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Abstract

The jet radial structure and particle transverse momentum (pT) composition within jets
are presented in centrality-selected Pb–Pb collisions at

√
sNN = 2.76 TeV. Track-based

jets, which are also called charged jets, were reconstructed with a resolution parameter
of R = 0.3 at midrapidity |ηchjet| < 0.6 for transverse momenta pT,chjet = 30–120 GeV/c.
Jet–hadron correlations in relative azimuth and pseudorapidity space (∆ϕ , ∆η) are mea-
sured to study the distribution of the associated particles around the jet axis for different
pT,assoc-ranges between 1 and 20 GeV/c. The data in Pb–Pb collisions are compared to
reference distributions for pp collisions, obtained using embedded PYTHIA simulations.
The number of high-pT associate particles (4 < pT,assoc < 20 GeV/c) in Pb–Pb collisions
is found to be suppressed compared to the reference by 30 to 10%, depending on central-
ity. The radial particle distribution relative to the jet axis shows a moderate modification
in Pb–Pb collisions with respect to PYTHIA. High-pT associate particles are slightly more
collimated in Pb–Pb collisions compared to the reference, while low-pT associate particle
tend to be broadened. The results, which are compatible with both previous jet–hadron-
related measurements from the CMS Collaboration and jet shape measurements from the
ALICE Collaboration at higher pT, support the currently established picture of in-medium
parton energy loss.
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1 Introduction

At energy densities above approximately 0.5 GeV/fm3 and temperatures above approximately
160 MeV [1], Quantum Chromodynamics (QCD) calculations on the lattice predict the ex-
istence of a phase transition from normal nuclear matter to a new state of matter called the
Quark–Gluon Plasma (QGP), where the partonic constituents, quarks and gluons, are no longer
confined in hadrons. There is compelling evidence from observations reported by experiments
at the Relativistic Heavy Ion Collider (RHIC) [2–5] and at the Large Hadron Collider (LHC) [6–
17] that the QGP is created in nuclear collisions at high collisions energies.

A unique way to characterize the properties of the QGP is to utilize jets as a probe of the
medium. Hard scatterings are expected to occur early in the collision evolution, producing
high transverse momentum (pT) partons that propagate through the expanding medium and
eventually fragment into jets of hadrons. High-pT partons lose energy in interactions with the
medium due to elastic scattering and induced gluon radiation [18, 19]. Besides a reduction of
the jet energy, this can result in a broadening of the transverse jet profile and a softening of the
fragmentation [20].

Jet quenching has been observed at RHIC [21–34] and at the LHC [8, 16, 17, 35–47], e.g. via
inclusive yield and correlation measurements of high-pT hadrons and reconstructed jets. These
measurements provide insights into the mechanisms of parton energy loss in the medium and
eventually into the medium itself.

More differential measurements of the jet modification in a medium, i.e. measurements of mod-
ifications of jet angular profile and particle composition, can provide complementary informa-
tion to observables that focus on the overall yield change like nuclear modification factors.
Measurements of correlated associated particle production relative to jets or high-pT particles
allow for a detailed measurement of the redistribution of quenched energy around the jet. An
excess of low-pT particles in and around the jet up to large distances, as well as a suppression
of high-pT particles, have been reported [17, 48–50]. Two-particle correlations and jet–hadron
correlations show an angular broadening of low-pT particles below 3 GeV/c in heavy-ion col-
lisions with respect to pp collisions [50]. For low-pT two-particle correlations, measurements
also indicate an asymmetry in the shape of the near-side jet peaks: they are broader in ∆η
compared to ∆ϕ [48, 49]. The variables ∆η and ∆ϕ are the distance in pseudorapidity η and
azimuth ϕ relative to the near-side jet. At the same time, measurements of the radial moment
of jets point to a general collimation of jets in Pb–Pb collisions [51].

Using jets instead of high-pT particles as a reference (trigger) to study angular correlations—
as done in this analysis—should have the advantage that jet properties better reflect the initial
parton energy. This analysis extends the study of jet–hadron correlations into a regime of low
track-based jet pT,chjet not yet explored with these techniques at the LHC.

In this paper, we study the correlation of charged particles (associates) with the direction of
reconstructed track-based jets (triggers) in the ∆ϕ-∆η plane in the same event. The jets are
reconstructed using charged particles above a certain transverse momentum pT,const. The anal-
ysis focuses on two aspects of the modification of jets within the medium created in Pb–Pb
collisions compared to a PYTHIA [52] reference. First, the overall modification of the asso-
ciated particle yield and its jet-energy dependence is studied. Second, the modification of the
radial distribution of associated particles with respect to the jet axis is studied by comparing
the Pb–Pb results to the PYTHIA reference. Both aspects are analyzed in detail for several jet

2



Jet radial profiles in Pb–Pb collisions ALICE Collaboration

transverse momenta pT,chjet and low and high pT of associated charged particles. PYTHIA is
used as vacuum baseline, because the size of the pp dataset at

√
s = 2.76 TeV is insufficient for

this analysis.

The paper is structured as follows. In Sec. 2, details on the detector and general data reconstruc-
tion will be given. The correlation analysis, which serves as basis for this paper, is presented
in Sec. 3. Subsequently, jet reconstruction will be described in Sec. 4, followed by a discussion
on the embedded PYTHIA reference in Sec. 5. Before the results will be presented in Sec. 8,
the observables are introduced in Sec. 6 and systematic uncertainties are discussed in Sec. 7. A
summary concludes the paper in Sec. 9.

2 Experimental setup

For a complete description of the ALICE detector and its performance see Refs. [53] and [54],
respectively.

The data were recorded in 2011 for Pb–Pb collisions at
√

sNN = 2.76 TeV using a set of trig-
gers based on the hit multiplicity measured by the V0 detector, which consists of segmented
scintillators covering the full azimuth over 2.8 < η < 5.1 (V0A) and −3.7 < η <−1.7 (V0C).
Events were selected with V0 multiplicities corresponding to the 0–50% most central events
using the centrality determination as described in Ref. [55]. The accepted events, reconstructed
as described in Ref. [56], were required to have a primary reconstructed vertex within 10 cm
of the center of the detector along the beam axis. For this analysis, a total of 12M events were
used.

The analysis presented here relies mainly on the central ALICE tracking systems, which are
located inside a large solenoidal magnet with a field strength of 0.5 T. They consist of the Inner
Tracking System (ITS), a high-precision six-layer cylindrical silicon detector system with the
inner layer at a radius of 3.9 cm and the outer layer at 43 cm from the beam axis, and the
Time Projection Chamber (TPC) with a radial extent of 85–247 cm, which provides up to 159
independent space points per track.

To ensure a good track-momentum resolution for jet reconstruction, all reconstructed tracks
were required to have at least three hits in the ITS. For tracks without any hit in the Silicon Pixel
Detector (SPD), which provides the two innermost layers of the ITS, the location of the primary
vertex was used in addition to the hits in the TPC and ITS. This improves the track-momentum
resolution and reduces the azimuthal dependence of the track reconstruction efficiency due to
the non-uniform SPD response. Accepted tracks were required to be measured with 0.15 <
pT < 100 GeV/c in |η|< 0.9, and to have at least 70 TPC space-points and no less than 80% of
the geometrically findable space-points in the TPC.

The single-track tracking efficiency was estimated from the detector response of HIJING [57]
events reconstructed to detector level using GEANT3 [58] for the particle transport. In the 0–
10% centrality class, it is about 56% at 0.15 GeV/c, about 83% at 1.5 GeV/c and then decreases
to 81% at 3 GeV/c, after which it increases and levels off to about 83% at above 6.5 GeV/c. For
the 10–30% most central collisions, the tracking efficiency follows a similar pT-dependence
pattern, with absolute values of the efficiency that are 1 to 2% higher compared to the 0–10%
most central collisions. The momentum resolution, which was estimated on a track-by-track
basis using the covariance matrix of the track fit, is about 1% at 1 GeV/c and about 3% at
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50 GeV/c.

3 Correlation analysis

The two-dimensional associated per-trigger yield Y (∆ϕ,∆η) measures the distribution of parti-
cles relative to the jet axes in bins of ∆ϕ , ∆η , event centrality, and trigger and associate trans-
verse momenta pT,assoc [59]. This distribution serves as the basis of the analysis and is formed
using so-called same and mixed event correlations. Correlations from the same event are the
actual correlations of trigger jets and associated particles, calculated for each selected event.
In the mixed event technique, jets are correlated with particles from a pool containing tracks
from different events with similar trigger jet pT, vertex z, and centralities. For vertex z, there
are six bins in this pool, whose boundaries are given by (−10,−5,−2,0,2,5,10) in cm. The
boundaries for the centrality percentile binning are given by (0,1,2,3,4,5,10,20,30,40,50).

The mixed-event-corrected associated per-trigger yield for given jet pT-range, associate pT-
range, and centrality selection is defined as

Y (∆ϕ,∆η) =
1

Ntrig

d2Nassoc

d∆ηd∆ϕ
=

1
Ntrig

∑
cent,z

(

d2Nsame

d∆ηd∆ϕ

/

α
d2Nmixed

d∆ηd∆ϕ

)

, (1)

where the ratios in the sum are formed differentially in bins of centrality and vertex z.

The factor α in Eq. 1 is chosen such that the mixed-event correlations are normalized to unity
in the region |∆η|< 0.2, |∆ϕ|< 0.2 around the near-side jet peak where the efficiency for pairs
of parallel jets and associates is largest. The contribution of the statistical uncertainty of this
normalization to the total statistical uncertainty is negligible. The finite tracking efficiency and
the contamination from secondaries [60] is taken into account and a correction has been per-
formed for associated tracks differentially in η , pT, centrality, and vertex z for same and mixed
event correlations in Eq. 1. The efficiency maps were created using Monte Carlo simulations
for the same track definition and detector conditions. However, this correction turns out to be
negligible for all observables except for the absolute jet-associated yields, because its effect
mostly cancels in the used relative observables, which will be defined in Sec. 6.

In addition to the correction for detector inhomogenities and acceptance effects, the correlation
also needs to be corrected for background. The underlying background for the chosen observ-
ables mainly consists of the uncorrelated particle background baseline from soft processes and
the flow modulation in the correlation function. The background was found to be independent of
∆η within |η|< 0.9 [61] and is therefore estimated as a function of ∆ϕ for the whole ∆η-range
as B(∆ϕ). To avoid including parts of the jet signal, B(∆ϕ) is calculated in 1.0 < |∆η| < 1.4,
where the contribution from the jet is expected to be small, based on measurements in pp colli-
sions.

The background is directly subtracted from the correlation function. The background-corrected
per-trigger yield serves as a basis for all subsequent measurements. It is defined as

Ycorr(∆ϕ,∆η) = Y (∆ϕ,∆η)−B(∆ϕ). (2)

To illustrate the impact of the background on the per-trigger yields, the uncorrected per-trigger
yields can be found in Fig. 1 for high- and low-pT associates. The background is nearly negli-
gible for high-pT associates and it is sizeable for low-pT associates. In the illustrated example
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Fig. 1: Illustration of per-trigger yields for the two different jet definitions (further discussed below):
high-pT associates of jets with pT,const ≥ 0.15 GeV/c and pT,chjet = 60–80 GeV/c (left) and low-pT

associates of jets with pT,const ≥ 3.0 GeV/c and pT,chjet = 30–40 GeV/c (right). No background sub-
traction was applied.

for low-pT associates, the signal to signal+background ratio, i.e. the percentage of the signal in
the measured observable, is roughly 0.1 within a radius of r < 0.3 around the near-side jet peak.
Note also that the background correction removes all ∆η-independent correlations, including
the away-side ridge which is not investigated in the presented analysis.

4 Jet reconstruction

The measurement of jets in heavy-ion collisions is challenging since a single event can con-
tain multiple, possibly overlapping, jets from independent hard nucleon–nucleon scatterings. In
addition, low transverse momentum particles originating from soft processes lead to a fluctuat-
ing background which strongly influences the jet reconstruction. The relative effect is largest
for low-pT jets and most central events. Consequently, jet reconstruction in heavy-ion colli-
sions requires a robust jet definition, and a procedure to correct for the presence of the large
background [62].

Jets were reconstructed using the anti-kT or the kT algorithms [63] in the FastJet package [64]
with a resolution parameter of R = 0.3. Only those jets whose axis was reconstructed within
|η| < 0.6 were kept in the analysis to assure the nominal jet cone is fully contained within
the track acceptance of |η| < 0.9. This limits the effect of the acceptance boundaries on the
measured jet spectrum. Jets reconstructed by the anti-kT algorithm were used to quantify signal
jets, while jets reconstructed by the kT algorithm were used to quantify the contribution from
the underlying event [65].

Two different jet definitions are used in this analysis: for measurements at high associate-pT,
jets are measured with a constituent cut pT,const ≥ 0.15 GeV/c, measurements at low associate-
pT are performed for jets measured with a constituent cut pT,const ≥ 3.0 GeV/c. Jets with
pT,const ≥ 0.15 GeV/c are reconstructed using all charged particles available for jet reconstruc-
tion and, thus, the fragmentation bias is as small as possible. This bias is caused by only
including certain particles of the jet and could lead to a sample of harder fragmenting jets when
leaving out particles at low pT. On the other hand, using all charged particles available for jet
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reconstruction also includes particles in the correlation analysis which were already used in the
jet finding process. The jet finding algorithm selects regions in momentum space with large
energy flow. This implies that the distribution of charged particles inside the jet is biased. For
example, the radial distribution of particles with respect to the jet axis will show a small de-
pletion at distances just outside the jet cone radius R. This particularly affects the shape of the
jet, i.e. how the constituents are distributed relative to the jet axis, leading to an autocorrelation
bias.

Therefore, the jets themselves and in particular their shapes are intimately connected to the jet
definition. For high-pT associates, the autocorrelation bias cannot be avoided and has to be
accepted as a part of the jet definition.

Low-pT associates are broadly distributed up to large distances relative to the jet. Since the
jet finding algorithm clusters the jets roughly into cones with a nominal radius of R = 0.3,
it strongly affects the shape of the jet. When measuring properties of low-pT associates, we
avoid the autocorrelation bias by adapting the jet definition: Trigger jets and associates can
be decoupled by using jets with constituents above a certain threshold and associates below

the threshold. Therefore, for measurements at low associate-pT, jets are reconstructed with
pT,const ≥ 3 GeV/c. Using a geometrical matching procedure that is performed on two col-
lections of the differently defined jets which are reconstructed in each event it was checked
that the jet axes for both jet definitions do not strongly change. For instance, for jets with
pT,const ≥ 3 GeV/c and pT,chjet > 30 GeV/c the mean and standard deviation of the matched
jet distance distribution are approximately given by 0.016 and 0.014, respectively. However,
it must be emphasized that these jet definitions select two different jet samples and that the
autocorrelation bias was avoided here at the expense of a possible fragmentation bias.

The transverse momentum of reconstructed jets including constituents as low as 0.15 GeV/c is
affected by the contribution from the underlying event. In order to suppress the contribution of
such background to the measurement of the jet momentum, we followed the approach described
in Refs. [65, 66], which addresses the average additive contribution to the jet momentum on a
jet-by-jet basis. The underlying background momentum density ρ was estimated event-by-
event using the median of praw

T, jet/Ajet, where praw
T, jet is the uncorrected jet transverse momentum

and Ajet is the area of jets reconstructed with the kT algorithm.

The average raw background momentum density 〈ρ〉 decreases towards more peripheral colli-
sions. It is 〈ρ〉 ≈ 110, 65, and 25 GeV/c in the 0–10%, 10–30%, and 30–50% most central
Pb–Pb collisions, respectively. The background momentum density is a detector-level quan-
tity that depends on the tracking efficiency and track definition. For signal jets reconstructed
with the anti-kT algorithm and constituents above 0.15 GeV/c, the background density scaled
by the area of the reconstructed signal jet was subtracted from the raw reconstructed transverse
momentum (praw

T, jet) of the signal jet according to pT,chjet = praw
T, jet −ρ ·Ajet.

Due to region-to-region variations of the background, the background-corrected jet transverse
momenta are affected by residual fluctuations. To give an estimate for these fluctuations for the
jet definition used, cones with radius R = 0.3 are randomly placed in each event. In these cones,
the track momenta are summed and the background is subtracted to calculate δ pT:

δ pT = ∑
cone

pT, track −ρ ·A, (3)

where A is the area of the cone.
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For the 0–10%, 10–30%, and 30–50% most central collisions, the standard deviation of the
δ pT-distribution as a measure for the magnitude of the fluctuations has been evaluated to 6.7,
5.1, and 3.3 GeV/c, respectively. Since the δ pT-distribution also contains the jet signal, the
standard deviation of the full distribution is impacted by it. A lower limit of these fluctuations
is given by performing a Gaussian fit of the left-hand side of the δ pT-distribution. The Gaussian
widths were evaluated to 5.5, 4.0, and 2.3 GeV/c for the 0–10%, 10–30%, and 30–50% most
central collisions. The sample of jets that only uses constituents above 3 GeV/c is not corrected
for the underlying event as the constituent cut already strongly suppresses the contribution from
the background such that it is negligible.

In addition to background fluctuations, also the finite detector resolution and single particle
efficiency influence the measurement. To quantify both effects, the ratio of reconstructed jet
momentum pT, rec and true jet momentum pT, true was calculated taking into account the de-
tector resolution by using a response matrix and background fluctuations given by the δ pT

distributions. The response matrix was created from Monte Carlo simulations for which the
true jet momentum is known by geometrically matching particle-level PYTHIA jets with the
corresponding detector-level jets reconstructed using a full detector model in GEANT3. More
detailed studies have been performed for jets on the same dataset in Ref. [66].

There are two effects contributing to the jet momentum resolution: detector effects and under-
lying event fluctuations. The detector effects lead to a jet momentum response that is peaked
at pT, rec = pT, true, but has a tail to lower values of detector level momentum due to tracking
inefficiency. The tracking efficiency changes by only a few percent from peripheral to central
events. Background fluctuations produce an approximately Gaussian response, with a width
that depends strongly on centrality. The combined effect leads to a standard deviation in the jet
momentum resolution of 30% (20%) for jets with pT,chjet = 30 GeV/c and 27% (27%) for jets
with pT,chjet = 120 GeV/c for the 0–10% (10–30 and 30–50%) most central events.

It should be emphasized that pT,chjet refers to the jet transverse momentum at detector level,
corrected for background only. Since within-event fluctuations of the background are not cor-
rected for, the mean of the given pT,chjet-range is slightly higher than that of the underlying
true pT distribution for more central collisions where fluctations are dominant. Hence, due to
the steeply-falling jet spectrum, fluctuations lead to a shift of the spectrum to larger values. For
more peripheral collisions where detector effects are dominant, there is the opposite effect, i.e.
the spectrum is shifted to smaller values.

To give a rough estimate of the true jet populations for a given reconstructed jet momentum
range, projections of the response matrices, introduced above, are used [67]. For measured
pT,chjet-distributions, approximate ranges are given in Tab. 1 as a measure for the true jet mo-
mentum distributions. The true populations are defined as the smallest possible ranges around
the pT,chjet-range in which at least 68% of the jet population can be found.

5 Construction of PYTHIA baseline

In this analysis, reconstructed detector-level PYTHIA-jets serve as vacuum baseline, because
the size of the pp dataset at

√
s = 2.76 TeV is insufficient for this purpose.

To account for the fluctuations of the underlying event in Pb–Pb collisions, PYTHIA jets em-
bedded in real Pb–Pb collisions are used as a reference. Jets reconstructed in this reference
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Table 1: True jet populations pT, true in GeV/c corresponding to given pT,chjet-ranges for different event
centrality classes. The ranges are given such that they contain at least 68% of the jet population. The
most probable values of the distributions are given in brackets.

pT,const-cut 0.15 GeV/c 3 GeV/c
pT,chjet (GeV/c) 40–60 60–80 80–120 30–40 40–60
0–5% 11–87 (44) 22–111 (64) 49–144 (94) 7–59 (32) 21–88 (46)
5–10% 11–86 (46) 24–112 (66) 52–146 (94) 8–61 (32) 22–89 (46)
0–10% 11–86 (46) 25–113 (68) 54–147 (94) 10–63 (32) 24–91 (48)
10–30% 13–86 (50) 33–117 (70) 63–149 (98) 15–69 (32) 30–94 (48)
30–50% 25–91 (52) 47–118 (82) 75–147 (98) 23–73 (32) 36–95 (52)

dataset still show the same baseline jet properties but also include the effect of background
fluctuations from the Pb–Pb event. To create this reference dataset, the following procedure is
applied. Events are simulated with PYTHIA6 (Perugia-0 [68], version 6.421) followed by trans-
port in the detector using GEANT3 and full response simulation and reconstruction simulating
the same detector conditions as in the Pb–Pb dataset. The reconstructed tracks are embedded
into Pb–Pb events, i.e. they are combined with tracks from Pb–Pb events. In order to simulate
the same conditions as in Pb–Pb, the tracking efficiency in pp is decreased to the level expected
in Pb–Pb. Since the tracking efficiency in pp is higher than in Pb–Pb, 2% of the PYTHIA tracks
are randomly discarded before they are embedded [54]. Jet finding algorithms are applied to the
PYTHIA event and also to the combined PYTHIA + Pb–Pb event. Jets found in the combined
event are only accepted for the reference dataset if they can be matched geometrically with
those in the PYTHIA event. A matched embedded jet needs to be less than R = 0.3 away from
a PYTHIA jet.

Due to the very high particle occupancy of the Pb–Pb collision system, the probability to recon-
struct a PYTHIA jet in the embedded event is much lower than the probability to reconstruct a
jet of same momentum by overlapping a jet that already existed in the Pb–Pb event, even after
applying a geometrical matching procedure. Therefore, without any further intervention, the
embedded jet sample would consist mostly of Pb–Pb-jets overlapping low-pT PYTHIA jets.

Two approaches have been tested which ensure that the jet sample shows Pb–Pb-event-like fluc-
tuations of a PYTHIA jet, and not jets from the Pb–Pb event. The analysis baseline technique
uses a cut on the fraction of the jet pT that originates from the matched jet in PYTHIA. The
applied cut values are motivated by the underlying true jet distribution that shows two sepa-
rated populations: jets mostly consisting of particles from PYTHIA or from Pb–Pb. The cut
value was chosen to achieve the best separation of the two distributions. In the 0–10% most
central collisions, it is required that at least 20% of the jet constituents’ pT originate from the
PYTHIA jet. For more peripheral collisions, this fraction is increased to 25%. For jets with
pT,const ≥ 3 GeV/c, which were measured down to 30 GeV/c, a cut of 50% is applied. However,
this procedure might impose a bias on the implicitly accepted background fluctuations. There-
fore, variations around these nominal values were considered for the evaluation of systematic
uncertainties. Alternatively, a jet veto technique has been used: an embedded jet is not accepted
if it overlaps with an already existing jet of sizeable transverse momentum pT,chjet in the Pb–Pb
event. Several veto cut values between 15 and 40 GeV/c were tested. Eventually, it turns out
that both approaches yield very similar results. The reconstructed jets which survive the MC
percentage cut serve as an input to the next analysis steps which are the same as in the data
analysis.
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6 Observables

In this analysis, two features of particle jets are probed in Pb–Pb collisions: changes in the
particle pT composition of jets and their radial distribution relative to the jet axis.

To probe relative changes in the charged particle pT composition of jets in a surrounding cone
with R = 0.3, the jet-associated yield ratio is measured. The ratio is formed from the integrated
jet-associated per-trigger yields YPbPb and Yemb which represent the integrals of the per-trigger
yield in the jet cone for a given pT,assoc-range as introduced in Eq. 2. Technically, the integral is
the sum over the entries of all (∆η , ∆ϕ)-bins whose center is within distances of up to R = 0.3
around the jet axis in the background-corrected per-trigger yield histogram.

The jet-associated yield ratio is defined by RY = YPbPb/Yemb. It directly compares integrated
jet-associated per-trigger yields in Pb–Pb to the same yields for embedded PYTHIA jets. An
enhancement or suppression in associated yields is directly seen as a deviation from unity in the
ratio.

The relative radial particle distribution around the jet is directly derived from the jet-associated
yields. It shows the relative distribution of particle yields inside the jet cone. Thus, it is a
measure for the broadening or collimation of constituents with certain momenta in or around the
jet cone. As for the jet-associated yield ratio, this measurement is performed for high- and low-
pT jet-associated yields. The radial shape is normalized to represent a probability distribution. It
is defined in bins of r =

√

∆η2 +∆ϕ2, the distance to the jet axis, to exploit the radial symmetry
of the jet peak. In Refs. [48, 49], an asymmetric broadening of the near-side jet peak is observed
in two-particle correlations. It is strongest for low associate and trigger momenta and vanishes
for higher momenta. Therefore, in the analysis presented here, the influence of this asymmetry
on jet–hadron correlations was tested to check the radial symmetry of the jet peak. Even for
the lowest accessible jet and associated track momenta, no jet peak asymmetry was observed.
Measurements in ∆η and ∆ϕ lead to the same conclusions within statistical precision, which
justifies the presentation of the jet radial shape in bins of r. The correlation function which is
used to obtain the shape is originally binned in η and ϕ . The binning was chosen fine enough
to avoid significant binning effects.

For a given centrality-bin, and trigger and associate pT, it is defined by the following formula:

S(rmin,rmax) =
1
A

∫ rmax

rmin

Ycorr(r)dr, (4)

where Ycorr(r) represents the background-corrected per-trigger yield, rmin and rmax the bin
edges, and A =

∫ rrange
0 Ycorr(r)dr the integral for the self-normalization of the radial shape. The

upper limit in the integral used for the self-normalization is chosen to reflect the different
ranges of the shown radial shape and is rrange = 0.3 for the jets with pT,const ≥ 0.15 GeV/c
and rrange = 0.9 for jets with pT,const ≥ 3 GeV/c. The statistical uncertainty is calculated taking
into account the self-normalization.

7 Systematic uncertainties

Several sources of systematic uncertainties contribute to the full uncertainty of the measurement
and the evaluated individual uncertainties are combined using a quadratic sum, assuming they
are uncorrelated. Uncertainties for the following analysis aspects have been taken into account:
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Table 2: Table of systematic uncertainties for jet-associated yields in Pb–Pb, embedded PYTHIA, and
their ratio for high-pT associates (4–20 GeV/c) and low-pT associates (1–2 GeV/c) and for the 0–10%
most central collisions. Uncertainties are given as relative uncertainties in percentages.

pT,assoc (GeV/c) 4–20 1–2
pT,chjet (GeV/c) Observable 40–60 60–80 80–120 30–40 40–60
Background (%) Pb–Pb 0.3–0.6 0.7–1.5 1.5–2.0 6.9 8.0

Embedded 0.3–0.7 0.7–1.0 1.0–1.1 6.8 6.7
Ratio 0.4–0.7 0.1–0.7 0.4–1.6 6.9 9.6

Mixed event correction (%) Pb–Pb 0.2 0.3 0.5 0.2 0.2
Embedded 0.7 0.4 0.4 0.1 < 0.1
Ratio 0.7 0.5 0.3 0.2 0.2

Embedding (%) Pb–Pb - - - - -
Embedded 0.1–2.3 0.1–0.4 0.1–0.3 5.0 2.7
Ratio 0.1–2.3 0.1–0.4 0.1–0.3 4.6 2.7

Tracking efficiency (%) Pb–Pb 4.0 4.0 4.0 4.0 4.0
Embedded 4.0 4.0 4.0 4.0 4.0
Ratio - - - - -

Tracking PYTHIA (%) Pb–Pb - - - - -
Embedded 2.0 2.0 2.0 2.0 2.0
Ratio 2.0 2.0 2.0 2.0 2.0

PYTHIA vs. pp (%) Pb–Pb - - - - -
Embedded 5.0 5.0 5.0 2.0 2.0
Ratio 5.0 5.0 5.0 2.0 2.0

Total (%) Pb–Pb 4.0–4.1 4.1–4.3 4.3–4.5 8.0 9.0
Embedded 6.8–7.2 6.8 6.8 9.8 8.7
Ratio 5.5–5.9 5.4–5.5 5.4–5.6 8.8 10.3

Table 3: Table of systematic uncertainties for jet radial shapes for high-pT associates (4–20 GeV/c) in
Pb–Pb and embedded PYTHIA for the 0–10% most central collisions. Uncertainties are given as relative
uncertainties in percentages. Note that relative uncertainties grow for higher r values.

Data sample Pb–Pb Embedded PYTHIA
pT,chjet (GeV/c) 40–60 60–80 80–120 40–60 60–80 80–120
Background (%) 0.1–6.5 0.1–13.0 0.1–19.2 0.0–6.9 0.0–10.8 0.0–14.5
Mixed event corr. (%) < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Embedding (%) - - - 1.0–13.9 0.4–3.1 0.1–0.8
PYTHIA vs. pp (%) - - - 2.0 2.0 2.0
Total (%) 0.1–6.5 0.1–13.0 0.1–19.2 2.2–15.7 2.0–11.5 2.0–14.6

the non-jet-related background correction technique, the mixed-event correction, the selection
of embedded jets, the tracking efficiency, and the impact of using a PYTHIA reference instead
of a measured reference in pp at the same energy. The uncertainties are partly correlated point-
to-point. The discussed uncertainties are summarized in Tabs. 2–4.

To correct for the non-jet-correlated background in the correlation function, the background is
evaluated on the sidebands and subtracted in ∆ϕ , as described in Sec. 3. Different underlying
background methods for the correlation functions have been tested: for systematic uncertainties,
the definition of the sideband range was varied to 1.1 < |∆η|< 1.3 instead of 1.0 < |∆η|< 1.4.
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Table 4: Table of systematic uncertainties for jet radial shapes for low-pT associates (1–2 GeV/c, 2–
3 GeV/c) in Pb–Pb and embedded PYTHIA for jets with pT,chjet = 40–60 GeV/c and for the 0–10%
most central collisions. Uncertainties are given as relative uncertainties in percentages. Note that relative
uncertainties grow for higher r values.

Data sample Pb–Pb Embedded PYTHIA
pT,assoc (GeV/c) 1–2 2–3 1–2 2–3
Background (%) 1.6–7.5 0.4–8.8 2.2–11.9 1.0–4.2
Mixed event corr. (%) < 0.1 < 0.1 < 0.1 < 0.1
Embedding (%) - - 1.2–7.4 0.8–11.3
PYTHIA vs. pp (%) - - 2.0–10.0 2.0–10.0
Total (%) 1.6–7.5 0.4–8.8 6.2–13.0 4.5–15.7

In addition, a simpler method that approximates the background by a constant baseline (B(∆ϕ =
const)) has been used.

The mixed-event acceptance/inhomogenity correction is a small correction. Two variations are
considered for systematic uncertainties. First, the mixed-event correction is calculated inclu-
sively for all ∆ϕ . Second, the normalization of the mixed-event correlations is performed for
|∆η|< 0.3 and full |∆ϕ| instead of using the plateau in |∆η|< 0.2 and |∆ϕ|< 0.2.

In the embedding, a cut motivated by studying the underlying true jet distributions is applied
on the fraction of jet pT originating from the PYTHIA event, as described in Sec. 5. Instead of
cutting at 20% for 0–10% centrality, and 25% for other centralities, the cut is varied to 15% and
25% for 0–10% centrality, and to 20% and 30% for other centralities. As described above, for
jets with pT,const ≥ 3 GeV/c a baseline cut value of 50% is used. For systematic variation, the
cut is performed at 15% and 60% for 0–10% centrality, 20% and 60% for other centralities.

The detector has a finite single track reconstruction efficiency, which is only known with finite
precision. Since all observables are corrected for the tracking efficiency, they are all directly
affected by its uncertainty. Detailed studies of the tracking efficiency uncertainty have been
performed to evaluate the size of its systematic uncertainty [54, 66]. The studies indicate that
the (absolute) uncertainty is 4% for Pb–Pb collisions, mainly due to an imperfect description of
the ITS-TPC matching efficiency. Another uncertainty from the tracking efficiency correction
enters this analysis due to the usage of PYTHIA simulations. The tracking efficiency of the
PYTHIA data is artificially lowered by 2% before embedding to account for the lower tracking
efficiency in Pb–Pb collisions. As a conservative estimate, a relative uncertainty of 100% is
assigned to this value. Both components of the tracking efficiency uncertainty are taken into
account as independent contributions to the uncertainty, i.e. added in quadrature to the full
uncertainty. These uncertainties are directly used as uncertainties for the yields, see Tab. 2.
For the jet-associated yield ratio, the uncertainty on the tracking efficiency in Pb–Pb cancels,
because it is correlated in Pb–Pb and the embedded PYTHIA reference. For the radial shape
distribution, a change in the tracking efficiency has no impact either, since these observables are
relative quantities that do not depend on the global magnitude of the tracking efficiency. As an
alternative approach to estimate the impact of these two uncertainties of the tracking efficiencies
on the observables, the full analysis was redone using corrections that assume the above given
lower tracking efficiencies. There was no significant impact on the presented results.

Finally, an uncertainty is assigned since PYTHIA is used as a baseline instead of a measured
pp reference. Including this uncertainty, the conclusions are also valid for a pp reference and
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not only for an embedded PYTHIA reference. In order to do so, the presented observables were
calculated and compared for PYTHIA events and pp collisions at 7 TeV. Within the statistical
precision of this comparison, it is only possible to give an estimate for the inclusive pT,chjet-
range. The relative deviations of each observable between both datasets enter directly as a
systematic uncertainty and are on the level of a few percent, cf. Tabs. 2–4.

8 Results
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Fig. 2: Centrality dependence of jet-associated yields (left) and yield ratios (right) for high-pT associates.
Boxes represent systematic uncertainties, error bars represent statistical uncertainties. Observables are
corrected for acceptance and background effects.
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Figures 2 and 3 depict the jet-associated yields (left) and yield ratios (right) for high-pT and low-
pT associated particles, respectively. Both quantities are shown as a function of event centrality
and for several selected jet transverse momenta.

The jet-associated yield ratio shows a suppression with a significance of several standard de-
viations in the centrality range 0–50% for the considered high-pT associated particles. In the
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probed jet momentum range, no significant pT,chjet-dependence is observed. The centrality-
dependent linear slope of the distribution for pT,chjet = 40–60 GeV/c is more than one standard
deviation away from zero, taking into account statistical and systematic uncertainties added in
quadrature, indicating that there is a slightly stronger suppression for more central collisions in
this case. As a cross check, the same observable was also measured for jets with several higher
minimum pT,const-cuts, i.e. 1, 2, and 3 GeV/c, which are less affected by the underlying event.
They lead to similar conclusions.

The jet-associated yield ratio for low-pT associates has much larger statistical and systematic
uncertainties than the ratio of high-pT constituents, thus it is not possible to draw a definite
conclusion.
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The measured jet relative radial shapes are presented in Figs. 4 and 5. The top panels show the
self-normalized distributions, the difference and the ratio of the shapes in Pb–Pb and embedded
PYTHIA can be found in the two lower panels. The jet radial shapes of high-pT associates
are measured for pT,chjet = 40–60 GeV/c, 60–80 GeV/c, and 80–120 GeV/c. Shapes of low-
pT associates are presented for jets with pT,chjet = 30–40 GeV/c and pT,const >3 GeV/c for
associates with pT,assoc = 1–2 GeV/c and pT,assoc = 2–3 GeV/c.

In general, the radial shape measurements indicate that all jet-associated yields are similarly
distributed relative to the jet axis in Pb–Pb and embedded PYTHIA. The yields of high-pT

associates appear to be slightly more collimated near the core for jets in Pb–Pb, though the
absolute effect is small. While the shape is not significantly changed for jet transverse momenta
between 40 and 60 GeV/c in Pb–Pb compared to the reference, there is a visible collimation
for higher jet momenta above 60 GeV/c. This can be seen best in the difference distributions
∆PbPb−emb of Fig. 4 which show that a larger fraction of the associated yield can be found near
the core in Pb–Pb collisions.
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Fig. 5: Jet relative radial shape distributions, differences, and ratios for the 0–10% most central collisions
for two different low-pT constituent ranges. Boxes represent systematic uncertainties, shaded boxes
include uncertainties from PYTHIA/pp comparison, and error bars represent statistical uncertainties.
Observables are corrected for acceptance and background effects.

The ratio distributions show that the collimation effect persists up to r = 0.2, which is best
visible for jets with pT,chjet = 60–80 GeV/c. In the CMS measurement [50], no significant
change of the near-side jet peak width is observed in Pb–Pb for high-pT associates and jets
above 120 GeV/c. However, the magnitude of the effect observed here is compatible with
the observations within uncertainties. Also note that the CMS data hints as well to a small
collimation of the peak for higher-pT associates (4–8 GeV/c). Possible effects which might
lead to a collimation include a relative change in the quark/gluon content in Pb–Pb compared
to the reference [69], as well as a suppression of large-angle soft radiation in the coherent jet
energy loss picture [70, 71]. Low-pT jet-associated yields presented in Fig. 5 are measured up
to a distance of r = 0.9 relative to the jet since in this case the associates are decoupled from
the trigger jets.
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For pT,assoc = 1–2 GeV/c, a hint of a broadening of the radial shape is observed for jets with
momenta between 30 and 40 GeV/c for the given definition. The broadening is visible in the
difference distribution of the left plot in Fig. 5: in Pb–Pb collisions, a smaller fraction of par-
ticles can be found directly next to the jet axis. For higher associate transverse momenta, i.e.
pT,assoc = 2–3 GeV/c, there is no significant modification of the low-pT radial shape of jets in
Pb–Pb collisions within the large current experimental uncertainties. A robust measurement of
this observable for pT,chjet = 40–60 GeV/c or higher momenta is not possible due to the insuffi-
cient size of the dataset. For higher jet momenta above 120 GeV/c, CMS measures a significant
broadening of the near-side jet peak.

9 Summary

The presented results constitute the first attempt to study jet–hadron correlations with track-
based jets down to transverse momenta of 30 GeV/c in Pb–Pb collisions. The jet radial shapes
and the change in the particle pT composition were measured in Pb–Pb collisions at

√
sNN =

2.76 TeV for high- and low-pT associates and compared to embedded PYTHIA simulations.
The number of high-pT associates in Pb–Pb collisions is suppressed compared to the reference
by roughly 30 to 10%, depending on centrality. The radial particle distribution relative to the
jet axis shows a moderate modification in Pb–Pb collisions with respect to PYTHIA. High-pT

associate particles are slightly more collimated in Pb–Pb collisions compared to the reference.
For jets with pT,const ≥ 3 GeV/c, the radial distributions of low-pT associates were measured.
A hint of a broadening of the low-pT radial shapes is observed for pT,assoc = 1–2 GeV/c. The
shape for pT,assoc = 2–3 GeV/c does not show a significant modification within its large un-
certainties. The results are in line with both previous jet–hadron-related measurements from
the CMS Collaboration and jet shape measurements from the ALICE Collaboration at higher
pT and are consistent with the currently established picture of in-medium parton energy loss
effects on jet shape properties.
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