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Abstract
A convex body is unconditional if it is symmetric with respect to reflections in all
coordinate hyperplanes. We investigate unconditional lattice polytopes with respect
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1 Introduction

A d-dimensional convex lattice polytope P ⊂ R
d is called reflexive if its polar dual P∗

is again a lattice polytope. Reflexive polytopes were introduced by Batyrev [6] in the
context of mirror symmetry as a reflexive polytope and its dual give rise to a mirror-
dual pair of Calabi–Yau manifolds; cf. [22]. As thus, the results of Batyrev, and the
subsequent connection with string theory, have stimulated interest in the classification
of reflexive polytopes both among mathematical and theoretical physics communities.
As a consequence of a well-known result of Lagarias and Ziegler [47], there are only
finitely many reflexive polytopes in each dimension, up to unimodular equivalence.
In two dimensions, it is a straightforward exercise to verify that there are precisely 16
reflexive polygons, as depicted in Fig. 1. While still finite, there are significantly more
reflexive polytopes in higher dimensions. Kreuzer and Skarke [45,46] have completely
classified reflexive polytopes in dimensions 3 and 4, noting that there are exactly 4319
reflexive polytopes in dimension 3 and 473,800,776 reflexive polytopes in dimension
4. The number of reflexive polytopes in dimension 5 is not known.

In recent years, there has been significant progress in characterizing reflexive poly-
topes in known classes of polytopes coming from combinatorics or optimization; see,
for example, [7,21,42,54,73]. The purpose of this paper is to study a class of reflexive
polytopesmotivated by convex geometry and relate it to combinatorics. A convex body
K ⊂ R

d is unconditional if p ∈ K if and only if σ p := (σ1 p1, σ2 p2, . . . , σd pd) ∈ K
for all σ ∈ {±1}d . Unconditional convex bodies, for example, arise as unit balls in
the theory of Banach spaces with a 1-unconditional basis. They constitute a restricted
yet surprisingly interesting class of convex bodies for which a number of claims

Fig. 1 All 16 reflexive 2-dimensional polytopes. This is [43, Fig. 1.5]
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have been verified; cf. [14]. For example, we mention that the Mahler conjecture is
known to hold for unconditional convex bodies; see Sect. 3. In this paper, we investi-
gate unconditional lattice polytopes and their relation to anti-blocking polytopes from
combinatorial optimization. In particular, we completely characterize unconditional
reflexive polytopes.

The structure of this paper is as follows. In Sect. 2, we briefly review notions and
results from discrete geometry and Ehrhart theory. In Sect. 3, we introduce and study
unconditional and, more generally, locally anti-blocking polytopes. The main result is
Theorem 3.2 which relates regular, unimodular, and flag triangulations to the associ-
ated anti-blocking polytopes. In Sect. 4, we associate an unconditional lattice polytope
UPG to every finite graph G. We show in Theorems 4.6 and 4.9 that an unconditional
polytope P is reflexive if and only if P = UPG for some unique perfect graph G. This
also implies that unconditional reflexive polytopes have regular, unimodular triangu-
lations. Section 5 is devoted to a particular family of unconditional reflexive polytopes
and is of independent interest: We show that the type-B Birkhoff polytope or signed
Birkhoff polytope BB(n), that is, the convex hull of signed permutation matrices, is an
unconditional reflexive polytope. We compute normalized volumes and h∗-vectors of
BB(n) and its dual C(n) :=BB(n)∗ for small values of n. The usual Birkhoff polytope
and the Gardner polytope of [32] appear as faces of BB(n) and C(n), respectively.
These two polytopes form a Gale-dual pair in the sense of [32]. In Sect. 6, we give
a general construction for compressed Gale-dual pairs coming from CIS graphs. In
Sect. 7, we investigate unconditional polytopes associated to comparability graphs of
posets. In particular, we explicitly describe a quadratic square-free Gröbner basis for
the corresponding toric ideal. We close with open questions and future directions in
Sect. 8.

2 Background

In this section, we provide a brief introduction to polytopes and Ehrhart theory. For
additional background and details, we refer the reader to the excellent books [9,75]. A
polytope in R

d is the inclusion-minimal convex set P = conv (v1, . . . , vn) containing
a given collection of points v1, . . . , vn ∈ R

d . The unique inclusion-minimal setV ⊆ P
such that P = conv(V ) is called the vertex set and is denoted by V (P). If V (P) ⊂ Z

d ,
then P is called a lattice polytope. By the Minkowski–Weyl theorem, polytopes are
precisely the bounded sets of the form

P = {x ∈ R
d : 〈ai , x〉 ≤ bi for i = 1, . . . ,m}

for some a1, . . . , am ∈ R
d and b1, . . . , bm ∈ R. If 〈ai , x〉 ≤ bi is irredundant, then

F = P ∩ {x : 〈ai , x〉 = bi } is a facet and the inequality is said to be facet-defining.
The dimension of a polytope P is defined to be the dimension of its affine span.

A d-dimensional polytope has at least d + 1 vertices and a d-polytope with exactly
d + 1 many vertices is called a d-simplex. A d-simplex � = conv {v0, v1, . . . , vd}
is called unimodular if v1 − v0, v2 − v0, . . ., vd − v0 form a basis for the lattice
Z
d , or, equivalently, if vol(�) = 1/d!, where vol is the Euclidean volume. For lattice

123



430 Discrete & Computational Geometry (2020) 64:427–452

polytopes P ⊂ R
d , we define the normalized volume Vol(P) := d! vol(P). So uni-

modular simplices are the lattice polytopes with normalized volume 1. We say that
two lattice polytopes P, P ′ ⊂ R

d are unimodularly equivalent if P ′ = T (P) for some
transformation T (x) = W x + v withW ∈ SLd(Z) and v ∈ Z

d . In particular, any two
unimodular simplices are unimodularly equivalent.

Given a lattice e-polytope P ⊂ R
d and t ∈ Z≥1, let t P := {t · x : x ∈ P} be the t th

dilate of P . By a famous result of Ehrhart [30, Thm. 1], the lattice-point enumeration
function

ehrP (t) := |t P ∩ Z
d |

agrees with a polynomial in the variable t of degree e with leading coefficient vol(P)

and is called the Ehrhart polynomial. This also implies that the formal generating
function

1 +
∑

t≥1

ehrP (t)zt = h∗
0(P) + h∗

1(P)z + · · · + h∗
e(P)ze

(1 − z)e+1

is a rational function such that the degree of the numerator is at most e (see, e.g.,
[9, Lem. 3.9]). We call the numerator the h∗-polynomial of P . The vector h∗(P) =
(h∗

0(P), h∗
1(P), . . . , h∗

d(P)) ∈ Z
d+1, where we set h∗

i (P) := 0 for dim P < i ≤ d,
is called the h∗-vector of P . One should note that the Ehrhart polynomial is invariant
under unimodular transformations.

Theorem 2.1 ([67,70]) Let P ⊆ Q ⊂ R
d be lattice polytopes. Then

0 ≤ h∗
i (P) ≤ h∗

i (Q)

for all i = 0, . . . , d.

The h∗-vector encodes significant information about the underlying polytope. This
is nicely illustrated in the case of reflexive polytopes. For a d-polytope P ⊂ R

d with
0 in the interior, we define the (polar) dual polytope

P∗ := { y ∈ R
d : 〈 y, x〉 ≤ 1 for all x ∈ P}.

Definition 2.2 Let P ⊂ R
d be a d-dimensional lattice polytope that contains the origin

in its interior. We say that P is reflexive if P∗ is also a lattice polytope. Equivalently,
P is reflexive if it has a description of the form

P = {x ∈ R
d : 〈ai , x〉 ≤ 1 for i = 1, . . . ,m},

for some a1, . . . , am ∈ Z
d .

Reflexivity can be completely characterized by enumerative data of the h∗-vector.
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Theorem 2.3 ([41, Thm. 2.1]) Let P ⊂ R
d be a d-dimensional lattice polytope with

h∗(P) = (h∗
0, . . . , h

∗
d). Then P is unimodularly equivalent to a reflexive polytope if

and only if h∗
k = h∗

d−k for all 0 ≤ k ≤ �d/2
.
The reflexivity property is also deeply related to commutative algebra. A polytope
P ⊂ R

d is reflexive if the canonical module of the associated graded algebra k[P]
is (up to a shift in grading) isomorphic to k[P] and its minimal generator has degree
1. If one allows the unique minimal generator to have arbitrary degree, one arrives
at the notion of Gorenstein rings, for details we refer to [17, Sect. 6.C]. We say that
P is Gorenstein if there exist c ∈ Z≥1 and q ∈ Z

d such that q + cP is a reflexive
polytope. This is equivalent to saying that k[P] is Gorenstein. The dilation factor
c is often called the codegree. In particular, reflexive polytopes are Gorenstein of
codegree 1. By combining results of Stanley [66] and De Negri–Hibi [27], we have
a characterization of the Gorenstein property in terms of the h∗-vector. Namely, P is
Gorenstein if and only if h∗

i = h∗
d−c+1−i for all i .

Aside from examining algebraic properties of lattice polytopes, one can also inves-
tigate discrete geometric properties. Every lattice polytope admits a subdivision into
lattice simplices. Even more, one can guarantee that every lattice point contained in a
polytope corresponds to a vertex of such a subdivision. However, one cannot guarantee
the existence of a subdivision where all simplices are unimodular when the dimension
is greater than 2. This leads us to our next definition:

Definition 2.4 Let P be a d-dimensional lattice polytope given by P = conv(V ) for
some finite set V ⊂ Z

d . A subdivision of P with vertices in V is a collection S =
{P1, . . . , Pr } of d-dimensional polytopeswith vertices in V such that P = P1∪· · ·∪Pr
and Pi ∩ Pj is a common face of Pi and Pj for all 1 ≤ i < j ≤ r . If all polytopes
Pi are (unimodular) simplices, then S is a (unimodular) triangulation. A subdivision
S ′ = {P ′

1, . . . , P
′
s} refines S if for every P ′

i ∈ S ′ there is Pj ∈ S such that P ′
i ⊆ Pj .

Suppose that P = conv(V ). Any map ω : V → R yields a piecewise-linear and
convex function ω : P → R by ω(p) := min {λ : (p, λ) ∈ Pω}, where Pω :=
conv ((v, ω(v)) : v ∈ V ). The domains of linearity of ω determine a subdivision of P ,
called a regular subdivision. The function ω is referred to as heights on P . For more
on (regular) subdivisions and details we refer to [26,37].

A particularly simple example of a regular triangulation of a (lattice) polytope P is
the pulling triangulation. For an arbitrary but fixed ordering of the vertices V (P), let
vF be the first vertex in the face F in the given ordering. The pulling triangulation of
P is then defined recursively as follows: If P is a simplex, then T = {P}. Otherwise,
let F1, . . . , Fr be the facets of P not containing vP and let T1, . . . , Tr be their pulling
triangulations with respect to the induced ordering. Then

T := {conv ({vP } ∪ S) : S ∈ T j , j = 1, . . . , r}

is the pulling triangulation of P; see [10, Ch. 5.7].
For a subdivision S, we write V (S) = ⋃

Q∈S V (Q). If T is a triangulation, then
W ⊆ V (T ) is called a non-face if conv(W ) is not a face of any Q ∈ T . The triangu-
lation T is called flag if the inclusion-minimal non-faces W satisfy |W | = 2.
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A special class of polytopes which possess regular, unimodular triangulations are
compressed polytopes. A polytope P is compressed if every pulling triangulation is
unimodular [67]. In the interest of providing a useful characterization of compressed
polytopes, we must define the notion of width with respect to a facet. Let P ⊂ R

d be
a d-dimensional lattice polytope and Fi = P ∩ {x : 〈ai , x〉 = bi } a facet. We assume
that ai is primitive, that is, its coordinates are coprime. The width of P with respect
to the facet Fi is

max
p∈P

〈ai , p〉 − min
p∈P

〈ai , p〉.

The maximum over all facets is called the facet width of P .

Theorem 2.5 ([55, Thm. 1.1], [72, Thm. 2.4]) Let P ⊂ R
d be a full-dimensional

lattice polytope. The following are equivalent:

(i) P is compressed;
(ii) P has facet width one;
(iii) P is unimodularly equivalent to the intersection of a unit cube with an affine

space.

Definition 2.6 A lattice polytope P ⊂ R
d has the integer decomposition property

(IDP) if for any positive integer t and for all x ∈ t P ∩ Z
d , there exist v1, . . . , vt ∈

P ∩ Z
d such that x = v1 + · · · + vt .

One should note that if P has a unimodular triangulation, then P has the IDP.
However, there are examples of polytopes which have the IDP, yet do not even admit
a unimodular cover, that is, a covering of P by unimodular simplices, see [16, Sec.
3]. A more complete hierarchy of covering properties can be found in [37].

We say that h∗(P) is unimodal if there exists a k such that h∗
0 ≤ h∗

1 ≤ · · · ≤
h∗
k ≥ · · · ≥ h∗

d−1 ≥ h∗
d . Unimodality appears frequently in combinatorial settings and

it often hints at a deeper underlying algebraic structure, see [1,15,69]. One famous
instance is given by Gorenstein polytopes that admit a regular, unimodular triangula-
tion.

Theorem 2.7 ([19, Thm. 1]) If P is Gorenstein and has a regular, unimodular trian-
gulation, then h∗(P) is unimodal.

The following conjecture is commonly attributed to Ohsugi and Hibi [56]:

Conjecture 2.8 If P is Gorenstein and has the IDP, then h∗(P) is unimodal.

3 Unconditional and Anti-blocking Polytopes

For σ ∈ {±1}d and p ∈ R
d , let us write σ p := (σ1 p1, σ2 p2, . . . , σd pd). A convex

polytope P ⊂ R
d is called 1-unconditional or simply unconditional if p ∈ P implies

σ p ∈ P for all σ ∈ {±1}d . So, unconditional polytopes are precisely the polytopes
that are invariant under reflection in all coordinate hyperplanes. It is apparent that P can
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be recovered from its restriction to the first orthant R
d+ := {x ∈ R

d : x1, . . . , xd ≥ 0},
which we denote by P+ := P ∩ R

d+. The polytope P+ has the property that for any
q ∈ P+ and p ∈ R

d with 0 ≤ pi ≤ qi for all i , it holds that p ∈ P+. Polytopes in R
d+

with this property are called anti-blocking polytopes. Anti-blocking polytopes were
studied and named by Fulkerson [33,34] in the context of combinatorial optimization,
but they are also known as convex corners or down-closed polytopes; see, for example,
[13].

Let us also write p := (|p1|, |p2|, . . . , |pd |). Given an anti-blocking polytope
Q ⊂ R

d+ it is straightforward to verify that

UQ := { p ∈ R
d : p ∈ Q}

is an unconditional convex body. Following Schrijver’s treatment of anti-blocking
polytopes in [64, Sec. 9.3],we recall that every full-dimensional anti-blockingpolytope
has an irredundant inequality description of the form

Q = {x ∈ R
d+ : 〈ai , x〉 ≤ 1 for i = 1, . . . ,m} (1)

for some a1, . . . , am ∈ R
d+. Also, we define

{c1, . . . , cr }↓ := R
d+ ∩ (

conv(c1, . . . , cr ) + (−R
d+)

)
,

where ‘+’ denotes vector sum, as the inclusion-minimal anti-blocking polytope con-
taining the points c1, . . . , cr ∈ R

d+. Conversely, if we define V ↓(Q) := {v1, . . . , vr }
to be the vertices of an anti-blocking polytope Q that are maximal with respect to the
componentwise order, then Q = {v1, . . . , vr }↓. We record the consequences for the
unconditional polytopes.

Proposition 3.1 Let P ⊂ R
d+ be an anti-blocking d-polytope given by (1). Then an

irredundant inequality description of UP is given by the distinct

〈σ ai , x〉 ≤ 1

for i = 1, . . . ,m and σ ∈ {±1}d . Likewise, the vertices of UP are V (UP) = {σv :
v ∈ V ↓(P), σ ∈ {±1}d}.

Our first result relates properties of subdivisions of anti-blocking polytopes to that
of the associated unconditional polytopes. The 2d orthants in R

d are denoted by
R
d
σ := σR

d+ for σ ∈ {±1}d .
Theorem 3.2 Let P ⊂ R

d+ be an anti-blocking polytope with triangulation T . Then

UT := {σ S : S ∈ T , σ ∈ {±1}d}

is a triangulation of UP. Furthermore:

(i) If T is unimodular, then so is UT .
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(ii) If T is regular, then so is UT .
(iii) If T is flag, then so is UT .

Proof It is clear that UT is a triangulation of UP and statement (i) is obvious.
To show (iii), let us assume that T is flag and let W ⊆ V (UT ) be an inclusion-

minimal non-face of UT . If W ⊂ R
d
σ for some σ , then σW ⊆ V (T ) is an inclusion-

minimal non-face of T and hence |W | = |σW | = 2. Thus, there are 1 ≤ i ≤ d and
p, p′ ∈ W with pi < 0 < p′

i . But then W ′ = { p, p′} ⊆ W is also a non-face. Since
we assume W to be inclusion-minimal, this proves (iii).

To show (ii), assume that T is regular and let ω : V (P) → R the corresponding
heights. We extend ω to V := ⋃

σ σV (T ) by setting ω′(v) := ‖v‖1 + εω(v), where
‖v‖1 = ∑

i |vi | and v = (|v1|, . . . , |vd |). For ε = 0 it is easy to see that the heights
induce a regular subdivision of P into σ P+ for σ ∈ {±1}d . For ε > 0 sufficiently
small, the heights ω′ then induce the triangulation σT on σ P . ��

We call a polytope P ⊂ R
d locally anti-blocking if (σ P) ∩ R

d+ is an anti-blocking
polytope for every σ ∈ {±1}d . In particular, every locally anti-blocking polytope
comes with a canonical subdivision into polytopes Pσ := P ∩ R

d
σ for σ ∈ {±1}d .

Unconditional polytopes and anti-blocking polytopes are both clearly locally anti-
blocking. It follows from [21, Lem. 3.12] that for any two anti-blocking polytopes
P1, P2 ⊂ R

d+, the polytopes

P1 + (−P2) and P1 ∨ (−P2) := conv (P1 ∪ −P2)

are locally anti-blocking. Locally anti-blocking polytopes are studied in depth in [3].
The following is a simple, but important observation.

Lemma 3.3 Let P ⊂ R
d be a locally anti-blocking lattice polytope with 0 in the inte-

rior. Then P is reflexive if and only if Pσ = P ∩ R
d
σ is compressed for all σ ∈ {±1}d .

Proof Since P is a lattice polytope with 0 in the interior, we can assume that P is
given as

P = {x ∈ R
d : 〈ai , x〉 ≤ bi for i = 1, . . . ,m}

for some a1, . . . , am ∈ Z
d primitive and b1, . . . , bm ∈ Q>0. Note that for σ ∈ {±1}d

we have that Pσ = P ∩ R
d
σ is given by all x ∈ R

d
σ such that

〈ai , x〉 ≤ bi for i ∈ Iσ ,

where Iσ ⊆ {i ∈ [m] : ai ∈ R
d
σ } so that the inequalities are facet-defining. For

σ ∈ {±1}d and i ∈ Iσ , we observe

min
p∈Pσ

〈ai , p〉 = 0 and max
p∈Pσ

〈ai , p〉 = bi .

The former holds because 〈ai , p〉≥0 for ai , p∈R
d
σ and the latter because 〈ai , p〉=bi

is facet-defining. Hence Pσ has facet width one with respect to ai if and only if bi = 1.
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Since for every i ∈ [m] there is aσ ∈ {±1}d with i ∈ Iσ , we get usingTheorem2.5 that
if Pσ is compressed, then P has a representation as in Definition 2.2 and is therefore
reflexive.

Now let P be reflexive and σ arbitrary. We only need to argue that the facets of
Pσ corresponding to {x : x j = 0} have facet width one. Assume that there is a vertex
v ∈ Pσ with σ jv j > 1 for some j ∈ [d]. Since Pσ is bounded, we can find i ∈ Iσ
with (ai ) j �= 0. Since σ ai ∈ Z

d≥0, we compute 1 ≥ 〈ai , v〉 ≥ (ai ) jv j > 1, which is
a contradiction. Hence all facets of Pσ have facet width one and, by Theorem 2.5, Pσ

is compressed. ��

Theorem 3.4 If P is a reflexive and locally anti-blocking polytope, then P has a regular
and unimodular triangulation. In particular, h∗(P) is unimodal.

Proof By definition of locally anti-blocking polytopes, P is subdivided into the poly-
topes Pσ for σ ∈ {±1}d . As is easily seen, this is a regular subdivision with respect
to the height function ω(v) := ‖v‖1.

Let U := P ∩ Z
d . By Lemma 3.3, the polytopes Pσ are compressed and thus,

using Theorem 2.5, U ∩ R
d
σ is the vertex set of Pσ . Fix a order on U . Since Pσ is

compressed, the pulling triangulation Tσ of Pσ is unimodular and we only need to
argue that T = ⋃

σ Tσ is a regular triangulation of P . Let σ, σ ′ ∈ {±1}d and let
S ∈ Tσ and S′ ∈ Tσ ′ be two simplices. Then S ∩ S′ is contained in F = Pσ ∩ Pσ ′ ,
which is a face of Pσ as well as of Pσ ′ . By the construction of a pulling triangulation,
we see that both S ∩ F and S′ ∩ F are simplices of the pulling triangulation of F and
hence S∩ S′ = (S∩ F)∩ (S′ ∩ F) is a face of both S and S′. The same argument as in
the proof of Theorem 3.2 then shows that T is a regular triangulation. The unimodality
of h∗(P) now follows from Theorem 2.7. ��

Remark 3.5 The techniques of this section can be extended to the following class of
polytopes. We say that a polytope P ⊂ R

d has the orthant-lattice property (OLP) if
the restriction Pσ = P ∩ R

d
σ is a (possibly empty) lattice polytope for all σ ∈ {±1}d .

If P is reflexive, then Pσ is full-dimensional for every σ . Now, if every Pσ has a
unimodular cover, then so does P and hence is IDP. Let Pσ = {x ∈ R

d
σ : Aσ x ≤ bσ }.

Then some conditions that imply the existence of a unimodular cover include:

(i) Pσ is compressed;
(ii) Aσ is a totally unimodular matrix;
(iii) Aσ consists of rows which are Bd roots;
(iv) Pσ is the product of unimodular simplices;
(v) there exists a projection π : R

d → R
d−1 such that π(Pσ ) has a regular, unimod-

ular triangulation T such that the pullback subdivision π∗(T ) is lattice.

We refer to [37] for background and details. An example of such a polytope is

P = conv

⎡

⎣
1 0 0 1 0 1 −1 0 0
0 1 0 1 1 1 0 −1 0
0 0 1 0 1 1 0 0 −1

⎤

⎦ ⊂ R
3.

123



436 Discrete & Computational Geometry (2020) 64:427–452

This is a reflexive OLP polytope. The restriction to R
3+ is

P+ = conv

⎡

⎣
1 0 0 1 0 1 0
0 1 0 1 1 1 0
0 0 1 0 1 1 0

⎤

⎦ ⊂ R
3,

which is not an anti-blocking polytope.

The Mahler conjecture in convex geometry states that every centrally-symmetric
convex body K ⊂ R

d satisfies

vol(K ) · vol(K ∗) ≥ vol(Cd) · vol(C∗
d ),

where Cd = [−1, 1]d is the d-cube. The Mahler conjecture has been verified only
in small dimensions and for special classes of convex bodies. In particular, Saint-
Raymond [61] proved the following beautiful inequality, where A(P) refers to the
anti-blocking dual of P , see Sect. 4. The characterization of the equality case is
independently due to Meyer [51] and Reisner [60].

Theorem 3.6 (Saint-Raymond) Let P ⊂ R
d+ be an anti-blocking polytope. Then

vol(P) · vol(A(P)) ≥ 1

d!

with equality if and only if P or A(P) is the cube [0, 1]d .
This inequality directly implies theMahler conjecture for unconditional reflexive poly-
topes, which we record for the normalized volume.

Corollary 3.7 Let P ⊂ R
d be an unconditional reflexive polytope. Then

Vol(P) · Vol(P∗) ≥ 4dd!

with equality if and only if P or P∗ is the cube [−1, 1]d .

4 Unconditional Reflexive Polytopes and Perfect Graphs

For A ⊆ [d], let 1A ∈ {0, 1}d be its characteristic vector. If � ⊆ 2[d] is a simplicial
complex, that is, a nonempty set system closed under taking subsets, then

P = conv (1σ : σ ∈ �)

is an anti-blocking 0/1-polytope and every anti-blocking polytope with vertices in
{0, 1}d arises that way (cf. [34, Thm. 2.3]).
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Aprominent class of anti-blocking 0/1-polytopes arises fromgraphs. Given a graph
G = ([d], E) with E ⊆ ([d]

2

)
, we say that S ⊆ [d] is a stable set (or independent set)

of G if uv /∈ E for any u, v ∈ S. The stable set polytope of G is

PG := conv {1S : S ⊆ [d] a stable set of G}.

Since the stable sets of a graph form a simplicial complex, PG is an anti-blocking
polytope. Stable set polytopes played an important role in the proof of the weak
perfect graph conjecture [48]. A clique is a set C ⊆ [d] such that every two vertices
in C are joined by an edge. The clique number ω(G) is the largest size of a clique
in G. A graph is perfect if ω(H) = χ(H) for all induced subgraphs H ⊆ G, where
χ(H) is the chromatic number of H .

Lovász [48] gave the following geometric characterization of perfect graphs; see
also [36, Thm. 9.2.4]. For a set C ⊆ [d] and x ∈ R

d , we write x(C) := 〈1C , x〉 =∑
i∈C xi .

Theorem 4.1 A graph G = ([d], E) is perfect if and only if

PG = {x ∈ R
d+ : x(C) ≤ 1 for all cliques C ⊆ [d]}.

For an anti-blocking polytope P ⊂ R
d+ define the anti-blocking dual

A(P) := { y ∈ R
d+ : 〈 y, x〉 ≤ 1 for all x ∈ P}.

The polar dual (UP)∗ is again unconditional and it follows that (UP)∗ = UA(P).

Theorem 4.2 ([64, Thm. 9.4]) Let P ⊂ R
d+ be a full-dimensional anti-blocking poly-

tope with

P = {c1, . . . , cr }↓ = {x ∈ R
n+ : 〈di , x〉 ≤ 1 for all i = 1, . . . , s}

for some c1, . . . , cr , d1, . . . , ds ∈ R
d+. Then

A(P) = {d1, . . . , ds}↓ = {x ∈ R
d+ : 〈ci , x〉 ≤ 1 for all i = 1, . . . , r}.

In particular, A(A(P)) = P.

Theorems 4.1 and 4.2 then imply for a perfect graph G that

A(PG) = {1C : C a clique in G}↓ = PG , (2)

where G = ([d], ([d]
2

) \ E
)
is the complement graph.

Corollary 4.3 (Weak perfect graph theorem) A graph G is perfect if and only if G is
perfect.

We note that, in particular, if G is perfect, then PG is compressed.
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Proposition 4.4 ([21, Prop. 3.10]) Let P ⊂ R
d+ be an anti-blocking polytope. Then

P is compressed if and only if P = PG for some perfect graph G.

Let us remark that Theorem 4.1 also allows us to characterize the Gorenstein stable
set polytopes. For comparability graphs of posets (see Sect. 7) this was noted by Hibi
[40]. A graph G is called well-covered if every inclusion-maximal stable set has the
same size. It is called co-well-covered if G is well-covered.

Proposition 4.5 ([56, Theorem 2.1b]) Let PG be the stable set polytope of a perfect
graph G = ([d], E). Then PG is Gorenstein if and only if G is co-well-covered.

Proof By definition, PG is Gorenstein if there are c ∈ Z>0 and q ∈ Z
d such that

q + cPG is reflexive. Using Theorem 4.1, we see that q + cPG is given by all points
x ∈ R

d such that

−xi ≤ −qi for i = 1, . . . , d and

x(C) ≤ c + q(C) for all maximal cliques C ⊆ [d].

These inequalities are facet-defining, as can be easily seen. Using the representation
given in Definition 2.2, we note that q+ cPG is reflexive if and only if qi = −1 for all
i = 1, . . . , d and c+ q(C) = c − |C | = 1 for all maximal cliques C . This happens if
and only if all maximal cliques have the same size. ��
Combining Lemma 3.3 with Proposition 4.4 yields the following characterization of
reflexive locally anti-blocking polytopes.

Theorem 4.6 Let P ⊂ R
d be a locally anti-blocking lattice polytope with 0 in its

interior. Then P is reflexive if and only if for every σ ∈ {±1}d there is a perfect graph
Gσ such that Pσ = σ PGσ . In particular, P is an unconditional reflexive polytope if
and only if P = UPG for some perfect graph G.

The following corollary to Theorem 4.6 was noted in [21, Thm. 3.4]. The second part
also appears in [57, Exam. 2.3].

Corollary 4.7 If G1,G2 are perfect graphs on the vertex set [d], then PG1 + (−PG2)

and PG1 ∨ (−PG2) are reflexive polytopes.

For G1 = G2 = Kd the complete graph on d vertices, the polytope PG1 + (−PG2) is
the Legendre polytope studied by Hetyei et al. [29,39].

Using Normaliz [18] and the Kreuzer–Skarke database for reflexive polytopes
[45,46], we were able to verify that 72 of the 3-dimensional reflexive polytopes and
at least 407 of the 4-dimensional reflexive polytopes with at most 12 vertices are
locally anti-blocking. Unfortunately, our computational resources were too limited to
test most of the 4-dimensional polytopes. However, there are only 11 4-dimensional
unconditional reflexive polytopes (by virtue of Theorem 4.9).

If G,G ′ are perfect graphs, then G � G ′ as well as its bipartite sum G �� G ′ =
G � G ′ are perfect. On the level of unconditional polytopes we note that

UPG�G ′ = UPG × UPG ′ and UPG��G ′ = UPG ⊕ UPG ′ ,
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where ⊕ is the direct sum (or free sum) of polytopes [38]. These observations give us
the class of Hanner polytopes which are important in relation to the 3d -conjecture; see
[62]. A centrally symmetric polytope H ⊂ R

d is called aHanner polytope if and only
if H = [−1, 1] or H is of the form H1 × H2 or H1 ⊕ H2 = (H∗

1 × H∗
2 )∗ for lower

dimensional Hanner polytopes H1, H2. Thus, every Hanner polytope is of the form
UPG for some perfect graph G. Hanner polytopes were obtained from split graphs in
[31] using a different geometric construction.

Let us briefly note that Theorem 4.6 also yields bounds on the entries of the
h∗-vector. Recall that h∗

i (Cd) for the cube Cd = [−1, 1]d is given by the type-B

Eulerian number B(d, i) = ∑i
j=1(−1)i− j

( d
i− j

)
(2 j − 1)d−1, which counts signed

permutations with i descents (see also Sect. 5). Its polar C∗
d is the crosspolytope with

h∗
i (C

∗
d ) = (d

i

)
for i = 0, . . . , d.

Corollary 4.8 Let P ⊂ R
d be an unconditional reflexive polytope. Then

(
d

i

)
≤ h∗

i (P) ≤ B(d, i).

Proof It follows from Theorem 4.6 that every reflexive and unconditional P satisfies
C∗
d ⊆ P ⊆ Cd , where Cd = [−1, 1]d . By Theorem 2.1, the entries of the h∗-vector

are monotone with respect to inclusion. ��
Weclose the section by showing that distinct perfect graphs yield distinct unconditional
reflexive polytopes.

Theorem 4.9 Let G, H be perfect graphs on vertices [d]. Then UPG is unimodularly
equivalent to UPH if and only if G ∼= H.

Proof Assume that T (UPG) = UPH for some T (x) = W x + t with t ∈ Z
d and

W ∈ SLd(Z). Since the origin is the only interior lattice point of both polytopes, we
infer that t = 0. Let W = (w1, . . . ,wd). Thus, z ∈ Z

d is a lattice point in UPH if and
only if there is a stable set S and σ ∈ {±1}S such that

z =
∑

i∈S
σiwi . (3)

On the one hand, this implies thatwi andw j have disjoint supports whenever i, j ∈ S
and i �= j . Indeed, if the supports of wi and w j are not disjoint, then σiwi + σ jw j

has a coordinate > 1 for some choice of σi , σ j ∈ {±1}, which contradicts the fact that
UPH ⊆ [−1, 1]d .

On the other hand, for any h ∈ [d], the point eh = 1{h} is contained inUPH . Hence,
there is a stable set S and σ ∈ {±1}S such that (3) holds for z = eh . Since the supports
of the vectors indexed by S are disjoint, this means that S = {i} and eh = σiwi . We
conclude that W is a signed permutation matrix and G ∼= H . ��
We can conclude that the number of unconditional reflexive polytopes in R

d up to
unimodular equivalence is precisely the number of unlabeled perfect graphs on d
vertices. This number has been computed up to d = 13 (see [44, Sect. 5] and A052431
of [65]). We show the sequence in Table 1.
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Table 1 Number p(n) of unlabeled perfect graphs; OEIS sequence A052431

n 3 4 5 6 7 8 9 10 11 12 13

p(n) 4 11 33 148 906 8 887 136 756 3 269 264 115 811 998 5 855 499 195 410 580 177 259

5 The Type-B Birkhoff Polytope

TheBirkhoff polytopeB(n) is defined as the convex hull of all n×n permutationmatri-
ces. Equivalently, B(n) is the set of all doubly stochastic matrices, that is, nonnegative
matrices M with row and column sums equal to 1, by work of Birkhoff [11] and,
independently, von Neumann [52]. This polytope has been studied quite extensively
and is known to have many properties of interest (see, e.g., [4,5,8,20,24,25,59]). Of
particular interest to our purposes, it is known to be Gorenstein, to be compressed [67],
and to be h∗-unimodal [4]. In this section, we will introduce a type-B analogue of
this polytope corresponding to signed permutation matrices and verify many similar
properties already known for B(n).

The hyperoctahedral group is defined by Bn := (Z/2Z) �Sn , which is the Coxeter
group of type-B (or type-C). Elements of this group can be thought of as permutations
from Sn expressed in one-line notation σ = σ1σ2 . . . σn , where we also associate a
sign sgn(σi ) to each σi . To each signed permutation σ ∈ Bn , we associate a matrix
Mσ defined as (Mσ )i,σi = sgn(σi ) and (Mσ )i, j = 0 otherwise. If every entry of
σ is positive, then Mσ is simply a permutation matrix. This leads to the following
definition:

Definition 5.1 The type-B Birkhoff polytope (or signed Birkhoff polytope) is

BB(n) := conv {Mσ : σ ∈ Bn} ⊂ R
n×n .

That is, BB(n) is the convex hull of all n × n signed permutation matrices.

This polytope was previously studied in [50], though the emphasis was not on
Ehrhart-theoretic questions. Since all points in the definition of BB(n) lie on a sphere,
it follows that they are all vertices.

Proposition 5.2 For every σ ∈ Bn, Mσ is a vertex of BB(n).

It is clear that BB(n) is an unconditional lattice polytope in R
d×d and we study it

by restriction to the positive orthant.

Definition 5.3 For n ≥ 1, we define the positive type-B Birkhoff polytope, BB+(n),
to be the polytope

BB+(n) :=BB(n) ∩ R
n×n+ .

A simple way to view this as an anti-blocking polytope is via matching polytopes.
Given a graph G = ([d], E), a matching is a set M ⊆ E such that e ∩ e′ = ∅ for any
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two distinct e, e′ ∈ M . The corresponding matching polytope is

Mat(G) := conv{1M : M ⊆ E a matching} ⊂ R
E .

If G is a bipartite graph, then the matching polytope is easy to describe. For v ∈ [d]
let δ(v) ⊆ E denote the edges incident to v.

Theorem 5.4 ([64, Sec. 8.11]) For bipartite graphs G the matching polytope is given
by

Mat(G) = {x ∈ R
E+ : x(δ(v)) ≤ 1 for all v ∈ [d]}.

As a simple consequence, we get

Corollary 5.5 BB+(n) is the matching polytope of the complete bipartite graph Kn,n

on 2n vertices.

Proof We can identify the edges of Kn,n with [n]× [n]. Every matrix M ∈ BB+(n)∩
{0, 1}n×n is a partial permutation matrix and therefore contains at most one 1 in every
row and column. It follows that the set {(i, j) : Mi j = 1} is a matching of Kn,n and
every matching arises that way. SinceBB+(n) andMat(Kn,n) are both 0/1-polytopes,
this proves the claim. ��

It follows from the description given in Theorem 5.4 and the definition of com-
pressed polytopes that matching polytopes of bipartite graphs are compressed. Hence,
by Proposition 4.4,Mat(G) is the stable set polytope of a perfect graph. The graph in
question is the line graph L(G) on the vertex set E and edge ee′ whenever e∩e′ �= ∅.
It is clear that M is a matching in G if and only if M is a stable set in L(G). If L(G) is
perfect, then G is called a line perfect graph. From Lovász’ Theorem 4.1 one can then
infer Mat(G) = PL(G) and hence bipartite graphs are line perfect; cf. [49, Thm. 2].

The polytope BB+(n) is the stable set polytope of L(Kn,n) = Kn�Kn , the Carte-
sian product of complete graphs, which is the graph of legal moves of a rook on an
n-by-n chessboard and thus called a rook graph. Since all vertices in Kn,n have the
same degree, it follows that all maximal cliques in Kn�Kn have size n and from
Proposition 4.5 we conclude the following.

Corollary 5.6 The polytope BB+(n) is Gorenstein.

For two matrices A, B ∈ R
d×d we denote by 〈A, B〉 = tr(At B) the Frobenius inner

product. Also, for vectors u, v ∈ R
d let us write u ⊗ v ∈ R

d×d for the matrix with
(u ⊗ v)i j = uiv j .

Corollary 5.7 The polytope BB(n) is an unconditional reflexive polytope. Its facet-
defining inequalities are given by

〈A, σ ⊗ ei 〉 ≤ 1 and 〈A, ei ⊗ σ 〉 ≤ 1

for all i = 1, . . . , n and σ ∈ {±1}n.
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The inequality description of this polytope was previously obtained in [50] using the
notion of Birkhoff tensors.

Proof We deduce that BB(n) is reflexive by appealing to Theorem 4.6, using the fact
thatBB(n) is unconditional andBB+(n) = BB(n)∩R

n×n+ is the stable set polytope of
a perfect graph as discussed above. We obtain the inequality description by applying
Proposition 3.1 and Theorem 5.4. ��

The dual C(n) :=BB(n)∗ is the unconditional reflexive polytope associated with the
graph Kn�Kn . The corresponding anti-blocking polytope C+(n) = PKn�Kn

also has
the nice property that all cliques have the same size n and hence Proposition 4.5
applies.

Corollary 5.8 The polytope C+(n) is Gorenstein.

By Theorems 3.4 and 4.6, and Proposition 4.4, we have the following unimodality
results.

Corollary 5.9 For any n ∈ Z≥1, we have that h∗(BB(n)), h∗(BB+(n)), h∗(C(n)), and
h∗(C+(n)) are unimodal.

Let us conclude this section with some enumerative data. The polytope BB(n) has
2nn! vertices and n2n+1 facets. In contrast, the vertices of BB+(n) are in bijection to
partial permutations of [n]. Hence BB+(n) has n!∑n

i=0 1/i ! many vertices but only
n2 + 2n facets. The polytope C+(n) has n2n+1 − (n + 1)2 many vertices and n2 + n!
facets. We used Normaliz [18] to compute the normalized volume and h∗-vectors
of these polytopes; see Tables 2, 3, 4, and 5. Given the dimension and volumes of
these polytopes, our computational resources were quite quickly exhausted. Note that
BB(3) and C(3) have precisely the same Ehrhart data and normalized volume and in
fact it is straightforward to verify that BB(3) and C(3) are unimodularly equivalent.

Using Theorem 3.6 and Corollary 3.7, we get a lower bound on the volume of
BB+(5) and BB(5), respectively. We get that

Vol (BB+(5)) > 30,637,007,047,800

Vol (BB(5)) > 1,028,007,369,668,940,603,880

are bounds on the number of simplices in a unimodular triangulation.

6 CIS Graphs and Compressed Gale-dual Pairs of Polytopes

The notion of Gale-dual pairs was introduced in [32]. Given two polytopes P, Q ⊂ R
d ,

we say that these polytopes form a Gale-dual pair if
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Table 2 BB+(n)

n Vol (BB+(n)) h∗(BB+(n))

1 1 1

2 4 (1, 2, 1)

3 642 (1, 24, 156, 280, 156, 24, 1)

4 12065248 (1, 192, 9534, 151856, 975793, 2860752, 4069012,

2860752, 975793, 151856, 9534, 192, 1)

Table 3 BB(n)

n Vol (BB(n)) h∗(BB(n))

1 2 (1, 1)

2 64 (1, 12, 38, 12, 1)

3 328704 (1, 129, 4482, 40844, 118950, 118950, 40844, 4482, 129, 1)

4 790708092928 ?

Table 4 C+(n)

n Vol (C+(n)) h∗(C+(n))

1 1 1

2 6 (1, 4, 1)

3 642 (1, 24, 156, 280, 156, 24, 1)

4 2389248 (1, 88, 2656, 34568, 201215, 562112, 787968

562112, 201215, 34568, 2656, 88, 1)

5 506289991680 ?

Table 5 C(n)

n Vol (C(n)) h∗(C(n))

1 2 (1, 1)

2 96 (1, 20, 54, 20, 1)

3 328704 (1, 129, 4428, 40844, 118950, 118950, 40844, 4428, 129, 1)

4 156581756928 (1, 592, 110136, 8093168, 222332060, 2558902352,

13699272072, 36553260912, 50497814342, 36553260912,

136992720722558902352, 222332060, 8093168, 110136, 592, 1)

5 16988273098107125760 ?
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P = {x ∈ R
d+ : 〈x, y〉 = 1 for y ∈ V (Q)} and

Q = {x ∈ R
d+ : 〈x, y〉 = 1 for y ∈ V (P)}.

Primary examples of Gale-dual pairs of polytopes are the Birkhoff polytope Bn ,
the convex hull of permutation matrices Mτ , and the Gardner polytope Gn , which
is the polytope of all nonnegative matrices A ∈ R

n×n+ such that 〈Mτ , A〉 = 1 for all
permutationmatricesMτ . Bothpolytopes are compressed,Gorenstein lattice polytopes
of codegree n. The question raised in [32] was if there were other Gale-dual pairs with
(a subset of) these properties. In this section we briefly outline a construction for
compressed Gale-dual pairs of polytopes.

Following [2], we call G = ([d], E) a CIS graph if C ∩ S �= ∅ for every inclusion-
maximal cliqueC and inclusion-maximal stable set S. For brevity, we refer to those as
maximal cliques and stable sets, respectively. For example, if B is a bipartite graphwith
perfectmatching, i.e., amatching covering all vertices, then the line graph L(G) is CIS.
Another class of examples is given by a theorem of Grillet [35]. Let� = ([d],�) be a
partially ordered set. The comparability graph of� is the simple graphG≺ = ([d], E)

with i j ∈ E if i ≺ j or j ≺ i . Comparability graphs are known to be perfect [44].
The bull graph is the graph with vertices a, b, c, d, e and edges ab, bc, cd, de, bd.

Theorem 6.1 ([35]) Let (�,�) be a poset with comparability graph G. Then G is
CIS if every induced 4-path is contained in an induced bull graph.

The wording in graph-theoretic terms is due to Berge; see [74] for extensions.

Proposition 6.2 Let G be a perfect CIS graph. Then

P = conv (1S : S a maximal stable set of G)

Q = conv (1C : C a maximal clique of G)

is a Gale-dual pair of compressed polytopes.

Proof For a stable set S and a clique C , we have that S ∩ C �= ∅ if and only if
〈1C , 1S〉 = 1. Let PG be the stable set polytope of G. It follows from Theorem 4.1
that the vertices of

P ′ := PG ∩
⋂

C maximal clique

{x ∈ R
n+ : x(C) = 〈1C , x〉 = 1}

are of the form 1S for stable sets meeting every maximal clique non-trivially. Note
that a stable set S of the CIS graph G is maximal if S ∩ C �= ∅ for every maximal
clique C . Hence P = P ′ and P is a face of PG . Since faces of compressed polytopes
are compressed, it follows that P is compressed. The complement graph G is also a
perfect CIS graph and the same argument applied to Q completes the proof. ��
Note that both examples above are perfect CIS graphs. This shows that compressed
(lattice) Gale-dual pairs are not rare. Recall that a graph G is well-covered if every
maximal stable set has the same size and G is co-well-covered if G is well-covered.
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Theorem 6.1 and its generalization in [74] allow for the construction of perfect CIS
graphs which are well-covered and co-well-covered (for example, by taking ordinal
sums of antichains). Moreover, the recent paper [28] gives classes of examples of well-
covered and co-well-covered CIS graphs. This is a potential source of compressed
Gorenstein Gale-dual pairs but we were unable to identify the perfect graphs in these
families.

Theorem 4.6 implies that if (F,G) is a Gale-dual pair of Proposition 6.2, then there
is a (unconditional) reflexive polytope such that F ⊂ P and G ⊂ P∗ are dual faces.

Question 6.3 Is it true that every Gale-dual pair (F,G) appears as dual faces of some
reflexive polytope P?

7 Chain Polytopes and Gröbner Bases

Given a lattice polytope P ⊂ R
d , the existence of regular triangulations, particularly

those which are unimodular and flag, has direct applications to the associated toric
ideal of P . In this section, we will discuss how certain Gröbner bases of the toric
ideal of an anti-blocking polytope can be extended to Gröbner bases of the associated
unconditional polytope. In particular, we provide an explicit description of Gröbner
bases for unconditional polytopes arising from the special class of anti-blocking poly-
topes called chain polytopes. We refer the reader to the wonderful books [23] and [71]
for background on Gröbner bases and toric ideals.

Let Z := P ∩ Z
d . The toric ideal associated to P is the ideal IP ⊂ C[x p : p ∈ Z ]

with generators

xr1xr2 · · ·xrk − xs1xs2 · · ·xsk ,

where r1, . . . , rk, s1, . . . , sk ∈ Z are lattice points such that r1 + · · · + rk = s1 +
· · ·+ sk . If we denote the twomultisets of points by R and S, we simply write x R −x S .
A celebrated result of Sturmfels [71, Thm. 8.3] states that the regular triangulations T
of P (with vertices in Z ) are in correspondence with (reduced) Gröbner bases of IP .
The heights inducing the triangulation yield a term order on C[x p : p ∈ Z ] and we
write x R − x S to emphasize that x R is the leading term. We set the following result
on record, which reflects the content of Theorem 8.3 and Corollary 8.9 of [71]. For
details on this algebraic-geometric correspondence outlined above, we recommend
the very accessible Chapter 8 of Sturmfels’ book [71].

Theorem 7.1 Let P ⊂ R
d be a lattice polytope and let T be a regular and unimod-

ular triangulation. Then a reduced Gröbner basis of IP is given by the collection of
monomials

x R − x S,

where R ⊂ P ∩ Z
d is a minimal non-face, S is a multisubset of P ∩ Z

d such that∑
R = ∑

S and conv(S) is a face of some simplex in T . In particular, T is flag if
and only if the leading terms are quadratic and square-free.
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Let T be a unimodular triangulation of P . Given any lattice point p ∈ 2P there are
unique p(1), p(2) ∈ Z such that p = p(1) + p(2) and conv ( p(1), p(2)) is a face of a
simplex in T . Note that p(1) and p(2) do not have to be distinct points. Let us call two
points p, q ∈ R

d separable if pi and qi have different signs for some i = 1, . . . , d.
Together with Theorem 3.2, this yields the following description of a Gröbner basis
for unconditional reflexive polytopes.

Theorem 7.2 Let P ⊂ R
d be an anti-blocking polytope with a regular and unimodular

triangulation and let x Ri − x Si for i = 1, . . . ,m be the associated Gröbner basis for
IP . A Gröbner basis associated to the toric ideal of UP is given by the binomials

xσ Ri − xσ Si

for i = 1, . . . ,m and σ ∈ {±1}d , and

x p xq − xσ e(1) xσ e(2)

for any separable p, q ∈ UP ∩ Z
d and σ ∈ {±1}d such that σ( p + q) = e ∈ 2P.

Proof Theorem 3.2 states that the regular and unimodular triangulation T of P induces
a regular and unimodular triangulation UT of UP . It follows from Theorem 3.2 (iii)
that a minimal non-face R of UT is of the form R = σ R′, where R′ is a non-face of
T and σ ∈ {±1}d , or it is of the form R = { p, q} for separable p, q ∈ Z :=UP ∩Z

d .
In order to apply Theorem 7.1, we need to determine for every minimal non-face

R the multisubset S of Z such that x R − x S ∈ IUP . If R = σ Ri for some minimal
non-face Ri , then we can take S = σ Si . If R = { p, q}, then there is some σ ∈ {±1}d ,
such that σ( p+ q) = e ∈ 2P . It follows that p+ q ∈ conv (σ e(1), σ e(2)), which is a
face of some simplex of UT . Hence we can take S = {σ e(1), σ e(2)}. ��

A prominent class of perfect graphsG for which regular, unimodular triangulations
of PG , as well as Gröbner bases for IPG , are well understood are comparability graphs
of finite posets. Let � = ([d],�) be a partially ordered set with comparability graph
G≺. The stable set polytopes of comparability graphs were studied by Stanley [68]
under the name chain polytopes and are denoted by C(�). An antichain in � is a
collection of pairwise uncomparable elements. The vertices of PG≺ are precisely the
points 1A, where A is an antichain. Let A(�) denote the collection of antichains.
A pulling triangulation of PG≺ can be explicitly described (see Sect. 4.1 in [21] for
exposition and details). The corresponding (reverse lexicographic) Gröbner basis was
described by Hibi [40]. Following [21], we define

A � A′ := min (A ∪ A′) and A � A′ := (A ∩ A′) ∪ (
max (A ∪ A′) \ min (A ∪ A′)

)
,

wheremin andmax are takenwith respect to the partial order�.We call two antichains
A, A′ uncomparable ifmax (A ∪ A′) is not a subset of A andnot of A′. To ease notation,
we identify variables xA in C[xA : A ∈ A(�)] with symbols [A].
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Theorem 7.3 ([40,68]) Let� be a poset and C(�) its chain polytope. AGröbner basis
for IC(�) is given by the binomials

[B] · [B ′] − [B � B ′] · [B � B ′] ,

for all uncomparable antichains B, B ′ ∈ A(�). The corresponding triangulation of
C(�) is regular, unimodular, and flag.

We define the unconditional chain polytope UC(�) as the unconditional reflexive
polytope associated toG≺. These polytopes were independently introduced byOhsugi
and Tsuchiya [58] under the name enriched chain polytopes. The lattice points in
UC(�) are uniquely given by

1B − 2 · 1A,

where A ⊆ B are antichains. We write B − A for the pair A ⊆ B of antichains. In
the following, we slightly abuse notation and write B −C instead of B − (B ∩C) for
antichains B,C . We get a description of the vertices of UC(�) from Proposition 3.1:
Every vertex of UC(�) is of the form v = σ1B for some inclusion-maximal antichain
B ⊆ �. Setting A := {i ∈ B : vi < 0}, we deduce that the vertices of UC(�) are
uniquely given by B − A where B is an inclusion-maximal antichain.

We call B − A and B ′ − A′ separable if the corresponding points are separable. We
also extend the two operations introduced above:

(B − A) � (B ′ − A′) := (B � B ′) − (A � A′),
(B − A) � (B ′ − A′) := (B � B ′) − (A � A′).

The following result was also obtained in [58].

Theorem 7.4 Let � = ([d],�) be a finite poset and IUC(�) the toric ideal associated
to the unconditional chain polytope UC(�). Then a reduced Gröbner basis is given
by the binomials

[B − E] · [B ′ − E] − [(B � B ′) − E] · [(B � B ′) − E],

for all uncomparable B, B ′ ∈ A(�) and E ⊆ B ∪ B ′ as well as

[B − A] · [B ′ − A′] − [(C − D) � (C ′ − D′)] · [(C − D) � (C ′ − D′)],

where B − A and B ′ − A′ are separable and

C := (B \ B ′) ∪ (A ∩ A′), D := (A \ B ′) ∪ (A ∩ A′),
C ′ := (B ′ \ B) ∪ (A ∩ A′), D′ := (A′ \ B) ∪ (A ∩ A′).

Proof We apply Theorem 7.2 using the Gröbner basis of the toric ideal of C(�)

provided by Theorem 7.3. This provides the first set of binomials and we only have
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to argue on the binomials with leading terms coming from separable pairs B − A and
B ′ − A′.

The Gröbner basis given in Theorem 7.3 tells us how to find the decomposition
e(1) + e(2) of a point e ∈ 2C(�). Indeed, the minimal non-faces of the triangulation
are given by the leading terms and correspond to uncomparable pairs of antichains
E, E ′ ∈ A(�). The point 1E + 1E ′ can then be written as 1E�E ′ + 1E�E ′ . The
antichains E � E ′, E � E ′ are comparable and thus conv (1E�E ′, 1E�E ′) is a face of a
simplex in the triangulation.

By our discussion above, every point in UC(�) is of the form 1B − 2 · 1A for
B ∈ A(�) and A ⊆ B. Now, for B − A and B ′ − A′ separable, we have

p = (1B − 2 · 1A) + (1B′ − 2 · 1A′) = (1C − 2 · 1D) + (1C ′ − 2 · 1D′).

Note that C − D and C ′ − D′ are not separable and the pairs (C − D)� (C ′ − D′) and
(C−D)�(C ′−D′) give a suitable representation of pwith respect to the triangulation
of UC(�). ��

8 Concluding Remarks

8.1 A Blaschke–Santaló Inequality

TheBlaschke–Santaló inequality [63, Sect. 10.7] implies that for a centrally-symmetric
convex body K ⊂ R

d ,

vol(K ) · vol(K ∗) ≤ vol(Bd)
d ,

where Bd is the Euclidean unit ball. Equality is attained precisely when K is an
ellipsoid. Based on computations for up to 9 vertices, we conjecture the following.

Conjecture 8.1 For every n ≥ 1, there is a unique perfect graph G on n vertices such
that vol(UPG) · vol(UPG) is maximal.

For n = 3, 4, 5, the unique maximizer is the path on n vertices. For n = 6 the
unique maximizer is a 6-cycle and for n = 7 the maximizer is obtained by adding a
dangling edge to the 6-cycle. For n = 8 the graph in question is a 6-cycle with an
additional 4-path connecting two antipodal vertices but for n = 9 the graph is much
more complicated.

8.2 Birkhoff Polytopes of Other Types

It is natural to look at Birkhoff-type polytopes of other finite irreducible Coxeter
groups. Since the type-B and the type-C Coxeter groups are equal, we get the same
polytope. Recall that the type-D Coxeter group Dn is the subgroup of Bn with permu-
tations with an even number of negative entries. We can construct the type-D Birkhoff
polytope, BD(n), to be the convex hull of signed permutation matrices with an even
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Fig. 2 Schlegel diagram for BB(2)

number of negative entries. As one may suspect from this construction, the omission
of all lattice points in various orthants which occurs in BD(n) ensures that it cannot
be an OLP polytope and is thus not subject to any of our general theorems. When
n = 2 and n = 3, BD(n) is a reflexive polytope, but BD(3) does not have the IDP.
Moreover, BD(4) fails to be reflexive.

Additionally, one could consider Birkhoff constructions for Coxeter groups of
exceptional type, in particular E6, E7 and E8 (see, e.g., [12]). While we did not
consider these polytopes in our investigation, we do raise the following question:

Question 8.2 Do the Birkhoff polytope constructions for E6, E7, and E8 have the
IDP? Are these polytopes reflexive? Do they have other interesting properties?

8.3 Future Directions

In addition to considering Birkhoff polytopes of other types and connections to Gale
duality as discussed above, there are several immediate avenues for further research.
Coxeter groups are of great interest in the broader community of algebraic and geo-
metric combinatorics (see, e.g., [12]) and it would be interesting if Coxeter-theoretic
insights can be gained from the geometry of BB(n).

An additional future direction is to consider applications of the orthant-lattice prop-
erty, particularly those of Theorem 3.2 andRemark 3.5. One potentially fruitful avenue
is an application to reflexive smooth polytopes. Recall that a lattice polytope P ⊂ R

d

is simple if every vertex of P is contained in exactly d edges (see, e.g., [75]). A simple
polytope P is called smooth if the primitive edge directions generate Z

d at every ver-
tex of P . Smooth polytopes are particularly of interest due to a conjecture commonly
attributed to Oda [53]:

Conjecture 8.3 (Oda) If P is a smooth polytope, then P has the IDP.

This conjecture is not only of interest in the context of Ehrhart theory, but also
in toric geometry. One potential strategy is to consider similar constructions to OLP
polytopes for smooth reflexive polytopes to make progress towards this problem. As
a first step, we pose the following question:

Question 8.4 Are all smooth reflexive polytopes OLP polytopes?

Furthermore, regarding reflexive OLP polytopes one can ask the question:

123



450 Discrete & Computational Geometry (2020) 64:427–452

Question 8.5 Given a reflexive OLP polytope P , under what conditions can we guar-
antee that P∗ is a reflexive OLP polytope?

By (2), this has a positive answer when P is an unconditional reflexive polytope.
However, there are multiple examples of failure in general even in dimension 2 (see
Fig. 1).
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