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Abstract

The W and Z boson production was measured via the muonic decay channel in proton–lead colli-
sions at

√
sNN = 5.02 TeV at the Large Hadron Collider with the ALICE detector. The measurement

covers backward (−4.46 < ycms < −2.96) and forward (2.03 < ycms < 3.53) rapidity regions, cor-
responding to Pb-going and p-going directions, respectively. The Z-boson production cross section,
with dimuon invariant mass of 60 < mµµ < 120 GeV/c2 and muon transverse momentum (pµ

T ) larger
than 20 GeV/c, is measured. The production cross section and charge asymmetry of muons from
W-boson decays with pµ

T > 10 GeV/c are determined. The results are compared to theoretical calcu-
lations both with and without including the nuclear modification of the parton distribution functions.
The W-boson production is also studied as a function of the collision centrality: the cross section of
muons from W-boson decays is found to scale with the average number of binary nucleon-nucleon
collisions within uncertainties.

∗See Appendix A for the list of collaboration members
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1 Introduction

The W and Z boson production is extensively studied at hadron colliders as it represents an important
benchmark of the Standard Model. The measurements in pp and pp collisions at different energies [1–9]
are well described by Quantum Chromodynamics (QCD) calculations at Next-to-Leading Order (NLO)
and Next-to-Next-to-Leading Order (NNLO) in perturbation theory. In the calculations, the input elec-
troweak parameters (e.g. boson masses and weak couplings) are known to high accuracy, as well as the
radiative corrections [10]. The measurements can hence constrain the Parton Distribution Functions
(PDFs) [11].

With the large centre-of-mass energies and luminosity of the Large Hadron Collider (LHC), the W and Z
boson production has become accessible for the first time in proton-nucleus [12–15] and nucleus-nucleus
collisions [16–19]. The PDFs are expected to be modified for nucleons inside a nucleus compared to
those of nucleons in vacuum. Nuclear PDFs (nPDFs) are extracted from global analyses performed at
NLO accuracy in perturbative QCD [20, 21], but the results are mostly constrained by Deep-Inelastic
Scattering and Drell-Yan data in a limited region of the four-momentum transfer Q2 and parton longi-
tudinal momentum fraction Bjorken-x [21]. The W and Z bosons and their lepton decay products are
unaffected by the hot and dense strongly-interacting matter formed in ultra-relativistic heavy-ion col-
lisions and offer a unique opportunity to study the nPDF in a region of high Q2 ∼ (100 GeV)2 and
Bjorken-x ranges from ∼ 10−4 to almost unity where they are poorly constrained by data [22]. Fur-
thermore, the asymmetry in the production of positive and negative W bosons, occurring mainly in the
processes ud→W+ and du→W− at the LHC energies, can be used to probe the flavour modification of
the quark densities in nuclei [22].

The W and Z boson production was measured in Pb–Pb collisions at
√

sNN = 2.76 TeV by the ATLAS [16,
17] and the CMS [18, 19] experiments in the electronic and muonic decay channels. The results confirm
that the production cross section scales with the number of nucleon-nucleon collisions (binary scaling)
within uncertainties on the order of 10%. The W and Z bosons were further studied in p–Pb collisions at√

sNN = 5.02 TeV. The Z-boson production was measured by the ATLAS [12] and CMS [13] experiments
at mid-rapidity in the leptonic decay channels, and by the LHCb experiment at forward rapidities [14]
in the muonic decay channel. The W-boson production was measured by the CMS experiment at mid-
rapidity [15] in the semi-leptonic decay channel. The results are described by theoretical calculations
both with and without including the nuclear modification of the PDFs, with a preference towards the
former and can be used to further constrain the nPDFs [22].

In nucleus-nucleus collisions, particle production is often studied as a function of the collision centrality,
which is directly related to the impact parameter of the collision. The number of interacting nucleons,
and hence the energy deposited in the collision region, increases from peripheral to central (head-on)
collisions thus affecting the volume and density of the strongly-interacting medium that is produced.
The nuclear modification of the PDFs is expected to depend as well on the position of the nucleon inside
the nucleus, and therefore on average on the impact parameter of the collision [23]. The centrality of
nucleus-nucleus collisions is usually estimated by measuring either the energy deposition or the hadronic
multiplicity in specific detectors, which is related to the multiplicity of the charged particles produced
in the collision. This estimation is known to be biased in p–Pb collisions, where the range of the mul-
tiplicity is of similar magnitude as its fluctuations [24]. The biases are minimised when the centrality
is determined through the energy measured at beam rapidity (with zero degree calorimeters), which is
deposited by the non-interacting (spectator) nucleons emitted from the Pb nucleus in the collision and is
therefore independent of the fluctuations in the number of produced particles.

The W and Z boson production occurs in hard scattering processes at the initial stage of the collision, and
it is expected to scale with the number of binary nucleon-nucleon collisions. The centrality-dependent
yield can be therefore used as a test bench for the centrality estimation at the LHC.
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In this article, the ALICE results on Z and W boson production in the muonic decay channel in p–
Pb collisions at

√
sNN = 5.02 TeV are presented. The former improves the LHCb measurement in a

similar rapidity range. The latter is the first measurement of W production in p–Pb collisions at forward
and backward rapidity, in a region that is complementary to the one explored by CMS. The article is
organized as follows. The data sample and analysis strategies are described in Section 2. The results are
shown in Section 3 and summarised in Section 4.

2 Data analysis

2.1 Experimental apparatus and data samples

The ALICE detector is described in detail in [25]. Muons are reconstructed in the muon spectrometer,
covering the pseudorapidity range −4 < η <−2.5 in the laboratory frame. The spectrometer consists of
a dipole magnet with a 3 Tm integrated magnetic field, five tracking stations made of Multi-Wire Propor-
tional Chambers with Cathode Pad readout, and two trigger stations made of Resistive Plate Chambers
and several absorption elements. The tracking stations are placed downstream from a conical front
absorber made of carbon, concrete and steel, with a thickness of 4.1 m (corresponding to 10 nuclear
interaction lengths, λI) that filters out hadrons from the interaction point. The trigger stations are placed
after an iron wall with a thickness of 1.2 m (7.2 λI) that absorbs secondary hadrons escaping from the
front absorber and low-momentum muons, mainly coming from the decay of light hadrons. Finally, a
conical beam shield covering the beam pipe protects the spectrometer from particles produced in the
interaction of large-η particles with the pipe itself.

In this analysis, the position of the interaction vertex is measured with the Silicon Pixel Detector (SPD),
which constitutes the two innermost layers of the Inner Tracking System, covering an acceptance interval
of |η | < 2 and |η | < 1.4, for the first and second layer, respectively. Two arrays of scintillators, the V0
detector [26], placed on each side of the interaction point and covering the pseudprapidity regions 2.8 <
η < 5.1 and −3.7 < η < −1.7, are used as trigger detectors and to reject beam-induced background.
The V0 is also used as a luminometer, together with the T0 detector, which consists of two arrays of
quartz Cherenkov counters covering the pseudprapidity regions 4.6 < η < 4.9 and −3.3 < η < −3.0.
The neutron zero degree calorimeters (ZN), placed on either side of the interaction point at ±112.5 m
along the beam pipe are used to estimate the centrality of the collision.

The analysis is performed on data collected in 2013 in proton–lead collisions at a centre-of-mass energy√
sNN = 5.02 TeV. Due to the different energies of the proton and lead beams (Ep = 4 TeV and EPb =

1.58 TeV per nucleon), the resulting nucleon–nucleon centre-of-mass is boosted with respect to the
laboratory frame by ∆y= 0.465 in the direction of the protons. Data were collected in two configurations,
by inverting the direction of the p and Pb beams. It is assumed that the proton beam travels towards
positive rapidities. With this convention, muons are measured at forward rapidity (2.03 < ycms < 3.53)
when the proton travels towards the spectrometer and at backward rapidity (−4.46 < ycms < −2.96)
when the Pb ion is travelling towards the spectrometer. In the following, the two configurations will be
referred to as p-going and Pb-going directions, respectively.

The data sample used in the W-boson analysis consists of events with at least one muon candidate track
selected with the muon trigger with a transverse momentum pT & 4.2 GeV/c, in coincidence with a
Minimum Bias (MB) event, which is defined by requiring the coincidence of signals in the two arrays
of the V0 detector. For the Z-boson analysis, two muon candidates with a transverse momentum of
pT & 0.5 GeV/c are required, in coincidence with a MB event. The trigger selection on the muon pT is
not sharp and the threshold is defined as the value for which the trigger efficiency reaches a value of 50%.
The integrated luminosities used in the analysis were computed by estimating the equivalent number of
MB events corresponding to the muon-triggered data samples and then dividing by the MB cross sections.
The latter were measured with Van der Meer scans and amount to 2.12± 0.07 b and 2.09± 0.07 b for
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Centrality class 0–100% 2–20% 20–40% 40–60% 60–100%
〈Nmult

coll 〉 6.9±0.6 11.3±0.3 9.6±0.2 7.1±0.3 3.2±0.1

Table 1: Average number of binary nucleon-nucleon collisions 〈Nmult
coll 〉 estimated with the hybrid ZN method [24].

the Pb-going and p-going samples, respectively [27]. The number of MB events corresponding to the
muon-triggered data sample is evaluated as NMB = Fµ-trig/MB ·Nµ−trig where Nµ−trig is the number of
muon-triggered events and Fµ-trig/MB is the inverse probability of having a muon-triggered event in a
MB event. The normalisation factor Fµ-trig/MB is estimated by using the information of the counters
recording the total number of triggers, corrected for pile-up effects, which amount to 2%. The Fµ-trig/MB
factor can also be obtained by applying the muon trigger condition in the analysis of MB events. The
difference between the results obtained with the two methods, which amounts to about 1%, is taken as
the systematic uncertainty. The integrated luminosity was also independently measured using the T0
detector: the results agree within better than 1% in both data samples. The difference was included in
the systematic uncertainty of the MB cross section. The resulting luminosity is 5.81± 0.20 nb−1 and
5.03±0.18 nb−1 for the Pb-going and p-going data samples, respectively.

The centrality of the collision is measured from the energy deposited in the ZN in the direction of the
fragmenting lead ion. The average number of binary nucleon-nucleon collisions 〈Ncoll〉 is obtained from
the “hybrid method” described in [24], which relies on the assumption that the charged-particle multi-
plicity measured at mid-rapidity is proportional to the average number of nucleons participating in the
interaction 〈Npart〉. The values of 〈Npart〉 for a given ZN-centrality class are calculated by scaling the
average number of participants in MB collisions 〈NMB

part 〉, estimated with a Glauber Monte Carlo [28], by
the ratio of the average charged-particle multiplicity measured at mid-rapidity for the ZN-centrality class
and that of MB. These values are denoted as 〈Nmult

part 〉 in the following to indicate the assumption used for
the scaling. The corresponding number of binary collisions is then obtained as: 〈Nmult

coll 〉 = 〈Nmult
part 〉− 1.

The systematic uncertainties are estimated by using different ansätze, as described in [24]. The resulting
values of 〈Nmult

coll 〉 and their uncertainties are summarised in Table 1.

The muon trigger efficiency is found to be independent of centrality in p–Pb collisions. The normal-
isation factor of muon-triggered to MB events per centrality class can be obtained from the centrality
integrated value Fµ-trig/MB scaled by the fraction of the MB events in the given centrality class. The 0–
2% most central collisions are excluded in the centrality-dependent analysis, because of the large pile-up
contamination in this event class (of the order of 20–30%). In pile-up events the ZN energies of two
(or more) interactions sum up, thus biasing the centrality determination towards the most central classes.
The contamination is reduced with decreasing centrality, and is about 3% in the 2–20% event classes
in both the p-going and Pb-going data sample. These values are taken into account in the systematic
uncertainties on the normalisation.

2.2 Muon selection and Monte Carlo simulations

Muon track candidates are reconstructed in the tracking system using the algorithm described in [29].
A fiducial cut on the pseudorapidity of the muon of −4 < η < −2.5 is applied in order to remove the
particles at the edge of the spectrometer acceptance. An additional selection on the polar angle measured
at the end of the front absorber of 170◦ < θabs < 178◦ is required to reject muons crossing the high-
density region of the front absorber that undergo significant scattering. Muon identification is carried
out by matching the tracks reconstructed in the tracker and the trigger systems. The contamination
from beam-induced background tracks, which do not point to the interaction vertex, can be efficiently
removed by exploiting the correlation between the momentum (p) of the track and its Distance of Closest
Approach (DCA) to the vertex. Due to the multiple scattering in the front absorber, the DCA distribution
of particles produced in the collision can be described with a Gaussian function, whose width depends
on the material crossed and is proportional to 1/p. On the other hand, the background tracks have a
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DCA larger than about 40 cm, independent of pT. They can therefore be rejected by selecting particles
with a p·DCA smaller than 6 times the width of the distribution, extracted from a Gaussian fit. The
contamination depends on the beam configuration, being of the order of 7% in the p-going direction and
up to 90% in the Pb-going direction for particles with pT > 10 GeV/c. However, in this region the signal
and the background are completely separated and the selection can fully remove the background, with a
signal rejection smaller than 0.3%.

The detector response for muons from W and Z boson decays was determined through Monte Carlo (MC)
simulations. The W and Z bosons are produced using POWHEG [30], a NLO particle generator, paired
with PYTHIA 6.425 [31] for parton shower. The calculations include the CT10 [32] PDF set and the
EPS09NLO [21] parameterisation of the nuclear modification of the PDFs. The propagation of particles
through the detector and the absorption materials uses the GEANT3 [33] transport code. The simulation
of p–Pb collisions takes into account the isospin dependence of the W and Z boson production, which
is particularly important for W bosons [34]. To this aim proton–proton (pp) and proton–neutron (pn)
collisions are simulated separately. The p–Pb collisions are obtained as the sum of the results, weighted
by the average number of pp and pn interactions in a p–Pb collision.

The alignment of the tracking chambers is a crucial step in the analysis of muons at high transverse
momentum. The absolute position of the chambers was measured before data taking with photogram-
metry. Their relative position is estimated with a precision of about 100 µm, using a modified version
of the MILLIPEDE [35] package, which combines data taken with and without the magnetic field. The
residual misalignment of the tracking chambers is taken into account in the simulations to estimate the
acceptance and efficiency (A×ε) of the detector. While the method provides the most accurate estimation
of the relative chamber position, it is not sensitive to a global misalignment of the entire spectrometer. A
data-driven method was hence developed, in which the simulation of the tracker response is based on a
parameterisation of the measured resolution of the clusters associated to a track. The distribution of the
difference between the cluster and the reconstructed track positions on each chamber is parameterised
with an extended Crystal-Ball function [36] and utilised to simulate the smearing of the track parameters.
The effect of a global misalignment of the muon spectrometer is mimicked by shifting the distribution
of the track deviation in the magnetic field in opposite directions for positive and negative tracks. This
shift is tuned so as to reproduce the observed difference in the ratio of the pT distributions of positive
and negative tracks, corrected for acceptance and efficiency, in two periods of data taking differing only
by the magnetic field polarity. The values of the A× ε corrections are obtained using either the standard
simulations with the residual misalignment, or the data-driven simulations: the difference is about 1%
(2%) in the p-going (Pb-going) data sample for Z bosons, and less than 1% for W bosons. These values
are taken as the systematic uncertainties.

The uncertainty on the muon tracking efficiency is estimated from the difference between the muon
tracking efficiency in MC and that from a data-driven approach based on the redundancy of the tracking
stations [37]. It amounts to 2% (3%) for the p-going (Pb-going) period. The uncertainty on trigger
efficiency, which is mainly due to the systematic uncertainty in the determination of the efficiency of
each trigger chamber from data, amounts to 1%. An additional systematic uncertainty of 0.5% results
from the choice of the χ2 cut in the matching of the tracks reconstructed in the tracker with those in the
trigger. In the dimuon analysis, these systematic uncertainties apply to both muons of the pair, which are
well separated in phase space and therefore cross different parts of the detector.

2.3 Z-boson analysis

Z-boson candidates are obtained by combining opposite-charge pairs of muons, selected according to the
criteria described in Section 2.2 and with a transverse momentum larger than 20 GeV/c. This condition
reduces the contribution of lower mass resonances and of the semileptonic decay of charm and beauty
hadrons. It was verified that relaxing the requirement on the minimum pT of the muon to 10 GeV/c does
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Fig. 1: Invariant-mass distribution of unlike-sign muon pairs with pT > 20 GeV/c in the Pb-going (left panel) and
p-going (right panel) data samples. In the p-going one, the solid line represents the distribution obtained using
POWHEG simulations and normalised to the number of Z candidates in the data.

Background contamination < 1%
Tracking efficiency 4% (p-going) 6% (Pb-going)
Trigger efficiency 2%
Tracker/trigger matching 1%
Alignment 1%
Fµ-trig/MB 1%
MB cross section 3.3%

Table 2: Summary of systematic uncertainties for Z-boson analysis.

not introduce any additional unlike-sign dimuon pair with mµµ > 40 GeV/c2. The resulting invariant-
mass distribution is shown in Fig. 1: 2 (22) candidates with mµµ > 60 GeV/c2 were reconstructed in the
Pb-going (p-going) period.

For the p-going data sample, where the number of dimuons is larger, the distribution is compared with
expectations from the POWHEG MC simulations described in Section 2.2. The results are shown in the
right panel of Fig. 1.

The contribution to the invariant-mass distribution from combinatorial background can be estimated
using the like-sign dimuon distribution: no candidates were found in the region 60 < mµµ < 120 GeV/c2.
A 0.1% upper limit for this contribution is obtained by extrapolating the like-sign dimuon distribution
at low mass (mµµ < 20 GeV/c2) to the region of interest. Contributions from other physics processes,
like the semileptonic decays of cc, bb and tt pairs and the muonic decay of τ pairs in the process (Z→
ττ→ µµ), is estimated to be less than 0.7% (0.4%) for the p-going (Pb-going) data taking period. Those
estimations were done using MC simulations (PYTHIA 6.425 for the first process and POWHEG for the
others). Since no background events are expected, the number of Z candidates is obtained by counting
the entries in the invariant-mass distributions of opposite-charge muon pairs of Fig. 1.

The measured number of candidates is corrected by the A× ε evaluated with simulations. The A× ε is
estimated as the ratio of the number of reconstructed Z bosons with the same analysis cuts used in data
and the number of generated ones with −4 < η < −2.5 and pµ

T > 20 GeV/c. An invariant mass cut of
60 < mµµ < 120 GeV/c2 is applied to both reconstructed and generated Z bosons. The resulting A×ε is
78% (61%) for the p-going (Pb-going) data taking period, with a relative systematic uncertainty of 1%
(2%). The lower A× ε value in the Pb-going configuration is due to a smaller detector efficiency in the
corresponding data-taking period. The uncertainty accounts for the difference from the values obtained
with a simulation based on the residual misalignment and that based on the data-driven alignment. The
systematic uncertainties are summarised in Table 2.
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2.4 W-boson analysis

At transverse momenta higher than 10 GeV/c, the main contributions to the inclusive pT distribution
of muons are the decays of W bosons, the dimuon decays of Z bosons and the muon decays of heavy-
flavoured hadrons. The number of muons from W decays can be extracted from the inclusive pT spectrum
before A× ε corrections through a fit procedure based on MC template descriptions of these three main
components:

f (pT) = Nraw
bkg fbkg(pT)+Nraw

µ ←W( fµ←W(pT)+R fµ←Z(pT)) (1)

where fbkg, fµ←W and fµ←Z are the MC templates for muons from heavy-flavoured hadrons, W-boson
and Z-boson decays, respectively. The number of muons from heavy-flavour decays (Nraw

bkg ) and the num-
ber of muons from W decays (Nraw

µ ←W) are free parameters, while the ratio (R) of the number of muons
from Z decays and that from W decays is fixed from MC simulations using POWHEG. It was verified
that these calculations well describe the measured Z boson production in the dimuonic decay channel,
described in the previous section. The contribution of muons from heavy-flavour decays was simulated
using as input the QCD calculations in the Fixed-Order Next-to-Leading-Log (FONLL) approach [38],
which are found to provide a good description of data in pp collisions. The calculations were obtained
using the CTEQ6.6 parton distribution functions [39], without accounting for any nuclear modification.
Such modifications, however, mainly affect the production at low transverse momenta, with a negligible
effect in the shape of the pT distribution in the region of interest for this study [40]. The templates for
muons from the decay of W and Z bosons were obtained with MC simulations based on POWHEG. The
detector response is included in all simulations.

The inclusive transverse momentum distributions of positive and negative muon candidates passing the
selections described in Section 2.2 are fitted according to Eq. 1, and the parameter Nraw

µ ←W is extracted
from the fit. The MC templates are then modified as explained later on to account for the uncertain-
ties affecting their shape and the fit is performed again, thus yielding different values of Nraw

µ ←W. The
procedure is reiterated for each set of MC templates considered. The number of muons from W decays
is finally estimated as the arithmetic average of the Nraw

µ ←W extracted in each fit, while their dispersion,
estimated as the Root Mean Square (RMS) of the Nraw

µ ←W distribution, is used as systematic uncertainty.
An example of signal extraction for a specific set of MC templates is shown in Fig. 2.

Several sources of uncertainty affecting the shape of the MC templates were taken into account. For the
background, different MC templates were obtained by varying the FONLL calculations within uncertain-
ties. In particular, six additional templates were produced, corresponding to the upper and lower limits of
the calculations obtained by i) varying the factorisation and renormalisation scales, and considering the
uncertainties on ii) the quark masses and iii) the PDFs. For the W and Z boson production, different PDF
sets were used, both at LO and NLO, in particular the CT10 [32] and CTEQ6 [41] paired with EPS09.
The use of different sets affects both the shapes of the templates and the cross-sections, thus resulting in
a variation of the parameter R in Eq. 1. The stability of the fit was tested by varying the lower limit of the
transverse momentum range (the upper being mainly limited by statistics) from 15 to 17 GeV/c. Finally,
for each set of MC inputs, two sets of templates were obtained by including in the simulations either the
tracking chamber residual misalignment or the data-driven method discussed in Section 2.2.

The number of muons from W-boson decays is then corrected for the detector acceptance and efficiency.
The values of A× ε integrated over pµ

T > 10 GeV/c are 89% and 88% for µ+ and µ− in the p-going
period and of 77% for µ+ and 75% for µ− in the Pb-going period, respectively. The lower A×ε value in
the Pb-going configuration is due to a smaller detector efficiency in the corresponding data-taking period.
A difference of 1% in the values is observed when using the data-driven method for the description of the
alignment in the simulations instead of the residual misalignment. This value is taken as the systematic
uncertainty. All systematic uncertainties are summarised in Table 3.

7



W and Z boson production in p–Pb collisions at
√

sNN =5.02 TeV ALICE Collaboration

)
c

 (
co

un
ts

/1
.0

 G
eV

/
T

p
/d

Nd

1

10

210

310

410

Data
−From W

0From Z

From charm + beauty

Sum of contributions

 = 5.02 TeVNNsALICE, p-Pb 

 < -2.96
cms

y-4.46 < 

Positive muons

)c (GeV/
T

p
10 20 30 40 50 60 70 80

0.5−
0

0.5
1

1.5

)
c

 (
co

un
ts

/1
.0

 G
eV

/
T

p
/d

Nd

1

10

210

310

410

Data
−From W

0From Z

From charm + beauty

Sum of contributions

 = 5.02 TeVNNsALICE, p-Pb 

 < -2.96
cms

y-4.46 < 

Negative muons

)c (GeV/
T

p
10 20 30 40 50 60 70 80

0.5−
0

0.5
1

1.5

)
c

 (
co

un
ts

/1
.0

 G
eV

/
T

p
/d

Nd

1

10

210

310

410

Data
−From W

0From Z

From charm + beauty

Sum of contributions

 = 5.02 TeVNNsALICE, p-Pb 

 < 3.53
cms

y2.03 < 

Positive muons

)c (GeV/
T

p
10 20 30 40 50 60 70 80

0.5−
0

0.5
1

1.5

)
c

 (
co

un
ts

/1
.0

 G
eV

/
T

p
/d

Nd

1

10

210

310

410

Data
−From W

0From Z

From charm + beauty

Sum of contributions

 = 5.02 TeVNNsALICE, p-Pb 

 < 3.53
cms

y2.03 < 

Negative muons

)c (GeV/
T

p
10 20 30 40 50 60 70 80

0.5−
0

0.5
1

1.5

Fig. 2: Top panels: inclusive distribution of positive (left) and negative (right) charge muon candidates measured in
the Pb-going (top) and p-going (bottom) data taking periods. The results of the MC template fit for the extraction
of the µ+ ←W+ and µ− ←W− signal is shown. In this case, the central value of the FONLL calculations is
used for the background description while POWHEG with the CT10 PDF set paired with EPS09NLO is used for
W and Z boson production. Bottom panels: relative difference of data and the extrapolated fit results in the range
10 < pT < 80 GeV/c.

3 Results

The Z-boson production cross section in the dimuon decay channel with pµ

T > 20 GeV/c and 60 <
mµµ < 120 GeV/c2 is shown in Fig. 3. The vertical bars represent the statistical uncertainties while
the open boxes are the systematic ones. The cross section at backward rapidity is estimated from two
reconstructed Z bosons (see left panel of Fig. 1). In this case, the statistical uncertainty is defined as
the 68% confidence interval assuming a Poisson distribution for the number of Z bosons. Moreover,
an upper limit was also calculated, whose value is of 1.75 nb at a 95% confidence level. The results
are compared with NLO and NNLO theoretical calculations both with and without including the nuclear
modification of the parton distribution functions. The NLO pQCD calculations [22] (blue hatched boxes)
are obtained using the CT10 [32] PDF, while the NNLO calculations with FEWZ [42] (blue filled boxes)
use the MSTW2008 NNLO [43] PDF set. Both calculations describe the data within uncertainties.
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Signal extraction 2 – 6%
- vs centrality 5 – 15%

Tracking efficiency (c) 2% (p-going) 3% (Pb-going)
Trigger efficiency (c) 1%
Tracker/trigger matching (c) 0.5%
Alignment (c) 1%
Fµ-trig/MB (c) 1%
MB cross section (c) 3.3%
Pile-up 1 - 3 %
〈Nmult

coll 〉 2 – 8%
Table 3: Summary of systematic uncertainties for W-boson analysis. The uncertainties that are correlated between
measurements in different centrality bins are indicated with (c).
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Fig. 3: Z-boson production cross section in the dimuon decay channel at backward and forward rapidities measured
in p–Pb collisions at

√
sNN = 5.02 TeV. The vertical error bars (open boxes) represent the statistical (systematic)

uncertainties. The horizontal width of the boxes corresponds to the measured rapidity range. The results are
compared with theoretical calculations [22, 42] performed both with and without including the nuclear modification
of the parton distribution functions. In the top panel, the calculations are shifted along the rapidity axis to improve
the visibility. The middle (bottom) panel shows the data and pQCD (FEWZ) calculations divided by the pQCD
(FEWZ) calculations without nuclear modification of the PDFs.

The corresponding calculations with the EPS09NLO parameterisation of the nuclear modification of the
parton distribution functions are shown as hatched and filled red boxes, respectively. The nuclear effect
results in a small reduction of the cross section, in particular at forward rapidities where lower Bjorken-x
values of the Pb nucleons are probed. The effect, however, is small and the measurement is compatible
with both calculations within uncertainties.

The Z-boson production cross section was measured in p–Pb collisions at
√

sNN = 5.02 TeV by the
ATLAS and CMS experiments at mid-rapidity [12, 13] and by the LHCb experiment at forward and
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Fig. 4: Ratio of data over theoretical calculations for the Z-boson production cross section measured by the
ALICE, LHCb [14], ATLAS [12] and CMS [13] experiments. The LHCb points have been shifted by +0.02 units
of rapidity for better visibility. The ATLAS cross sections are measured in a slightly smaller invariant mass range
(66 < mll < 116 GeV/c2) compared to the other experiments (60 < mll < 120 GeV/c2). The pQCD calculations
are obtained with the CT10 PDF set and with the EPS09NLO parameterisation of the nuclear modifications.

backward rapidities [14]. The LHCb measurement is performed in a wider pseudorapidity interval (2 <
η < 4.5) compared to ALICE, but on a data sample with a smaller integrated luminosity. Figure 4 shows
the cross section measurements of the four LHC experiments divided by the NLO pQCD calculations
including the nuclear modification of the PDFs [22]: the calculations are found to describe all data. It is
worth noting, however, that none of the experiment can exclude the calculations without nPDFs.

The cross sections of muons from W+ and W− boson decays with pµ

T > 10 GeV/c measured at forward
and backward rapidities in p–Pb collisions at

√
sNN = 5.02 TeV are shown in the left and right panels of

Fig. 5, respectively. The vertical bars represent the statistical uncertainties while the open boxes are the
systematic ones. The smaller cross-section of positive W bosons at backward rapidity is the combined
effect of the parity violation of the weak interaction, which only couples left-handed fermions with
right-handed anti-fermions, and of the helicity conservation in the semi-leptonic decay. This results in
an anisotropic emission of the muons. In particular, the µ− is preferably emitted in the same direction of
the W−, while the µ+ is emitted in the opposite direction with respect to the W+ [34]. This implies that
the µ+ measured in −4.46 < ycms <−2.96 mainly comes from the decay of W+ at even more backward
rapidities, where the production cross-section rapidly decreases.

The results are compared with the analogous model calculations used to describe the Z-boson produc-
tion. The NLO pQCD calculations with CT10 parton distribution functions (blue hatched boxes) and the
NNLO calculations with FEWZ with the MSTW2008 PDF set (blue filled boxes) both describe the data
within uncertainties. The inclusion of a parameterisation of the nuclear modification of the parton distri-
bution function in the calculations (red hatched boxes for pQCD and red filled boxes for FEWZ) results
in a slightly lower value of the cross section, especially at forward rapidity. This variation, however, is of
the same order as the uncertainties in the theoretical calculations, thus limiting the discriminating power
of the cross section alone.

The asymmetry in the production of the W+ and W− bosons can be used to gain sensitivity in the study
of the nuclear modification of the PDFs [15]. Part of the theoretical uncertainties, such as those on the
scale that are of the order of 5%, and the experimental uncertainties on the tracking and trigger efficiency,
normalisation factors and MB cross section, whose quadratic sum amounts to 4.3% (4.8%) in the p-going
(Pb-going) period, cancel when measuring the relative yield of muons from W+ and W− decays. Figure 6
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Fig. 5: Left (right) panel: cross section of µ+ (µ−) from W+ (W−) boson decays at backward and forward
rapidities measured in p–Pb collisions at

√
sNN = 5.02 TeV. The vertical error bars (open boxes) represent the

statistical (systematic) uncertainties. The horizontal width of the boxes corresponds to the measured rapidity
range. The results are compared with theoretical calculations [22, 42] performed both with and without including
the nuclear modification of the parton distribution functions. In the top panels, the calculations are shifted along the
rapidity axis to improve the visibility. The middle (bottom) panel shows the data and pQCD (FEWZ) calculations
divided by the pQCD (FEWZ) calculations without nuclear modification of the PDFs.

shows the lepton charge asymmetry, which is defined as:

Nµ+←W+−Nµ−←W−

Nµ+←W+ +Nµ−←W−
(2)

where Nµ+←W+ and Nµ−←W− are the yields of muons from, respectively, the W+ and W− decays, cor-
rected by the detector acceptance and efficiency. The relative systematic uncertainties in the pQCD and
FEWZ calculations are strongly reduced in the ratio. However, the results with and without nuclear
modification are very similar in this kinematic range, and the measurement cannot discriminate between
them.

The production of electrons and muons from W-boson decays was measured at mid-rapidity in p–Pb
collisions at

√
sNN = 5.02 TeV by the CMS experiment [15]. The cross section results, divided by

the NLO pQCD calculations including nuclear modification of the PDFs, are shown together with the
analogous ALICE results in Fig. 7: the calculations are found to describe data over the full rapidity
interval explored.

The production of muons from W-boson decays with pµ

T > 10 GeV/c is studied as a function of the
collision centrality. Due to the limited statistics, the µ+ and µ− results are summed together. The
resulting cross sections at backward and forward rapidities normalised by the average number of binary
collisions [24] are shown in the left and right panels of Fig. 8, respectively. The vertical bars represent
the statistical uncertainties while the open boxes are the uncorrelated systematic ones. The quadratic
sum of the correlated systematic uncertainties on the MB cross section, normalisation, A× ε correction
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Fig. 6: Lepton charge asymmetry of muons from W-boson decays at backward and forward rapidities measured
in p–Pb collisions at

√
sNN = 5.02 TeV. The vertical error bars (open boxes) represent the statistical (systematic)

uncertainties. The horizontal width of the boxes corresponds to the measured rapidity range. The results are
compared with theoretical calculations [22, 42] performed both with and without including the nuclear modification
of the parton distribution functions. In the top panel, the calculations are shifted along the rapidity axis to improve
the visibility. The middle (bottom) panel shows the data and pQCD (FEWZ) calculations divided by the pQCD
(FEWZ) calculations without nuclear modification of the PDFs.
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parameterisation of the nuclear modifications.

and tracking and trigger efficiency, which amounts to 4.8% (4.3%) in the Pb-going (p-going) sample, are
quoted in the figure.

If the W boson production rate is consistent with geometric expectation, the production cross-section
is expected to scale with the number of binary collisions for all centrality classes, provided that the
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Fig. 8: Sum of the cross sections of positive and negative charge muons from W boson decays measured in p–Pb
collisions at

√
sNN = 5.02 TeV in the rapidity region −4.46 < ycms < −2.96 (left panel) and 2.03 < ycms < 3.53

(right panel) as a function of centrality. The cross sections are normalised by the number of binary collisions
〈Nmult

coll 〉. The vertical bars (open boxes) represent the statistical (systematic) uncertainties. The correlated global
uncertainties include the MB cross section, normalisation, A× ε corrections and tracking and trigger systematics.
A dotted line is drawn at the value of the centrality-integrated cross section to guide the eye.

centrality determination is not biased. The measured centrality dependence is found to be compatible
with a constant within uncertainties.

4 Summary

The ALICE experiment has studied the W and Z-boson production at forward and backward rapidities in
p–Pb collisions at

√
sNN = 5.02 TeV at the LHC. The Z-boson cross section was measured in the dimuon

decay channel with pµ

T > 20 GeV/c and 60 < mµµ < 120 GeV/c2. The W-boson cross section and decay
lepton charge asymmetry were measured in the muonic decay channel with pµ

T > 10 GeV/c. The results
are described by NLO pQCD calculations [22] as well as NNLO calculations using FEWZ [42], but the
uncertainties on the measurement cannot constrain the nuclear modification of the PDFs. W-boson pro-
duction was also measured as a function of the event centrality, estimated from the energy deposited in
the neutron zero degree calorimeters. The cross section of muons from W-boson decays normalised by
the number of binary nucleon-nucleon collisions is compatible with a constant within uncertainties. Fur-
ther measurements with better precision are needed to provide more stringent constraints on the nPDFs
and on the binary scaling.
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Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of
China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of

13



W and Z boson production in p–Pb collisions at
√

sNN =5.02 TeV ALICE Collaboration

China (MOEC) , China; Ministry of Science, Education and Sport and Croatian Science Foundation,
Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish
Council for Independent Research — Natural Sciences, the Carlsberg Foundation and Danish National
Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat
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ules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium
für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schw-
erionenforschung GmbH, Germany; Ministry of Education, Research and Religious Affairs, Greece;
National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Gov-
ernment of India (DAE), India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico
della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN),
Italy; Institute for Innovative Science and Technology , Nagasaki Institute of Applied Science (IIST),
Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT)
y Tecnologı́a, through Fondo de Cooperación Internacional en Ciencia y Tecnologı́a (FONCICYT) and
Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nationaal instituut voor
subatomaire fysica (Nikhef), Netherlands; The Research Council of Norway, Norway; Commission on
Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia
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M. Wang7, D. Watanabe132, Y. Watanabe131, M. Weber115, S.G. Weber100, D.F. Weiser96, J.P. Wessels62,
U. Westerhoff62, A.M. Whitehead92, J. Wiechula61, J. Wikne21, G. Wilk79, J. Wilkinson96, G.A. Willems62,
M.C.S. Williams107, B. Windelband96, M. Winn96, W.E. Witt129, S. Yalcin71, P. Yang7, S. Yano47, Z. Yin7,
H. Yokoyama132,73, I.-K. Yoo35,99, J.H. Yoon51, V. Yurchenko3, V. Zaccolo83, A. Zaman16, C. Zampolli35,107,
H.J.C. Zanoli123, S. Zaporozhets68, N. Zardoshti104, A. Zarochentsev136, P. Závada57, N. Zaviyalov102,
H. Zbroszczyk138, M. Zhalov88, H. Zhang7,22, X. Zhang76,7, Y. Zhang7, C. Zhang54, Z. Zhang7, C. Zhao21,
N. Zhigareva55, D. Zhou7, Y. Zhou83, Z. Zhou22, H. Zhu7,22, J. Zhu116,7, A. Zichichi12,27, A. Zimmermann96,
M.B. Zimmermann62,35, G. Zinovjev3, J. Zmeskal115

Affiliation notes
i Deceased

ii Also at: Georgia State University, Atlanta, Georgia, United States
iii Also at: Also at Department of Applied Physics, Aligarh Muslim University, Aligarh, India
iv Also at: M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics,

Moscow, Russia

Collaboration Institutes
1A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
3Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
4Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS),
Kolkata, India
5Budker Institute for Nuclear Physics, Novosibirsk, Russia
6California Polytechnic State University, San Luis Obispo, California, United States
7Central China Normal University, Wuhan, China
8Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France
9Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba

20



W and Z boson production in p–Pb collisions at
√

sNN =5.02 TeV ALICE Collaboration
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67iThemba LABS, National Research Foundation, Somerset West, South Africa
68Joint Institute for Nuclear Research (JINR), Dubna, Russia
69Konkuk University, Seoul, South Korea
70Korea Institute of Science and Technology Information, Daejeon, South Korea
71KTO Karatay University, Konya, Turkey
72Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal, CNRS–IN2P3,
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