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Abstract

Invariant differential yields of deuterons and antideuterons in pp collisions at /s = 0.9, 2.76 and
7 TeV and the yields of tritons, 3He nuclei and their antinuclei at \f =7 TeV have been measured
with the ALICE detector at the CERN Large Hadron Collider. The measurements cover a wide
transverse momentum (pr) range in the rapidity interval |y| < 0.5, extending both the energy and the
pr reach of previous measurements up to 3 GeV/c for A =2 and 6 GeV/c for A = 3. The coalescence
parameters of (anti)deuterons and >He nuclei exhibit an increasing trend with pr and are found to be
compatible with measurements in pA collisions at low pr and lower energies. The integrated yields
decrease by a factor of about 1000 for each increase of the mass number with one (anti)nucleon.
Furthermore, the deuteron-to-proton ratio is reported as a function of the average charged particle
multiplicity at different center-of-mass energies.
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1 Introduction

The production of light nuclei and antinuclei has been measured in many experiments at energies lower
than those of the Large Hadron Collider (LHC). Deuterons and antideuterons are copiously produced
in heavy-ion collisions [1H11]], but less abundantly in lighter particle collisions, such as pp [12, [13] and
pp [14] collisions, photo-production yp [15]] and e*e™ annihilation at Y (nS) [16] and Z0 [17] energies.
Measurements of heavier antinuclei, such as antitritons and *He nuclei, have only been reported in pA
[18. 19]] and AA collisions [11} 20-23]].

The high luminosity provided by the LHC allows these measurements to be extended to higher energies
and transverse momenta (pr) than in previous experiments, and provides in addition the possibility to
detect for the first time antinuclei heavier than antideuterons in pp collisions. Many of these measure-
ments have been explained as the result of the coalescence of protons and neutrons that are nearby in
space and have similar velocities [24} 25]], but this has not been experimentally tested in high pr regimes
in small systems. On the other hand, statistical hadronization models [[11} [26] have been successful in
describing particle yields over a wide range of energies in AA collisions, with the chemical freeze-out
temperature and baryochemical potential being constrained by measurements of particle ratios. In this
sense, the deuteron-to-proton ratio could serve as a test for possible thermal-statistical behavior in pp
collisions at LHC energies.

On a broader level, this subject may also have an impact on cosmology. Big-bang nucleosynthesis is the
dominant natural source of deuterons [27]] and, in the absence of baryogenesis, one could assume that the
same holds for antideuterons. These antinuclei and even heavier antinuclei can also be produced in pp
and pA collisions in interstellar space, representing a background source in the searches for segregated
primordial antimatter and dark matter [28-30]. As it turns out, the low momentum characteristic yields
of antinuclei at central rapidities (compared to forward) lie in an energy region which is best suited for
identification by most satellite-borne (low magnetic-field) instruments, such as AMS-02 [2§]].

While the differential yields of deuterons in pp collisions at /s = 7 TeV have been reported in [11],
this paper complements the previously published results by providing the corresponding measurements
of antideuterons at the same collision energy. In addition, results for (anti)deuterons at /s = 0.9 and
2.76 TeV as well as for (anti)tritons and *He (anti)nuclei at /s = 7 TeV are given. The paper is organized
as follows: Section 2] gives a description of the experimental apparatus. Section [3]describes the analysis
procedure of the experimental data along with the estimation of the systematic uncertainties. In Sec.
the distributions of (anti)deuterons, (anti)tritons, and *He (anti)nuclei are presented. The integrated
yields, the deuteron-to-proton ratios, and the coalescence parameters, which relate the production of
nuclei with those of the nucleons, are obtained in Sec. [5|and the summary and conclusions are presented
in Sec. 6l

2 Experimental apparatus

ALICE [31H133] is a multipurpose detector designed to study heavy-ion collisions at the LHC and it also
has excellent capabilities to study light nuclei and antinuclei in pp collisions. The nuclei were identified
using the central detectors: the inner tracking system (ITS), the time projection chamber (TPC) and
the time of flight (TOF) detector. These detectors are located inside a solenoidal magnetic field with a
strength of 0.5 T and cover the full azimuthal acceptance and the pseudo-rapidity range || < 0.9.

The ITS [34]] consists of six cylindrical layers of position-sensitive detectors, covering the central rapidity
region for vertices located in |z| <10 cm, where z is the distance along the particle beam direction. The
two innermost layers are silicon pixel detectors (SPD), followed by two layers of silicon drift detectors
(SDD), while the two outermost layers are double-sided silicon strip detectors (SSD). The ITS is mainly
used for reconstruction of the primary and secondary vertices. It also helps to separate primary nuclei
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from secondary nuclei via the determination of the distance of closest approach of the track to the primary
vertex. The TPC [335]], the main tracking component of ALICE, is a large drift detector with a low material
budget to reduce multiple scattering and secondary particle production. In combination with the ITS, it is
used to measure particle momenta. The TPC is also used to identify particles via their specific ionization
energy loss with a resolution of 5% in pp collisions [36]. The TOF [37] detector is a large-area array of
multigap resistive plate chambers covering the full azimuth 0 < ¢ < 27 and |n| < 0.9, except the region
260° < ¢ < 320° and |n| < 0.12 to avoid covering the photon spectrometer with more material. In pp
collisions, it measures the time of flight of particles with an overall resolution of about 120 ps, allowing
the identification of light nuclei and antinuclei with transverse momenta above 3 GeV/c, depending on
the available data. The start time for the time of flight is provided by the TO detector, with a time
resolution of ~ 40 ps. The TO consists of two arrays of Cherenkov counters, TOA and TOC, placed on
opposite sides of the interaction point at z = 375.0 cm and z = —72.7 cm, respectively. If there is no TO
signal, the TOF detector is used to measure the start time when at least three particles reach the TOF [38]]
detector.

Between the TPC and TOF detector there is a transition radiation detector (TRD) [33] to discriminate
between electrons and pions above 1 GeV/c. Only 7 modules out of 18 were installed for the pp run of
2010, leaving the major part of space between TPC and TOF free of additional material. The VO detector
[39], two hodoscopes of 32 scintillator cells each which cover the pseudo-rapidity ranges 2.8 <1 < 5.1
and —3.7 < n < —1.7, provides in combination with the SPD the trigger for inelastic pp collisions.

3 Data analysis

The pp events used in this paper were collected by the ALICE Collaboration during 2010 and 2011. The
recorded integrated luminosity for each analyzed sample is 0.124 nb~!, 0.692 nb~!, and 4.20 nb~! for
the center-of-mass energies /s = 0.9, 2.76, and 7 TeV, respectively.

3.1 Event and track selection

The pp events were triggered by requiring a hit in both sides of the VO, i.e., two charged particles
separated by approximately 4.5 units of pseudorapidity, which suppresses single diffractive events. The
presence of passing bunches was detected by two beam-pickup counters. Contamination from beam-
induced background was rejected offline using the timing information of the V0. Additionally, a cut on
the correlation between the number of SPD clusters and the number of small track segments (tracklets)
in the SPD detector was applied. Furthermore, in order to maintain a uniform acceptance and to reduce
beam-induced noise, collision vertices were required to be within 10 cm of the center of the detector in the
beam direction and within 1 cm in the transverse direction. Pile-up events were reduced by requiring that
more than three tracklets or tracks contribute to the reconstructed vertex. In cases of multiple vertices
which are separated by more than 0.8 cm, the vertex reconstruction with the SPD allows these events
to be tagged as pile-up and hence not considered in the analysis. The events analyzed here consist
mostly of nonsingle diffractive events, which represent a fraction of the total inelastic cross section
equal to 0.76310052, 0.76070 033, and 0.74270050 for /s = 0.9, 2.76, and 7 TeV [40], respectively.
Those fractions were used to extrapolate the measurements to inelastic pp collisions assuming that the
production of nuclei in single diffractive events is not significant with respect to nonsingle diffractive
events based on Monte Carlo estimates (less than 3%).

For each track at least two track points were required in the ITS and 70 out of a maximum of 159 in
the TPC. A pseudorapidity cut of |[n| < 0.8 was also required to avoid edge effects. Tracks with kinks,
typically originating from weak decays inside the TPC volume, were treated as two separate tracks and
only the track pointing to the primary vertex was kept.

The measurements are reported for the rapidity interval |y| < 0.5 and have been corrected for detector
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efficiency based on the GEANT3 particle propagation code [41]. Track matching between the TPC and
TOF detectors in GEANT3 was further improved by a data driven method based on a study of tracks
not crossing the TRD material, resulting in a 6% difference. Since at low pr many nuclei in |y| < 0.5
are outside || < 0.8, their number was extrapolated using a Monte Carlo simulation where the rapidity
distribution was approximated by a flat distribution.

In order to allow for a consistent comparison of the antideuteron-to-deuteron ratio across different center-
of-mass energies with an identical GEANT version, a reanalysis of the deuteron differential yield at /s
=7 TeV is presented here. The results are found to be consistent with the previous measurements shown
in [[11]] within the systematic uncertainties.

3.2 (Anti)nuclei identification

The identification of nuclei and antinuclei is based on their specific energy loss in the TPC and the
estimation of their mass with the TOF detector. Figure |1{shows the energy loss signal recorded by the
TPC of different nucleus species versus the rigidity (prpc/|Z|), where prpc is the momentum estimated
at the inner wall of the TPC.

Deuterons and antideuterons can be identified cleanly up to prpc ~1.2 GeV/c, which corresponds to a
maximum pt of 1 GeV/c. For pt > 1 GeV/c a coincidence with a TOF signal was required, in addition to
a £30 cut around their expected energy loss in the TPC, extending the identification up to pt =3 GeV/c.
For this, tracks were propagated to the outer radius of the TOF detector and, if a hit was found close
enough to the trajectory, the corresponding time of flight was assigned to the track. Then, the squared
mass m> = p*(t*/1> — 1) was calculated, where p is the reconstructed momentum, ¢ the time of flight,
and [ the track length. Figure [2| shows the squared mass distribution for several pr bins in the region
of the antideuteron squared mass. The antideuteron signal is approximately Gaussian, centered at the
deuteron squared mass and with an exponential tail on the high mass side. This exponential tail is also
present in the signal of other particle species such as &, K, and p and extends to the antideuteron squared
mass, producing an exponential background. The signal was extracted by combining a Gaussian with an
exponential tail and an exponential background (Fig. [2)).

Tritons and antitritons were identified by selecting tracks within £30 of their expected energy loss in
the TPC and by also requiring a match to a TOF detector hit. The minimum pt = 1.2 GeV/c was chosen
to be the same as for the 3He nuclei. Due to the small number of tritons, it was not possible to use
the signal extraction procedure used for deuterons. In this case, the selected tracks were required to
have an associated mass within +30 (6 ~ 0.05 GeV/c?) of the triton mass and the maximum pt was
limited to 1.8 GeV/c. The result is shown in Figs. [T]and [3] with six antitriton candidates in the interval
1.2 < pr < 1.8 GeV/e.

Unlike deuterons and tritons, *He and *He nuclei can be identified throughout the pt range with the TPC,
since for nuclei with |Z| = 2 the energy deposition is well separated from particles with |Z| = 1. In total,
17 candidates for *He nuclei were observed, based on the specific energy loss in the TPC (Fig. , out of
which 14 candidates were in the interval 1.2 < pt < 6 GeV/c, and these were used in the measurements.
Their identities were confirmed for those particles that were matched to a TOF hit (10 out of 14) with a
mass measurement based on their times of flight, as shown in Fig.[3l A few *He nuclei (six candidates)
were also observed at the center-of-mass energy 2.76 TeV.
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Fig. 1: Energy loss in the TPC (dE /dx) of particles with negative charge versus the rigidity estimated at the TPC
inner wall (prpc/|Z|). The solid lines represent the expected energy loss according to the parametrization of the
Bethe-Bloch formula. The blue circles and squares are *He nuclei and antitritons identified by the TPC only, and
the orange crosses and the red diamonds are the antitritons and >He nuclei, respectively, that were matched to a
TOF detector hit.
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Fig. 2: Squared mass distribution for tracks within 3¢ of the expected energy loss for antideuterons in the TPC
in several pr bins. The solid blue line is the global fit, the dashed line the background, and the green line the
antideuteron signal.
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Fig. 3: Mass distribution of antitriton (crosses) and *He nucleus (diamonds) candidates obtained with the TOF
detector as a function of the total momentum. The green and yellow bands represent 16 and 20 intervals, respec-
tively, around the expected 3He mass (dashed line), obtained from the TOF resolution.

3.3 Secondary (anti)nuclei

Secondary nuclei are copiously produced in spallation reactions induced in the detector material by the
impact of primary particles. They are also produced in the decays of A hypernuclei, with the n-mesonic
decay of the (anti)hypertriton being the most important contribution [42].

The distances of closest approach (DCA) of the track to the primary vertex in the transverse plane
(DCA,,) and along the beam direction (DCA;) were used to distinguish and reduce the number of sec-
ondary nuclei. Since they are produced far away from the primary vertex, they have a broader and flatter
DCA,, distribution than primary nuclei, which have a narrow DCA,, distribution peaked at zero, sim-
ilar to antinuclei. Figure [ illustrates the different DCA,, distributions for deuterons and antideuterons
at low and high pr. A positive DCA,, was assigned when the primary vertex was inside the radius of
curvature of the track and a negative value in the opposite case. The number of secondary nuclei was
greatly reduced by requiring [DCA,,| < 0.2 cm and [DCA;| < 3 cm, corresponding to a cut of 100 in
the measured DCA resolution in the lowest pr bin.

The fraction of secondary nuclei with respect to primary nuclei was estimated with DCA,, templates
from Monte Carlo simulations for each pr bin. The templates were fitted to the measured distribution
with a maximum likelihood procedure which relies on a Poisson distribution and takes into account both
the measured distribution and Monte Carlo statistical uncertainties [43]]. This fraction was found to fall
exponentially as a function of pr and was subtracted from the measurements.

The production of antinuclei from interactions of primary particles with the detector material was ne-
glected, since antinuclei exhibit a narrow DCA,, distribution peaked at zero (Fig. EI) Due to the small
production cross section of (anti)hypernuclei in pp collisions, the feed-down contribution of (anti)nuclei
was not subtracted, but instead included as a systematic uncertainty.
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Fig. 4: Distance of closest approach in the transverse plane to the primary vertex (DCA,,) of deuterons (solid
circles) and antideuterons (hollow circles) for the pt bins 0.8 < pt < 0.9 GeV/c (left) and 1.9 < pt < 2.0 GeV/c
(right). A large background distribution of secondary deuterons is clearly visible in the left panel.

3.4 Systematic uncertainties

Table [T| summarizes the values of the systematic uncertainties for the lowest and highest pr bins. These
uncertainties take into account the identification procedure, the track selection criteria, secondary nuclei
originating in the detector material and from feed-down, the (anti)nucleus—nucleus interactions simulated
in GEANT, and the material budget.

The identification procedure was affected by an uncertainty coming from the background and signal
shapes at high pt, where the signal-to-background ratio was small. It was evaluated by changing the
squared mass interval and extracting the signal with two different methods: one by using the procedure
described in Sec.[3.2] and the other by counting the number of entries in the 1 < pr < 1.4 GeV/c interval
where the identification is unambiguous. For antitritons and >He nuclei the identification was clean
and the particle identification uncertainty was assumed to be negligible. Systematic uncertainties due to
the track selection criteria were estimated to be less than 4% for nuclei and antinuclei by changing the
conditions for selecting tracks.

The approximations made in the DCA,, templates introduced an uncertainty on the removal of secondary
nuclei originating in the detector material. A value of 4% was estimated for deuterons by replacing the
simulated DCA,, templates of primary deuterons with the measured DCA,, distribution of antideuterons,
which are not affected by contamination from secondary tracks. An uncertainty of ~20% was estimated
following a similar procedure for tritons and *He nuclei.

The dominant feed-down contribution for (anti)nuclei is the n-mesonic decay of (anti)hypertritons [42]:
SH—d+p+n,3H—d+n+n°% 3H — t+n°and 3H — 3He+n. In pp collisions, the 3 H cross sec-
tion was estimated to be of the same order of magnitude as the 3He nucleus cross section [44]. However,
the production cross section of deuterons is about 10* times greater than that of *He nuclei, hence the
contamination for (anti)deuterons can be considered negligible. Additionally, the fraction of hypertritons
which passes the track selection in the 3He (anti)nucleus channel was estimated with a Monte Carlo sim-
ulation and is at most 35%. Assuming a similar value for the (anti)triton channel and branching ratios of
27% and 13% [42], then less than ~10% and ~6% contamination is expected for 3He (anti)nuclei and
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(anti)tritons, respectively.

The (anti)nucleus—nucleus elastic and inelastic scattering uncertainty was evaluated by comparing the
GEANT3 simulations with the data for two different experimental configurations: one using the detector
portion in which the TRD modules were installed between the TPC and the TOF detector and another in
which the TRD was not installed. The ratio between the number of (anti)deuterons counted with the two
different detector configurations is related to the number of (anti)deuterons lost due to hadronic interac-
tions. These ratios were compared with a GEANT3 simulation and a 6% uncertainty was estimated for
the amount of nuclei lost in such processes. This comparison, however, was not feasible for (anti)tritons
due to the limited data and a 12% uncertainty was assumed. Unlike deuterons and tritons, the measure-
ments of *He (anti)nuclei presented here only rely on TPC information, hence they are not affected by
the TRD material in front of the TOF detector.

Another source of systematic uncertainty is the accuracy in the knowledge of the material budget. This
uncertainty was estimated to be 4+-3.4% and —6.2% by comparing the material thickness estimated by
analyzing photon conversions in the inner detectors with the material description implemented in the
Monte Carlo simulations [45]]. To propagate these uncertainties to the results, a Monte Carlo simulation
was done in which the material density was varied by £10% and linearly interpolated to match the
uncertainties in the material budget. The result was below 3% at low pr and negligible at high pr for the
different (anti)nuclei.

The extrapolation of the measurements to inelastic pp collisions adds additional systematic uncertainties
of f%:é%, f;:é% and fg:g% for the center-of-mass energies 0.9, 2.76, and 7 TeV, respectively [40]. How-
ever, these uncertainties are not included in the figures as in previous related publications [11, 46-48].

d d t t 3He SHe
pr (GeV/c) 0.8-3.0 0.8-3.0 12-18 12-18 12-3.0 1.2-6.0
Particle identification negl. —20% negl. — 20% negl. negl. negl. negl.
Track selection 4% 4% 4% 4% 4% 4%
Secondary nuclei 4% negl. 18% negl. 20% — negl. negl.
Feed-down nuclei negl. negl. —-6% —-6% -10% -10%
Hadronic interactions 6% 6% 12% 12% 6% 6%
Material budget 3% — negl. 3% — negl. 3% 3% 2% — 1% 2% — 1%

Table 1: Summary of the main sources of systematic uncertainties for the lowest and highest pr bins. Symmetric
uncertainties are listed without sign for clarity.

4 Results
4.1 Deuterons and antideuterons

The invariant differential yields of deuterons and antideuterons were measured in the pt range 0.8 <
pr < 3 GeV/c (Fig. 5) and extrapolated to inelastic pp collisions with the cross sections of Ref. [40].
At LHC energies, both nucleus species are produced with similar abundance since the antideuteron-to-
deuteron ratio approaches 1 as the center-of-mass energy increases (Fig. [6). The ratios are consistent
with the (p/p)? ratios extracted from Refs. [49] [50], and hence are in agreement with the expectation
from simple coalescence and thermal-statistical models.
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Fig. 5: Invariant differential yield of deuterons (left panel) and antideuterons (right panel) in inelastic pp collisions
(INEL) at /s = 0.9, 2.76, and 7 TeV. Systematic uncertainties are represented by boxes and the data are multiplied
by constant factors for clarity in the figure. The lowest pr point for deuterons at /s = 7 TeV was taken from [11]].
The dashed line represents the result of a fit with a Tsallis function (see Sec. @for details).
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Fig. 6: Antideuteron-to-deuteron ratio (d/d) as a function of pr per nucleon in pp collisions compared with the
(p/p)? ratio (squares) at mid-rapidity (|y| < 0.5) [50]. Boxes represent the systematic uncertainties and error
bars in the (p/p)? ratios are statistical and systematic uncertainties added in quadrature.
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4.2 Heavier nuclei and antinuclei

A recorded luminosity of 4.2 nb~! allowed antitritons and *He nuclei to be detected in pp collisions.
Since the total number of observed candidates is small, the uncertainties were estimated as a central
confidence interval (two-sided), using a coverage probability of 68.27% for a Poisson distribution. The
resulting invariant yields for both antinucleus species are compatible in the pt range where measure-
ments were possible (Fig. . Some *He nuclei were also observed in the highest pr bin, but, since the
production rate is very small, it was not feasible to evaluate the contamination due to secondary *He
nuclei, and the bin was then excluded from this measurement. In contrast, *He nuclei are not affected by
this source of contamination, and the three measurements are sufficient to determine the parameters of
the Tsallis distribution to extrapolate the yields (see Sec.[5.2)).
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e ®He, ALICE pp Vs = 7 TeV o °He, ALICE pp Vs =7 TeV ]

I -- Tsallis
10°F KX %D E

10710

(1/Ng) (1/27p.) &N / (dp_dy) (GeV?c?)

10—11

T||||||||||||||||||||||||||||||||||3-||||||||||||||||||||||||||||||\|\|_F

0 1 2 3 4 5 6 0 1 2 3 4 5 6
P, (GeV/c)

Fig. 7: Invariant differential yields of tritons and 3He nuclei (left panel) and their antinuclei (right panel) in inelastic
pp collisions at /s =7 TeV. Error bars and boxes represent the statistical and systematic uncertainties, respectively,
and the dashed line the result of a fit with a Tsallis function (see Sec. [5.2] for details).

5 Discussion

5.1 Coalescence parameter

Many measurements of light nuclei have been successfully explained as the result of the coalescence of
protons and neutrons that are nearby in phase-space [24} 25]]. In this model, the production of a nucleus
with mass number A = N + Z is related to the production of nucleons at equal momentum per nucleon by

A VAN A Pa
Ex—t =B [ Ep—2 | (Eamo2) Pp=Pa="12 1
A dpi A P dpg < n dpg) Pp = Pn A ( )

where B4 is called the coalescence parameter. This parameter has been found to be constant at low
transverse momentum in light-particle collisions [15, 51]. In contrast, in AA collisions it has been
reported that B decreases with increasing centrality of the collision, and for each centrality it increases
with pr [S8HL1].

Assuming equal distribution of nucleons in Eq. (I)) and taking the proton and antiproton distributions
from Refs. [46H48], the coalescence parameter (B,) was computed, and it is shown in Fig. @ The result-

10
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ing values for deuterons and antideuterons are compatible and do not show any significant dependence
on the center-of-mass energy within uncertainties. These measurements extend the pr reach up to three
times beyond previous measurements in pp collisions extracted from the CERN Intersecting Storage
Rings (ISR) [12][1352]] (Fig.[9).
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Fig. 8: Coalescence parameter (B5) of deuterons (solid circles) and antideuterons (hollow circles) as a function of
pr per nucleon in inelastic pp collisions at /s = 0.9, 2.76, and 7 TeV. Statistical uncertainties are represented by
error bars and systematic uncertainties by boxes.

To extract the B, from the CERN ISR, the antiproton distribution was taken from [52]] and the total cross
section of 42.3 + 0.4 mb from [53]]. The distribution was also scaled by a factor of 0.69, estimated with
an EPOS (LHC) simulation [44, |54], to take into account the feed-down contribution. Figure E] also
includes the B, parameter of antideuterons from yp collisions and deep inelastic scattering of electrons
at the Hadron-Electron Ring Accelerator (HERA) at DESY [15, 51]] and B, from p—Cu and p—Pb colli-
sions at the LBNL Bevalac [1]]. Our measurement reveals a pt dependence in B; not seen in previous
experiments, which is significant given that the systematic uncertainties are correlated bin by bin.

This pr dependence can be reproduced with QCD-inspired event generators, such as PYTHIA 8.2
(Monash tune) [S5] and EPOS (LHC), when adding a coalescence-based afterburner [44] that takes
into account the momentum correlations between nucleons (Fig. [I0). The afterburner looks for clusters
of nucleons among the final particles produced by the event generators and boosts them to their center-
of-mass frame. If the momentum of each individual nucleon is less than a certain value, a nucleus is
generated. With the afterburner, a constant B, is recovered when selecting protons from one event and
neutrons from the next event (event mixing), in agreement with the expectation of an uncorrelated dis-
tribution of nucleons (Fig.[I0). The pr dependence in B; is still present in the results from an alternate
PYTHIA 8.2 (Monash tune) simulation with color reconnection turned off (Fig. [I0). Furthermore, a
radial flow effect in B, at these low average charged multiplicities is also discarded by the EPOS (LHC)
simulation with the afterburner, since this contribution only arises in high multiplicity events, starting
from dN,,/dn > 15 [54]. Thus, this pt dependence can be explained as a purely hard scattering effect,
in contrast to AA collisions, where it is usually attributed to collective flow.
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Fig. 9: Coalescence parameter (B,) of antideuterons in inelastic pp collisions at /s = 7 TeV (circles) compared
with the values measured at lower energies in pp [12} [13], yp [15], ep [51] (squares and hollow circles), and in
p—Cu and p-Pb collisions [1]] (band at pr/A = 0 GeV/c).
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Fig. 10: Coalescence parameter (B,) of antideuterons in inelastic pp collisions at /s = 7 TeV (circles) compared
with EPOS (LHC), PYTHIA 8.2 (Monash tune) with and without color reconnection (CR), and an event mixing
procedure with the afterburner (lines).

As in the case of antideuterons, the coalescence parameter (B3) of *He nuclei also exhibits a pr depen-
dence (Fig. [I1] right), and can be reproduced with QCD-inspired event generators with a coalescence-
based afterburner [44]. Moreover, low pt values of B3 are compatible with those obtained in p—C, p—Cu,
and p—Pb collisions at Bevalac [1]].
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Fig. 11: Coalescence parameter (B3) of tritons and *He nuclei (left panel) and their antinuclei (right panel) in
inelastic pp collisions at /s = 7 TeV. The Bevalac measurements in p—C, p—Cu, and p—Pb collisions [T]] are not
given as a function of pr and are shown as vertical bands at pr/A = 0 GeV/c for comparison. Error bars and boxes
represent the statistical and systematic uncertainties, respectively, and dashed lines the values obtained with EPOS
(LHC) with the afterburner.

5.2 Integrated yields and deuteron-to-proton ratio

Unlike coalescence models, statistical hadronization models only provide predictions for integrated
yields. In this case, the integrated yields of light nuclei and the deuteron-to-proton ratio can add ad-
ditional constraints to these models and could therefore serve as a test for thermal-statistical behavior in
small systems at LHC energies.

To find the integrated yields, the measurements were extrapolated to the unmeasured pr region with a
statistical distribution that provides an exponential behavior at low pt and a power law behavior at high
pr (Figs.[5|and[7):

pAN gy
i’ ¢ 2n)?

(1+(a- ™)™ @)

where mt = 4/ p% + m? is the transverse mass, and gV, T, and q are free parameters. This distribution can
be derived from the Tsallis entropy [56,57]] and gives good description of the data in pp collisions [57].
It was preferred over the Levy-Tsallis used in previous work [[11]] as it provides a more stable description
of the measurements with a limited data set, as in the case of antideuterons for the center-of-mass energy
0.9 TeV or the *He nuclei.

The systematic uncertainties of the integrated yields (dN/dy) and mean transverse momenta ((pr)) were
evaluated by shifting the data points up and then down by their uncertainties (i.e., assuming full corre-
lation between pr bins). Additionally, the data points were shifted coherently, in a pr-dependent way,
within their uncertainties to create maximally hard and maximally soft pr distributions. The values of
dN/dy and (pr) were reevaluated and the largest difference was taken as the systematic uncertainty.
Table [2| summarizes the resulting values for the different center-of-mass energies along with the extrap-
olation fraction due to the unmeasured pt regions. The uncertainty on the extrapolation was estimated
by using additional distributions including the Levy-Tsallis [58, 159] and Boltzmann distributions. The
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change of the default fit function with respect to [11] leads to slightly different values for the obtained
dN/dy and (pr) which are consistent within the respective systematic uncertainties. Figure|12|shows an
exponential decrease of the dN/dy as a function of the mass number. The reduction of the yield for each
additional nucleon is about 1000.

3 1 5
> ALICE pp Vs=7TeV, |y| <0.5
S 107 " A
— CyAcy fit
1072
107 3
107 -
107°
10°° *He
107 i
| | |
1 2 3

A

Fig. 12: Integrated yields (dN/dy) of antiprotons, antideuterons and *He nuclei as a function of the number of
antinucleons in inelastic pp collisions at /s = 7 TeV. The horizontal lines represent a fit with the function coAc/f
based on Eq. (I).

Vs (TeV) dN /dy (p1) (GeVic) Extr.
09  (L12£0.09+0.09)x10™* 1.01 +0.05+0.05 50+ 3%
d 276  (1.53+£0.05+0.13) x10* 1.04 +£0.02+0.04 45+ 8%
7 (2.024£002+0.17) x107% 111 £0.01 £0.04 41 +5%
09  (1.11+£0.10+0.09)x107* 099 +0.07 £0.05 52+ 7%

d 276 (1.374+00440.12) x107* 1.04 £0.02+£0.03 46+ 7%
7 (1.924+0.02+£0.15) x107*  1.08 £0.01 £0.04 42 +5%
3He 7 (1.1£0.6+02) x1077 1.6+£04+004 43+ 14%

Table 2: Integrated yields (dN/dy) and mean transverse momenta ({pr)) for deuterons, antideuterons, and 3He
nuclei along with the extrapolated fraction (Extr.) due to the unmeasured pt regions. The first uncertainty is the
statistical uncertainty and the second one the systematic uncertainty.

The integrated d/p and d /p ratios were calculated from the integrated yields in Table and Refs. [47,, 48],
and are shown in Fig.[I3]as a function of the average charged particle multiplicity at mid-rapidity [60,/61].
The dN/dy values for pp collisions at the CERN ISR were computed following the same procedure
described above and using the inclusive p distribution from [52]] and the d distribution from Refs. [12,13]].
The resulting d/p ratio was divided by 0.69 to account for the contributions of feed-down antiprotons,
based on an EPOS (LHC) simulation [44]. Figure [I3] suggests an increasing trend in this ratio with
the average charged particle multiplicity in pp collisions, which is also supported by an EPOS (LHC)
simulation with the afterburner, although at ISR energies the d/p ratio is strongly influenced by the baryon
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number transport at mid-rapidity leading to a higher value than at LHC energies according to the model
expectations.

When describing particle ratios such as the d/p ratio, the only free parameter of grand-canonical statis-
tical hadronization models at LHC energies is the chemical freeze-out temperature. In the past, several
attempts were made to extend their successful description of AA collisions to smaller collision systems
such as pp. In particular, the canonical formulation describes the production of light flavor hadrons, in-
cluding those with strangeness content [26]. While the p/z ratio is found to be comparable in pp, p—Pb,
and Pb-Pb collisions [48162], indicating a comparable chemical freeze-out temperature among different
systems, the d/p ratio in pp collisions at LHC energies is found to be two times lower than the average
value in AA collisions. Since the strangeness-canonical formulation only influences the abundance of
strange particles with respect to nonstrange particles, it cannot explain the observed results presented
here.

%10~
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Fig. 13: Integrated deuteron-to-proton (d/p) and antideuteron-to-antiproton (d/p) ratios in inelastic pp collisions
as a function of the average charged particle multiplicity for different center-of-mass energies. The average d/p
ratio in AA collisions lies two times above the highest value in pp collisions (not shown). Dashed and solid lines
represent the expected values from EPOS (LHC) with afterburner and the bands their uncertainties. The CERN
ISR value is corrected by the contribution of feed-down antiprotons estimated with an EPOS (LHC) simulation.

6 Summary and conclusions

The invariant differential yields of deuterons and antideuterons in pp collisions at /s = 0.9, 2.76, and
7 TeV and the yields of tritons, 3He nuclei, and their antinuclei at /s =7 TeV have been measured in the
rapidity range |y| < 0.5. The measurements cover the pr ranges 0.8 < pr < 3 GeV/c for (anti)deuterons,
1.2 < pr < 1.8 GeV/c for (anti)tritons, 1.2 < pr < 3 GeV/c for *He nuclei, and 1.2 < pt < 6 GeV/c for
3He antinuclei. This extends previous measurements by one order of magnitude in incident energies, and
by a factor of 3 in pt reach, and it includes the first ever measurements of antitritons and 3He nuclei in
pp collisions.

The present measurements show no significant dependence of the coalescence parameter B, on the
center-of-mass energy from CERN ISR energies (53 GeV) to the highest LHC energy reported in this
paper (7 TeV). Moreover, the values of both B, and B3 are found to be compatible at low pr with those
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obtained in pA collisions at Bevalac energies.

A previously unobserved pr dependence in pp collisions of the coalescence parameters B, and B3 is
also reported. The data are well described by QCD-inspired event generators when a coalescence-based
afterburner is added to take into account the momentum correlations between nucleons. According to
PYTHIA 8.2 (Monash tune) and EPOS (LHC) with the afterburner, this dependence can be explained
purely as a hard scattering effect.

In combination with CERN ISR measurements, our results suggest an increasing trend in the d/p ratio
with charged particle multiplicity. While the values reported in central AA collisions are in agreement
with a thermal model description of particle yields, the highest d/p ratio reported in this paper is about
half the thermal model value; therefore, a thermal-statistical description is disfavored in pp collisions at
these low average charged particle multiplicities. Our measurements are expected to contribute to the
understanding of the background from pp collisions for the observation of antideuterons and *He nuclei
in cosmic ray experiments and to the estimation of the production rates of the next stable antinuclei in
pp collisions.
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