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Abstract

Measurements of K*(892)° and ¢ (1020) resonance production in Pb~Pb and pp collisions at ,/sny =
5.02 TeV with the ALICE detector at the Large Hadron Collider are reported. The resonances are
measured at midrapidity (|y| < 0.5) via their hadronic decay channels and the transverse momentum
(pr) distributions are obtained for various collision centrality classes up to pp =20 GeV/c. The
pr-integrated yield ratio K*(892)° /K in Pb—Pb collisions shows significant suppression relative to
pp collisions and decreases towards more central collisions. In contrast, the ¢(1020)/K ratio does
not show any suppression. Furthermore, the measured K*(892)°/K ratio in central Pb—Pb collisions
is significantly suppressed with respect to the expectations based on a thermal model calculation,
while the ¢(1020)/K ratio agrees with the model prediction. These measurements are an experi-
mental demonstration of rescattering of K*(892)" decay products in the hadronic phase of the colli-
sions. The K*(892)°/K yield ratios in Pb—Pb and pp collisions are used to estimate the time duration
between chemical and kinetic freeze-out, which is found to be ~ 4-7 fm/c for central collisions.
The pr-differential ratios of K*(892)%/K, ¢(1020)/K, K*(892)°/x, ¢(1020)/x, p/K*(892)° and
p/$(1020) are also presented for Pb—Pb and pp collisions at /sy = 5.02 TeV. These ratios show
that the rescattering effect is predominantly a low-pt phenomenon.
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1 Introduction

Several measurements in high-energy heavy-ion collisions at the Large Hadron Collider (LHC) [E—E]
and the Relativistic Heavy Ion Collider (RHIC) [@—@] have shown that a strongly-coupled Quark-Gluon
Plasma (QGP) is formed that subsequently hadronizes. Resonances, short lived hadrons that decay via
strong interactions, play an important role in characterizing the properties of hadronic matter formed in
heavy-ion collisions ﬂﬁ—@] Several resonances have been observed in pp and nuclear collisions [@—
]: £2(1270), p(770)°, A(1232)*F, £5(980), K*(892)%*, £(1385), A(1520) and ¢(1020) with life-
times of the order of 1.1 fm/c, 1.3 fm/c, 1.6 fm/c, 2.6 fm/c, 4.16 fm/c, 5.5 fm/c, 12.6 fm/c and 46.3
fm/c, respectively [@]. The wide range of their lifetimes (spanning from hadronization time to after
the kinetic freeze-out) allows them to be good probes of the dynamics of the system formed in ultra
relativistic heavy-ion collisions 1.

In the hadronic phase of the evolution of the system formed in heavy-ion collisions, there are two impor-
tant temperatures and corresponding timescales: the chemical freeze-out, when the inelastic collisions
among the constituents are expected to cease, and the later kinetic freeze-out, when all (elastic) interac-
tions stop [@—@] If resonances decay before kinetic freeze-out, then their decay products are subject
to hadronic rescattering that alters their momentum distributions. This leads to an inability to reconstruct
the parent resonance using the invariant mass technique, leading to a decrease in the measured yield rel-
ative to the primordial resonance yield, i.e. the yield at chemical freeze-out. The fraction of resonances
that cannot be recovered depends on the lifetime of the hadronic phase (defined as the time between
chemical and kinetic freeze-out), the hadronic interaction cross section of resonance decay products, the
particle density in the medium and the resonance phase space distributions. For example, a pion from a
K*(892)? meson decay could scatter with another pion in the medium as 7~ 7+ — p® — 7=z, At the
same time, after the chemical freeze-out, pseudoelastic interactions could regenerate resonances in the
medium, leading to an enhancement of their yields. For example, interactions like 7K — K*(892)° — 7K
and K"K* — ¢(1020) — K~ K™ could happen until kinetic freeze-out. Hence, resonances are probes
of the rescattering and regeneration processes during the evolution of the fireball from chemical to ki-
netic freeze-out. Indeed, transport-based model calculations show that both rescattering and regeneration
processes affect the final resonance yields [@, @]. Thermal statistical models, which have success-
fully explained a host of particle yields in heavy-ion collisions across a wide range of center-of-mass
energies ], are able to explain the measured resonance yields only after including rescattering
effects [37,38].

In this paper, the measurement of the production of K*(892)? and ¢ (1020) vector mesons at midrapidity
in Pb—Pb and pp collisions at \/sny = 5.02 TeV is presented. Although both vector mesons have sim-
ilar masses, their lifetime differs by a factor of larger than 10. This aspect is exploited to establish the
dominance of rescattering in central Pb—Pb collisions at the LHC. The kaon and pion daughters of the
short-lived K*(892)° — K rescatter with other hadrons in the medium. The magnitude of the effect is
mainly determined by the pion-pion interaction cross section [@], which is measured to be significantly
larger (factor 5) than the total kaon-pion interaction cross section [@]. The latter determines the magni-
tude of the regeneration effect ]. Thus with rescattering dominating over regeneration, the observable
K*(892)° yields should decrease compared to the primordial yields, and therefore, a suppression of the
K*(892)° /K yield ratio is expected in heavy-ion collisions relative to pp collisions. Furthermore, this
ratio is expected to decrease with increase in system size, which is determined by the collision central-
ity (maximum for central collisions). In contrast, because of a larger lifetime compared to that of the
hadronic phase, the ¢(1020) meson yields are not expected to be affected by rescattering [IEI @]. The
¢(1020) mesons are also expected not to be affected by the regeneration due to significantly lower KK
cross section compared to K7t and 77 cross sections 401 Hence the independence of the ¢(1020) /K
yield ratio of the system size will act as a baseline for corresponding K*(892)° /K measurements, thereby
supporting the presence of the rescattering effect in heavy-ion collisions. The lower K*(892)° /K yield
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ratio in Pb—Pb collisions compared to pp at the same /snn can then be used to estimate the time span
between chemical and kinetic freeze-out in heavy-ion collisions. Furthermore, due to the scattering of
the decay products, the low-p K*(892)° are less likely to escape the hadronic medium before decaying,
compared to high-pr K*(892)° [32]. This could alter the K*(892)° pr spectra in Pb—Pb collisions com-
pared to pp, while no such effect is expected for ¢ mesons. Therefore, studying pr-differential ratios
of K*(892)? and ¢(1020) mesons with respect to other non-strange () and strange (K) mesons, and
baryons (p) in Pb—Pb and pp collisions will help to establish the pr dependence of rescattering effects
and disentangle them from other physics processes. In addition, the measurements at /sy = 5.02 TeV
are compared to results from Pb—Pb collisions at /sy = 2.76 TeV [IEI, ]. Since production of parti-
cles and antiparticles is equal at midrapidity at LHC energies, the average of the yields of K*(892)° and
K*(892)O is presented in this paper and is denoted by the symbol K*? unless specified otherwise. The
¢(1020) is denoted by the symbol ¢ .

The paper is organized as follows: In section 2] the detectors used in the analysis are briefly described.
In section [3 the dataset, the analysis techniques, the procedure for extraction of the yields of K* and
¢ mesons and the study of the systematic uncertainties are presented. In section[d] the yields obtained by
invariant mass reconstruction of K** and ¢ mesons as a function of transverse momentum in Pb—Pb and
pp collisions at /sy = 5.02 TeV, the pr-integrated ratios of K* and ¢ relative to charged kaons, and
pr-differential ratios relative to charged 7, K and protons are reported. Finally, in section 3] the findings
are summarized.

2 Experimental apparatus

The measurements of K** and ¢ meson production in pp and Pb—Pb collisions have been performed
using the data collected by the ALICE detector in the year 2015. The details of the ALICE detector can
be found in Ref. [@—@] So we briefly focus on the following main detectors used for this analysis. The
forward VO detector, a scintillator detector with a timing resolution less than 1 ns, is used for centrality
selection, triggering and beam-induced background rejection. The VO consists of two sub-detectors, VOA
and VOC, placed at asymmetric positions, one on each side of the interaction point with full azimuthal
acceptance and cover the pseudorapidity ranges 2.8 < 11 < 5.1 and -3.7 < 1 < -1.7, respectively. The
centrality classes in Pb—Pb collisions are determined from the sum of the measured signal amplitudes in
VOA and VOC, as discussed in Ref. , ]. The collision time information is provided by TO which
consist of two arrays of Cherenkov counters TOA and TOC, positioned on both sides of the interaction
point ]. The Zero Degree Calorimeter (ZDC) consists of two tungsten-neutron and two brass-quartz
proton calorimeter placed at a distance of 113 m on both side of the interaction point. It is used to reject
the background events and to measure the spectator nucleons.

In the central barrel, the Inner Tracking System (ITS) and the Time Projection Chamber (TPC) are used
for charged-particle tracking and primary collision vertex reconstruction. The ITS consists of three sub-
detectors of two layers each, covering a central pseudorapidity range |1| < 0.9: Silicon Pixel Detector
(SPD), Silicon Drift Detector (SDD) and Silicon Strip Detector (SSD). The TPC is the main charged
particle tracking detector, and has full azimuthal coverage in the pseudorapidity range || < 0.9. Along
with track reconstruction, it also provides a measurement of the momentum and excellent particle iden-
tification (PID). The TPC provides the measured specific energy loss (dE /dx) to identify the particles,
especially in low momentum range (p < 1 GeV/c) where the dE /dx of particles are well separated. To
extend the particle identification to higher pr, the Time of Flight (TOF) detector is used in addition to the
TPC information. The TOF is based on the Multigap Resistive Plate Chamber (MRPC) technology and
measures the arrival times of particles with a resolution of the order of 80 ps. It covers a pseudorapidity
range || < 0.9 and provides excellent PID capabilities in the intermediate pr range by exploiting the
time-of-flight information.
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3 Data sample and analysis details

The pp data were collected using a minimum bias (MB) trigger. The logic for MB trigger requires at least
one hit in VOA or VOC and one hit in the central barrel detector SPD in coincidence with the LHC bunch
crossing [@, @]. In pp collisions, a criterion based on the offline reconstruction of multiple primary
vertices in the SPD is applied to reduce the pileup, which is caused by multiple interactions in the
same bunch crossing. The rejected pileup events are less than 1% of the total events. The Pb—Pb data
were also collected using a MB trigger with a logic that requires a coincidence of signals in VOA and
VOC. The MB-triggered events are analyzed if they have a reconstructed collision vertex whose position
along the beam axis (V, z is the longitudinal direction) is within 10 cm from the nominal interaction point
in both pp and Pb—Pb collisions. Background events are rejected using the timing information from the
Zero Degree Calorimeters (ZDCs) and VO detectors.

The Pb—Pb analysis is performed in 8 centrality classes defined in Ref. [@]: 0-10%, 10-20%, 20-30%,
30—40%, 40-50%, 50-60%, 60-70% and 70-80%. The 0-10% class corresponds to the most central
Pb-Pb collisions, with small impact parameter, while the 70-80% class corresponds to peripheral Pb—Pb
collisions, with large impact parameter. The total number of events that are analyzed after passing the
event selection criteria are ~110 million for pp and ~30 million for Pb—Pb collisions. Charged tracks are
selected for analysis based on track selection criteria that ensure good track quality, as done in previous
work [@]. In particular, a track in the TPC is requested to have a minimum of 70 crossed rows (horizontal
segments along the transverse readout plane of the TPC) out of a maximum possible 159 [@]. A pr-
dependent selection criterion on the distance of closest approach to the collision vertex in the transverse
(xy) plane (DCA,,) and along the longitudinal direction (DCA,) is used to reduce the contamination
from secondary charged particles coming from weakly decaying hadrons. In addition to these selection
criteria, tracks are required to have py > 0.15 GeV /¢ in both pp and Pb—Pb collisions. Charged particles
are accepted in the pseudorapidity range || < 0.8, which ensures a uniform acceptance.

The particle identification exploits both the TPC and the TOF. For K* and ¢ reconstruction in Pb-Pb
collisions, charged particles are identified as pion or kaon if the mean specific energy loss ((dE/dx))
measured by the TPC falls within two standard deviations (207pc) from the expected dE /dx values for
7 or K over the entire momentum range. If the TOF information is available for the track, in addition to
the TPC, a TOF-based selection criterion 30roF is applied over the measured momentum range, where
oror is the standard deviation from the expected time-of-flight for a given species. These requirements
help in reducing the background under the signal peak over a large momentum range and provide a better
separation between signal and background with respect to TPC PID only. For K* reconstruction in pp
collisions, the same PID selection criteria are applied to identify pion and kaon candidates as are used
in Pb—Pb collisions. For the ¢ reconstruction in pp collisions, the kaon candidates are identified using
a 607pc, 40rpc and 20rpc selection on the measured dE /dx distributions in the momentum ranges p
< 0.3GeV/c, 03 < p<04GeV/cand p > 0.4 GeV/c, respectively. On top of this, the TOF-based
selection criterion of 30roF is applied over the entire measured momentum range in pp collisions if the
TOF information is available.

3.1 Yield extraction, corrections and normalization

The K** and ¢ resonances are reconstructed by calculating the invariant mass of their decay products

through the hadronic decay channels K*O(K*O) — K"z~ (K~ x") (Branching Ratio, BR = 66.666 +
0.006% [20]) and ¢ — KTK~ (BR = 49.2 + 0.5% [20]), respectively. Oppositely charged K and 7
(or K) from the same event are paired to reconstruct the invariant mass distributions of K*0(¢). The
Kz and KK pairs are selected in the rapidity range |y| < 0.5 in both pp and Pb-Pb collisions. The
invariant mass distribution exhibits a signal peak and a large combinatorial background resulting from the
uncorrelated Kz (KK) pairs. The combinatorial background is estimated using a mixed-event technique
in both collision systems. The mixed-event background is constructed by combining kaons from one
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event with the oppositely charged 7(K) from different events for K**(¢). The events which are mixed
are required to have similar characteristics. In Pb—Pb, two events are mixed if they belong to the same
centrality class and the difference between the collision vertex position is |AV;| < 1 cm. In pp collisions,
two events are mixed with a condition of |AV;| < 1 cm and a difference in charged-particle density
at midrapidity (|Ay| < 0.5) of less than 5. To minimize the statistical fluctuations in the background
distribution, each event is mixed with five other ones. The invariant mass distribution from the mixed-
event is normalized to the same-event oppositely-charged pair distribution in the mass region 1.1-1.3
(resp. 1.04-1.06) GeV /c? for K*O(resp. ¢), which is away from the mass peak (6I" for K*° and 7T for
¢, I is the width of the resonance). After the combinatorial background subtraction, the signal peak is
observed on top of a residual background. The latter is due to the correlated Kz or KK pairs that originate
from jets and from the misidentification of particles. It is shown in Ref. @] that the residual background
has a smooth dependence on mass and the shape of the background is well described by a second order
polynomial [IEI ]. The invariant mass distributions after mixed-event background subtraction are fitted
with a Breit-Wigner (resp. Voigtian) function for the signal peak of K**(resp. ¢) plus a second order
polynomial for the residual background [@]. The Voigtian function is a convolution of a Breit-Wigner
distribution and a Gaussian, where the width ¢ of the Gaussian accounts for the mass resolution. The
latter is pr-dependent and varies between 1 and 2 MeV /c?. The raw yields are measured as a function
of pr for K** and ¢ in pp collisions and in various centrality classes in Pb—Pb collisions. A detailed
description of the yield extraction procedure is given in Ref. [42].

The measured yields are affected by the detector acceptance and reconstruction efficiency (A X €e). This
is estimated by means of dedicated Monte Carlo simulations using the PYTHIA (PYTHIA 6 Perugia
2011 tune and PYTHIA 8 Monash 2013 tune) [@, @] and HIJING [@] event generators for pp and
Pb—Pb collisions, respectively. The generated particles are then propagated through the detector material
using GEANT3 [@]. The A X &g is calculated as a function of pr and is defined as the ratio of the
reconstructed K**(¢) to the generated K*(¢), both within |y| < 0.5. For the reconstruction of resonances,
the same track and PID selection criteria are applied to the simulations as used in the analysis of the
measured data. The A X &, 1s calculated for K*O((])) that decay through the hadronic channel K*nt
(KTK™), hence it does not include the correction for BR. In Pb—Pb collisions, the A X & has a weak
centrality dependence and the raw yields are corrected using the A X €. of the respective centrality class.

The procedure to correct the raw yields is given by
1 &N 1 N™ g . Evert - Esig

Nevent dyde B N&e dyde (A X grec) . BR‘

event

(1
The raw yields are normalized to the number of accepted events (Nie,) and corrected for A X €,
trigger efficiency (&uig), vertex reconstruction efficiency (€yert), signal loss (&g) and the BR of the decay
channel. The yields in pp are normalized to the number of inelastic collisions with a trigger efficiency
correction, &g = 0.757 £ 0.019 [@]. The vertex reconstruction efficiency in pp collisions is found
to be &y = 0.958. The signal loss correction factor &, is determined based on MC simulations as
a function of pr and accounts for the resonance signal lost due to trigger inefficiencies. The &go(pr)
correction is only significant for py < 2.5 GeV/c and has a value of less than 5% both for K** and ¢
in pp collisions. In Pb—Pb collisions, the yields of K** and ¢ in a given centrality class are normalized
by the number of events in the respective VOM (sum of VOA and VOC amplitude) event centrality class.
The correction factors &gig, Everr and &g (pr) are compatible with unity in the reported centrality classes
in Pb—Pb collisions and hence are not used.

3.2 Systematic uncertainties

The systematic uncertainties in the measurement of K** and ¢ yields in pp and Pb—Pb collisions are
summarized in Tab.[Il The sources of systematic uncertainties are related to the yield extraction method,
PID and track selection criteria, global tracking efficiency, the knowledge of the ALICE material budget
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Table 1: Systematic uncertainties in the measurement of K*° and ¢ yields in pp and Pb—Pb collisions at
VSN = 5.02 TeV. These uncertainties are shown for three transverse momentum values, low, mid and
high pr. For Pb—Pb collisions all the systematic uncertainties except yield extraction are common in
various centrality classes and the values given in the table are averaged over all centrality classes.

Pb-Pb PP
Systematic variation K*0 [0} K*0 (0]
pr (GeV/c) pr (GeV/c) pr (GeV/c) pr (GeV/c)

0.6 45 18 05 425 18 0.1 425 18 05 425 18

Yield extraction (%) 73 7.5 101 44 19 49 11.8 79 82 24 35 35
Track selection (%) 27 14 30 30 13 1.0 14 10 19 40 20 55
Particle identification (%) 54 3.0 50 1.0 15 24 21 32 69 03 1.7 65
Global tracking efficiency (%) 4.7 74 4.0 47 82 3.1 2.0 31 34 20 32 24
Material budget (%) 14 0 0 57 0 0 34 0 0 57 0 0
Hadronic Interaction (%) 2.4 0 0 1.3 0 0 2.8 0 0 1.3 0 0
Total (%) 109 11.0 123 92 86 64 130 9.1 114 77 54 95

and of the interaction cross section of hadrons in the detector material. The uncertainties are reported
for three transverse momentum values, low, mid and high py. For Pb—Pb collisions all the systematic
uncertainties except the one related to the yield extraction are common in the various centrality classes
and the values given in the table are averaged over all centralities. The yield extraction method includes
the uncertainties due to variations of the fitting range, the choice of combinatorial background estimation
technique, normalization range and residual background shape. The uncertainties due to yield extraction
are estimated to be 7.9-11.8% for K** (resp. 2.4-3.5% for the ¢) in pp and 7.3—-10.1% (resp. 1.9-4.9%)
in Pb—Pb collisions. The PID systematic uncertainties varies between 2.1-6.9% (0.3-6.5%) for K** (¢)
in pp and Pb—Pb collisions. The contribution to the uncertainty from the global tracking efficiency is
calculated from the corresponding values for single charged particles ] and results in a 2.0-8.2% un-
certainty by combining the two charged tracks used in the invariant mass reconstruction of K* and ¢.
The contribution from variation of the track selection criteria is 1.0-5.5%. The systematic uncertainties
due to the hadronic interaction cross section are estimated to be less than 2.8% and contribute only at
low pr (< 2 GeV/c). The uncertainties in the description of the material budget of ALICE detector sub-
systems in GEANTS3 (see Ref. [@] for details) give a contribution lower than 5.7% on the yields of K*0
and ¢ in pp and Pb-Pb collisions. The material budget uncertainty is significant only at pyr < 2 GeV/c
and negligible at higher pt. The total pr-dependent systematic uncertainties on the K**(¢) yields are
estimated to be 9.1-13.0% (5.4-9.5%) in pp collisions and 10.9-12.3% (6.4-9.2%) in Pb—Pb collisions.
The common systematic uncertainties for different particles (global tracking efficiency, material budget
and hadronic interaction) are cancelled out in calculating particle yield ratios like K** /K and ¢ /K.

4 Results and discussion
4.1 Transverse momentum spectra in pp and Pb—Pb collisions

The pr distributions of the K** and ¢ mesons for |y| < 0.5, normalized to the number of events and
corrected for efficiency, acceptance and branching ratio of the decay channel, are shown in Fig.[Il The
results for Pb—Pb collisions are presented for eight different centrality classes (0-10% up to 70-80% in
10% wide centrality intervals) together with the results from inelastic pp collisions at the same energy.

The pr-integrated particle yields have been extracted using the procedure described in Ref. [IEI, ]. The
pr distributions are fitted with a Lévy-Tsallis function [|§, ] in pp and a Boltzmann-Gibbs blast-wave
function [@] in Pb—Pb collisions. The yields have been extracted from the data in the measured pr
region and the fit functions have been used to extrapolate into the unmeasured (low and high pr) region.
The low-pr extrapolation covers pr < 0.4 GeV /c for K*O(d) ) and accounts for 8.6% (7.2%) and 12.5%
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Figure 1: (Color online) Invariant yields of (a) K* and (b) ¢ mesons in pp collisions and various cen-
trality classes in Pb—Pb collisions at /sxn = 5.02 TeV. The values are plotted at the center of each bin.
The statistical and systematic uncertainties are shown as bars and boxes, respectively.

(12.7%) of the total yield in the 0-10% and 70-80% centrality classes in Pb—Pb collisions, respectively.
In pp collisions, the K** is measured in the range 0 < pr < 20 GeV/c. For the ¢ meson, the low-pr
extrapolation covers pr < 0.4 GeV /c, accounting for 15.7% of the total yield. The extrapolated fraction
of the yield is negligible for pr > 20 GeV /c.

4.2 Particle ratios

Figure ] shows the K**/K and ¢ /K ratios as a function of (dNg,/dn)!/3 46, 47, [51]] for Pb-Pb col-
lisions at \/s\n = 2.76 [14, 42] and 5.02 TeV, p-Pb collisions at \/sxy = 5.02 TeV [17] and pp col-
lisions at y/s = 5.02 TeV. The kaon yields in Pb-Pb at Vsnn = 5.02 TeV are from Ref. 1. The
(dNen/ dn>1/ 3 measured at midrapidity, is used here as a proxy for the system size. This is supported
by the observation of the linear increase in the HBT radii with (dN,/dn)'/3 [@, ]. The K*°/K ra-
tio decreases for rising (dNg,/dn)'/3 while the ¢ /K ratio is almost independent of (dN,/dn)'/3. The
ratios exhibit a smooth trend across the different collision systems and collision energies studied. The
K*0/K and ¢ /K ratios in Pb-Pb collisions at \/sxn = 2.76 and 5.02 TeV are in agreement within uncer-
tainties.

The resonance yields are modified during the hadronic phase by rescattering (which would reduce the
measured yields) and regeneration (which would increase the measured yields). The observed depen-
dence of the K* /K ratio on the charged-particle multiplicity is consistent with the behavior that would
be expected if rescattering is the cause of the suppression. The fact that the ¢ /K ratio does not ex-
hibit suppression with charged-particle multiplicity suggests that the ¢, which has a lifetime an order
of magnitude larger than that of the K**, decays predominantly outside the hadronic medium. Theo-
retical estimates suggest that about 55% of the of K** mesons with momentum p = 1 GeV/c, decay
within 5 fm/c of production (a typical estimate for the time between chemical and kinetic freeze-out in
heavy-ion collisions [@, @, 1), while only 7% of ¢ mesons with p =1 GeV/c decay within that
time. This supports the hypothesis that the experimentally observed decrease of the K** /K ratio with
charged-particle multiplicity is caused by rescattering. A similar suppression has also been observed for
p°%/x [15] and A*/A ] in central Pb—Pb collisions relative to peripheral Pb—Pb and pp collisions at
V/SNN = 2.76 TeV. In addition, the K*0/K ratio from thermal model calculations without rescattering
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Figure 2: (Color online) pr-integrated particle yield ratios K*/K~ and ¢ /K~ as a function of
(dNeh/dn)'/3 measured at midrapidity in pp, p—Pb and Pb—Pb collisions at /syy = 5.02 TeV. For Pb—
Pb collisions at \/syn = 2.76 TeV, the ¢ /K~ values are taken from Ref. [14] and the K**/K~ values
are taken from Ref. [@]. The ratios for p—Pb collisions are taken from Ref. [Iﬂ]. Statistical uncertain-
ties (bars) are shown together with total (hollow boxes) and charged-particle multiplicity-uncorrelated
(shaded boxes) systematic uncertainties. Thermal model calculations with chemical freeze-out temper-
ature Ty, = 156 MeV for the most central Pb—Pb collisions [@, |E4|] are also shown. EPOS3 model
predictions [@] of K* /K and ¢ /K ratios in Pb-Pb collisions are also shown as violet lines.

effects and with chemical freeze-out temperature 7o, = 156 MeV for the most central Pb—Pb collisions
[@, @] is found to be higher than the corresponding measurements, while the measured ¢ /K ratio agrees
with the thermal model predictions. The K**/K and ¢ /K ratios in Pb—Pb collisions are also compared
to EPOS3 model calculations with and without a hadronic cascade phase modeled by UrQMD [@]. The
EPOS3 model predictions shown in the figure are for Pb—Pb collisions at /sy = 2.76 TeV but no signif-
icant qualitative differences are expected between the two energies. The EPOS3 generator with UrQMD
reproduces the observed trend of the K** /K and ¢ /K ratios which further supports the experimental data.

The fact that K*0/K~ decreases with increasing (dN,/dn)'/3 implies that rescattering of the decay
products of K*? in the hadronic phase is dominant over K*° regeneration. This suggests that K*0 <+ K7
is not in balance. Hence in Pb-Pb the K* /K~ ratio can be used to get an estimate of the time between
chemical and kinetic freeze-out, 7, as, [K** /K™ |xineric = [K** /K| chemicar X €7/ %0, where Ty is the
K*0 lifetime. Here, Tg.o is taken as 4.16 fm/c ignoring any medium modification of the width of the
invariant mass distribution of K*°. Furthermore, it is assumed that [K*® /K~ ]cpemicar is given by the values
measured in pp collisions and the Pb—Pb collision data provides an estimate for [K*O /K Jkineric- This is
equivalent to assuming that all K*?’s that decay before kinetic freeze-out are lost due to rescattering
effects and there is no regeneration effect between kinetic and chemical freeze-out which is supported by
AMPT simulations [@]. All the assumptions listed above lead to an estimate of 7 as a lower limit for
the time span between chemical and kinetic freeze-outs. A decrease in the K*° /K ratio with increasing
multiplicity has previously also been observed in in p—Pb collisions at /sy = 5.02 TeV [@]. This might
indicate the presence of rescattering effect in high multiplicity p—Pb collisions and is suggestive of a finite
lifetime of the hadronic phase. For comparison we have also estimated the hadronic phase lifetime in
p-Pb data. Figure 3] shows the results for T boosted by a Lorentz factor (~ 1.65 for p—Pb collisions
and 1.75 for Pb—Pb collision) as a function of (dN.,/dn) 1/3. Neglecting higher order terms, the Lorentz
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Figure 3: (Color online) Lower limit on the hadronic phase lifetime between chemical and kinetic freeze-
out as a function of (dNg,/ dn>1/ 3 in p—Pb [Iﬁ] and Pb—Pb collisions at \/syy = 5.02 TeV. The bars and
bands represent the statistical and systematic uncertainties, respectively, propagated to the lifetime from
the uncertainties associated with the measured K** /K ratios in Pb—Pb (p—Pb) and pp collisions at V/SNN =
5.02 TeV.

factor is estimated as \/ 1+ ({pr)/mc)?. Here m is the rest mass of the resonance and (pr) is used as an
approximation for p for the measurements at midrapidity. The time interval between chemical and kinetic
freeze-out increases with the system size as expected. For central Pb—Pb collisions at \/sny = 5.02 TeV,
the lower limit of time between chemical and kinetic freeze-out is about 4—7 fm/c. This is of the same
order of magnitude as the K*O lifetime, but about an order of magnitude shorter than the ¢ lifetime. A
smooth increase of T with system size from p—Pb to Pb—Pb collisions is observed. The EPOS3 generator
with UrQMD reproduces the increasing trend of 7 with multiplicity qualitatively [@]. If a constant
chemical freeze-out temperature is assumed, then the increase of 7 with multiplicity in Pb—Pb collisions
corresponds to a decrease of the kinetic freeze-out temperature. This is in qualitative agreement with
results from blast-wave fits to identified particle pr distributions ], which are interpreted as decrease
in the kinetic freeze-out temperature from peripheral to central collisions.

Further, to quantify the pr-dependence of the rescattering effect observed in Pb—Pb collisions, a set of
pr-differential yield ratios was studied: K*°/K, ¢ /K, K*°/x, ¢ /7, p/K** and p/¢ as shown in Figs. 3]
and [6l The choice of the ratios is motivated by the following reasons: (a) the ratio of resonance yield
relative to those of kaons and pions can shed light on the shapes of the pr distributions of mesons with
different mass and quark content, and (b) the ratios with respect to proton allows for the comparison
among hadrons of similar mass, but different baryon number and quark content. For case (a), ratios
in 0-10%, 70-80% Pb-Pb collisions and pp collisions at /syy = 5.02 TeV are compared. For case
(b), ratios in 0-10% Pb—Pb collisions and pp collisions at /sy = 5.02 TeV are compared with 0-5%
in Pb—Pb collisions at /syn = 2.76 TeV. The ratios for 70-80% in Pb—Pb collisions are closer to the
corresponding results in pp collisions. Noticeably, there are distinct differences between central and
peripheral (pp) collisions in the ratios for py below ~ 2 GeV/c and intermediate pr (between 2 and 6
GeV/c) but the ratios are consistent at higher pr [42].
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Figure 4: (Color online) Particle yield ratios (K0 + K*O) /(K™ + K7) in panel (a) and (2¢)/(K™ + K™)
in panel (b), both as a function of pr for centrality classes 0—10% and 70-80% in Pb—Pb collisions at
/SN = 5.02 TeV. For comparison, the corresponding ratios are also shown for inelastic pp collisions at
/s = 5.02 TeV. The statistical uncertainties are shown as bars and systematic uncertainties are shown as

boxes. In the text (K*0 + K*O), (K" 4 K7) are denoted by K*0 and K, respectively.
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Figure 5: (Color online) Particle yield ratios (K0 + K*O) /(x" + ) in panel (a) and (29)/(n" + 77)
in panel (b), both as a function of pr for centrality classes 0—10% and 70-80% in Pb—Pb collisions at
VSN = 5.02 TeV. For comparison, the corresponding ratios are also shown for inelastic pp collisions at
/s =5.02 TeV. The statistical uncertainties are shown as bars and systematic uncertainties are shown as

boxes. In the text (K*0 + K*O), (nt + ) are denoted by K*0 and 7, respectively.

Atlow pr, the K*/K and K**/x for central collisions are lower than in peripheral (pp) collisions, while
the corresponding yield ratios for ¢ meson are comparable within the uncertainties. This observation is
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Figure 6: (Color online) Particle yield ratios (p + p)/(K** + K*O) in panel (a) and (p + p)/(2¢) in
panel (b), both as a function of pr for 0-10% central Pb—Pb collisions and inelastic pp collisions at
/SN = 5.02 TeV. For comparison, similar ratios are also shown for 0-5% central Pb—Pb collisions at
V/SNN = 2.76 TeV [@]. The statistical uncertainties are shown as bars and systematic uncertainties are

shown as boxes. In the text (K*0 + K*O) and (p + p) are denoted by K** and p, respectively.

consistent with the suppression of K*0 yields due to rescattering in the hadronic phase. It demonstrates
that rescattering affects low momentum particles. At intermediate pr, both ratios show an enhancement
for central Pb—Pb collisions relative to peripheral and pp collisions, which is more prominent for ¢ /K,
¢ /7 and K*° /7. This is consistent with the presence of a larger radial flow in central collisions relative
to peripheral and pp collisions ]. Given that the masses of K* and ¢ mesons are larger than those of
the charged kaon and pion, the resonances experience a larger radial flow effect. For pr > 6 GeV /c, the
K*/K, ¢/K, K*/x, ¢ /m, p/K** and p/¢ yield ratios in central collisions are similar to peripheral
and pp collisions, indicating that fragmentation is the dominant hadron production mechanism in this
pr region. This is consistent with previous measurements at /sy = 2.76 TeV [@]. In central Pb—Pb
collisions, for pt below 5 GeV /c, the p/¢ ratio is observed to be independent of pr and the p/K*? ratio
exhibits a weak pr-dependence within the uncertainties, in contrast to the decrease of both ratios with
pt observed in pp collisions. In turn, this suggests that the shapes of the pr distributions are similar for
K*°, ¢ and p in this pr range. Although the quark contents are different, the masses of these hadrons are
similar, indicating that this is the relevant quantity in determining spectra shapes. This is consistent with
expectations from hydrodynamic-based models [@, @]. Within the uncertainties, the p/K** and p/¢
ratios for central Pb—Pb collisions at /sy = 5.02 TeV and 2.76 TeV [@] are constant at intermediate
pr- This is consistent with the observation of similar order radial flow at both energies, obtained from
the analysis of pr spectra of pions, kaons and protons ].

5 Summary

The invariant yields of K** and ¢ mesons as a function of pt have been measured at midrapidity (|y| <
0.5) for various collision centralities in Pb—Pb and inelastic pp collisions at /snn = 5.02 TeV using the
ALICE detector. The K*° yields relative to charged kaons in Pb-Pb collisions show a suppression with
respect to pp collisions, which increases with the system size, quantified using (dNc/ dn)l/ 3 measured
at midrapidity. In contrast, no such suppression is observed for the ¢ mesons. The lack of suppression
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for the ¢ meson can be attributed to the fact that most of them decay outside the fireball because of
its longer lifetime (75 = 46.3 &= 0.4 fm/c). Because of a shorter lifetime (7.0 = 4.16 £ 0.05 fm/c),
a significant number of produced K*° decays in the hadronic medium. The decay product(s) undergo
interactions with other hadrons in the medium resulting in a significant change in their momentum, and
no longer contributing to the K* signal reconstructed in the experiment. Although both rescattering
and regeneration are possible, the results presented here represent an experimental demonstration of
the predominance of rescattering effects in the hadronic phase of the system produced in heavy-ion
collisions. The effect of rescattering increases with the system size. Furthermore, the K*°/K yield
ratios in central Pb—Pb collisions are significantly lower compared to the values from thermal model
calculations without rescattering effects, while the measured ¢ /K yield ratio agrees with the model
calculation. This further corroborates the hypothesis that rescattering affects the measured K*© yields in
Pb—Pb collisions. A lower limit for the lifetime of the hadronic phase is determined by using the K** /K
ratios in Pb—Pb and pp collisions at \/syn = 5.02 TeV. The lifetime, as expected, increases with system
size. For central Pb—Pb collisions, it is about 4-7 fm/c.

The pr-differential yield ratios of K*/z and K*° /K are studied in central Pb-Pb, peripheral Pb—Pb and
pp collisions to understand the pr-dependence of the rescattering effect. It is observed that rescattering
dominantly affects the hadrons at pyr < 2 GeV/c. At intermediate pr (2-6 GeV/c), the ¢ /K, ¢/,
K*/z, p/K** and p/¢ yield ratios are enhanced in central Pb—Pb collisions relative to peripheral Pb—Pb
and pp collisions. In addition, the spectral shapes of K**, ¢ and p, which have comparable masses,
are similar within the uncertainties for pr below 5 GeV/c in Pb—Pb collisions. These measurements
demonstrate the effect of higher radial flow in central Pb—Pb collisions relative to peripheral Pb—Pb and
pp collisions. A comparison of the p/K** and p/¢ ratios for central Pb—Pb collisions at VSN = 5.02
and 2.76 TeV shows the constancy of the ratios with pp. This is consistent with the observation of
comparable radial flow at \/syn = 5.02 TeV and 2.76 TeV. For higher pr, above 6 GeV /c, all the ratios
agree within the uncertainties for central and peripheral Pb—Pb, and pp collisions, indicating that particle
production via fragmentation at high transverse momenta is not significantly modified in the presence of
a medium.
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