHEG, 

 = 2.76 TeVspp, 

(a)

)c (GeV/
T

p
0.3 0.4 1 2 3 4 5 6 7 8 910 20

γ
R

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5 ALICE

PDF: CT10, FF: GRVNLO pQCD, 
PDF: CTEQ6.1M, FF: BFG2NLO pQCD, 

PDF: NNPDF2.3QED, FF: BFG2JETPHOX, 
PDF: NNPDF2.3QED + PYTHIA8 PSPOWHEG, 

(b)

 = 8 TeVspp, 

Fig. 4: Direct photon excess ratios for the combined measurements at
√

s = 2.76 (a) and 8 TeV (b) including
pQCD NLO predictions with CT10 [76–78] or CTEQ6.1M [79] proton PDF and GRV [80] or BFG2 [81] FF.
In addition, a JETPHOX calculation [82] based on NNPDF2.3QED [83] proton PDF and BFG2 FF as well as a
POWHEG calculation [82] based on the same PDF but with the PYTHIA 8 parton shower algorithm are provided.

and selection are largely correlated and thus the correlation factor ranges between 45–70% depending on
transverse momentum.

The combined invariant cross sections of inclusive and direct photons, as well as the direct photon excess
ratios Rγ , cover transverse momentum ranges of 0.4 < pT < 10 GeV/c and 0.3 < pT < 16 GeV/c for√

s = 2.76 and 8 TeV, respectively. The combined inclusive photon spectra are shown in Fig. 5 together
with a two-component model (TCM) fit [89], whose functional form is a combination of an exponential
function at low pT and a power-law at high pT, given as

E
d3σ

dp3 = Ae exp
(
−pT

Te

)
+A

(
1+

p2
T

T 2n

)−n

, (6)

with the free parameters Ae, A, Te, T and n. The two-component model is fitted to the inclusive photon
spectra by using the total uncertainties of the spectra, obtained by quadratic combination of statistical
and systematic uncertainties. It is used only to facilitate a comparison of the methods in the ratio to the
fit.

The ratios of the inclusive photon spectra measured individually by PCM and EMC relative to the TCM
fit are shown in Fig. 2, demonstrating that the inclusive spectra measured with PCM and EMC agree
within the uncertainties. By combining the two independent reconstruction techniques the systematic
uncertainties are decreased to about 3–3.5% between 1.4 and 8 GeV/c, while the statistical uncertainties
are mostly below 1%. The individual double ratios of the three reconstruction methods in both systems
are displayed in Fig. 3 and the combined double ratios are shown in Fig. 4. Through the combination
of the three partially independent methods the systematic uncertainty could be reduced to about 4.5–
5.5% between 1 and 3 GeV/c for both

√
s = 2.76 and 8 TeV. Furthermore, the statistical uncertainties

decreased to 2.7–3.2% and 1.4–1.8% in the same transverse momentum region. With the present accu-
racy, neither for the individual nor for the combined double ratios a significant direct photon excess is
observed for pT < 7 GeV/c.

Indeed, in the combined excess ratios an onset of prompt photon production above pT > 7 GeV/c consis-
tent with expectations from next-to-leading order (NLO) perturbative QCD calculations is visible, but not
significant within the given uncertainties. Three different photon calculations are shown for both systems
based on different parton distribution functions and fragmentation functions. The NLO pQCD calcula-
tions [90, 91] are using CT10 [76–78] or CTEQ6.1M [79] proton PDF and GRV [80] or BFG2 [81]
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Fig. 5: Upper limits of direct photon production at 90% C.L. together with the invariant inclusive photon cross
section at 2.76 (a) and 8 TeV (b) including pQCD NLO predictions with CT10 [76–78] or CTEQ6.1M [79] proton
PDF and GRV [80] or BFG2 [81] FF. In addition, a JETPHOX calculation [82] based on NNPDF2.3QED [83]
proton PDF and BFG2 FF as well as a POWHEG [82] calculation based on the same PDF but with the PYTHIA
8 parton shower algorithm are provided. Upper limits are calculated for all spectrum points where the Rγ value
including its total uncertainty is consistent with unity and indicated by the horizontal bars at the end of the arrows
in the figure. Furthermore, direct photon cross sections are given where Rγ is larger than unity considering only
statistical uncertainties (round markers and vertical error bars) or taking only systematic uncertainties into account
(boxes).

fragmentation functions. The uncertainty band of the calculation from [90] is given by the simultaneous
variation of the factorization scale value, µ , (0.5pT < µ < 2pT) for the factorization, renormalization
and fragmentation scales used in the calculation. Furthermore, a JETPHOX [82] calculation based on
NNPDF2.3QED [83] proton PDF and BFG2 FF is provided as well as a POWHEG [82] calculation based
on the same PDF but with the PYTHIA 8 parton shower algorithm instead of a fragmentation function.

The prompt photon expectations in Fig. 4 are calculated as RNLO
γ = 1+

Y NLO
γdir

Yγdecay
using the particle decay

simulation for the contribution of Yγdecay to allow a comparison to the double ratios. With the present
uncertainties, the measurements are in agreement with the calculations within their uncertainties over
the full measured transverse momentum range. However, it is not possible to discriminate between the
different fragmentation functions and parton distribution functions used in the calculations.

The direct photon spectra, measured as described in Sec. 4 via the multiplication of the inclusive photon
spectrum with 1−R−1

γ , are presented in Fig. 5. The horizontal bars at the end of the arrows represent
upper limits of direct photon production at 90% C.L. taking into account the total uncertainty. Upper
limits are calculated for each spectral point where the total uncertainty of the corresponding Rγ point
is found to be consistent with unity within 1σ , which is the case for the transverse momenta below 7
GeV/c at both collisions energies. If the value of Rγ including either 1σ of the statistical or systematic
uncertainty is above unity, the direct photon cross section is determined and indicated in the figures
with markers and vertical uncertainty bars or boxes in the respective case. For a direct comparison, the
same NLO pQCD calculations as used in Fig. 4 are shown also in Fig. 5 for the direct photon spectra.
The calculations agree with the measured spectral points within uncertainties and predict a cross section
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compatible with the determined upper limits at low pT.

7 Conclusion

The invariant differential cross sections or upper limits for inclusive and direct photon production in pp
collisions at

√
s = 2.76 and 8 TeV were obtained at mid-rapidity and in transverse momentum ranges of

0.4 < pT < 10 GeV/c and 0.3 < pT < 16 GeV/c, respectively (Fig. 5). Photons were reconstructed with
the electromagnetic calorimeter and via reconstruction of e+e− pairs from conversions in the ALICE
detector material using the central tracking system, and were combined in the overlapping pT interval
of both methods (Fig. 2). Direct photon spectra, or their upper limits at 90% C.L. were extracted using
the direct photon excess ratio Rγ , which quantifies the ratio of inclusive photons over decay photons
generated with a decay-photon simulation (Fig. 1). An additional hybrid method, combining photons
reconstructed from conversions with those identified in the EMCal, was included for the combination
of the direct photon excess ratio Rγ , as well as the extraction of direct photon spectra or their upper
limits. The weighted combination of three consistent measurements (PCM, PCM-EMC, EMC) was used
to obtain the final direct photon results (Fig. 3). At both center-of-mass energies, no significant direct
photon signal could be extracted in the explored transverse momentum ranges (Fig. 4). However, Rγ for
pT > 7 GeV/c is found to be at least one σ above unity and consistent with expectations from next-
to-leading order pQCD calculations. Below 7 GeV/c, total uncertainties of 5–12% at

√
s = 2.76 TeV

and 4–10% at
√

s = 8 TeV were achieved. For this region, upper limits of direct photon production at
90% C.L. are provided. Our data limit a possibly enhanced direct photon production at low transverse
momentum, and provide a baseline for the interpretation of the direct photon excess observed in heavy-
ion collisions.
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94 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
95 Petersburg Nuclear Physics Institute, Gatchina, Russia
96 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
97 Physics Department, Panjab University, Chandigarh, India
98 Physics Department, University of Jammu, Jammu, India
99 Physics Department, University of Rajasthan, Jaipur, India

100 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
101 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
102 Physik Department, Technische Universität München, Munich, Germany
103 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für

Schwerionenforschung GmbH, Darmstadt, Germany
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