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Abstract

Y production in p—Pb interactions is studied at the centre-of-mass energy per nucleon—nucleon colli-
sion /sy = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed
reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass ra-
pidity intervals 2.03 < yems < 3.53 and —4.46 < yems < —2.96, down to zero transverse momentum.
In this work, results on the Y(1S) production cross section as a function of rapidity and transverse
momentum are presented. The corresponding nuclear modification factor shows a suppression of
the Y(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppres-
sion is stronger in the low transverse momentum region and shows no significant dependence on
the centrality of the interactions. Furthermore, the Y(2S) nuclear modification factor is evaluated,
suggesting a suppression similar to that of the Y(1S). A first measurement of the Y(3S) has also been
performed. Finally, results are compared with previous ALICE measurements in p—Pb collisions at
VSan = 5.02 TeV and with theoretical calculations.
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1 Introduction

Quarkonium resonances, i.e. bound states of a heavy quark (Q) and anti-quark (Q), are well-known
probes of the formation of a quark—gluon plasma (QGP) which can occur in heavy-ions collisions. The
high colour-charge density reached in such a medium can, in fact, screen the binding force between the
Q and Q, leading to a temperature-dependent melting of the quarkonium states according to their binding
energies [[1]].

A suppression of bottomonium resonances, the bound states formed by b and b quarks, was observed in
Pb-Pb collisions, at the LHC energies of | /s =2.76 TeV and /5y = 5.02 TeV by the ALICE [2}3] and
CMS [4H6] experiments. All the Y resonances show a reduction in their production yields compared to
pp interactions at the same centre-of-mass energy, scaled by the number of nucleon—nucleon collisions.
Furthermore, the magnitude of the suppression is significantly different for the three resonances and it
increases from the tightly bound Y(1S) to the loosely bound Y(3S) [4H6], as expected in a sequential
suppression scenario, with the binding energies of the Y states ranging between ~1 GeV for the Y(1S) to
~0.2 GeV for the Y(3S) [7]. Modifications to the bottomonium production might also be induced by cold
nuclear matter (CNM) mechanisms not related to the formation of the QGP. The modification of the quark
and gluon structure functions for nucleons inside nuclei, modeled either via nuclear parton distribution
functions (nPDFs) [8H11]] or through a Color Glass Condensate effective theory [12]], or the coherent
energy loss of the QQ pair during its path through the cold nuclear medium [13] are examples of CNM
effects which can influence quarkonium production [14]. The size of these effects is usually assessed
in proton—nucleus collisions. These interactions also allow for the investigation of additional final state
mechanisms, which can modify the production in particular of the more loosely bound resonances [15-
17].

ALICE has published results on the modification of the Y(1S) production yields as a function of the
centre-of-mass rapidity (yems) using the 2013 p-Pb collisions data sample at /s = 5.02 TeV [18].
The size of the observed suppression was found to be similar in the forward and backward rapidity
regions. Theoretical calculations based on the aforementioned CNM mechanisms fairly describe the
forward-y.ms measurements, while they slightly overestimate the results obtained at backward rapidity.
Furthermore, the measurement of the Y(2S) to Y(1S) ratio [18]], Y(2S)/Y(1S), was consistent, albeit within
large uncertainties, with the one obtained in pp collisions [19], suggesting CNM effects of the same size
on the two resonances both at forward and backward rapidity. Consistent results were also obtained by
the LHCb experiment [20] in a similar kinematic region. However, it should be noted that ATLAS [21]]
and CMS [22] measurements of Y(2S)/Y(1S) at midrapidity suggest a stronger suppression of the Y(2S)
with respect to the Y(1S) state, as expected if final state effects are at play [[15].

In 2016, the LHC delivered p-Pb collisions at /sy = 8.16 TeV. The increase both in integrated lumi-
nosity, about a factor of 2 larger than the one collected in 2013, and in the bottomonium production cross
section, due to the higher centre-of-mass energy, allows a more detailed study of the production of the T
states. In this paper, results on the Y(1S) production as a function of y.ns, transverse momentum (pr) and
centrality of the collisions will be discussed and compared with the measurements performed in p—Pb
collisions at /s = 5.02 TeV and with theoretical calculations. A comparison of the Y(2S) and Y(3S)
to Y(1S) production yields and nuclear modification factors, integrated over y.nms, pr and centrality, will
also be presented. Finally, the results will be compared with the corresponding measurements obtained
by LHCb at the same energy [23]]. It should be noted that all the presented results refer to the Y inclu-
sive production, i.e. to Y either produced directly or coming from the feed-down of higher-mass excited
states.
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2 Experimental apparatus and data sample

A detailed description of the ALICE apparatus and performance can be found in [24} 25]]. The forward
muon spectrometer [26] is the main detector used in this analysis. It consists of five tracking stations
made of two planes of Cathode Pad Chambers each, followed by two trigger stations each one composed
by two planes of Resistive Plate Chambers. A 10 interaction-length (A;) absorber, placed in front of the
tracking system, filters out most of the hadrons produced in the collisions. Low-momentum muons and
hadrons escaping the first absorber are stopped by a second 7.2 A;-thick iron wall, placed in front of the
trigger stations. The momentum of the particles is evaluated by measuring their curvature in a dipole
magnet with a 3 Txm integrated field. The muon spectrometer measures muons in the pseudorapidity
interval —4 < m < —2.5 in the laboratory reference frame. It also provides single and unlike- or like-
sign dimuon triggers based on the detection in the trigger system of one or two muons, respectively,
having a transverse momentum higher than a programmable threshold set to pr , = 0.5 GeV/c. This
threshold is not sharp and the single muon trigger efficiency reaches a plateau value of ~98% at about
pru ~1.5GeV/e.

The primary interaction vertex of the collision is reconstructed using the two innermost layers of the
Inner Tracking System (Silicon Pixel Detector, SPD) [27]], extending over the pseudorapidity intervals
In| <2 and |n| < 1.4, respectively. The VO detector [28]], composed of two sets of scintillators covering
the pseudorapidity intervals 2.8 <1 < 5.1 and —3.7 < 1 < —1.7, provides the luminosity measurement,
which can also be obtained independently from the information of the TO Cherenkov detectors [29]],
covering the regions 4.6 < 1 < 4.9 and —3.3 < 1 < —3. The VO detector is also used to provide the
minimum bias (MB) trigger, defined by the coincidence of signals in the two sets of scintillators. The
trigger condition used in this analysis is based on the coincidence of the MB trigger with the unlike-sign
dimuon one (uu-MB). The removal of beam-induced background is based on the timing information
provided by the VO and by two sets of Zero Degree Calorimeters (ZDC) [30] placed at 112.5 m from
the interaction point, along the beamline. The ZDCs are also used for the centrality estimation as it
will be discussed in Sec. [3] Finally, for the study of the Y production as a function of the centrality of
the collisions, pile-up events in which two or more interactions occur in the same colliding bunch are
removed using the information from SPD and V0.

Further selection criteria, commonly adopted in the ALICE quarkonium analyses (see e.g. [[18}131]]), are
applied to the muon tracks forming the dimuon pair. Muon tracks must have a pseudorapidity value
in the range —4 < 1, < —2.5, corresponding to the muon spectrometer acceptance, and they should
point to the interaction vertex to remove fake tracks and particles not directly produced in beam-beam
interactions. Their transverse coordinate at the end of the front absorber (R,,s) must be within 17.6 cm
< Raps < 89.5 cm, to remove muons not passing the homogeneous region of the absorber. Finally,
tracks reconstructed in the tracking chambers of the muon spectrometer should match the track segments
reconstructed in the trigger system. This matching request helps to further reject hadron contamination
and ensures that the reconstructed muons fulfill the trigger condition.

The data were collected with two beam configurations obtained by inverting the directions of the pro-
ton and Pb beams circulating inside the LHC. In this way it was possible to cover both a forward
(2.03 < yems < 3.53) and a backward (—4.46 < yems < —2.96) dimuon rapidity interval, where the posi-
tive (negative) y.ms refers to the proton (Pb) beam going towards the muon spectrometer. The collected
integrated luminosities for the corresponding data samples, referred to as p—Pb (forward rapidity) and
Pb—p (backward rapidity) in the following, are Z*° =8.440.2nb~! and £ = 12.8+0.3nb"! [32].

int int

3 Data analysis

The results presented in this paper are based on an analysis procedure similar to the one described in
[18]] for the study of the Y production in p—Pb collisions at /s, = 5.02 TeV.
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The Y(1S), Y(2S) and Y(3S) production cross sections, corrected by the branching ratio for the decay in
a muon pair (B.R.y_,,+,-), are obtained, for a given (Aycms, Apr) interval, as

2T
d“o,p, _ Ny )
dycmsdpr PP & (A X &) X Ayems X ApT X BRy 14y ’

int

where Ny is the number of signal counts and (A X €) is the corresponding acceptance and efficiency
correction in the kinematic bin under study, while the branching ratios are (2.48 +0.05)% for Y(1S),
(1.93+0.17)% for Y(2S) and (2.18 0.21)% for Y(3S) [33].

The number of Y (nS) is obtained by fitting the unlike-sign dimuon invariant mass spectrum with a combi-
nation of signal shapes to describe the Y resonances and an empirical function to model the background.
More in detail, the background is described by several combinations of exponential and polynomial
functions or by a Gaussian function with a mass-dependent width. For the resonance shapes, extended
Crystal Ball functions [34], with power-law tails on the right and left sides of the mass peak are used.
Alternatively, pseudo-Gaussian functions with a mass-dependent width are also adopted [34]. The same
signal shape is chosen for all the Y states. The mass of the Y(1S) and its width oy(;s) are free parameters
of the fit, while the mass and the width of the Y(2S) and Y(3S) states are bound to those of the Y(1S) in

the following way: my sy = my(is) + (m?()]g) — m?a%)) and Oy (ns) = Oy(1s) X G%SS) / G%Cs)' The mass

value mgl()nc’s) is taken from [33]] and G%SS) is the width of the resonance as evaluated from a fit, with the
aforementioned signal functions, to the spectrum obtained from the Monte Carlo (MC) simulation also
used for the (A x €) correction. Due to the signal-over-background ratio of the order of ~0.7 (~1) in
p—Pb (Pb—p), measured in a 30 region around the Y(1S) mass, the non-Gaussian tails of the extended
Crystal Ball function can not be kept as free parameters of the fits. Hence, they are tuned on pp data at
V/s = 13 TeV, the largest data sample collected by ALICE so far, or, alternatively, on p—Pb or pp MC
simulations at /s, = 8.16 TeV and /s = 8 TeV, respectively. The same tails are adopted for the Y(2S)
and Y(3S) mass shapes. Examples of the fit to the invariant mass spectrum, for both the p—Pb and Pb—p
samples, are shown in Fig.[I]
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Figure 1: Invariant mass spectra of unlike-sign dimuons, integrated over pr, for Pb—p (left panel) and p—Pb (right
panel) collisions. The shapes of the Y(1S), Y(2S) and Y(3S) resonances are shown (dash-dotted lines), together
with the background function (dashed line) and the total fit (solid line).

The number of Y candidates, Ny, is evaluated as the average of the values obtained by varying the signal
and background functions as well as the fitting intervals (6 GeV/c? < myy < 13 GeV/c? or 7 GeV/c?
< myy < 12 GeV/c?). The statistical uncertainties are calculated as the average of the statistical uncer-
tainties over the various fits and the standard deviation of the distribution of the Ny values provides the
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systematic uncertainties on the signal extraction. For the Y(2S) and Y(3S) cases, an additional contri-
bution to the systematic uncertainty is included, to account for possible variations of their width with
respect to that of the Y(1S). In particular, their widths are allowed to vary between a minimum value
Oy(1s) and a maximum value Gy (jg) X G%SS) / G%?S), where the ratio G%SS) / G%CS) is obtained from MC
simulations alternative to the ones used for the (A x €) correction, i.e. based on different Y kinematic
input shapes, as it will be discussed later on. A further 5% systematic uncertainty is also included to
account for possible residual discrepancies between the detector resolution in MC and in the data.

The total number of Y(1S), integrated over the full kinematic range, amounts to Ny(jg) =909+ 62 (stat.) +
58 (syst.) and Ny(;s) = 918 & 55 (stat.) 4= 51 (syst.) for the forward and backward-rapidity regions, re-
spectively. Corresponding values for Y(2S) are Ny(o5) = 192 £ 39 (stat.) & 17 (syst.) and Ny(pg) = 194 +
34 (stat.) = 16 (syst.), while for the Y(3S) the values are Ny(3g) = 48 +- 36 (stat.) += 8 (syst.) and Ny(3s) =
95+ 30 (stat.) £ 12 (syst.). The systematic uncertainty, amounting to ~6% for the Y(1S) and ~8% for
the Y(2S), is dominated by the choice of the tail parameters in the fit functions and, in the Y(2S) case,
also by the allowed range of variation for the oy(5). In the Y(3S) case, the systematic uncertainties
are slightly larger, amounting to ~17% at forward rapidity and ~12% at backward rapidity. For pr- or
yems-differential Y(1S) studies, the systematic uncertainties have a similar size, reaching ~15% only in
the highest pt bin (8 GeV/c < pt < 15 GeV/c).

The acceptance and efficiency correction is calculated in a MC simulation, based on the GEANT3 trans-
port code [35]. The MC simulation is performed on a run-by-run basis to closely follow the evolution
of the performance of the detectors during the data taking. The Y(1S) are generated using rapidity and
transverse momentum distributions tuned on p-Pb or Pb—p data at | /sy = 8.16 TeV, through an iterative
procedure [31l]. The pr and y.ns integrated (A x €) amounts to 0.300 £ 0.006 for the Y(1S) at forward
rapidity and 0.273 £0.007 at backward rapidity, where the quoted uncertainties are systematic, the statis-
tical uncertainties being negligible. The lower (A x €) values measured in the Pb—p period, with respect
to the p—Pb one, are due to detector instabilities which affected temporarily the behaviour of two tracking
chambers. The limited size of the data sample do not allow for a similar tuning of the pt and y.s distri-
butions on data for the Y(2S) and Y(3S) resonances, hence the same shapes as for the Y(1S) are used. The
resulting (A x €) values show a negligible difference with respect to the Y(1S) ones. The systematic un-
certainties on (A X €) include contributions related to the choice of the MC pr and y.n,s input distributions
for the T states and to the evaluation of the tracking and trigger efficiencies. The systematic uncertainties
associated to the MC Y input shapes are evaluated as the maximum difference between the (A x €) eval-
uated with the aforementioned MC tuned on data and the values extracted from alternative MC samples
based on pr and ycps Y distributions either measured by the LHCb experiment in pp collisions at /s =
8 TeV [36] or obtained from existing CDF and LHC pp measurements [37H39] via a procedure similar
to the one described in [40]. Nuclear shadowing is also included to account for its influence on the bot-
tomonium kinematic distributions. These systematic uncertainties amount to 1% (1.3%) for p—Pb and
1% (1.6%) for Pb—p for the three resonances. They have a negligible pr-dependence, while they reach
up to 4% at the edges of the rapidity intervals. The systematic uncertainty on the trigger efficiency con-
sists of two contributions, one related to the evaluation of the intrinsic efficiency of each muon-trigger
chamber (1%) and one to small differences between the trigger response function estimated via data and
MC (0.6% in p—Pb and 0.2% in Pb—p, when integrating over y.ms and pr). This last source of uncer-
tainty is below 1% also for the pt or y.ms-differential studies. The systematic uncertainty associated to
the tracking efficiency is evaluated comparing the dimuon tracking efficiencies computed both in data
and MC. These efficiencies are computed combining the efficiency of each single muon-tracking cham-
ber, obtained relying on the redundancy of the tracking system. The resulting systematic uncertainties
amount to 1% for p—Pb and 2% for Pb—p, for both the y.ns and pr differential studies and for results
integrated over the kinematic domain. Finally, an additional 1% systematic uncertainty on the choice of
the x? cut on the matching between the tracks reconstructed in the tracking and in the trigger systems is
included. The systematic uncertainties associated to the trigger, tracking and matching efficiencies are
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considered to be identical for both the Y(1S) and Y(2S) resonances.

The integrated luminosities are obtained as %} = Nyvp/0Oms. The number of equivalent minimum bias
events, Ny, is evaluated by multiplying the number of events collected with the pu-MB trigger by
a factor Fyom, corresponding to the inverse of the probability of having a triggered dimuon in a MB
event [31]. This quantity is computed, run by run, as the ratio between the number of collected MB
triggers and the number of times the dimuon trigger condition is verified in the MB trigger sample.
Once averaged over all the runs, considering as weight the number of uu-MB triggers in each run,
Fhorm amounts to 679 =7 at forward rapidity and 372 + 4 at backward rapidity. The quoted uncertainty
(1%) is systematic and accounts for differences coming from an alternative evaluation method, based
on the information provided by the level-0O trigger scalers, as detailed in [41]. The V0O-based MB cross
section (opp) is measured from a van der Meer scan, and it amounts to 2.09 +0.04 b for the p-Pb
configuration and 2.10+ 0.04 b for the Pb—p one [32]]. In the luminosity systematic uncertainty quoted
in Table [T} the uncertainties on Fyorm and ovp are combined, together with a 1.1% (0.6%) contribution
due to the difference between the luminosities obtained with the VO and TO detectors in the p—Pb (Pb—p)
configurations [32].

The nuclear effects on the Y production are studied comparing the corresponding p—Pb production cross
section to the one measured in pp collisions, d? GSE) /dyemsdpr, obtained at the same centre-of-mass energy
and scaled by the atomic mass number of the Pb nucleus (Apy, = 208), through the so-called nuclear
modification factor Rppy, defined as

d Ggpb /dyemsdpT

) (2)
APb X dzogp/dycmsde

Rpr =

The proton—proton reference is based on the LHCb measurements of the bottomonium production cross
section in pp collisions at /s = 8 TeV [36], in —4.5 < yems < —2.5 and 2 < yems < 4, corrected by a
factor to account for the slightly different centre-of-mass energies of the interactions. This correction
factor is evaluated interpolating the LHCb measurements at /s = 7, 8 and 13 TeV [36, 42], as detailed
in [43]]. It amounts to 1.02 for both the Y(1S) and Y(2S), showing a negligible y.ms dependence and
varying by 1% from low to high pr. A systematic uncertainty on the determination of this factor (1%)
is assigned, based on the choice of the different functions used for the energy-interpolation. The Y
production cross sections in pp collisions at /s = 8 TeV are also measured by ALICE [44]. The results
show good agreement with the corresponding LHCb values, but unlike the LHCb measurements, they
cover a slightly narrower rapidity region, 2.5 < ycms < 4, which does not match the rapidity coverage of
the p—Pb measurements. The Gpr(ls) cross sections, integrated over pr and yems, are 98.5 +0.1 (stat.) £
3.4 (syst.) nb in the range 2.03 < yems < 3.53 and 62.040.1 (stat.) £2.1 (syst.) nb in the range —4.46 <
Yems < —2.96. The corresponding cross sections for the Y(2S) are about a factor 3 smaller, being G;;(zs) =
31.9+0.1 (stat.) = 2.9 (syst.) nb at forward rapidity and 19.7 +0.05 (stat.) & 1.8 (syst.) nb at backward
rapidity. The Y(3S) production cross sections are Gpr(3S) =12.9+0.1 (stat.) == 1.3 (syst.) nb at forward
rapidity and 8.3 £0.1 (stat.) 0.8 (syst.) nb at backward rapidity.

The large data sample collected in p—Pb collisions in 2016 allows the Y(1S) production also to be studied
as a function of the collision centrality. The centrality determination is based on a hybrid model, as
discussed in detail in [45]. In this approach, the centrality is determined by measuring the energy released
in the ZDC positioned in the Pb-going direction. For each ZDC-selected centrality class, the average
number of collisions (Neon) is obtained as (Neon) = (Npart)-1, assuming the charged particle multiplicity
measured at midrapidity is proportional to the number of participant nucleons, Np,¢. The centrality
classes used in this analysis correspond to 2-20%, 20-40%, 40-60% and 60-90% of the MB cross
section. The 0-2% most central collisions are excluded from this analysis because the fraction of events
coming from pile-up in the ZDC is large in this centrality interval and a residual contamination might
still be present in spite of the applied pile-up rejection cuts [46].
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For centrality studies, the modification induced by the nuclear matter on the Y(1S) production is quanti-
fied through the nuclear modification factor denoted by Qppy, to be distinguished from R,py, since poten-
tial biases from the centrality estimation, unrelated to nuclear effects, might be present [45]. The Qppy, is
defined as

Ny

B.R.y_,y+y- X NuB X (A X €) X (Tppy) X GS%'

3)

Oppb =

The quantities entering Eq. [3] are evaluated according to the previously discussed procedure, with few
minor differences. When extracting the Y(1S) signal, for example, no significant variation of the Y(1S)
width as a function of the collision centrality is foreseen. Hence for centrality studies, the Y(1S) width is
fixed to the value obtained in the fit to the centrality-integrated invariant mass spectrum. The uncertainty
associated to the choice of the width is accounted for in the evaluation of the systematic uncertainty on the
signal extraction. No significant centrality dependence is expected for the (A x €) either, so the centrality-
integrated values are also used for all the centrality classes. To evaluate the number of MB events in
each centrality class i, F . is obtained from the centrality-integrated quantity scaled by the ratio of
the number of minimum bias and dimuon-triggered events in each centrality interval with respect to the
corresponding centrality integrated quantities, (Niz/Nms)/ (N;; u—mB/Nuu—mp). Alternatively, Ein is
computed directly for each centrality class and a further 1% difference between the two approaches is
included in the systematic uncertainty. The statistical uncertainty on F. .. is negligible. Finally, (T,pp) is
the centrality-dependent average nuclear thickness function, computed with the Glauber framework [45,

47]).

The systematic uncertainties entering the cross section and nuclear modification factor evaluation are
summarised in Table [

Table 1: Systematic uncertainties, in percentage, on the three T cross sections and nuclear modification factors for
both p—Pb and Pb—p collisions. Ranges in parentheses refer to the maximum variation as a function of centrality,
Yems OF pr. When no ranges are specified, the quoted values are valid for both the integrated and the differential
measurements. Error type I means that the uncertainties are correlated over pr or ycms, While error type II refers
to uncertainties correlated versus centrality. If no error type is specified, the uncertainties are considered as un-
correlated. The uncertainties on the pp reference and luminosity result from the combination of y.ns-uncorrelated
and correlated contributions. For the systematic uncertainty on the luminosity determination, the two terms, de-
fined according to [32], are separately quoted in the table, but combined when results are shown in the figures.
Uncertainties on the B.R. are taken from [33]].

Sources T(1S) T(2S) T(3S)
p-Pb | Pbp p-Pb | Pb—p | p—Pb | Pb—p
Signal extraction 6.4(5.1-15.9) [ 5.7(5.5-85) | 88 | 84 [ 174 | 126
Trigger efficiency (II) | 12 (1.1-13) | 1.0(1.0-1.1) | 1.2 | 1.0 | 1.2 | 1.0
Tracking efficiency (II) 1.0 2.0 1.0 2.0 1.0 2.0
Matching efficiency (II) 1.0 1.0 1.0 1.0 1.0 1.0
MC inputs 1.0(05-4.0) [1.004-4.0)] 13 | 16 | 14 | 18
pp reference (II) 02(0.1-0.4) [ 02(0.1-04) | 02 | 03 | 02 | 02
pp reference (LII) 2.8 2.8 2.8
P (1) 2.1 22 21 | 22 | 21 | 22
LR (1,1 0.5 0.7 05 | 07 | 05 | 07
Pile-up 2.0 2.0 - -
(Typb) 2.1-5.8 - -
B.R. () 2.0 8.8 9.6
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When R,py, is computed as a function of pr or yems, the systematic uncertainties on the signal extraction,
tracking, trigger and matching efficiencies, MC input shapes and a fraction of the uncertainty on the
pp reference are considered as bin-by-bin uncorrelated. On the contrary, the correlated contributions to
the pp reference and the luminosity uncertainties, which are common to the p—Pb or Pb—p systems, are
considered as correlated over pr OF yems. In the Qppy, evaluation, the uncertainties on signal extraction, on
the MC input shapes and on (7;,p,) depend on the centrality of the collision, while the other uncertainties
are common to all classes and, therefore, considered as correlated over centrality. Even if most cen-
tral events are not included in this analysis, a further 2% centrality-uncorrelated systematic uncertainty
is assigned to the Qppy, values, to account for residual pile-up which might still introduce a bias in the
measurement. This systematic uncertainty is evaluated by comparing the expected pile-up fraction, com-
puted from the pile-up probability associated to the observed interaction rate, and the amount of pile-up
events removed by the event selection procedure. For the Y(2S) and Y(3S) studies, similar values of the
systematic uncertainties are obtained, the main difference being the larger signal extraction uncertainties.

4 Results

The inclusive Y(1S) production cross sections are evaluated in the rapidity regions 2.03 < yems < 3.53
and —4.46 < ycms < —2.96 and their values, computed according to Eq.|1} are:

O (2.03 < yemg < 3.53) = 14.54 1.0 (stat.) = 1.0 (uncor. syst.) £ 0.3 (cor. syst.) b,

Oy (—4.46 < yems < —2.96) = 10.5+0.6 (stat.) £0.7 (uncor. syst.) 0.2 (cor. syst.) fb.

The corresponding values for the Y(2S) production cross sections are:

Ggp(gs) (2.03 < yems < 3.53) =3.940.8 (stat.) £ 0.4 (uncor. syst.) £0.3 (cor.syst.) ub,
G;rp(ss)(—4.46 < Yems < —2.96) = 2.8 £0.5 (stat.) 0.3 (uncor.syst.) 0.3 (cor.syst.) ub,
and for the Y(3S) are:
Gopy) (2.03 < yems < 3.53) = 0.8740.66 (stat.) £0.15 (uncor. syst.) =0.08 (cor. syst.) ub,
Oop) (—4.46 < yems < —2.96) = 1.24£0.39 (stat.) +0.15 (uncor. syst.) £ 0.12 (cor. syst.) pib.

The systematic uncertainties have two terms, one correlated and one uncorrelated as a function of rapid-
ity.

The data collected in p—Pb collisions at /s, = 8.16 TeV allow for the measurement of the Y(IS) pro-
duction cross sections differentially in y.ys bins or in pr intervals, up to pt < 15 GeV/c. The resulting
cross sections are shown in Fig. [2[ as a function of rapidity, integrated over transverse momentum, and
in Fig. 3] as a function of pr, in the forward- and backward-rapidity regions. In these figures, as in
all the following ones, the statistical uncertainties are shown as vertical error bars, while the systematic
uncertainties are represented as boxes around the points. The horizontal error bars correspond to the
Yems OF pr bin widths. The cross sections evaluated at forward and backward rapidities are compared
with the pp ones, obtained through the aforementioned interpolation procedure, scaled by the Pb atomic
mass number. The comparison shows that in the forward-rapidity region the Y(1S) cross sections are
smaller than the pp ones, in particular at low pr, suggesting the presence of CNM effects at play in p—Pb
collisions. On the contrary, in the backward-rapidity range the pp and the p—Pb cross sections are closer
and nuclear effects seem to have a less prominent role.
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Figure 2: T(1S), Y(2S) and Y(3S) differential cross sections as a function of y.ms in p—Pb collisions at /s =
8.16 TeV. The corresponding pp reference cross sections, obtained through the procedure described in Sec. [3]and
scaled by Apy, are shown as bands.
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Figure 3: Y(1S) differential cross section as a function of pr, at forward (closed symbols) and backward (open
symbols) rapidity, at , /s = 8.16 TeV. The pp reference cross section, obtained through the procedure described
in Sec. |Z|and scaled by Apy, is shown as a band.
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The limited available data sample allows for the evaluation of the T(2S) and Y(3S) cross sections in the
forward and backward-rapidity regions only integrating over the corresponding y.,s and pr ranges, as
shown in Fig. 2] A suppression with respect to the corresponding pp reference cross sections, scaled by
App, 1s observed.

Given the relatively small mass difference between the Y(1S) and Y(2S) (or Y(3S)) resonances, most of
the systematic uncertainties, except those on the signal extraction and on the choice of the pr- and yems-
input shapes used in the MC, cancel in the ratio of the resonance yields, multiplied by their branching
ratios, defined as

— Ny(ns)/ (AXE)y(ns)
[T(nS)/T(lS)]pr T Nrasy/(Ax€)yas)
The values of the T(2S) over Y(1S) ratio, obtained at forward and backward rapidity, are similar:

[Y(2S)/Y(18)]ppb(2.03 < Yems < 3.53) = 0.21+0.05 (stat.) - 0.02 (syst.),
[Y(2S)/Y(1S)]ppb(—4.46 < yems < —2.96) = 0.21 +0.04 (stat.) +0.01 (syst.).

As shown in Fig. {4 the ratio [Y(2S)/Y(1S)]ppb at /sy = 8.16 TeV is compatible, within uncertainties,
with the results obtained by the LHCb Collaboration in pp collisions at /s = 8 TeV [36]], in a slightly
wider kinematic range (2 < yems < 4.5, pr < 15 GeV/c).
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Figure 4: Ratio of Y(nS) over Y(1S) yields in p—Pb collisions at , /5. = 8.16 TeV and in pp collisions at /s = 8
TeV [36].

Similar conclusions can be obtained from the comparison of the Y(3S) over Y(1S) ratio, also shown in
Fig.[d The corresponding values at forward and backward rapidity are:

[Y(3S)/Y(18)]ppb(2.03 < Yems < 3.53) = 0.053 40.039 (stat.) +0.007 (syst.),
[Y(3S)/Y(1S)]ppb(—4.46 < Yems < —2.96) = 0.102+0.032 (stat.) & 0.009 (syst.).

The size of nuclear effects in p—Pb collisions can be better quantified through the nuclear modification
factor defined in Eq. @ The numerical values for the Y(1S) Rypy in the forward- and in the backward-
rapidity regions, integrating over pr, are:

10
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lef(,lljs)(2.03 < Yems < 3.53) =0.71£0.05 (stat.) £0.05 (uncor. syst.) £0.02 (cor. syst.),

Rgf(,ts)(—4.46 < Yems < —2.96) = 0.81 £0.05 (stat.) £0.05 (uncor.syst.) £0.02 (cor.syst.),

where (uncor. syst.) and (cor. syst.) refer to uncorrelated and correlated systematic uncertainties as a
function of rapidity.
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Figure 5: Y(1S) Rypy values at , /s = 8.16 TeV compared to those obtained at /s = 5.02 TeV in the same yems
interval [18]]. All systematic uncertainties are considered as uncorrelated between the results at , /s = 8.16 TeV
and | /5 = 5.02 TeV. The Rppy values at the two energies are slightly displaced horizontally to improve visibility.

The measured Rpp, values, shown in Fig. E], indicate a suppression of the Y(1S) production in p-Pb
collisions, with respect to the one in pp collisions, both at forward and backward rapidity, with a slightly
stronger suppression at forward ycys. The Rypp, is found to be 4.00 and 2.46 below unity in p—Pb and
Pb—p collisions, respectively. The results are compatible with the corresponding Ryp;, values measured in
p—Pb collisions at , /s = 5.02 TeV [18], also shown in Fig. E} From the comparison between the results
obtained at the two energies, an improvement in the precision of the Y(1S) R,p, measurements at V% =
8.16 TeV can be noticed, given the reduced size of the statistical and systematic uncertainties. The
improvement of the latter contribution is mainly related to the reduction in the uncertainties associated
to the tracking efficiencies and to refinements in the determination of the pp reference [[18]].

The rapidity dependence of the Y(1S) R,pp, explored in narrower ycn intervals, is shown in Fig. @, con-
firming the suppression already observed in the y.ys-integrated case. The results are also compared with
the Y(1S) LHCb measurements [23] at the same centre-of-mass energy and in slightly wider kinematic
ranges (—4.5 < yems < —2.5 and 2 < yems < 4, pr < 25 GeV/c). Fair agreement between the two sets of
results can be seen.

The pr dependence of the Y(1S) Rppy is shown in Fig. [/l A slight decrease of the Y(1S) nuclear modi-
fication factor, with decreasing pr, is observed. The behaviour is similar both at backward and forward
rapidities.

The yems and pr dependence of the Y(1S) Rypp, are compared, in Fig. @ and Fig.[/] to several models (re-
ferred in the following as nuclear shadowing models), based on EPS09 8], nCTEQ15 [10] or EPPS16 [9]
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Figure 6: Y(IS) Rypp values at /sy = 8.16 TeV compared with the corresponding LHCb results [23]], as a
function of yems. The Rppy values are also compared to model calculations based on several implementations
of nuclear shadowing (EPS09 NLO [8| [14} 48], EPPS16 and nCTEQ15 [9-11} 49451]]) and on parton coherent
energy loss predictions, with or without the inclusion of the EPS09 shadowing contribution [13,[14]. A theoretical
model including a shadowing contribution based on nCTEQ15 nPDFs on top of a suppression induced by comover
interactions [[15152] is also shown. For the LHCb results, the vertical error bars represent the quadratic sum of the
statistical and systematic uncertainties.
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Figure 7: Y(1S) Rppp as a function of pr for Pb—p (left panel) and p—Pb collisions (right panel). The Rpp;, values
are compared with theoretical calculations based on EPS09 NLO [[14, 48], nCTEQ15 and EPPS16 [OH11}, 49-51]]
shadowing implementations. Details on the theory uncertainty bands are discussed in the text.

sets of nuclear parton distribution functions. The EPS09 next-to-leading order (NLO) parametrisation is
combined with a NLO Colour Evaporation Model (CEM) [48]], which describes the Y production. The
corresponding uncertainty bands, shown in Fig. [6] and Fig. [7, are dominated by the uncertainties of the
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EPS09 parametrisation. The nCTEQ15 and the EPPS16 NLO nPDFs sets are implemented following
the Bayesian reweighting procedure described in [11}49-51]]. The uncertainty bands, in this case, rep-
resent the convolution of the uncertainties on the nPDFs sets and those on the factorisation scales. It
can be observed that the shadowing calculations describe fairly well the pt and y.ns dependence of the
Y(1S) nuclear modification factor in 2.03 < y.,s < 3.05, while they overestimate the results obtained
in —4.46 < yems < —2.96. Furthermore, while the pt dependence of the ALICE measurements indi-
cate slightly stronger cold nuclear matter effects at low p, the shadowing calculations suggest a flatter
behaviour. Finally, the y.ms dependence of the Rypy, is also compared with a model which includes the
effects of parton coherent energy loss with or without the contribution of the EPS09 nuclear shadow-
ing [13}14]. The model predicts a mild dependence of the energy loss mechanism on rapidity. When
the nuclear shadowing contribution is included, the model describes the forward-rapidity results, while
it slightly overestimates the backward-rapidity Rppp. The Y(1S) Rppy, is also compared with a theoret-
ical model which includes a shadowing contribution, based on the nCTEQ15 set of nPDFs, on top of
a suppression of the Y(1S) production due to interactions with comoving particles [[15} 52]. The un-
certainties associated to this theoretical calculation include a small contribution from the uncertainty on
the comovers cross section and are dominated by the uncertainties on the shadowing. Also in this case
the calculation slightly overestimates the ALICE measurements at backward ycms, While at forward yemgs
the data agree with the model. It can be noted that the interpretation of the Y(1S) behaviour in p—Pb
collisions would also benefit from a precise knowledge, so far still affected by large uncertainties, of the
feed-down contribution of the excited states into the Y(1S).

The Y(1S) nuclear modification factor is evaluated as a function of the collision centrality. The Qppp
results, shown in Fig. (8] are presented as a function of the average number of collisions, (Noj;) and it can
be observed that both at forward and backward rapidity the T(1S) centrality dependence is rather flat.
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Figure 8: Y(1S) Qppy, as a function of (N ), for Pb—p (left panel) and p—Pb collisions (right panel).

Finally, the nuclear modification factor is also evaluated for the Y(2S) and Y(3S) resonances, in the
forward and backward-y.n intervals, as shown in Fig. E} The corresponding Y(2S) R,py, values are:

R (2.03 < yems < 3.53) = 0.59 £0.12 (stat.) +0.05 (uncor. syst.) +£0.02 (cor. syst.)
R (—4.46 < yems < —2.96) = 0.69£0.12 (stat.) 0.05 (uncor. syst.) 0.02 (cor. syst.)
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the Y(2S) suppression being compatible with unity within 3.1¢ at forward y.ms and 2.30 at backward
Yems- The Y(3S) Rppy values are:

Rgl(:is) (2.03 < yems < 3.53) = 0.324+0.24 (stat.) £0.06 (uncor. syst.) £0.01 (cor. syst.)

REP(,E)S)(—4.46 < Yems < —2.96) = 0.71 £0.23 (stat.) £0.09 (uncor. syst.) £0.02 (cor. syst.)

The Y(3S) suppression is compatible with unity within 2.7¢ at forward y.ns and 1.26 at backward yeps.
The difference in the Rypp, of the Y(2S) and Y(1S) amounts to 0.56 in both rapidity intervals, suggesting,
in p-Pb collisions, a similar modification of the production yields of the two T states, with respect to
pp collisions. Unfortunately, the large uncertainties on the Y(3S) prevent robust conclusions on the
behaviour of the most loosely bound bottomonium state. The model which includes both the nuclear
shadowing contribution (nCTEQ15) and interactions with comoving particles [15} 52] suggests a small
difference between the nuclear modification factors of the three Y states. This difference is slightly more
important in the backward-rapidity range, while it becomes negligible at forward y.ms. By evaluating
the ratio of the Y(nS) to Y(1S) nuclear modification factors, the shadowing contribution and most of
the theory uncertainties, as well as some of the uncertainties on the data, cancel out. The shape of the
theoretical calculation is, hence, mainly driven by the interactions with the comoving particles, which
affect mostly the excited Y states in the backward rapidity region. As shown in the lower panel of Fig.[9]
the ALICE measurements and the model are in fair agreement, even if the uncertainties on the data do
not yet allow a firm conclusion on the role of comovers to be drawn.
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Figure 9: Y(1S), Y(2S) and Y(3S) Rppp at VN = 8.16 TeV as a function of ycms. The Rypp, values of the three
resonances are slightly displaced horizontally to improve visibility. Theoretical calculations including nCTEQ15
shadowing contribution and interactions between the Y states and comoving particles [[15 52] are also shown for
all the resonances. The grey box around unity represents the global uncertainty common to the three Y states. In
the lower panel, the ratio of the Y(2S) to Y(1S) and Y(3S) to Y(1S) Rypy, is shown, together with a calculation based
on the aforementioned theory model [[15,152].
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5 Conclusions

The ALICE measurements of the rapidity, transverse momentum and centrality dependence of the inclu-
sive Y(1S) nuclear modification factor in p—Pb collisions at /s ; = 8.16 TeV have been presented. The
results show a suppression of the T(1S) yields, with respect to the ones measured in pp collisions at the
same centre-of-mass energy. The Rppy values are similar at forward and backward rapidity with a slightly
stronger suppression at low pr, while in both rapidity intervals there is no evidence for a centrality de-
pendence of the Y(1S) Qppp. The results obtained at Vo = 8.16 TeV are similar within uncertainties to
those measured by ALICE in p-Pb collisions at the lower energy of /sy = 5.02 TeV and show a good
agreement with the LHCb measurements at the same centre-of-mass energy. Models based on nuclear
shadowing, coherent parton energy loss or interactions with comoving particles fairly describe the data
at forward rapidity, while they tend to overestimate the Rppy at backward ycps. The Y(2S) Rppy, has also
been measured, showing a strong suppression, similar to the one measured for the Y(1S), in the two
investigated rapidity intervals. Finally, a first measurement of the Y(3S) has also been performed, even
if the large uncertainties prevent a detailed comparison of its behaviour in p—Pb collisions with respect
to the other bottomonium states. These new bottomonium measurements represent an important base-
line for the understanding of the role of CNM effects in p—Pb collisions and open up the way for future
precision analyses with the upcoming LHC Run 3 and Run 4 data taking periods.
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