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Abstract

We present the results of three-dimensional femtoscopic analyses for charged and neutral kaons
recorded by ALICE in Pb–Pb collisions at

√
sNN = 2.76 TeV. Femtoscopy is used to measure the

space-time characteristics of particle production from the effects of quantum statistics and final-state
interactions in two-particle correlations. Kaon femtoscopy is an important supplement to that of
pions because it allows one to distinguish between different model scenarios working equally well
for pions. In particular, we compare the measured 3D kaon radii with a purely hydrodynamical cal-
culation and a model where the hydrodynamic phase is followed by a hadronic rescattering stage.
The former predicts an approximate transverse mass (mT) scaling of source radii obtained from pion
and kaon correlations. This mT scaling appears to be broken in our data, which indicates the im-
portance of the hadronic rescattering phase at LHC energies. A kT scaling of pion and kaon source
radii is observed instead. The time of maximal emission of the system is estimated using the three-
dimensional femtoscopic analysis for kaons. The measured emission time is larger than that of pions.
Our observation is well supported by the hydrokinetic model predictions.

∗See Appendix A for the list of collaboration members
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1 Introduction

Extremely high energy densities achieved in heavy-ion collisions at the Large Hadron Collider (LHC)
are expected to lead to the formation of the quark-gluon plasma (QGP), a state characterized by partonic
degrees of freedom [1, 2]. The systematic study of many observables (transverse momentum spectra,
elliptic flow, jets, femtoscopy correlations) measured at the Relativistic Heavy Ion Collider (RHIC) and
the LHC confirmed the presence of strong collective motion and the hydrodynamic behavior of the
system (see e.g. [3–6] and [7–10]). Whereas since quite a long time hydrodynamics describes momentum
based observables, it could not describe spatial distributions at decoupling. Correlation femtoscopy
(commonly referred to as femtoscopy or HBT, Hanbury Brown and Twiss interferometry), measures the
space-time characteristics of particle production using particle correlations due to the effects of quantum
statistics and strong and Coulomb final-state interactions [11–15]. The problem to describe the spatio-
temporal scales derived from femtoscopy in heavy-ion collisions at RHIC was solved only a few years
ago, strongly constraining the hydrodynamical models [16–18]. The following factors were understood
to be important: existence of prethermal transverse flow, a crossover transition between quark-gluon and
hadron matter, non-hydrodynamic behavior of the hadron gas at the latest stage (hadronic cascade phase),
and correct matching between hydrodynamic and non-hydrodynamics phases (see e.g. [16]).

New challenges for hydrodynamics appeared when data were obtained at the LHC: the large statistics
now allows one to investigate not only pion femtoscopy, which is the most common femtoscopic analysis,
but also femtoscopy of heavier particles in differential analyses with high precision.

The main objective of ALICE [19] at the LHC is to study the QGP. ALICE has excellent capabilities
to study femtoscopy observables due to good track-by-track particle identification (PID), particle ac-
ceptance down to low transverse momenta pT, and good resolution of secondary vertices. We already
studied pion correlation radii in Pb–Pb collisions at 2.76 TeV [20, 21]. Pion femtoscopy showed genuine
effects originating from collective flow in heavy-ion collisions, manifesting as a decrease of the source

radii with increasing pair transverse mass mT =
√

k2
T +m2 [15, 22], where kT = |pT,1 + pT,2|/2 is the

average transverse momentum of the corresponding pair and m is the particles mass.

The next most numerous particle species after pions are kaons. The kaon analyses are expected to offer
a cleaner signal compared to pions, as they are less affected by resonance decays. Studying charged
and neutral kaon correlations together provides a convenient experimental consistency check, since they
require different detection techniques. The theoretical models which describe pion femtoscopy well,
should describe kaon results with equal precision.

Of particular interest is the study of the mT-dependence of pion and kaon source radii. It was shown that
the hydrodynamic picture of nuclear collisions for the particular case of small transverse flow leads to the
same mT behavior of the longitudinal radii (Rlong) for pions and kaons [23]. This common mT-scaling for
π and K is an indication that the thermal freeze-out occurs simultaneously for π and K and that these two
particle species are subject to the same velocity boost from collective flow. Previous kaon femtoscopy
studies carried out in Pb–Pb collisions at the SPS by the NA44 and NA49 Collaborations [24, 25] reported
the decrease of Rlong with mT as ∼ m−0.5

T as a consequence of the boost-invariant longitudinal flow.
Subsequent studies carried out in Au–Au collisions at RHIC [26–29] have shown the same power in the
mT-dependencies for π and K radii, consistent with a common freeze-out hypersurface. Like in the SPS
data, no exact universal mT-scaling for the 3D radii was observed at RHIC, but still these experiments
observed an approximate mT-scaling for pions and kaons. The recent study of the mT-dependence of
kaon three-dimensional radii performed by the PHENIX collaboration [30] demonstrated breaking of
this scaling especially for the “long” direction. PHENIX reported that the Hydro-Kinetic Model (HKM)
describes well the overall trend of femtoscopic radii for pions and kaons [31, 32].

We have published previously the study of one-dimensional correlation radii of different particle species:

2



Kaon femtoscopy in Pb–Pb at
√

sNN = 2.76 TeV ALICE Collaboration

π±π±, K±K±, K0
SK0

S, pp, and pp correlations in Pb–Pb collisions at
√

sNN = 2.76 TeV for several inter-
vals of centrality and transverse mass [33]. The decrease of the source radii with increasing transverse
mass was observed for all types of particles, manifesting a fingerprint of collective flow in heavy-ion
collisions. The one-dimensional femtoscopic radii demonstrated the approximate mT-scaling as it was
expected by hydrodynamic model considerations [15].

Recent calculations made within a 3+1D hydrodynamical model coupled with a statistical hadronization
code taking into account the resonance contribution, THERMINATOR-2, showed the approximate scal-
ing of the three dimensional radii with transverse mass for pions, kaons and protons [34]. An alternative
calculation, that is the Hydro-Kinetic Model, including a hydrodynamic phase as well as a hadronic
rescattering stage, predicts violation of such a scaling between pions and kaons at LHC energies [35].
Both models observe approximate scaling if there is no rescattering phase. It is suggested in [35] that
rescattering has significantly different influence on pions and kaons and is responsible for the violation
of mT -scaling at the LHC energies. Moreover, the analysis of the emission times of pions and kaons
obtained within HKM in [36] showed that kaons are emitted later than pions due to rescattering through
the rather long-lived K∗(892) resonance. This effect can explain the mT-scaling violation predicted in
[35].

In [35] it was found that immediately decaying the K∗(892) and φ (1020) resonances at the chemical
freeze-out hypersurface has only a negligible influence on the kaon radii. In this scenario, resonances
were allowed to be regenerated in the hadronic phase. Further analysis in [36] showed that it is indeed
the regeneration of the K∗(892) resonance through hadronic reactions which is responsible for the mT-
scaling violation predicted in [35]. This mechanism clearly manifests itself in the prolonged emission
time of kaons caused by the rather long lifetime of the K∗(892) resonance [35].

The approximate scaling of pion and kaon radii was predicted by investigating 3+1D hydrodynamical
model + THERMINATOR-2 in [34] to hold for each of the three-dimensional radii separately. The scal-
ing of one-dimensional pion and kaon radii was also studied in [34]. It was shown that after averaging
the three-dimensional radii and taking into account a mass-dependent Lorentz-boost factor, a deviation
between one-dimensional pion and kaon radii appeared. These circumstances made it impossible to
discriminate between THERMINATOR-2 [34] and the HKM calculation [35] in the earlier published
one-dimensional analysis of pion and kaon radii by ALICE [33]. The three-dimensional study presented
here is not impeded by these effects and allows one to discriminate between the hypothesis of approxi-
mate scaling of three-dimensional radii predicted in [34] and strong scaling violation proposed in [35].
Thus the study of the mT-dependence of three-dimensional pion and kaon radii can unambiguously dis-
tinguish between the different freeze-out scenarios and clarify the existence of a significant hadronic
phase.

One more interesting feature of femtoscopy studies of heavy-ion collisions concerns the ratio of radius
components in the transverse plane. The strong hydrodynamic flow produces significant positive space-
time correlations during the evolution of the freeze-out hypersurface. This influences the extracted radius
parameters of the system in the plane perpendicular to the beam axis. The radius along the pair transverse
momentum is reduced by the correlation with respect to the perpendicular one in the transverse plane.
This effect appears to be stronger at LHC than at RHIC energies [37, 38]. It was studied by the ALICE
collaboration for pions in Pb–Pb collisions at 2.76 TeV [21] at different centralities. This work extends
this study to kaons and compares the obtained transverse radii with those found in the analysis for pions
and to the model calculations discussed above. The paper is organized as follows. Section 2 explains the
data selection and describes the identification of charged and neutral kaons. In Section 3 the details of
the analysis of the correlation functions are discussed together with the investigation of the systematic
uncertainties. Section 4 presents the measured source radii as well as the extracted emission times and
compares them to model predictions. Finally, Section 5 summarizes the obtained results and discusses
them within the hydrokinetic approach.
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2 Data selection

Large sets of data were recorded by the ALICE collaboration at
√

sNN = 2.76 TeV in Pb–Pb collisions.
The about 8 million events from 2010 (used only in the K0

SK0
S analysis) and about 40 million events

from 2011 made it possible to perform the three-dimensional analyses of neutral and charged kaon cor-
relations differentially in centrality and pair transverse momentum kT. Three trigger types were used:
minimum bias, semi-central (10-50% collision centrality), and central (0-10% collision centrality) [39].
The analyses were performed in the centrality ranges: (0–5%), (0–10%), (10–30%), and (30–50%). The
centrality was determined using the measured amplitudes in the V0 detector [39]. The following trans-
verse momentum kT bins were considered: (0.2–0.4), (0.4–0.6), and (0.6–0.8) GeV/c for charged kaons
and (0.2–0.6), (0.6–0.8), (0.8–1.0), and (1.0–1.5) GeV/c for neutral kaons.

Charged particle tracking is generally performed using the Time Projection Chamber (TPC) [40] and
the Inner Tracking System (ITS) [19]. The ITS also provides high spatial resolution in determining the
primary collision vertex.

Particle identification (PID) for reconstructed tracks was carried out using both the TPC and the Time-of-
Flight (TOF) detector [41]. For TPC PID, a parametrization of the Bethe-Bloch formula was employed
to calculate the specific energy loss (dE/dx) in the detector expected for a particle with a given mass and
momentum. For PID with TOF, the particle mass hypothesis was used to calculate the expected time-
of-flight as a function of track length and momentum. For each PID method, a value Nσ was assigned
to each track denoting the number of standard deviations between the measured track dE/dx or time-
of-flight and the calculated one as described above. Different cut values of Nσ were chosen based on
detector performance for various particle types and track momenta (see Table 1 for specific values used
in both analyses). More details on PID can be found in Secs. 7.2–7.5 of [42].

The analysis details for charged and neutral kaons are discussed separately below. All major selection
criteria are also listed in Table 1.

2.1 Charged kaon selection

Track reconstruction for the charged kaon analysis was performed using the tracks’ signal in the TPC.
The TPC is divided by the central electrode into two halves, each of them is composed of 18 sectors
(covering the full azimuthal angle) with 159 padrows placed radially in each sector. A track signal in
the TPC consists of space points (clusters), each of which is reconstructed in one of the padrows. A
track was required to be composed out of at least 70 such clusters. The parameters of the track are
determined by performing a Kalman fit to a set of clusters with an additional constraint that the track
passes through the primary vertex. The quality of the fit is requested to have χ2/NDF better than 2. The
transverse momentum of each track was determined from its curvature in the uniform magnetic field.
The momentum from this fit in the TPC was used in the analysis. Tracks were selected based on their
distance of closest approach (DCA) to the primary vertex, which was required to be less than 2.4 cm in
the transverse and less than 3.0 cm in the longitudinal direction.

K± identification was performed using the TPC (for all momenta) and the TOF detector (for p > 0.5
GeV/c). The use of different values for Nσ ,TPC and Nσ ,TOF was the result of studies to obtain the best
kaon purity, defined as the fraction of accepted kaon tracks that correspond to true kaon particles, while
retaining a decent efficiency. The estimation of purity for p < 0.5 GeV/c was performed by parametriz-
ing the TPC dE/dx distribution in momentum slices for the contributing species [42]. The dominant
contamination for charged kaons comes from e± in the momentum range 0.4 < p < 0.5 GeV/c. The
purity for p > 0.5 GeV/c, where the TOF information was employed, was studied with HIJING [43]
simulations using GEANT [44] to model particle transport through the detector; the charged kaon purity
was estimated to be greater than 99%. The momentum dependence of the single kaon purity is shown in
Fig. 1(a). The pair purity is calculated as the product of two single-particle purities, where the momenta
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Fig. 1: Single K± purity (a) and pair purity for small relative momenta (b) for different centralities. In
(b) the kT values for different centrality intervals are slightly offset for clarity.

are taken from the experimentally determined distribution. The K± pair purity as a function of kT at three
different centralities is shown in Fig.1(b). Kaon pair transverse momentum is an averaged pT of single
kaons taken from the whole pT range, which is the reason why the pair purities are larger than single
particle ones.

Two kinds of two-track effects have been investigated: splitting, where a signal produced by one particle
is incorrectly reconstructed as two tracks, and merging, where two particles are reconstructed as only one
track. These detector inefficiencies can be suppressed by employing specific pair selection criteria. We
used the same procedure as in [21] which works here as well with slightly modified cut values. Charged
kaon pairs were required to have a separation of |∆ϕ∗|> 0.04 and |∆η |> 0.02. Here, ϕ∗ is the azimuthal
position of the track in the TPC at R = 1.2 m, taking into account track curvature in the magnetic field,
and η is the pseudorapidity. Also, all track pairs sharing more than 5% of TPC clusters were rejected.

Charged kaon selection
pT 0.15 < pT < 1.5 GeV/c
|η | < 0.8
DCAxy to primary vertex < 2.4 cm
DCAz to primary vertex < 3.0 cm
Nσ ,TPC (for p < 0.5 GeV/c) < 2
Nσ ,TPC (for p > 0.5 GeV/c) < 3
Nσ ,TOF (for 0.5 < p < 0.8 GeV/c) < 2
Nσ ,TOF (for 0.8 < p < 1.0 GeV/c) < 1.5
Nσ ,TOF (for 1.0 < p < 1.5 GeV/c) < 1.0

Neutral kaon selection
|η | < 0.8
Daughter-daughter DCA3D < 0.3 cm
DCA3D to primary vertex < 0.3 cm
Invariant mass 0.480 < mπ+π− < 0.515 GeV/c2

Daughter pT > 0.15 GeV/c
Daughter |η | < 0.8
Daughter DCA3D to primary vertex > 0.4 cm
Daughter Nσ ,TPC < 3
Daughter Nσ ,TOF (for p > 0.8 GeV/c) < 3

Table 1: Single particle selection criteria.
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2.2 Neutral kaon selection

The decay channel K0
S → π+π− was used for the identification of neutral kaons. The secondary pion

tracks were reconstructed using TPC and ITS information. The single-particle cuts for parents (K0
S) and

daughters (π±) used in the decay-vertex reconstruction are shown in Table 1. The daughter-daughter
DCA, that is the distance of closest approach of the two daughter pions from a candidate K0

S decay,
proved useful in rejecting background topologies. PID for the pion daughters was performed using both
TPC (for all momenta) and TOF (for p > 0.8 GeV/c). The very good detector performance is reflected in
the FWHM of the K0

S peak of only 8 MeV/c2. The selection criteria used in this analysis were chosen as
a compromise to maximize statistics while keeping a high signal purity. The neutral kaon purity (defined
as Sig./[Sig.+Bkg.] for 0.480 < mπ+π− < 0.515 GeV/c2) was larger than 0.95.

Two main two-particle cuts were used in the neutral kaon analysis. To resolve two-track inefficiencies as-
sociated with the daughter tracks, such as the splitting or merging of tracks discussed above, a separation
cut was employed in the following way. For each kaon pair, the spatial separation between the same-sign
pion daughters was calculated at several points throughout the TPC (every 20 cm radially from 85 cm to
245 cm) and averaged. If the average separation of either pair of tracks was below 5 cm, the kaon pair
was not used. Another cut was used to prevent two reconstructed kaons from using the same daughter
track. If two kaons shared a daughter track, one of them was excluded using a procedure which com-
pared the two K0

S candidates and kept the candidate whose reconstructed parameters best matched those
expected for a true K0

S particle in two of three categories (smaller K0
S DCA to primary vertex, smaller

daughter-daughter DCA, and K0
S mass closer to the PDG value [45]). This procedure was shown, using

HIJING+GEANT simulations, to have a success rate of about 95% in selecting a true K0
S particle over a

fake one. More details about the K0
SK0

S analysis can be found in Refs. [46, 47]. K0
S candidate selection

criteria developed in other works [33] were used here as well; they are included in Table 1.

3 Correlation functions

The femtoscopic correlation function C is constructed experimentally as the ratio C(q) = A(q)/B(q),
where A(q) is the measured distribution of the difference q = p2−p1 between the three-momenta of the
two particles p1 and p2 taken from the same event, B(q) is a reference distribution of pairs of particles
taken from different events (mixed). For a detailed description of the formalism, see e.g. [14]. The pairs
in the denominator distribution B(q) are constructed by taking a particle from one event and pairing it
with a particle from another event with a similar centrality and primary vertex position along the beam
direction. Each event is mixed with five (ten) others for the K0

S (K±) analysis. The numerator and

denominator are normalized in the full q =
√
|q|2−q2

0 range used (0–0.3 GeV/c) such that C(q)→ 1
means no correlation. Pair cuts have been applied in exactly the same way for the same-event (signal)
and mixed-event (background) pairs.

The momentum difference is calculated in the longitudinally co-moving system (LCMS), where the
longitudinal pair momentum vanishes, and is decomposed into (qout, qside, qlong), with the “long” axis
going along the beam, “out” along the pair transverse momentum, and “side” perpendicular to the latter
in the transverse plane (Bertsch-Pratt convention).

The correlation functions have been corrected for momentum resolution effects, by using the HIJING
event generator and assigning a quantum-statistical weight to each particle pair. Further, these modi-
fied events were propagated through the full simulation of the ALICE detectors [19]. The ratios of the
correlation functions obtained before and after this full event simulation have been taken as the correc-
tion factors. The correlation function from the data has been divided by this q-dependent factor. The
correction increases the obtained radii by 3–5%.

6



Kaon femtoscopy in Pb–Pb at
√

sNN = 2.76 TeV ALICE Collaboration

Fig. 2: A sample projected K±K± correlation function with fit. The error bars are statistical only. Sys-
tematic uncertainties on the points are equal to or less than the statistical error bars shown.

3.1 Charged kaon

The three-dimensional correlation functions were fitted by the Bowler-Sinyukov formula [48, 49]:

C(q) = N (1−λ )+NλK(q)
[
1+ exp

(
−R2

outq
2
out−R2

sideq2
side−R2

longq2
long
)]
, (1)

where Rout, Rside, and Rlong are the Gaussian femtoscopic radii in the LCMS frame, N is the normaliza-
tion factor, and q is the momentum difference in the pair rest frame (PRF) 1 . The λ parameter, which
characterizes the correlation strength, can be affected by long-lived resonances, coherent sources [50–
52], and non-Gaussian features of the particle-emission distribution. We account for Coulomb effects
through K(q), calculated according to Ref. [49, 51] as

K(q) =C(QS+Coulomb)/C(QS). (2)

Here, the theoretical correlation function C(QS) takes into account quantum statistics only and C(QS+
Coulomb) considers quantum statistics and the Coulomb final-state interaction (FSI) contribution to the
wave function [14].

The experimental correlation functions have been corrected for purity according to:

Ccorrected = (Craw−1+ζ )/ζ , (3)

where ζ is the pair purity taken from Fig. 1.

Figure 2 shows a sample projected K±K± correlation function with a fit performed according to Eq. 1.
When the 3D correlation function is projected on one axis, the momentum differences in the two other
directions are required to be within (-0.04,0.04) GeV/c.

1Average q in PRF for the given “out-side-long” bin is determined during the C(q) construction and used as an argument of
the K-function.
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Ref mf0 γf0KK̄ γf0ππ ma0 γa0KK̄ γa0πη

[54] 0.973 2.763 0.5283 0.985 0.4038 0.3711
[55] 0.996 1.305 0.2684 0.992 0.5555 0.4401
[56] 0.996 1.305 0.2684 1.003 0.8365 0.4580
[57] 0.978 0.792 0.1990 0.974 0.3330 0.2220

Table 2: The f0 and a0 masses and coupling parameters, all in GeV.

3.2 Neutral kaon

K0
SK0

S correlation functions were fitted using a parametrization which includes Bose-Einstein statistics as
well as strong final-state interactions [28, 53]. Strong final-state interactions have an important effect on
K0

SK0
S correlations. Particularly, the K0K0 channel is affected by the near-threshold resonances f0(980)

and a0(980). Using the equal emission time approximation in the pair rest frame (PRF) [53], the elastic
K0K0 transition is written as a stationary solution Ψ−~k ∗(~r

∗) of the scattering problem in the PRF, where
~k ∗ and~r ∗ represent the momentum of a particle and the emission separation of the pair in the PRF (the
−~k ∗ subscript refers to a reversal of time from the emission process), which at large distances has the
asymptotic form of a superposition of a plane wave and an outgoing spherical wave,

Ψ−~k ∗(~r
∗) = e−i~k ∗·~r ∗+g(k∗)

eik∗r∗

r∗
, (4)

where g(k∗) is the s-wave scattering amplitude for a given system. For K0K0, g(k∗) is dominated by the
f0 and a0 resonances and written in terms of the resonance masses and decay couplings [28]:

g(k∗) =
1
2
[g0(k∗)+g1(k∗)] , (5)

gI(k∗) =
γr

m2
r − s− iγrk∗− iγ ′rk′r

. (6)

Here, s = 4(m2
K + k∗2); γr(γ

′
r) refers to the couplings of the resonances to the f0→ K0K0(f0→ ππ) and

a0→ K0K0(a0→ πη) channels; mr is the resonance mass; and k′r refers to the momentum in the PRF of
the second decay channel (f0→ ππ or a0→ πη) with the corresponding partial width Γ′r = γ ′rk

′
r/mr . The

amplitudes gI of isospin I = 0 and I = 1 refer to the f0 and a0, respectively. The parameters associated
with the resonances and their decays are taken from several experiments [54–57], and the values are
listed in Table 2.

The correlation function is then calculated by integrating Ψ−~k ∗(~r
∗) in the Koonin-Pratt equation [58, 59]

C(~k ∗, ~K) =
∫

d3~r ∗ S~K(~r
∗)|ΨS

−~k ∗(~r
∗)|2 , (7)

where S~K(~r
∗) is the Gaussian source distribution in terms of Rout, Rside, and Rlong, ~K is the average

pair momentum, and ΨS
−~k ∗

(~r ∗) is the symmetrized version of Ψ−~k ∗(~r
∗) for bosons. Although Eq. 7

can be integrated analytically for K0
SK0

S correlations with FSI for the one-dimensional case [28], for
the three-dimensional case this integration cannot be performed analytically. In order to form the 3D
correlation function, we combine a Monte Carlo emission simulation with a calculation of the two-
particle wavefunction, thus performing a numerical integration of Eq. 7. The Monte Carlo emission
simulation consists of generating the pair positions sampled from a three-dimensional Gaussian in the
PRF, with three input radii as the width parameters, and generating the particle momenta sampled from
a distribution taken from data. Using the MC-sampled positions and momenta, we calculate ΨS

−~k ∗
(~r ∗).

We then build a correlation function using the wavefunction weights to form the signal distribution, and
an unweighted distribution acts as a background. This theoretical correlation function is then used to fit
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Fig. 3: A sample projected K0
SK0

S correlation function with fit. Also shown is the contribution to the fit
from the quantum statistics part only. The error bars are statistical only. Systematic uncertainties on the
points are equal to or less than the statistical error bars shown.

the data. Finally, we make a Lorentz boost, γ , of Rout from the PRF to the LCMS frame (Rside and Rlong
are not affected by the boost). More details on the 3D fitting procedure can be found in Ref. [46].

Figure 3 shows a sample projected K0
SK0

S correlation function with fit. Also shown is the contribution to
the fit from the quantum statistics part only. As seen, the FSI part produces a significant depletion of the
correlation function in the q range 0–0.1 GeV/c in each case.

3.3 Systematic uncertainties

The effects of various sources of systematic uncertainty on the extracted fit parameters were studied as
functions of centrality and kT. For each source, we take the maximal deviation and apply it symmetrically
as the uncertainty. Table 3 shows minimum and maximum uncertainty values for various sources of
systematic uncertainty for charged and neutral kaons. The systematic errors are summed up quadratically.
The values of the total uncertainty are not necessarily equal to the sum of the individual uncertainties, as
the latter can come from different centrality or kT bins. Both analyses studied the effects of changing the
selection criteria used for the events, particles, and pairs (variation of cut values up to±25%) and varying
the range of q values over which the fit is performed (variation of q limits up to ±25%). Uncertainties
associated with momentum resolution corrections are included into the K± analysis; for the K0

S analysis,
these uncertainties are found to be small compared to other contributions. Both analyses were performed
separately for the two different polarities of the ALICE solenoid magnetic field, the difference was found
to be negligible.

For the K0
S fitting procedure, the mean γ value is calculated for each centrality and kT selection and used

to scale Rout. However, each bin has a spread of γ values associated with it. The standard deviation of
the mean γ value for each kT bin was used as an additional source of systematic error for Rout. For K0

S,
an uncertainty on the strong FSI comes from the fact that several sets of f0(980) and a0(980) parameters
are available [54–57]; each set is used to fit the data, the results are averaged, and the maximal difference
was taken as a systematic error.

The K± analysis has uncertainties associated with the choice of the radius for the Coulomb function. For
each correlation function it is set to the value from the one-dimensional analysis [33]. Its variation by
±1 fm is a source of systematic uncertainty. Another source of systematic uncertainty is misidentifica-
tion of particles and the associated purity correction. A 10% variation of the parameters in the purity
correction was performed. We also incorporated sets with a reduced electron contamination by I) tight-
ening the PID criteria, in particular extending the momentum range where the TOF signal was used and
requiring the energy-loss measurement to be consistent with the kaon hypothesis within one sigma, and
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Rout [%] Rside [%] Rlong [%] λ [%]
Charged kaon

Single particle selection 0–2 0–2 0–2 0–2
PID and purity <0.1 <0.1 <0.1 1–10
Pair selection 2–8 1–6 2–10 6–15
Fit range 1–3 1–4 1–7 1–7
Coulomb function 3–5 1–2 2–3 8–10
Momentum resolution 1–2 1–2 1–3 2–6
Total (quad. sum) 7–11 7–9 7–12 10–17

Neutral kaon
Single particle and pair selection 0–1 1–5 1–4 6–14
Pair selection 2–8 1–6 2–10 6–15
FSI Model 1–6 1–6 1–15 3–9
γ 5–10 <0.1 <0.1 <0.1
Fit range 0–6 0–6 0–10 0–6
Momentum resolution <0.1 0–3 0–6 2–3
Total (quad. sum) 6–11 3–7 2–15 7–16

Table 3: Minimum and maximum uncertainty values for various sources of systematic uncertainty for
charged and neutral kaons (in percent). Note that each value is the maximum uncertainty from a specific
source, but can pertain to a different centrality or kT bin. Thus, the maximum total uncertainties are
smaller than (or equal to) the quadratic sum of the maximum individual uncertainties.

II) completely excluding the momentum range 0.4–0.5 GeV/c.

4 Results and discussion

Figure 4 shows the mT-dependence of the extracted femtoscopic radii Rout, Rside, and Rlong in three
centrality selections for pions [21] and charged and neutral kaons. The obtained radii are smaller for
more peripheral collisions than for central ones. The radii decrease with increasing mT and each particle
species roughly follows an m−1/2

T dependence. The radii in “out” and “long” directions exhibit larger
values for kaons than for pions at the same transverse mass demonstrating that the mT-scaling is broken.
This difference increases with centrality and is maximal for the most central collisions. Also presented in
Fig. 4 are the predictions of the (3+1)D hydrodynamical model coupled with the statistical hadronization
code THERMINATOR-2 [34]. The model describes well the mT-dependence of pion radii, but underes-
timates kaon radii. Consistent with the data, the (3+1)D Hydro+THERMINATOR-2 model shows mild
breaking in the “long” direction for central collisions, but it underestimates the breaking in the “out”
direction. The significance of this breaking of the scaling is discussed further in this section.

In addition to the aforementioned three-dimensional radii, here for the 0–5% most central events, Fig. 5
also shows the mT dependence of the ratio Rout/Rside for charged and neutral kaons in comparison with
HKM predictions [35] with and without the hadronic rescattering phase. The HKM calculations without
rescattering exhibit an approximate mT-scaling but do not describe the data, while the data are well re-
produced by the full hydro-kinetic model calculations thereby showing the importance of the rescattering
phase at LHC energies. The Rout and Rside radii are both influenced by flow and rescatterings, so their
ratio is rather robust against these effects. The fact that Rout/Rside ratio of pions and kaons coincide in
the HKM simulations (Fig. 5) is related to some underestimation of Rside radii for pions while pion Rout
radii are slightly overestimated in the model.
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kaons and pions [21] (blue circles) in comparison with the theoretical predictions of the (3+1)D Hydro
+ THERMINATOR-2 model [34] for pions (blue solid lines) and kaons (red solid lines).
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It was predicted in [35] that the radii scale better with kT at LHC energies as a result of the interplay
of different factors in the model, including the particular initial conditions. Figure 6 illustrates the kT-
dependence of the femtoscopic radii Rout, Rside, and Rlong. Unlike the mT-dependence, the radii seem to
scale better with kT in accordance with this prediction.

The ratio Rout/Rside appears to be sensitive to the space-time correlations present at the freeze-out hy-
persurface [21, 37, 38]. As it was observed in [21], the ratio for pions is consistent with unity, slowly
decreasing for more peripheral collisions and higher kT. In Fig. 7, the ratio Rout/Rside is shown for pions
and kaons at different centralities. The systematic uncertainties partially cancel in the ratio. Systematic
uncertainties are correlated in mT for each type of particle pair; no correlation between the systematic
uncertainties of the charged and neutral species exists. The measured Rout/Rside ratios are slightly larger
for kaons than for pions. This is an indication of different space-time correlations for pions and kaons,
and a more prolonged emission duration for kaons.

In our previous pion femtoscopy analysis [20] the information about the emission time (decoupling time)
at kinetic freeze-out τ ∼ 10 fm/c was extracted by fitting the mT-dependence of R2

long using the blast-wave
expression [60]:

R2
long = τ

2 Tkin

mT

K2(mT)

K1(mT)
, (8)

where Tkin is the temperature at kinetic freeze-out, and Kn are the integer-order modified Bessel func-
tions. We tried to use Eq. (8) to fit the R2

long mT-dependence (Fig. 8) for pions and kaons taking the
thermal freeze-out temperature Tkin = 0.120 GeV as in [20] (dotted lines) and Tkin = 0.144 GeV (dashed
lines). The emission times extracted from the fit are presented in Table 4. However, though this formula
works well for pions, it fails to describe kaon longitudinal radii. Large transverse flow may be partially
responsible for this failure [36]. The following analytical formula for the time of maximal emission,
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τmax, is proposed in [36]:

R2
long = τ

2
max

Tmax

mT coshyT
(1+

3Tmax

2mT coshyT
), (9)

where coshyT = (1− v2
T)
−1/2, vT = β pT

βmT+α
, Tmax is the temperature at the hypersurface of maximal

emission, β = 1/Tmax, and α is a free parameter determining the intensity of flow 2. The advantage of
the formula given in Eq. (9) is that it is derived for a scenario with transverse flow of any intensity, which

2 The authors of [36] use full evolutionary model (HKM) that has no sharp/sudden kinetic freeze-out. For such type of
models a continuous hadron emission takes place instead. Then for each particle species, considered within certain transverse
momentum bin, there is a 4D layer, adjacent to the space-like hypersurface of maximal emission, where most of selected
particles are emitted from. This non-enclosed hypersurface is characterized by the (average) proper time τmax time of maximal
emission, and the effective temperature Tmax. The proposed phenomenological expression for Rlong is associated just with this
hypersurface and is based on the model that is different from the blast-wave parameterization for sudden freeze-out. So the
blast-wave temperature Tkin can differ from the temperature parameter Tmax.
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method T (GeV) απ αK τπ (fm/c) τK (fm/c)
fit with BW Eq. (8) 0.120 - - 9.6 ± 0.2 10.6 ± 0.1
fit with BW Eq. (8) 0.144 - - 8.8 ± 0.2 9.5 ± 0.1
fit with Eq. (9) 0.144 5.0 2.2 9.3 ± 0.2 11.0 ± 0.1
fit with Eq. (9) 0.144 4.3 ± 2.3 1.6 ± 0.7 9.5 ± 0.2 11.6 ± 0.1

Table 4: Emission times for pions and kaons extracted using the Blast-wave formula Eq. (8) and the
analytical formula Eq. (9).

is especially important for LHC energies.

The analytical formula Eq. (9) was used to fit the mT-dependence of R2
long (Fig. 8). The fit was performed

using the following parameters determined in [36] by fitting light flavor particle spectra [61]: Tmax =
0.144 GeV, and απ = 5.0 and αK = 2.2.

The extracted times of maximal emission are presented in Table 4.

In order to estimate the systematic errors of the extracted times of maximal emission we also have per-
formed fitting with Tmax, απ and αK varied within the range of their uncertainty [36]: ±0.03 GeV, ±3.5
and±0.7, respectively. The maximum deviations from the central values appeared to be (+1.8, -0.5) fm/c
for pions and (+0.5, -0.1) fm/c for kaons. These systematic errors are fully correlated. Regardless of the
specific parameter choice, we consistently observe the time of maximal emission for kaons to be larger
than the one for pions. The extracted times of maximal emission are rather close to those obtained within
the HKM model [36]: τπ = 9.44± 0.02 fm/c, τK = 12.40± 0.04 fm/c 3. There is evidence that the
time of maximal emission for pions is smaller than the one for kaons. This observation can explain the
observed breaking of mT-scaling between pions and kaons. It is interesting to note that in [36] this dif-
ference in the emission times is explained by the different influence of resonances on pions and kaons
during the rescattering phase due to kaon rescattering through the K∗(892) resonance (with lifetime of
4–5 fm/c). It was shown in [36] that a significant regeneration of the K∗(892) takes place in full HKM
simulations with rescatterings (UrQMD cascade), whereas this process is not present in a scenario where
only resonance decays are taken into account.

Similar findings were reported in [62], where the production yield of K∗(892) in heavy-ion collisions at
the LHC was studied. Also there, the inclusion of a hadronic phase in the theoretical modeling of the
production process proved to be essential in order to reproduce the experimentally found suppression
pattern of K∗(892) production when compared to pp collisions [63].

5 Summary

We presented the first results of three-dimensional femtoscopic analyses for charged and neutral kaons
in Pb–Pb collisions at

√
sNN = 2.76 TeV.

A decrease of source radii with increasing transverse mass and decreasing event multiplicity was ob-
served. The mT scaling expected by pure hydro-dynamical models appears to be broken in our data.
A scaling of pion and kaon radii with kT was observed instead. The measured ratio of transverse radii
Rout/Rside is larger for kaons than for pions, indicating different space-time correlations. A new approach
[36] for extracting the emission times for pions and especially for kaons was applied. It was shown that
the measured time of maximal emission for kaons is larger than that of pions.

3These results were obtained in [36] using the small interval q=0-0.04 GeV/c in order to minimize influence of the non-
Gaussian tails. It is found in [36] that if even strong non-Gaussian behavior is observed for the kaon correlation function in
wide q-interval, one can nevertheless utilize the same formula Eq. (9), but making free the parameter α for kaons. Then one
gets practically the same effective time for kaon emission, as it is obtained from the fit of the correlation function in the small
interval q=0-0.04; for pions there is no such problem.
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The comparison of measured three-dimensional radii with a model, wherein the hydrodynamic phase
is followed by the hadronic rescattering phase [35], and pure hydrodynamical calculations [34, 35] has
shown that pion femtoscopic radii are well reproduced by both approaches while the behavior of the
three-dimensional kaon radii can be described only if the hadronic rescattering phase is present in the
model.
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V. Kučera96 , C. Kuhn135 , P.G. Kuijer94 , A. Kumar103 , J. Kumar48 , L. Kumar101 , S. Kumar48 , S. Kundu90 ,
P. Kurashvili88 , A. Kurepin63 , A.B. Kurepin63 , A. Kuryakin111 , S. Kushpil96 , M.J. Kweon61 , Y. Kwon144 ,
S.L. La Pointe42 , P. La Rocca28 , C. Lagana Fernandes124 , Y.S. Lai84 , I. Lakomov35 , R. Langoy41 ,
K. Lapidus143 , C. Lara70 , A. Lardeux21 ,76 , A. Lattuca26 , E. Laudi35 , R. Lavicka39 , R. Lea25 , L. Leardini106 ,
S. Lee144 , F. Lehas94 , S. Lehner116 , J. Lehrbach42 , R.C. Lemmon95 , V. Lenti53 , E. Leogrande64 , I. León
Monzón123 , P. Lévai142 , X. Li14 , J. Lien41 , R. Lietava113 , B. Lim19 , S. Lindal21 , V. Lindenstruth42 ,
S.W. Lindsay129 , C. Lippmann109 , M.A. Lisa18 , V. Litichevskyi46 , W.J. Llope141 , D.F. Lodato64 , P.I. Loenne22 ,
V. Loginov85 , C. Loizides84 , P. Loncar120 , X. Lopez82 , E. López Torres9 , A. Lowe142 , P. Luettig71 ,
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K. Suzuki116 , S. Swain68 , A. Szabo38 , I. Szarka38 , U. Tabassam15 , J. Takahashi125 , G.J. Tambave22 ,
N. Tanaka133 , M. Tarhini62 , M. Tariq17 , M.G. Tarzila89 , A. Tauro35 , G. Tejeda Muñoz2 , A. Telesca35 ,
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2 Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
3 Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

22



Kaon femtoscopy in Pb–Pb at
√

sNN = 2.76 TeV ALICE Collaboration

4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS),
Kolkata, India

5 Budker Institute for Nuclear Physics, Novosibirsk, Russia
6 California Polytechnic State University, San Luis Obispo, California, United States
7 Central China Normal University, Wuhan, China
8 Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France
9 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
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134 Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
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