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Abstract

This paper presents the measurements of π±, K±, p and p transverse momentum (pT) spectra as a
function of charged-particle multiplicity density in proton-proton (pp) collisions at

√
s = 13 TeV

with the ALICE detector at the LHC. Such study allows us to isolate the center-of-mass energy de-
pendence of light-flavour particle production. The measurements reported here cover a pT range from
0.1 GeV/c to 20 GeV/c and are done in the rapidity interval |y| < 0.5. The pT-differential particle
ratios exhibit an evolution with multiplicity, similar to that observed in pp collisions at

√
s = 7 TeV,

which is qualitatively described by some of the hydrodynamical and pQCD-inspired models dis-
cussed in this paper. Furthermore, the pT-integrated hadron-to-pion yield ratios measured in pp
collisions at two different center-of-mass energies are consistent when compared at similar multi-
plicities. This also extends to strange and multistrange hadrons, suggesting that, at LHC energies,
particle hadrochemistry scales with particle multiplicity the same way under different collision ener-
gies and colliding systems.

*See Appendix A for the list of collaboration members
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1 Introduction

The unprecedented energies available at the Large Hadron Collider (LHC) provide unique opportuni-
ties to investigate the properties of strongly-interacting matter. Particle production at large transverse
momenta (pT) is well-described by perturbative Quantum Chromodynamics (pQCD). The soft regime
(pT . 2 GeV/c), in which several collective phenomena are observed in proton-proton (pp), proton-lead
(p–Pb), and heavy-ion (A–A) collisions, is not calculable from first principles of QCD. Instead, in order
to describe bulk particle production in A–A collisions, one usually relies on hydrodynamic and ther-
modynamic modelling, which assumes the system to be in kinetic and chemical equilibrium [1, 2]. On
the other hand, the description of low-pT particle spectra in smaller systems such as pp collisions is of-
ten based on phenomenological modelling of multi-partonic interactions (MPI) and color reconnection
(CR) [3, 4] or overlapping strings [5].

Recent reports on the enhancement of (multi)strange hadrons [6], double-ridge structure [7, 8], non-
zero v2 coefficients [9], mass ordering in hadron pT spectra, and characteristic modifications of baryon-
to-meson ratios [10] suggest that collective phenomena are present at the LHC energies also in p–Pb
collisions. This is further extended to even smaller systems, such as pp collisions at

√
s = 7 TeV, where

similar observations have been reported in high multiplicity events, indicating that the collective effects
are not characteristic of heavy-ion collisions only. Furthermore, a continuous transition of light-flavor
hadron-to-pion ratios as a function of charged-particle multiplicity density dNch/dη from pp to p–Pb
and then to Pb–Pb collisions was found [11–13]. The observed similarities suggest the existence of a
common underlying mechanism determining the chemical composition of particles produced in these
three collision systems.

Results from pp [11] and p–Pb [10] collisions indicate that particle production scales with dNch/dη

independent of the colliding system. Measurements reported in previous multiplicity-dependent studies
have considered different colliding systems, each at a different center-of-mass energy. In this work, we
extend the existing observations by performing a detailed study of pp collisions at

√
s = 13 TeV. A

similar study has been reported by the CMS Collaboration, albeit in a limited pT range [14]. Thanks
to the availability of Run 2 data from the LHC, for the first time, in pp collisions, we can disentangle
the effect of center-of-mass energy from the multiplicity dependence of π±, K±and p (p) production in a
wide pT range.

In this paper, we report on the multiplicity dependence of the production of primary π±, K±and p (p) at√
s = 13 TeV. Particles are considered as primary if their mean proper decay length cτ is larger than

1 cm and they are created in the collision (including products of strong and electromagnetic decays), but
not from a weak decay of other light-flavor hadrons or muons. An exception to this are products of weak
decays, where cτ of the weakly decaying particle is less than 1 cm [15]. The reported particle spectra are
measured in the rapidity region |y| < 0.5 with the ALICE detector [16], which offers excellent tracking
and particle identification capabilities from pT = 0.1 GeV/c to several tens of GeV/c [17]. As particles
and anti-particles are produced roughly in equal amounts at LHC energies [18], we adopt a notation
where π , K, and p refer to (π++π−), (K++K−), and (p + p) unless stated otherwise. This paper is
organized as follows. In Sec. 2, the details on particle identification techniques, systematic uncertainties,
spectra corrections and normalization are provided. The results are presented and discussed in Sec. 3,
together with comparisons to Monte Carlo model predictions. Finally, the most important findings are
summarized in Sec. 4.

2 Data set and experimental setup

The dataset used for this study was recorded by the ALICE Experiment during the 2016 LHC pp data
taking period. Overall ∼143M events have been analysed, corresponding to an integrated luminosity of
2.47 nb−1 considering the visible cross-section measured with the V0 detector [19]. A detailed descrip-
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tion of the ALICE detector and its performance is provided in [16, 17]. Measurements of identified par-
ticle spectra have been performed by using the central barrel detectors: the Inner Tracking System (ITS)
(Sec. 3.1 of [16]), the Time Projection Chamber (TPC) [20] and the Time-of-Flight detector (TOF) [21].
The charged-particle multiplicity estimation is done by the V0 detector (Sec. 5.4 of [16]), which consists
of two arrays of 32 scintillators each, positioned in the forward (V0A, 2.8 < η < 5.1) and backward
(V0C, −3.7 < η < −1.7) rapidity regions. In addition, the V0 is also used for triggering purposes as
well as background rejection. The determination of the event collision time [22] is performed by the T0
detector as well as the TOF detector. The former consists of two arrays of Cherenkov counters, posi-
tioned on both sides of the interaction region, and covering a pseudorapidity range of −3.3 < η <−2.9
(T0-C) and 4.5<η < 5 (T0-A). The central barrel detectors are placed inside a solenoidal magnet, which
provides a field strength of 0.5 T.

The ITS is the innermost detector and consists of six concentric cylindrical layers of high-resolution
silicon detectors based on different technologies, covering pseudorapidity region |η | < 0.9. The two
innermost layers form the Silicon Pixel Detector (SPD), which features binary readout and is also used
as a trigger detector. The Silicon Drift Detector (SDD) and the Silicon Strip Detector (SSD), which form
the four outer layers of the ITS, provide the amplitude of the charge signal, which is used for particle
identification through the measurement of specific energy loss at low transverse momenta (pT & 100
MeV/c).

The TPC, which is the main tracking detector of the ALICE central barrel, is based on a cylindrical
gaseous chamber with radial and longitudinal dimensions of 85cm < r < 247cm and −250cm < z <
250cm, respectively. The TPC is read out by multi-wire proportional chambers (MWPC) with cathode
pad readout, located at its endplates. With the measurement of drift time, the TPC provides three-
dimensional space-point information for each charged track in pseudorapidity range |η |< 0.8 with up to
159 samples per track. In the TPC, the identification of charged particles is based on the measurement
of the specific energy loss, which in pp collisions is performed with a resolution of 5.2% [17].

The TOF is a large-area array of multigap resistive plate chambers (MRPC), formed into a ∼ 4 m radius
cylinder around the interaction point and covering the pseudorapidity region |η |< 0.9 with full-azimuth
coverage. The time-of-flight is measured as the difference between the particle arrival time and the event
collision time, enabling particle identification at intermediate transverse momenta, 0.5 . pT . 4 GeV/c.
The arrival time is measured by the MRPCs with an intrinsic time resolution of 50 ps, while the event
collision time is determined by combining the T0 detector measurement with the estimate using the
particle arrival times at the TOF [22].

2.1 Event selection, classification and normalization

The analysed data were recorded using a minimum-bias trigger requiring signals in both V0A and V0C
scintillators in coincidence with the arrival of the proton bunches from both directions. The background
events produced outside the interaction region are rejected using the correlation between the SPD clus-
ters and the tracklets reconstructed in SPD. The out-of-bunch pileup was rejected offline using the timing
information from the V0 counter. The primary vertex was reconstructed either using global tracks (re-
constructed using ITS and TPC information) or SPD tracklets (reconstructed using only the SPD infor-
mation) with |zvtx|< 10 cm along the beam axis. Events with in-bunch pileup were removed if a second
vertex was reconstructed within 8mm of the primary vertex in the beam direction. The typical interaction
rate of pp collisions in the 2016 data taking periods was around 120 kHz while beam-gas interactions
occurred at a rate of 1.2 kHz.

In the analysis presented in this paper, we consider the event class INEL>0 with at least one charged
particle produced in the pseudorapidity region |η |< 1, which corresponds to∼ 75% of the total inelastic
scattering cross-section [23]. To avoid auto-correlation biases [11, 23], the events are classified using the
total charge collected in the V0 detector (V0M amplitude), which scales linearly with the total number of
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the corresponding charged particles in its acceptance [24]. For each event class, the corresponding mean
charged-particle multiplicity density 〈dNch/dη〉 is measured at mid-rapidity (|η | < 0.5) as summarised
in Table 1.

Table 1: Mean charged-particle multiplicity density 〈dNch/dη〉 measured in different event multiplicity classes.
Multiplicity classes are selected based on the visible inelastic scattering cross-section. The fraction of the total
inelastic scattering cross-section is quoted for each class in the central rows.

V0M mult. class I II III IV V
σ /σINEL>0 (%) 0–0.92 0.92–4.6 4.6–9.2 9.2–13.8 13.8–18.4
〈dNch/dη〉 26.02±0.35 20.02±0.27 16.17±0.22 13.77±0.19 12.04±0.17

V0M mult. class VI VII VIII IX X
σ /σINEL>0 (%) 18.4–27.6 27.6–36.8 36.8–46.0 46.0–64.5 64.5–100
〈dNch/dη〉 10.02±0.14 7.95±0.11 6.32±0.09 4.50±0.07 2.55±0.04

Table 2: Different pT ranges used for the identification of pions, kaons and protons. The final pT spectra have
been obtained by combining the results of the various PID techniques.

Analysis PID Technique
pT ranges (GeV/c) (pseudo)rapidity

π± K± p (p) range

ITSsa nσ integral 0.1−0.7 0.2−0.6 0.3−0.65 |y|<0.5

TPC-TOF fits
nσ fits to TPC,
β fits to TOF

0.25−3.0 0.3−3.0 0.45−3.0
|y|<0.5 (TPC)
|η |<0.4 (TOF)

TOF template fits
Statistical

unfolding of ∆t
0.7−4.0 0.6−3.0 0.9−4.0 |y|<0.5

Kinks Kink topology − 0.35−6.0 − |y|<0.5

rTPC TPC dE/dx fits 2−20 3−20 3−20 |η |<0.8

2.2 Identification of charged pions, kaons and protons

In order to measure particle spectra in a wide pT range, several sub-analyses employing different detec-
tors and particle identification (PID) techniques were performed and combined. As a result, the combined
spectra cover transverse momenta ranges from 0.1/0.2/0.3 GeV/c to 20 GeV/c for π/K/p. The pT and
(pseudo)rapidity ranges covered by each analysis for different particle species are summarized in Table 2.

At low pT, hadron spectra were measured by the ITS stand-alone (ITSsa) analysis. The dynamic range
of the analogue readout of SDD and SSD allows for dE/dx measurements of highly ionizing particles,
which otherwise do not reach the outer detectors. Hadron identification in the ITS is carried out by
calculating the truncated mean of dE/dx and comparing it to the expected energy loss under different
mass hypotheses. The difference between measured and expected dE/dx is then estimated in terms of the
standard deviation σ and the particle mass hypothesis with the lowest score is assigned. This is feasible
even for pp collisions with the highest multiplicities, as the number of charge clusters wrongly assigned
to the reconstructed tracks is negligible. A detailed description of the method is provided in [11].

Hadrons at intermediate pT enter the fiducial volume of the TPC where they can be identified by measur-
ing the charge generated in the gas. The truncated mean of dE/dx is calculated for the global tracks and
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compared to the expected energy loss under a given mass hypothesis. At low transverse momenta where
the separation between different species is sufficiently large, tracks within three standard deviations from
the expected dE/dx are assigned to a given hypothesis. In the regions where signals from several species
overlap (pT < 0.4 GeV/c for π , pT > 0.45 GeV/c for K, and pT > 0.6 GeV/c for p), dE/dx is fit with
two Gaussian distributions, one to describe the signal and the other to describe the tail of the overlapping
species. The fit of the overlapping species is then integrated in the signal region and subtracted from the
signal [11].

In the pT region where the statistical unfolding of the TPC signal becomes unfeasible, particle iden-
tification is performed using the time-of-flight measurements. The results presented in this paper were
obtained by combining the particle spectra estimated with two separate TOF analyses, taking into account
the non-common part of the respective systematic uncertainties. In the “TOF template fits”, the PID is
based on a statistical unfolding method, where the distribution of the difference between measured and
expected time-of-flight (i.e. ∆t) is fitted with templates for pions, kaons and protons in each pT and mul-
tiplicity bin [25]. An additional template is needed to take into account the background due to wrongly
associated tracks with hits in the TOF detector. The template for each particle is built from data, consid-
ering the measured TOF time response function (Gaussian with an additional exponential tail for larger
arrival times). The fits are repeated separately for each particle hypothesis in |y|< 0.5. In contrast to this,
in the “TOF fits” analysis, the velocity β distribution is simultaneously fitted for all three particle types.
For this purpose, four analytic functions, three for π , K and p, and one for mismatches, are employed.
The analysis is performed in two narrow pseudorapidity slices (|η | < 0.2 and 0.2 < |η | < 0.4) and in
momentum bins, which are then unfolded to transverse momenta. The corresponding rapidity interval
is determined under the assumption of a flat dNch/dη distribution in the aforementioned pseudorapidity
bins [26].

Charged kaons can also be identified via the kink decay topology, where a charged particle decays into
a charged and a neutral daughter (K± → µ±νµ or K± → π±π0). This secondary vertex where both
decaying particle and the charged decay product have the same charge is reconstructed inside the ALICE
TPC detector. This technique extends the charged kaon identification up to 6 GeV/c on a track-by-track
basis. The algorithm for selecting kaons via their kink decay is used in a fiducial volume inside the TPC
corresponding to a radial distance of 120 < R < 210 cm. This selection allows for an adequate number
of TPC clusters to be associated with the decaying particle and its products. The track of the decaying
particle is required to fulfil all the criteria of the global tracks except for the minimum number of clusters,
which in this case is 30.

The topological selection of the kaon candidates and their separation from the pion decays (π±→ µ±νµ )
is based on the two-body decay kinematics. The transverse momentum of the decay product with respect
to the decaying particle’s direction (qT) has an upper limit of 236 MeV/c for kaons and 30 MeV/c for
pions for the two-body decay to µ±νµ . Similarly, for kaons decaying to pions, this limit is 205 MeV/c.
Thus, a selection of qT < 120 MeV/c rejects the majority (85%) of pion decays. In addition, the angle
between the mother and the daughter tracks is selected to be above the maximum allowed decay angle
for pions and below the maximum allowed decay angle for kaons [27]. The invariant mass for the decay
µ±νµ , Mµν is calculated by assuming the daughter track to be a muon and the undetected track to be a
neutrino. These selection criteria lead to a kaon sample with a purity of 97%.

The strategy employed to measure particle production in the region of the relativistic rise of the TPC was
reported in [28]. The dE/dx signal in the relativistic rise (3 < βγ

(
= p

m

)
< 1000) follows the functional

form ln(βγ). In addition to the logarithmic growth, the separation in number of standard deviations
between pions and protons, pions and kaons, and kaons and protons as a function of momentum is
nearly constant, which allows identification of charged pions, kaons, and (anti)protons with a statistical
deconvolution approach from pT ≈ 2− 3 GeV/c up to pT = 20 GeV/c. In order to describe the TPC
response in the relativistic rise, clean external samples of secondary particles were used to parametrize
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the Bethe-Bloch and resolution curves. These correspond to pions (protons) from weak decays: K0
S →

π++π− (Λ→ p+π−) and electrons from photon conversion. Moreover, primary pions measured with
the TOF detector were used. The parametrization is done as a function of pseudorapidity. For short (long)
tracks, i.e tracks within |η |< 0.2(0.6 < |η |< 0.8), the resolution for protons is≈ 6.2% (≈ 5.4%), while
for pions it is ≈ 5.4% (≈ 5.0%). To extract the fraction of charged pions, kaons, and protons in the four
different pseudorapidity intervals (|η | < 0.2, 0.2 < |η | < 0.4, 0.4 < |η | < 0.6, and 0.6 < |η | < 0.8) a
4-Gaussian fit (three for π , K, p and one to remove the unwanted electron contribution) to the dE/dx
distribution in momentum bins is performed. The only free parameter in each of the Gaussian functions
is the normalization, while the 〈dE/dx〉 and σ〈dE/dx〉 are obtained and fixed using the Bethe-Bloch and
resolution parametrizations, respectively. A weighted average of the four different measurements is
calculated to obtain the particle fractions in |η |< 0.8. The yields are obtained by multiplying the particle
fractions by the measured unidentified charged particle spectrum.

2.3 Corrections and normalization

The raw particle distributions are normalized to the total number of events analysed1 in each multiplicity
class. To obtain the pT distributions of primary π , K, and p, the raw particle distributions obtained from
the different PID approaches need to be also corrected for the detector efficiency and acceptance, the
ITS-TPC, and TPC-TOF matching efficiency, the PID efficiency, the trigger efficiency and the contami-
nation from secondary particles.
Secondary particles are either produced in weak decays or from the interaction of particles with the de-
tector material. The estimation of secondary particle contribution is based on the Monte Carlo (MC)
templates of the distance of closest approach of the track to the primary vertex in the transverse plane
with respect to the beam axis (DCAxy), as carried out in previous works [11, 25]. The DCAxy distri-
butions of the tracks in data are fitted with three MC templates corresponding to the expected shapes
of primary particles, secondaries from material and secondaries from weak decays to obtain the correct
fraction of primary particles in the data. This procedure is repeated in each pT and multiplicity bin and
thus takes into account the possible differences in the feed-down corrections due to the change in the
abundances and spectral shapes of the weakly decaying particles. The contamination is different in each
PID analysis due to different track selection criteria and PID techniques and hence it is estimated sepa-
rately for each analysis. The contribution of secondary particles was found to be significant for π (up to
2%) and p (up to 15%) whereas the contribution for K is negligible.
The spectra are corrected for the detector acceptance and track reconstruction efficiencies based on a
simulation using the PYTHIA8 (Monash-2013 tune) Monte Carlo event generator [29] and particle propa-
gation through the full ALICE geometry using GEANT3 [30]. In this simulation, tracks are reconstructed
using the same algorithms as for the data. The detector acceptance and reconstruction efficiencies are
found to be independent of charged-particle multiplicity and thus the multiplicity-integrated values are
used in all multiplicity classes. As GEANT3 does not fully describe the interaction of low-momentum
p and K− with the detector material, an additional correction factor to the efficiency for these two par-
ticles is estimated with GEANT4 [31] and FLUKA [32], respectively, where the interaction processes
are known to be better reproduced [25]. Additional corrections to the efficiency are applied when TPC
or TOF information is used to take into account the track matching between ITS and TPC, and between
TPC and TOF.
Signal losses due to the trigger selection are extracted from PYTHIA8 (Monash-2013 tune) MC simulation
as performed in [23]. The correction is found to be 17–18% at low pT in the V0M class X (the lowest
multiplicity), and reduces to∼5%,∼2% in classes IX and VIII, respectively. The correction is negligible
in higher multiplicity pp collisions and for pT & 4 GeV/c in all multiplicity bins except in class X. In the
latter, the correction reaches ∼2% at pT = 7 GeV/c. Finally, an additional correction is applied to pass
from triggered INEL>0 to true INEL> 0 events, i.e. events with at least one primary charged particle

1Events that passed all the selection criteria.
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in |η true| < 1 and with the primary vertex in the region |V true
z | < 10 cm. The correction is independent

of particle species and is found to be negligible from V0M I (the highest multiplicity) to V0M VI, while
it ranges from 1% in class VII to 11% in class X. The correction is about 8% for multiplicity-integrated
INEL> 0 events.

2.4 Systematic uncertainties

The systematic uncertainties are divided into two categories, those common to all analyses and those
which are analysis specific. The common systematic uncertainties are those due to tracking, which in-
cludes track quality criteria and the pT-dependent ITS-TPC matching efficiency (except for the ITSsa
analysis), the TPC-TOF matching efficiency (for TPC-TOF and TOF analyses), and the signal loss cor-
rection. In addition, the systematic uncertainty related to the effect of the material budget on the global
tracking (pT dependent) is also added. The uncertainties on global tracking and TPC-TOF matching
due to material budget are calculated by varying the material budget in the simulation by ± 5%. The
uncertainty related to the hadronic interaction cross section in the detector material is estimated using
GEANT4 [31] and FLUKA [32] transport codes. Finally, an additional systematic uncertainty of 2%
is added to account for possible multiplicity dependence of track reconstruction efficiency and signal
loss correction calculated from a MC simulation. All common sources of systematic uncertainties are
summarised in Table 3. In the same table, the individual analysis systematic uncertainties are also listed
for each particle species.

The estimation of the systematic uncertainties for the ITSsa analysis is described in detail in [11, 25].
The ITSsa tracking uncertainties are estimated by varying the main criteria for the track selection, namely
those on the DCAxy, on the χ2 of the track, and on the number of clusters required in the ITS layers.
The uncertainty related to the particle identification is calculated by using a Bayesian technique and
comparing the results obtained with the standard nσ method as already performed in [33]. Due to the
Lorentz force, the positions of ITS clusters are shifted depending on the magnetic field polarity, giving
rise to a 3% uncertainty. Finally, the energy-independent uncertainty related to the ITS material budget is
estimated with a simulation of pp collisions at

√
s = 900 GeV by varying the material budget of the ITS by

±7.5% [34]. For the TPC-TOF fits analysis at low pT (below 500, 600, and 800 MeV/c for π , K, and p,
respectively), the systematic uncertainty associated with the PID technique is calculated by integrating
the measured dE/dx of charged tracks in the ranges of ±3.5σ and ±2.5σ , where σ represents one
standard deviation from the 〈dE/dx〉 under given mass hypothesis. At higher pT values, where only the
time-of-flight information is used, the associated uncertainties are calculated by simultaneously varying
the width and tail parameters by 10%. An additional uncertainty is calculated by fixing the central
values of the fit functions to the β calculated for each particle species in a given momentum range. This
was found to be the dominant source of systematic uncertainty for π and K at the highest pT values
(& 2.5 GeV/c). For the TOF template fits analysis, PID uncertainties are estimated by simultaneously
varying the spread and tail slope of each ∆t template by 10%. In addition to this, for both the TPC-
TOF and TOF template fits analyses, systematic uncertainties associated with tracking are calculated
by varying the track selection criteria: the number of crossed rows in the TPC, the distance of closest
approach in beam and transverse directions, and the quality of the global track fit χ2. For the kink analysis
the sources of systematic uncertainties are: the kink vertex finding efficiency (3% constant in pT), the
kink PID efficiency (calculated by taking into account the position of the kink vertex, the number of TPC
clusters of the decaying particle track, and the qT of the decay product), and the uncertainty related to
the purity of the selected sample. The contamination due to the random association of tracks wrongly
attributed to kaon decays is of the order of 2.3% at low transverse momenta and reaches the value of 3.4%
above 4 GeV/c. The largest component of the systematic uncertainties in the analysis of the relativistic
rise of the TPC arises from the imprecise parametrization of both the Bethe-Bloch and resolution curves.
To quantify this uncertainty, the variations of the Bethe-Bloch resolution parametrizations with respect
to the measured 〈dE/dx〉(σ〈dE/dx〉) are used to vary the values of the mean and σ in the 4-Gaussian

7



ALICE Collaboration

fit [28]. The largest relative deviation between the nominal particle ratios and the ones obtained after the
variations are assigned as a systematic uncertainty.

Table 3: Sources of the relative systematic uncertainties of the pT-differential yields of π , K, and p. The uncer-
tainties are split into two categories, the common and the individual-analysis specific for low, intermediate and
high pT. Numbers in parenthesis in the p column refer to p uncertainties. In the last rows, the maximum (among
multiplicity classes) total systematic uncertainty is reported.

Uncertainty (%)
Common source π K p (p)
pT (GeV/c) 0.1 3.0 20.0 0.2 2.5 20.0 0.3 4.0 20.0
Correction for secondaries 1 1 1 negl. 4 1 1
Hadronic interactions 2 2.4 2.4 2.7 1.8 1.8 1

(3.6)
1

(3.6)
1

(3.6)
ITS-TPC matching efficiency 0.7 1.5 2.9 0.7 1.5 2.9 0.7 1.5 2.9
Global tracking efficiency 0.7 0.5 1.5
TOF matching efficiency
(TPC-TOF fits,TOF template fits)

3 6 4

Signal-loss correction 0.2 1 3.3
pT (GeV/c) 0.3 3.0 20.0 0.3 2.5 20.0 0.4 4.0 20.0
Material budget
(TPC-TOF)

0.5 1.0 0.2 1.5 1.0 0.4 2.9 1.7 0.1

Specific source π K p (p)
ITSsa, pT (GeV/c) 0.10 0.70 0.20 0.60 0.30 0.65
Tracking 1.4 1.4 1.5 1.5 1.1 1.1
Material budget 4.8 0.3 2.3 0.6 5.0 0.9
E×B effect 3.0 3.0 3.0
PID 0.4 0.4 3.9 3.9 4.2 4.2
TOF templates, pT (GeV/c) 0.7 4.0 0.6 3.0 0.9 4.0
PID 1 9.4 1 12 1 21
TPC-TOF fits, pT (GeV/c) 0.3 3 0.3 3 0.4 3
PID 1.4 7 3 16 1 4.3
rTPC, pT (GeV/c) 2.0 20.0 2.0 20.0 2.0 20.0
Bethe–Bloch parameterization 8.1 4 14.8 8.0 14 6.0
Feed-Down 0.5 0.5 - - 2.4 2.0
Kinks, pT (GeV/c) 0.6 6.0 0.6 6.0 0.6 6.0
PID - - 0.75 5.3 - -
Kink vertex finding efficiency - - 3 3 - -
Contamination - - 2.3 3.4 - -
Total π K p (p)
pT (GeV/c) 0.3 3.0 20.0 0.3 3.0 20.0 0.3 3.0 20.0
Total 6.6 5.1 4.3 6.6 6.8 7.8 9.6 9.7 12.4
Particle ratios K/π p/π
pT (GeV/c) 0.2 3.0 20.0 0.3 3.0 20.0
Total 7.2 14.6 7.7 10.2 12.2 11.5
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3 Results and discussion

The pT-differential spectra of π , K, and p measured as a function of the charged-particle multiplicity
density in pp collisions at

√
s = 13 TeV are shown in Fig. 1. For each V0M class, charged-particle

multiplicity density has been measured in the central region (|η | < 0.5), as summarized in Table 1.
The bottom panels in Fig. 1 show spectral ratios to the INEL>0 (sum of all V0M classes) class. We
observe that the measured pT spectra become harder with increasing 〈dNch/dη〉, and the effect is more
pronounced for protons. The hardening of the inclusive charged-hadron spectra with 〈dNch/dη〉 has been
also recently reported in [35], where different MPI models were shown to describe such effect. On the
other hand, the mass dependence of spectral shape modifications is also observed in Pb–Pb collisions at√

sNN = 2.76 TeV [28], where it is usually associated with the hydrodynamical evolution of the system.
At higher pT (& 8 GeV/c), we find that slopes of particle spectra become independent of the multiplicity
class considered, as expected from pQCD calculations [36].

The pT-differential K/π and p/π ratios as a function of 〈dNch/dη〉 measured at low, intermediate, and
high transverse momenta are shown in Fig. 2 together with those measured in pp collisions at

√
s =

7 TeV [11] and predictions from several MC generators for pp collisions at
√

s = 13 TeV. The measured
K/π ratio shows no evident sign of evolution with multiplicity in all pT ranges considered, while the p/π
ratio shows depletion at low pT, an increase at intermediate pT, and constant behavior at high pT. In
addition, the measured K/π and p/π ratios are consistent between the two center-of-mass energies [11].

For MC predictions, the event classification is based on the number of charged tracks simulated at for-
ward and backward pseudorapidities covered by the V0 detector, in a way similar to the way the event
classification is done for the data. The mean charged-particle multiplicity density is then calculated in
the central pseudorapidity region, |η | < 0.5. HERWIG 7 [37, 38], where a clustering approach is used
for hadronization, provides a good description of the evolution of the K/π and p/π ratios with 〈dNch/dη〉
in the low and intermediate pT ranges and is consistent with the measured ratios within 1-2 standard
deviations. PYTHIA8 [39] without color reconnection (CR) predicts no evolution of K/π and p/π ratios.
The CR scheme, which has been shown to capture the modifications of the baryon-to-meson ratios [3],
provides only a qualitative description of the evolution of the p/π ratio with 〈dNch/dη〉 and overesti-
mates the absolute values of the ratio at low and high pT. The implementation of color ropes [5, 40, 41]
in PYTHIA8, which results in higher effective string tension and thus enhances strange- and di-quark
production, provides a qualitative description K/π (p/π) ratio only at low (intermediate) pT and overes-
timates the p/π ratio at low pT. This could be understood considering that larger effective string tension
is mostly translated to hadronic mass and thus feeds down the low pT part of the spectrum.

In large collision systems such as Pb–Pb, multiplicity-dependent modifications of hadron pT spectra
can be interpreted as the hydrodynamical radial expansion of the system and studied in the context of
the Boltzmann-Gibbs Blast-Wave model [42]. In this model, a thermalized medium expands radially
and undergoes an instantaneous kinematic freeze-out. The average expansion velocity 〈βT〉, the kinetic
freeze-out temperature Tkin, and the velocity profile exponent n can be extracted from simultaneous
model fits to hadron spectra. As the trends observed in the evolution of particle spectra measured in pp
collisions are highly reminiscent to those in p–Pb and Pb–Pb, it is interesting to check whether the Blast-
Wave model can be extended to describe pp collisions. Such study has been previously reported in [11],
where pp, p–Pb, and Pb–Pb collisions at

√
sNN = 7, 5.02, and 2.76 TeV were considered. Now, for the

first time, we can study the evolution of 〈βT〉, Tkin and n in pp collisions as a function of the collision
energy.

At low transverse momenta (pT . 500 MeV/c), the dominant mechanism of π production is from res-
onance decays. To account for this in the Blast-Wave model fits, spectral measurements of all strongly
decaying hadrons are required. Alternatively, one can choose to omit the low-pT pions. Noting that there
is a strong dependence of Blast-Wave parameters on the fitting range [25], it is important to consider
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Figure 1: Transverse momentum spectra of π , K, and p for different multiplicity event classes. Spectra are scaled
by powers of 2 in order to improve visibility. The corresponding ratios to INEL>0 spectra are shown in the bottom
panels.
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Figure 2: Multiplicity dependence of pT-differential K/π (upper panels) and p/π (lower panels) ratios measured in
pp collisions at

√
s = 7 TeV [11] and 13 TeV (blue and red, respectively). Lines represent different MC generator

predictions for pp collisions at
√

s = 13 TeV. Left to right: low-, intermediate-, and high-transverse momenta.
Vertical bars, open, and shaded bands represent statistical, total systematic, and multiplicity uncorrelated system-
atic uncertainties, respectively. Numbers in the parenthesis in different panels represent different scale factors for
data and MC predictions for better readability.

the same pT range in the fitting procedure in order to obtain a consistent comparison between differ-
ent colliding systems. The comparison of the 〈βT〉-Tkin correlations measured in different systems and
center-of-mass energies is shown in Fig. 3. In this paper we consider three different approaches to the
Blast-Wave model fits to particle spectra measured in pp collisions at

√
s = 13 TeV: a) traditional fits

as done in [10, 11, 25], where π , K, and p spectra are fitted and resonance feed-down is neglected (rep-
resented by full markers in Fig. 3), b) simultaneously fitting K, p, and Λ spectra [23] noting that Λ are
not significantly affected by resonance decays (represented by shaded ellipses in Fig. 3), and c) a method
proposed in [43, 44], where the resonance feed-down is calculated before the Cooper–Frye freeze-out
using a statistical hadronization model (represented by empty circles in Fig. 3). We find that the 〈βT〉-
Tkin correlation in pp collisions at

√
s = 13 TeV follows similar trends as seen at lower energies. When

Λ’s are considered instead of pions, the trends seen in 〈βT〉-Tkin correlation do not change significantly
and only at highest multiplicities we find a larger Tkin. On the other hand, when a proper treatment of
resonance decays is used, we find a significantly lower Tkin of around 135 MeV at the lowest multiplic-
ities, which then grows with increasing 〈dNch/dη〉 and approaches the pseudocritical QCD temperature
Tc = 156±1.5 MeV [45] at the highest multiplicity pp collisions. In addition, the evolution of 〈βT〉, Tkin,
and n with 〈dNch/dη〉 is shown in Fig. 4 for different colliding systems. From the lowest multiplicities,
Tkin grows with 〈βT〉 until it saturates at around 180 MeV. At larger multiplicities (〈dNch/dη〉& 16), Tkin
decreases and becomes similar to that measured in p–Pb collisions at

√
s = 5.02 TeV, suggesting that

the system decouples at lower temperature and thus is longer-lived. The average expansion velocity 〈βT〉
increases with 〈dNch/dη〉 and its values are consistent for pp collisions at different

√
s as well as with

the corresponding values for p–Pb collisions, indicating that small systems become more explosive at
larger multiplicities. In contrast to this, 〈βT〉 measured in Pb–Pb collisions is lower than that in smaller
systems for the common 〈dNch/dη〉 range, see Fig. 4. This indicates that the size of the colliding system
might have significant effects on the final state particle dynamics. This is also reflected in the expansion
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Figure 4: Evolution of 〈βT〉, Tkin, and n with 〈dNch/dη〉. 〈βT〉, Tkin and n are extracted from Blast-Wave fits to
π , K, and p pT spectra measured in pp, p–Pb, and Pb–Pb collisions at different

√
s. The resonance feed-down

contribution is neglected.

velocity profile power n shown in Fig. 4: in pp and p–Pb collisions, large n suggests high pressure gra-
dients which lead to larger 〈βT〉, while in Pb–Pb collisions, n∼ 1 could be interpreted as lower pressure
gradient and thus smaller expansion velocity [46].

Previous studies on hadron production as a function of multiplicity have reported the factorization of
pT-integrated particle yields with 〈dNch/dη〉 [11], which extends across different colliding systems and
collision energies. Now for the first time we can isolate the center-of-mass energy dependence of this
scaling for π , K, and p in pp collisions. The pT-integrated particle yields (dN/dy) and average transverse
momenta (〈pT〉) are calculated by integrating the measured transverse momentum spectra and using the
Lévy-Tsallis parametrization [47–49] to extrapolate to the low pT regions not covered by the measure-
ments. The extrapolated fractions of the yields at low pT are 8% (10%) for π , 6% (13%) for K, and
7% (20%) for p for the highest (lowest) multiplicities. For systematic uncertainties on the extrapolation,
Bylinkin, Bose-Einstein, Fermi-Dirac, mT-exponential and Hagedorn functions are used to fit particle
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√
s = 13 TeV. References from [11, 25, 33, 50].

spectra. The largest systematic uncertainties on dN/dy (〈pT〉) related to the extrapolation procedure are
found to be 2% (2%), 2% (2%), and 3% (2%) for π , K, and p at low-multiplicity classes and become
smaller at higher multiplicities.

The statistical uncertainties of dN/dy and 〈pT〉 are calculated by coherently shifting the central values of
each spectra point by a fraction of its statistical uncertainty. The fraction is randomly drawn from Gaus-
sian distribution and new values of integrated yields and mean transverse momenta are calculated. The
procedure is repeated 1000 times to calculate the standard deviations of dN/dy and 〈pT〉, which are then
used as the statistical uncertainties. To estimate the systematic uncertainty on the integrated yields, the
spectra points are moved to maximal/minimal values allowed by their respective systematic uncertainties
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before repeating the fit procedure. For 〈pT〉, each point of the spectra is shifted to the upper/lower edge
of the corresponding pT bin to obtain the hardest/softest particle distribution. The largest differences to
the nominal yield and 〈pT〉 values are combined with the extrapolation uncertainties to calculate the total
systematic uncertainties. The kaon- and proton-to-pion integrated yield ratios measured in pp collisions
at
√

s = 13 TeV are found to be in a good agreement within systematic uncertainties with those mea-
sured in pp, p–Pb, and Pb–Pb collisions at

√
sNN = 7, 5.02, and 2.76 TeV, respectively, as shown in

Fig. 5. In addition, with the availability of (multi)strange hadron yields [23] we can study the relative
abundances of hyperons to pions, and the results are shown in Fig. 6. We find that the (multi)strange
hadron-to-pion ratios measured in pp collisions at

√
s = 13 TeV are in good agreement to those mea-

sured at
√

s = 7 TeV and similar 〈dNch/dη〉. This indicates that hadrochemistry at LHC energies scales
with charged-particle multiplicity density in a uniform way, despite the colliding system or collision
energy.

The description of hadron-to-pion ratio factorization with multiplicity at lower center-of-mass energies in
MC generators has been previously shown to be qualitative at best [11]. In fact, both PYTHIA8 with color
reconnection and HERWIG 7 [37, 38] predict no evolution of the ratios with 〈dNch/dη〉. In this paper,
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we consider more recent versions of the two MC generators. In particular, the hadronization in PYTHIA8
now considers overlapping color strings, which form color ropes with a larger effective string tension
and are then allowed to interact with each other [41]. On the other hand, hadronization in HERWIG 7
now includes baryonic ropes – a reconnection scheme that enhances the probability of partons forming
a baryon [37]. We find that both PYTHIA8 and HERWIG 7 predict the enhancement of strange baryons
which is more pronounced for hadrons with a larger strangeness content as shown in Fig. 6. The largest
quantitative differences are seen for Ω/π ratio at the lowest multiplicity in pp collisions. The Ξ/π ratios
are in a better agreement with PYTHIA8 with color ropes, while HERWIG 7 shows a large deviation from
the data at low 〈dNch/dη〉. Finally, Λ/π ratios are well described by HERWIG 7, while PYTHIA8 with
color ropes predicts an increasing trend in the whole multiplicity range available and overestimates the
ratio at the highest multiplicities. Overall, the agreement between MC generators and measured hadron-
to-pion ratios become worse for particles with a larger strangeness content. This might point to the need
of a further refinement of MC generator tuning, as similar trends are already observed for e+e− data [51].

The integrated K/π yield ratio shown in Fig. 5 at high multiplicity pp collisions are captured by PYTHIA8
ropes and HERWIG 7, but the latter predicts a peak-like structure at low 〈dNch/dη〉 which is not ob-
served in the data. The predictions from PYTHIA8 Monash tune are inconsistent with the measured K/π
ratios in pp collisions at

√
s = 13 TeV, whether color reconnection is considered or not. The quantitative

description of p/π ratio is given only by HERWIG 7, while all considered versions of PYTHIA8 overpre-
dict the data. Moreover, PYTHIA8 with color ropes predicts an increase of the p/π ratio with 〈dNch/dη〉,
which could be attributed to the enhanced production of strange- and di-quark in the rope fragmentation.
Overall, we conclude that none of the models considered provide a consistent description of the data.

The average transverse momenta of identified particles are found to increase with multiplicity in pp
collisions at

√
s = 7 and 13 TeV as shown in Fig. 7. A clear mass ordering is observed among the particle

species considered, where protons have the largest 〈pT〉. Similar observations have been previously
reported in pp [52] and p–Pb [10] collisions at lower energies and for strange hadrons in pp collisions at
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Figure 7: Upper panels: average transverse momenta of π , K, and p as a function of charged-particle multiplicity
density measured in pp collisions at

√
s = 7 and 13 TeV. The red solid line represents a− b(c−〈dNch/dη〉)−1

fit to the 13 TeV data to guide the eye. Open (shaded) boxes represent total (multiplicity uncorrelated) systematic
uncertainties. Black lines represent predictions from different MC generators for pp collisions at

√
s = 13 TeV.

Bottom panels: ratios of 〈pT〉 to the fits. Data at
√

s = 7 TeV are from [11].
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√
s = 13 TeV [23]. The solid red line in Fig. 7 represents a fit of the form a−b/(c−〈dNch/dη〉) to the√
s = 13 TeV data, which is then used for a better comparison of 〈pT〉 between the two center-of-mass

energies, see lower panels of the same figure. We find a small hint of an increase with
√

s for similar
multiplicities for π , while the 〈pT〉 of protons is similar at the two center-of-mass energies. Note that
similar observations have been already reported in [23], where spectra of K0

s were found to become harder
with
√

s at similar multiplicities. In addition, we find that PYTHIA8 Monash tune with color reconnection,
HERWIG 7, and PYTHIA8 with ropes give a very good description of π 〈pT〉 evolution with 〈dNch/dη〉.
This is expected as pions are the most abundant particles produced in collisions, and the three generators
are tuned to explicitly to describe the 〈pT〉 of charged-particles. On the other hand, we observe that
the 〈pT〉 of K and p are well described only by HERWIG 7, while PYTHIA8 with rope implementation
underestimates the 〈pT〉 in the whole 〈dNch/dη〉 range considered. This could be understood considering
that the additional energy available during the rope fragmentation predominantly enhances the production
of heavier hadrons at low pT.

4 Summary

We have studied π , K, and p production as a function of multiplicity in pp collisions at
√

s = 13 TeV.
To avoid auto-correlation biases, the event classification has been based on multiplicity measurements at
forward (backward) pseudorapidity, while event activity 〈dNch/dη〉 has been correspondingly estimated
at central pseudorapidities, |η | < 0.5. We find that hadron pT spectra become harder with multiplicity,
and the effect is more pronounced for heavier particles. The hardening of the spectra is predicted by
PYTHIA8 with rope hadronization, PYTHIA8 Monash with color reconnection, and HERWIG7 MC gen-
erators. In addition, all three generators provide a quantitative description of π 〈pT〉, while K and p are
described qualitatively only by HERWIG7. At high pT (& 8GeV/c) we find that spectral shapes become
independent of 〈dNch/dη〉 as predicted by pQCD calculations [36].

The measured pT-differential K/π ratios show no evolution with multiplicity in the pT range considered.
In contrast to this, a depletion (enhancement, saturation) is visible for the p/π ratios at low (intermediate,
high) pT. In addition, we find that the ratios measured in pp collisions at

√
s = 13 TeV are consistent

with those measured at
√

s = 7 TeV. The saturation at high pT is captured by PYTHIA8 Monash tunes,
while HERWIG 7 and PYTHIA8 with color ropes show signs of enhancement. While some of the most
common MC generators capture the trends seen in the pT-differential K/π and p/π ratios, it is interesting
to see that none of them provides a consistent description of the data and predict the absolute values of
the ratios at high pT.

The study of hadron pT spectra in the context of the Blast-Wave model reveals that the kinetic freeze-out
temperature Tkin, average expansion velocity 〈βT〉, and the velocity profile exponent n show little or no
dependence on the center-of-mass energy and are consistent within uncertainties with those extracted
from particle spectra measured in pp collisions at

√
s = 7 TeV [11]. On the other hand, we observe a

strong dependence of the extracted parameters on 〈dNch/dη〉.

The pT-integrated hadron-to-pion ratios as a function of multiplicity show no center-of-mass dependence
and the measurement in pp collisions at

√
s = 13 TeV are compatible to those in pp, p–Pb, and Pb–Pb

collisions at
√

sNN = 7, 5.02, and 2.76 TeV, respectively. This suggests that, at the LHC energies, the
chemical composition of primary hadrons scales with charged-particle multiplicity density in a uniform
way, despite the colliding system and collision energy. Comparisons of the integrated hadron-to-pion
ratios to the predictions from MC generators show that PYTHIA8 with color ropes provides the best
description of (multi)strange hadrons, but overestimates the measured p/π ratio. HERWIG7 also captures
the evolution of the ratios with 〈dNch/dη〉, but underestimates the absolute values of Ξ/π and Ω/π .
Overall, none of the generators are able to provide a consistent quantitative description of the measured
hadron-to-pion ratios.
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