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Abstract

This paper presents the first measurements of the charge independent (CI) and charge dependent (CD)
two-particle transverse momentum correlators G5! and GSP in Pb-Pb collisions at /sy = 2.76 TeV
by the ALICE collaboration. The two-particle transverse momentum correlator G, was introduced
as a measure of the momentum current transfer between neighbouring system cells. The correlators
are measured as a function of pair separation in pseudorapidity (An) and azimuth (A@) and as a
function of collision centrality. From peripheral to central collisions, the correlator Ggl exhibits
a longitudinal broadening while undergoing a monotonic azimuthal narrowing. By contrast, GSD
exhibits a narrowing along both dimensions. These features are not reproduced by models such as
HIJING and AMPT. However, the observed narrowing of the correlators from peripheral to central
collisions is expected to result from the stronger transverse flow profiles produced in more central
collisions and the longitudinal broadening is predicted to be sensitive to momentum currents and the
shear viscosity per unit of entropy density 71/s of the matter produced in the collisions. The observed
broadening is found to be consistent with the hypothesized lower bound of 7 /s and is in qualitative
agreement with values obtained from anisotropic flow measurements.
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1 Introduction

Measurements of particle production and their correlations performed at the Relativistic Heavy Ion Col-
lider (RHIC) and the Large Hadron Collider (LHC) provide compelling evidence that the matter produced
in heavy-ion collisions is characterized by extremely high temperatures and energy densities consistent
with a deconfined, but strongly interacting Quark—Gluon Plasma (QGP) [1H4]. Collective flow, which
manifests itself by the anisotropy of particle production in the plane transverse to the beam direction, is
characterized by the harmonic coefficients of a Fourier expansion of the azimuthal distribution of par-
ticles relative to the reaction plane. Comparisons of these harmonic coefficients with hydrodynamical
model predictions indicate that the matter produced in those collisions has a shear viscosity per unit of
entropy density, 1 /s, that nearly vanishes [2, 5]. The shear viscosity quantifies the resistance that any
medium presents to its anisotropic deformation. It contributes to the transfer of momentum from one
fluid cell to its neighbors as well as the damping of momentum fluctuations. The reach of 1 /s effects is
expected to grow with the lifetime of the system. Recent measurements of flow coefficients and hydro-
dynamical predictions largely focus on the precise determination of 1 /s [6H9)]. However, quantitative
descriptions of heavy-ion collisions with hydrodynamical models generally rely on specific parametriza-
tions of the initial conditions of colliding systems, i.e., their initial energy and entropy density distribution
in the transverse plane, the magnitude of initial fluctuations, the thermalization time, and several model
parameters. It is found that the precision of model predictions is hindered, in particular, by uncertainties
in the initial state conditions. Indeed, values of shear viscosity that best match the observed flow coef-
ficients are dependent on the initial conditions, and unless the magnitude of the initial state fluctuations
can be precisely assessed, the achievable precision on 71 /s might remain limited [10, [11]. Systematic
studies of correlations between different order harmonic coefficients [12], shown to be sensitive to the
initial conditions and the temperature dependence of 17 /s, can help to provide further constraints to those
conditions and to the transport properties of the system. Novel approaches based on Bayesian parameter
estimation [13} [14] bring progress on a simultaneous characterization of the initial conditions and the
QGP. Furthermore, it was pointed out [[15] that the strength of momentum current correlations may be
sensitive to 71 /s. It was shown, in particular, that the longitudinal broadening of a transverse momentum
(pr) correlator, formally defined below and hereafter named G,, with increasing system lifetime is di-
rectly sensitive to /s while it does not have any explicit dependence on the initial state fluctuations in
the transverse plane of the system.

A first measurement of the broadening of the two-particle transverse momentum correlator G, was re-
ported by the STAR collaboration [16]]. Improved techniques to correct for instrumental effects have
since then been reported [[17-19]]. In this letter, these techniques are used to measure differential charge
independent (CI) and charge dependent (CD) two-particle transverse momentum correlators, Ggl and
GSD, respectively, as a function of pair rapidity difference, An, and azimuthal angle difference, A¢g, for
selected ranges of Pb—Pb collision centrality. The shapes of these correlators are studied with a two-
component model and the longitudinal and azimuthal widths of their near-side peaks are studied as a
function of the Pb—Pb collision centrality. The longitudinal broadening of Ggl from peripheral to central
collisions is used to assess the magnitude of 1 /s of the matter produced in Pb—Pb collisions while the
longitudinal and azimuthal widths of GSD are used to assess the role of competing effects, including
radial flow, diffusion, and the broadening of jets by interactions with the medium. In that context, mea-
surements of G, are also compared with previously reported measurements of the two-particle number
correlator R, and two-particle transverse momentum correlator P> [18]].
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2 The G; correlator

The dimensionless variant of the G, correlator [15} 20] reported in this letter is defined according to
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where Q is the phase space region in which the measurement is performed; p; and p, are the three-
momentum vectors of particles of a given pair; pr; and pr their transverse momentum components,
respectively; p;(p;) = d3N/de7,~dn,'d(p,~ and po(p1,p2) = d6N/de71dr[1d(p1 dprdn.de, represent
single and pair particle densities, expressed as functions of p;, i = 1,2, and (P, ), respectively;
(p1)(Ni, @;) is the average transverse momentum of particles observed at (1;, ¢;), with n;,¢;, i = 1,2,
referring to single-track pseudorapidity and azimuthal angle, respectively; and (pr;) = [ p1(Pi) pr.idp;
is the inclusive average transverse momentum of produced particles, i = 1,2, in the considered event
ensemble. Experimentally, G, is calculated as
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where n1,| and n; are the number of tracks on each event within bins centered at 71y, ¢ and 12, @,
and with transverse momentum pr;, i € [1,n1,1], and prj, j # i € [1,n12], respectively. Angle brack-
ets, (---), refer to event ensemble averages, (A) = ZIIVW“‘SA /Nevents- The correlators G%S and GIZJS are
first measured for like-sign (LS) and unlike-sign (US) pairs separately, and combined to obtain CI and
CD correlators according to G§! = % (Ggs + G%S) and GSD = % (Ggs — G%S), respectively [18]]. Mea-
surements of G (11, @1, M2, ¢2) are averaged across the longitudinal and azimuthal acceptances in which
the measurement is performed to obtain G(An,A@), where A = n; — 1, and A@ = @, — @,, with a
procedure similar to that used for R, and P, correlators [[18].

3 Measurement techniques

The results presented in this letter are based on 1.1 x 107 selected minimum bias (MB) Pb—Pb collisions
at \/snn = 2.76 TeV collected during the 2010 LHC heavy-ion run by the ALICE experiment. Detailed
descriptions of the ALICE detectors and their respective performances are given in Refs. [21} 22]. The
MB trigger was configured in order to have high efficiency for hadronic events, requiring at least two out
of the following three conditions: i) two hits in the second inner layer of the Inner Tracking System (ITS),
ii) a signal in the VOA detector, iii) a signal in the VOC detector. The amplitudes measured in the VO
detectors are additionally used to estimate the collision centrality reported in nine classes corresponding
to 0-5% (most central), 5-10%, 10-20%, ..., 70-80% (most peripheral) of the total interaction cross
section [23]]. The vertex position of each collision is determined with tracks reconstructed in the ITS
and the Time Projection Chamber (TPC) and is required to be in the range |zyi| < 7 cm of the nominal
interaction point (IP). Pile-up events, identified as events having multiple reconstructed vertices in the
ITS, are rejected. Additionally, the extra activity observed in slow response detectors (e.g., TPC) relative
to that measured in fast detectors (e.g., VO) for out of bunch pile-up events is used to discard these events.
The remaining event pile-up contamination is estimated to be negligible. Longitudinally, the ITS covers
In| < 0.9, the TPC |n| < 0.9, VOA 2.8 <1 < 5.1 and VOC —3.7 < n < —1.7. These four detectors
feature full azimuthal coverage.

The present measurement of the G, correlators is based on charged particle tracks measured with the
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TPC detector in the transverse momentum range 0.2 < pr < 2.0 GeV/c and the pseudorapidity range
In| < 0.8. In order to ensure good track quality and to minimize secondary track contamination, the
analysis is restricted to charged particle tracks involving a minimum of 50 reconstructed TPC space
points out of a maximum of 159, and distances of closest approach (DCA) to the reconstructed primary
vertex of less than 3.2 cm and 2.4 cm in the longitudinal and radial directions, respectively. An alternative
criterion, used in the analysis of the systematic uncertainties, that relies on tracks reconstructed with the
combination of the TPC and the ITS detectors, henceforth called “global tracks”, involves a minimum of
70 reconstructed TPC space points, hits either on any of two inner layers of the ITS, or in the third inner
layer of the ITS, and a tighter DCA selection criterion in both, longitudinal and radial directions, the
latter one pr-dependent. Electrons (positrons), whose one of the largest sources are photon conversions
into eTe™ pairs, are suppressed discarding e and e~ by removing tracks with a specific energy loss
dE /dx in the TPC closer than 30yg /dx to the expected median for electrons and at least 504z /4, away
from the 7, K and p expectation values.

The single and pair efficiencies of the selected charged particles are estimated from a Monte Carlo (MC)
simulation using the HIJING event generator [24] with particle transport through the detector performed
with GEANT3 [25]] tuned to reproduce the detector conditions during the 2010 run. Corrections for single
track losses due to non-uniform acceptance (NUA) are carried out using a weighting technique [[17]
separately for data and for reconstructed MC data. Weights are extracted separately for positive and
negative tracks, for each collision centrality range, as a function of 17, ¢, pr and the longitudinal position
of the primary vertex of each event, z,«. The pr-dependent single track efficiency correction is extracted
as the inverse of the ratio of the number of NUA corrected reconstructed HIJING tracks to generated
tracks. Data are subsequently corrected with NUA and single track efficiency corrections. Pair losses
due to track merging or crossing are corrected in part based on the technique described in [18] and in
part based on the ratio of the average number of reconstructed HIJING pairs relative to the generated
number of pairs. Corrections for pt dependent pair losses are not included in the reported results given
they have a large (> 20%) systematic uncertainty. Correlator values at |An| < 0.05, |A¢@| < 0.04 rad., left
under-corrected by this last fact, are not reported in this work. However, this does not impact the shape
and width of the G, correlator, which are of interest for the determination of the viscous broadening. No
filters are used to suppress like-sign (LS) particle correlations resulting from Hanbury Brown and Twiss
(HBT) effects. For pions, which dominate the particle production, HBT produces a peak centered at A7,
Ap =0in G%S. The width of this peak decreases in inverse proportion to the size of the collision system.
Given the number of HBT pairs is relatively small compared to the total number of pairs accounted for
in G55, the implied reduction of the longitudinal broadening is relatively modest and thus not considered
in this analysis.

4 Statistical and systematic uncertainties

Statistical uncertainties on the strength of G, are extracted using the sub-sample method with ten sub-
samples. Systematic uncertainties are determined by repeating the analysis under different event and
track selection conditions. Deviations from the nominal results are considered significant and assessed
as systematic uncertainties based on a statistical test [26]. The impact of potential TPC effects sensitive
to the magnetic field polarity is assessed by splitting the whole data sample into positive and negative
magnetic field configurations, whereas uncertainties associated with the collision centrality estimation
are studied by comparing nominal results, based on the VO detector, with those obtained with an al-
ternative centrality measure based on hit multiplicity on the two inner layers of the ITS. Effects of the
kinematic acceptance in which the measurement is performed are investigated by repeating the analysis
with events in the range |zyx| < 3 cm of the nominal IP. The presence of biases caused by secondary
particles is checked using the “global tracks” selection criterion. Biases associated with pair losses are
studied based on pair efficiency corrections obtained with HIJING/GEANT3 simulations. The largest
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Figure 1: Two-particle transverse momentum correlations GgI (top) and their longitudinal (middle) and azimuthal
(bottom) projections for the most central (left), semi-central (center) and peripheral (right) Pb—Pb collisions at
V/SNN = 2.76 TeV. Vertical bars (mostly smaller than the marker size) and shaded blue bands represent statistical
and systematic uncertainties, respectively. The systematic uncertainty on the long-range mean correlator strength
is quoted as OB in both projections. Under-corrected correlator values at A1, A@ = 0 are not shown. See text for
details.

systematic uncertainty amounts to a global shift in G,(An,A@) correlator strength which is independent
of An and A¢ and is reported as §B. This shift affects the magnitude of the projections onto An and
Ag but not the shapes of the near-side peak, |A@| < 7/2, of G, along these coordinates. Systematic
uncertainties in the shape of the near-side peak of GSI and GED are mainly due to the presence of sec-
ondary particles. Overall, systematic uncertainties on the shapes of the projections of GSI and GSD along
the longitudinal (azimuthal) dimension amount to 4%(5%) and 5%(10%), respectively, with decreasing
values towards peripheral events.

5 Results

Figure |1| presents the correlators Ggl(An,A(p) measured in 0-5%, 30-40%, 70—-80% Pb—Pb collisions,
and their respective projections along the A1) and A axes. The GSI correlators feature sizable A@ modu-
lations, dominated in mid-central collisions by a strong elliptic (cos(2A¢)) component. On the near-side,
atop the azimuthal modulation, the Ggl correlators feature a near-side peak whose amplitude monotoni-
cally decreases from peripheral to central collisions while its longitudinal width systematically broadens.
Qualitatively similar trends were observed for the R, and P, correlators reported by ALICE [18] and the
Ggl correlator (there named C) reported by STAR [16]. In most central collisions, the amplitude of the
A modulations associated with collective flow decreases but the longitudinal broadening remains. Ad-
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ditionally, a depletion centered at (An,A¢@) = (0,0) consistent with previous ALICE results [27, 28] can
be seen.

In order to study the centrality evolution of the near-side peak of the Gg’ and GgD correlators inde-
pendently of the underlying collective azimuthal behavior, they are separately parametrized with a two-
component model defined as

Tan ap
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where B and a, are intended to describe the long-range mean correlation strength and azimuthal aniso-
tropy, while the bidimensional generalized Gaussian, defined by the parameters A, Way, Wrg, Yan and
Yap, is intended to model the signal of interest. The (An,A¢) = (0,0) depletion present in the GS'
correlator is not properly modeled by Eq. (4) and the depletion area, |An| < 0.31 and |A¢| < 0.26 rad.,
is excluded from the fit. Bidimensional fits are carried out considering only statistical uncertainties. In
the case of the Ggl correlator the x2/ndf values for semi-central to peripheral collisions are found in the
range 1-2; for central collisions they increase to 4. The area which contributes the most to the increase
of the x?/ndf is the region between the generalized Gaussian and the Fourier expansion. Excluding
this area the y2/ndf values obtained in central collisions are within the range 1-2.3. Fits of GSD give
%% /ndf of the order of unity for peripheral to semi-central collisions and in the range 2-3.5 for central
collisions. Larger x?/ndf values observed in central collisions rise because the near side peak starts to
depart from the generalized Gaussian description. The actual focus is on the evolution of the widths.
The longitudinal and azimuthal widths of the correlators, denoted 0xy and Opg, respectively, are then
extracted as the standard deviation of the generalized Gaussian
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and plotted as a function of collision centrality in the top panels of Fig. [2| for both Ggl and GgD corre-
lators. The global shift of the correlator strength, quoted as a systematic uncertainty in the projections
of the correlators, does not affect the shape of the near-side peak of G,. Accordingly, the widths are not
affected either. Correlations between the contributors to the longitudinal width and the harmonic param-
eters for the GSI correlator are found as follows: a; and a4 are anti-correlated with @a, with values in
the ranges —0.8 to —0.4 and —0.5-0, respectively, while a3 is correlated with values 0-0.4. On the other
hand, a; and a4 are correlated with yx, with values within 0.4-0.8 and 0-0.5, respectively, while a3 is
anti-correlated with values in the range —0.5-0. a; correlations show no centrality dependence while the
absolute value of a3 and a4 correlations decreases from central to peripheral collisions. In the case of the
contributors to the azimuthal width, a> and a4 are correlated with @ and with Y5, with values in the
ranges 0.5-0.8 and 0.6-0.9, and 0.6-0.9 and 0.7-0.9, respectively, while a3 is anti-correlated with both
with values within —0.8 to —0.5 and —0.9 to —0.7. On the azimuthal dimension the absolute value of
the harmonic coefficients correlations decreases towards peripheral collisions. Systematic uncertainties
in the widths of the near-side peak of GSI and GSD are mainly due to the presence of secondary particles.
With the alternative track selection criterion, systematic uncertainties on the longitudinal and azimuthal
widths of the near-side peak are estimated to be 2% and 3%, respectively, for both Ggl and GSD, for
most central events, with decreasing values towards peripheral collisions. Uncertainty contributions on
the widths are not correlated with centrality and averages along centrality classes are considered. Overall,
maximum systematic uncertainties of 4%(2%) and 3.5%(3%) are assigned to the Ggl and GgD widths,
respectively, along the longitudinal (azimuthal) dimension. The impact of the size of the area excluded
from the fit on the width of the Ggl correlator is evaluated enlarging the area in both dimensions. Only
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Figure 2: Top panels: collision centrality evolution of the longitudinal (left) and azimuthal (right) widths of
the G, CD and CI correlators measured in Pb—Pb collisions at /syy = 2.76 TeV. Central and bottom panels:
width evolution relative to the value in the most peripheral collisions of the two-particle transverse momentum
correlations Ggl (central) and GgD (bottom) along the longitudinal (left) and azimuthal (right) dimensions. Data
are compared with HIJING and AMPT model expectations. In data, vertical bars and shaded bands represent
statistical and systematic uncertainties, respectively. For models, shaded bands represent statistical uncertainties.

semi-central to central centrality classes have their corresponding longitudinal widths modified. The
effect is a broadening from 1.5% in the 30-40% class up to a broadening of 20% in the 0-5% class
incorporated as an additional asymmetric systematic uncertainty on the widths of Ggl. On the azimuthal
widths the impact is reduced to a 2% narrowing.

6 Discussion

Broadening and narrowing are hereafter intended as the behavior of the correlation function, measured
by its widths, when going from peripheral collisions, high values of centrality percentile, to central
collisions, lower values of centrality percentile. The Ggl correlator broadens longitudinally but narrows
in azimuth, whereas the GgD correlator narrows both longitudinally and azimuthally. As shown in Fig.
these dependencies are qualitatively consistent with those of R, and P> correlators measured in the same
kinematic range by the ALICE collaboration [18]]. Note that the G, correlator is sensitive to transverse
momentum and number density fluctuations since both affect the momentum current density. In contrast,
R; is sensitive to number density fluctuations and P», sensitive to transverse momentum fluctuations, is
designed to minimize the contribution of those number density fluctuations [29]. In fact [29]

(P+1)(Ry+1) = (G2 +1) (6)
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Figure 3: Left panel: collision centrality evolution of the longitudinal width of number correlator RSD and
transverse momentum correlators P2CD and GSD. Central panel: idem for the azimuthal width of RgD, P2CD and
GSP. Right panel: collision centrality evolution of the longitudinal width of RS', P{Y, and GS'. Data for R, and P>
are from [18]. Vertical bars and shaded bands represent statistical and systematic uncertainties, respectively.

s0, the increase in transverse momentum currents could be due to either the increase in multiplicity or
the increase of transverse momentum. The GgD and P2CD correlators feature approximately equal widths
while RSD is approximately 30% wider throughout its centrality evolution. The centrality dependence
of GSD is qualitatively consistent with that of balance function (BF) observations [30,31]. Phenomeno-
logical analyses of the BFs suggest that their narrowing with centrality is largely due to the presence of
strong radial flow and delayed hadronization in Pb—Pb collisions [30]. It is thus reasonable to infer that
radial flow and larger (pr), in more central collisions, also produce the observed narrowing of GgD. This
conjecture is supported by calculations of the collision centrality dependence of GSD azimuthal widths
with the HIJING and AMPT models shown in the bottom right panel of Fig.[2| Radial flow might also
explain the observed azimuthal narrowing of the GSI correlator with centrality, which is reasonably well
reproduced by calculations with AMPT with string melting, but not by HIJING or AMPT calculations
with only hadronic rescattering as shown in central right panel of Fig. 2]

The broadening of the longitudinal width of the GSI correlator is of particular interest given predictions
that it should grow in proportion to 17/s of the matter produced in the collisions [15]. As expected for
a system with finite viscosity, it is found that Ggl broadens significantly with increasing collision cen-
trality, while by contrast, GSP exhibits a slight but distinct narrowing. This GSP longitudinal narrowing
is expected from a boost of particle pairs by radial flow but is not properly accounted for by AMPT
calculations shown in the bottom left panel of Fig. 2] Radial flow should also produce a narrowing of
the Ggl correlator in the longitudinal direction. However competing effects, possibly associated with
the finite shear viscosity of the system, are instead producing a significant broadening although reaching
what seems a saturation level at semi-central collisions. Note that HIJING and AMPT, with the hadronic
rescattering enabled, grossly fail to reproduce the observed broadening and instead predict a slight nar-
rowing (Fig. 2] central left panel). AMPT with string melting and without the hadronic rescattering phase
qualitatively reproduces the longitudinal broadening of GS', even its saturation, but grossly miss the
narrowing of GSD along that dimension and thus cannot be considered reliable in this context.

Particles produced by jet fragmentation are also known to exhibit correlations and jet-medium interac-
tions can broaden such correlations. Two-particle correlation measurements, of particles associated with
high-pr jets, indeed show substantial broadening of low pr particle correlations relative to correlation
functions measured in pp collisions [27, 28, 32]]. This broadening, however, is observed in both the
longitudinal and azimuthal directions in stark contrast with the behavior of the inclusive Ggl correlator
measured in this work which exhibits a significant narrowing in the azimuthal direction. Additionally,
the number of particles from jets is relatively small compared to the number from the bulk. Therefore,
although jet fragmentation may contribute to the broadening observed in the longitudinal direction, it is
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unlikely to amount to a significant contribution given the observed narrowing in the A direction and the
relatively low impact of correlations from jet particles.

Figure 4] compares results from this analysis with those reported by the STAR collaboration [16]. For
proper comparison, Fig. @ presents root mean square (RMS) widths of An projections of GSI calcu-
lated above a long range baseline as in the STAR analysis [[16]. Although STAR reported results are
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Figure 4: Two-particle transverse momentum correlation Ggl longitudinal width evolution with the number of
participants in Au—Au collisions at /sy = 200 GeV [16] and in Pb—Pb collisions at /syy = 2.76 TeV, measured
in this work, using the bi-dimensional fit described in the text (2D) and the method used by the STAR experi-
ment [16] (1D). For completeness, STAR RMS low limit [16] is also shown.

based on the dimensional version of Ggl, the same expression as in Eq. (1)) but without the normalization
(pr.1){pr2), the correlator widths reported in this letter are identical for both, the dimensional and di-
mensionless versions of the G, correlator. The longitudinal broadening measured in this analysis, using
the 1D RMS method, amounts to 36% while that observed by STAR reaches 74% showing also a satu-
ration at semi-central collisions. It was verified that the smaller broadening seen in this analysis is not
a result of the slightly narrower longitudinal acceptance of the ALICE experiment by testing the analy-
sis method with Monte Carlo models reproducing the approximate shape and strength of the measured
correlation functions. The longitudinal broadening of Ggl and its observed saturation thus appears to be
potentially dependent on the beam energy.

Interpreting the longitudinal broadening of Ggl as originating exclusively from viscous effects, an esti-
mate of the shear viscosity per unit of entropy density, 11 /s, of the matter produced in heavy-ion collisions
can be extracted [[16] using the expression

63_65:4’7<1_1> 7

derived in [[15]. In Eq. o is the longitudinal width for the most central collisions (ideally 0% cen-
trality), oy is the longitudinal width for the most peripheral collisions (ideally 100% centrality), T; is
the critical temperature, 7y is the formation time and 7. ¢ the freeze-out time. The correlator width for
the most peripheral Pb—Pb collisions at /snn = 2.76 TeV is estimated based on a power law extrapo-
lation of the measured values, shown in Fig. E], down to Npae = 2. Canonical values are used for the
critical temperature, 7, = 160 MeV [33], the formation time 7y = 1 fm/c [33], and the freeze-out time,
Tt = 10.5 fm/c [34]. With these inputs in Eq. (. Ggl longitudinal widths for the most central collisions
are calculated for several values of 17/s = 0.06, 1/4x, 0.14 and 0.22 and also shown in Fig. |5 as color
discontinuous (continuous for /s = 1/4x) bands at the highest number of participants. Considering
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Figure 5: Expected longitudinal widths for the most central collisions of the two-particle transverse momentum
correlation Ggl for different values of 17 /s by using the expression suggested in [13]]. Data point error bars represent
total uncertainties obtained by adding in quadrature statistical and systematic uncertainties. In the formula o
is the longitudinal width for the most central collisions inferred by using this expression and represented for
each of the 1 /s values by the color discontinuous bands (continuous for 17/s = 1/4x) at the highest number of
participants, oy is the longitudinal width for the most peripheral collisions (only two participants) which is obtained
by extrapolating the fit, T¢ is the critical temperature, 7y is the formation time and 7 ¢ the freeze-out time. Error
caps in the same color as the discontinuous bands, represent uncertainties of the inferred longitudinal widths for
the most central collisions (see text for details).

2%, 30%, and 3% uncertainties for T (155 < T. < 165 TeV), 7y, and 7. ¢ (10 < 7. ¢ < 11 fm) respectively,
the uncertainties of the four obtained GSI longitudinal widths for the most central collisions reach 9%,
10%, 12%, and 14%, respectively, also shown in Fig. [5as error caps in the same color as the discontin-
uous bands. The Ggl correlator width measured in central collisions thus favors rather small values of
n/s, close to the KSS limit of 1/4x [35]. The authors of Ref. [[15] obtain the correlator width values, for
Au-Au collisions at /sy = 200 GeV, without an actual measurement of GSI from the only available
two-particle transverse momentum correlator which in its turn was inferred from event-wise mean trans-
verse momentum fluctuations [36]] and on its energy dependence [37]]. They constrain 1 /s to a relatively
wide interval 0.08-0.30. The precision of the STAR measurement is limited by the relative uncertainty
of the GSI correlator widths for Au—Au collisions at /sy = 200 GeV; n1/s = 0.06-0.21 was reported
in [16].

7 Conclusions

Measurements of charge dependent (CD) and charge independent (CI) transverse momentum correlators
G> in Pb-Pb collisions at /sy = 2.76 TeV were presented aiming at the determination of the shear
viscosity per unit of entropy density, 17/s, of the matter formed in such collisions. The near-side peak of
the GSD correlator is observed to significantly narrow with collision centrality both in the longitudinal
and azimuthal directions. This behavior is found to be similar to that of the charge balance function as a
result, most likely, of an increase of the average radial flow velocity from peripheral to central collisions.
By contrast, the GSI correlator is found to narrow only in the azimuthal direction with collision centrality
and features a sizable broadening in the longitudinal direction. The observed broadening along the
longitudinal direction is expected based on friction forces associated with the finite shear viscosity of the
system. Taking the model proposed in [[15], an estimate of the value of 17/s of order 1/4m, in qualitative
agreement with values obtained from other methods [[14} 38]], is obtained. String melting AMPT without
the hadronic rescattering phase has been found to qualitatively reproduce the longitudinal broadening
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of Ggl but grossly misses the narrowing of GgD along that dimension. The observed saturation in the
longitudinal broadening and the sizable difference in broadening relative to that observed by STAR may
result from the interplay of viscous forces and kinematic narrowing associated to radial flow. In the latter
case, the difference compared to the STAR results due to a possible dependence on the beam energy
could be better established with expanded experimental measurements for energies in the beam energy
scan (BES) at RHIC or at 5.02 TeV at the LHC.
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