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Abstract
By computing a volatility index (CVX) from cryptocurrency option prices, we ana-
lyze this market’s expectation of future volatility. Our method addresses the chal-
lenging liquidity environment of this young asset class and allows us to extract 
stable market implied volatilities. Two alternative methods are considered to com-
pute volatilities from granular intra-day cryptocurrency options data, which spans 
over the COVID-19 pandemic period. CVX data therefore capture ‘normal’ market 
dynamics as well as distress and recovery periods. The methods yield two cointe-
grated index series, where the corresponding error correction model can be used as 
an indicator for market implied tail-risk. Comparing our CVX to existing volatil-
ity benchmarks for traditional asset classes, such as VIX (equity) or GVX (gold), 
confirms that cryptocurrency volatility dynamics are often disconnected from tradi-
tional markets, yet, share common shocks.

Keywords  Cryptocurrency · Blockchain · Bitcoin · Volatility · Derivatives · 
Options · Liquidity

JEL classification  C5 · F31 · G1 · G2

1  Introduction

Since Nakamoto (2008) proposed Bitcoin as a peer-to-peer electronic cash system, 
this and other cryptocurrencies1 have evolved into a new class of financial assets. 
As of 2021, the crypto domain can be considered one of the most volatile markets 
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available to investors. Volatility, as a measure of the variability of an asset over time, 
is the most common risk measure in financial theory. We set out to explore volatility 
and tail-risk in the crypto space by computing benchmarks that are tailored to this 
young asset class.

Naturally, as cryptocurreny spot markets evolve, markets for derivatives thereon 
follow. Following the introduction of future contracts, i.e., the mutual obligation to 
exchange some amount of the underlying (e.g., Bitcoin) at a fixed price in the future, 
investors nowadays have access to option contracts, a type of derivative that gives 
the buyer the right to receive (call option) or deliver (put option) some amount of 
the underlying for a fixed price (strike) at some future point in time.

Options—like other financial derivatives—are tied to their underlying by an arbi-
trage relationship, which is based on the replication of the options’s cash-flow. The 
dynamic nature of an option replication is directly linked to the underlying’s vola-
tility during the lifetime of the contract. Option markets can hence also be seen as 
markets for volatility. We are interested in extracting volatility information from this 
unique type of market.

This paper considers two kinds of volatility: first, historical volatility that is 
calculated from previous prices of the underlying; second, implied volatility that 
is inferred from current market prices of options. The latter reflects the market’s 
expectation of future volatility, in the sense that it is calculated from today’s price 
for hedging future volatility risk.

A very important benchmark and investment tool are financial indices, which 
allow investors to obtain information on the current state of the market. Further-
more, indices that are turned into tradable assets and derivatives thereon improve 
market accessibility. S&P 500 and Euro Stoxx 50, for instance, are two large indices 
that track North American or  European stocks respectively. These price or return 
indices are complimented by risk benchmarks, most famously CBOE’s Volatil-
ity Index (VIX), colloquially dubbed the ‘fear index’, which is designed to capture 
expected volatility.

In contrast to traditional indices, extracting reliable volatility information from 
options requires a broad spectrum of high-quality data, which for cryptocurrencies 
only became available very recently. This is, since cryptocurrency options were 
introduced in 2016, market liquidity and participation has improved significantly. 
According to data from Skew2, the total number of outstanding contracts (open inter-
est) has more than tripled from its 2019 value, reaching a market size above USD 1 
billion for the first time in mid-2020. This surge in size provides a great opportunity 
to tap a very interesting source of volatility information. Nevertheless, our volatility 
indexing method addresses remaining liquidity concerns for this young asset class, 
ultimately allowing us to extract stable cryptocurrency volatility information.

Few attempts have been made so far to implement indices for cryptocurrencies. 
Trimborn and Härdle (2018) propose a market capitalization weighted crypto-
index (CRIX), which as of 2020 tracks 10 cryptocurrencies. With their VCRIX, the 
authors also propose a volatility benchmark for crypto-assets (Kim et al., 2019). The 
latter is based on price data and constructed using a heterogeneous autoregressive 

2  Skew is a London-based cryptocurrency data provider; see: www.​skew.​com/​dashb​oard/​bitco​in-​optio​ns.

https://www.skew.com/dashboard/bitcoin-options
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(HAR) model. As such, the index methodology is different from typical (implied) 
volatility indices (e.g., VIX) that are based on option prices. The VCRIX is a true 
index in the sense that it is indexed to a value of 1,000 as of its introduction on 
2014-11-28. Most implied volatility indices, in contrast, are not indexed and there-
fore provide an ad-hoc value for implied volatility.

The research on the volatility of crypto-assets is dominated by questions on port-
folio risk, such as the assessment of this new asset class’s potential for portfolio 
diversification or hedging. By analyzing historical price data, those studies often 
conclude that cryptocurrencies, despite a considerable speculative component (Fry 
& Cheah, 2016), bear potential for portfolio diversification and hedging (Akhtaruz-
zaman et al., 2019; Baur et al., 2015; Bouri et al., 2017a, 2017b; Corbet et al., 2018; 
Dyhrberg, 2016; Platanakis & Urquhart, 2020). This positive view is challenged, 
at least in part, by Klein et al. (2018) who claim that Bitcoin is “no safe haven and 
offers no hedging capabilities for developed markets”. Similarly, Bouri et al. (2018) 
find spill-over effects between Bitcoin and other assets, “particularly commodities, 
and therefore, [that] the Bitcoin market is not isolated completely”.

At this point, it is worth mentioning that this paper often uses Bitcoin as a pars 
pro toto for the entire cryptocurrency market. This has predominantly practical rea-
sons as Bitcoin dominates in liquidity, especially for derivative markets. Our view is 
backed by the literature that finds strong interdependence within the cryptocurrency 
market (Ciaian et al., 2018; Corbet et al., 2019). Overall, the literature agrees that, as 
of now, cryptocurrencies show strong interdependence among each other, however, 
remain somewhat isolated from the dynamics of traditional markets. A recent study 
by Giudici and Polinesi (2019) extends this view by stating that “Bitcoin exchange 
prices are not affected by classic asset prices, but their volatilities are, with a nega-
tive and lagged effect”.

In an approach to model return volatility, Katsiampa (2017) explore heteroske-
dasticity models with regards to Bitcoin price data and find that including both a 
short-run and a long-run component of the conditional variance (AR-CGARCH) 
provides the best goodness-of-fit. Similarly, Conrad et  al. (2018) use a GARCH-
MIDAS model to analyze long- and short-term Bitcoin volatility components and 
find that S&P 500 realized volatility has a negative and highly significant effect on 
long-term Bitcoin volatility.

Previous work on cryptocurrency volatility is predominantly concerned with his-
torical volatility, while the literature on implied cryptocurrency volatility is scarce. 
A major factor in this being that liquid cryptocurrency volatility markets are a very 
recent development. Some technical articles regarding option pricing models are 
available (Cretarola & Figà-Talamanca, 2017; Hou et al., 2018), while the improv-
ing availability of crypto derivatives data also recently sparks research with a more 
empirical focus, e.g., Madan et  al. (2019) who calibrate advanced option pricing 
models to Bitcoin options.

Alexander and Imeraj (2020) calculate a Bitcoin volatility index using the CBOE 
(2019) VIX index methodology. CBOE’s method is the widely recognized market 
standard for implied volatility indexing and, hence, must be the benchmark and start-
ing point for the development of all volatility indices. Our paper ventures beyond the 
market standard by acknowledging that the market liquidity of Bitcoin options, even 
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on the most liquid exchanges, is far inferior to the S&P 500 options that are the 
basis for the original VIX index. We therefore consider alternatives for the volatility 
extraction as well as index aggregation. The two resulting volatility indices are coin-
tegrated and the corresponding error correction model can be utilized as a metric for 
market implied tail-risk.

The research on cryptocurrency volatility is scarce and relevant benchmarks that 
leverage the information available through option markets are hardly accessible to 
market participants. However, today’s price for hedging future volatility is an impor-
tant dimension and valuable source of information. In this paper, we aim to con-
tribute to the development of stable, transparent, informative, and replicable bench-
marks for future cryptocurrency volatility.3

The remainder of the paper is structured as follows: Sect. 2 reviews current mar-
kets and conventions for cryptocurrency derivatives, Sect.  3 introduces the index 
methodology and rules, Sect.  4 presents empirical data for the index, and Sect.  5 
concludes.

2 � Markets and conventions

Before formalizing the index and its rules, this section reviews the underlying mar-
ket of cryptocurrency derivatives. This is an important exercise as several modelling 
choices depend on the specifics of the market. This includes, in particular, market 
liquidity that poses a bigger concern for cryptocurrency derivatives than for most 
traditional derivative markets.

Market liquidity in our sense is the readiness of participants to exchange the 
underlying asset and its derivatives. Derivatives are tied to their underlying by an 
arbitrage relationship. The latter relies on replication, e.g., the replication of an 
option payout trough dynamic hedging in the underlying. A lack of liquidity leads 
to unstable and intransparent prices, which in turn limit our ability to assess the 
fair value of a position (mark-to-market), manage risk, and ultimately trade at a fair 
price.

Let us consider three relevant measures for liquidity. First, trading volume, which 
measures the instantaneous liquidity based on the number of executed trades in a 
specific time window (e.g., 24 h); second, open interest, which measures the total 
number of outstanding derivative contracts, regardless of the transaction timestamp; 
third, bid-ask spread, which can be understood as a transaction cost and hence, an 
entry barrier to the market. According to data from Skew4, the majority of cryp-
tocurrency option trading takes place on Deribit5, with a market share above 80% 
(based on average open interest) as of April 2020, followed by LedgerX, OKEx, 
CME, and Bakkt.

For the purpose of this paper, we follow the liquidity and focus an Deribit and 
data therefrom. However, market mechanics and contract specifications are similar 

3  Our indices are available and kept up-to-date at www.​thecvx.​com.
4  Skew: www.​skew.​com/​dashb​oard/​bitco​in-​optio​ns.
5  Deribit is a cryptocurrency derivatives exchange that operates since 2016, see: www.​derib​it.​com.

https://thecvx.com/
https://www.skew.com/dashboard/bitcoin-options
https://www.deribit.com/
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across all major crypto derivative exchanges. Table  1 provides exemplary option 
contract specifications from Deribit, CME, and CBOE. Exchange mechanics are 
also roughly identical; in particular, every exchange that offers derivatives also pro-
vides a clearing service that requires an extensive infrastructure on top of the match-
ing engine.

Clearing is a mechanism to mitigate counterparty credit risk through a margining 
system, where a variation margin is exchanged to cover mark-to-market changes and 
an initial margin is pledged as a buffer to cover losses from the time where the ina-
bility to maintain the variation margin is discovered, to the point where the position 
is closed. Losses that exceed the available capitalization of a trader have to be cov-
ered by an ‘insurance fund’. Such losses from bankrupt traders enter the insurance 
fund on a regular basis, ranging from a few occurrences per day to a few hundred, 
e.g., 391 on March 13 2020 during a large spike in Bitcoin volatility.6

Options on Deribit are indentified by a symbol that consist of ‘underlying-date-
strike-C/P’, e.g., ‘BTC-27MAY20-8750-P’ for a Bitcoin put option with a strike of 
USD 8750 that expires on 2020-05-27. The options have a multiplier of one, i.e., one 
option represents the right to buy/sell exactly one BTC at expiry; however, the mini-
mum order size is 0.1 option contracts. Fees on Deribit are currently flat at 0.04% 
of the underlying or 0.0004 Bitcoin per options contract. On top, the option trader 
incurs a mean bid-ask spread of 30.2% (8.4% standard deviation) over all strikes and 
maturities (see Fig. 2). As a reference point, Muravyev and Pearson (2015) observe 
bid-ask spreads with a mean of 8.6% (4.9% standard deviation) for options on S&P 
500 stocks.

To reduce pricing risks and avoid market manipulation, the contractual underly-
ing of cryptocurrency options is often a spot price index that averages prices from 
multiple exchanges. This multi-exchange spot index method addresses the compa-
rably low liquidity on crypto exchanges and is not typically found in option con-
tracts on traditional assets. To reduce settlement risks, a price smoothing procedure 
is used right before expiry of the option. Such a smoothing mechanism is found in 
the settlement procedures of many financial derivative. In the example of Deribit, 
the exchange delivery settlement price (EDSP) is calculated using the average of the 

Table 1   Option contract specifications

Deribit (BTC) CME (BTC) CBOE (SPX)

Underlying Deribit BTC index CME BTC (BRR) S&P 500 index
Settlement Cash Cash Cash
Style European European European
Expiry range 1D–12M 1D–24M 1D–60M
Strike price intervals 250–5000 USD 100–10,000 USD 5 (25) points

6  Deribit states that “the 12–13 March 2020 extreme market volatility had a big impact on the size of 
the Deribit BTC insurance fund [...].”, prompting several injections to the fund. See www.​derib​it.​com/​
main#/​insur​ance (Accessed 18 June 2020).

https://www.deribit.com/main#/insurance
https://www.deribit.com/main#/insurance
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spot price index over a period of 30 min proceeding expiry. The resulting amount is 
immediately cash settled in the currency of the underlying.

Figure 1 shows the trading volume for different term structure nodes on Deribit. 
The term structure is not evenly spaced; the first two nodes are short-term options 
with 1 and 2 days to maturity. Term 1W and 2W are weeklies, i.e., end of this and 
next week expiries. The terminal node expires up to 12 month away from spot. Trad-
ing volume is not evenly spread over all nodes in the term structure. Prices of far 
expiry nodes, e.g., 6M and 12M, cannot be expected to be as meaningful and stable 
as for 1D or 1W. It is worth mentioning that this is a 24/7 option market, with fluc-
tuations in liquidity over time (see Fig. 2).

3 � Index methodology and rules

The fundamental idea of volatility indices dates back to Brenner and Galai (1989), 
who envisioned financial instruments for the hedging of volatility changes. To meas-
ure such a market price for volatility, we are interested in the implied volatility for 
an ‘ideal’ at-the-money option with exactly 30 days to maturity. As such an option is 
not observable, this section lays out a methodology to extract the ideal option from 
related option contracts. The method generally applies to all crypto-assets, as long 
as there exists a liquid option market. Yet, the paper focuses on Bitcoin, due to the 
currently superior liquidity in Bitcoin options.

The index is designed under three core considerations. First, all meaningful indi-
ces in financial markets need to be transparent. Second, if one were to trade the 
index itself or derivatives thereon, the index must be physically replicable through 
a portfolio of liquid financial assets. Third, an index must be informative, i.e., repre-
sent the desired information about the underlying asset. The latter also implies that 
the index is comparable to existing volatility indices, such as VIX or other members 
of the well-established CBOE volatility index family.7

Section 3.1 lays out general index rules, such as option selection criteria and the 
interpolation method. Those index rules are designed to be as similar to existing 
volatility indices as possible, while accounting for the specifics of cryptocurrency 
markets. Sections 3.2 and 3.3 introduce two alternative volatility measures that are 
suitable for the index.

3.1 � Selection of option contracts and aggregation

To ensure that only qualified market prices enter the index, all entries with a trad-
ing volume of 0 and or without a mid-price are excluded. It is customary that the 
exchange, through its network of market makers, quotes a ‘mark-price’, even when 
no trading takes place. Those mark-prices are excluded under the current rules as 
they do not necessarily reflect actual supply and demand.

7  For an overview, see: www.​cboe.​com/​produ​cts/​vix-​index-​volat​ility/​volat​ility-​index​es.

http://www.cboe.com/products/vix-index-volatility/volatility-indexes
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In the original CBOE (2019) VIX method, only options with maturity between 23 
and 37 days are considered. As options on the S&P 500 trade in biweekly frequency, 
there are always exactly two expiries considered in the VIX, rendering a simple 
linear interpolation feasible. Unfortunately, cryptocurrency options do not trade at 
such granular frequencies. Furthermore, liquidity as measured in terms of trading 
volume is not spread evenly across expiries (cf. Fig. 1). Choosing exactly two expi-
ries around the target maturity of 30 days might yield unstable results. Therefore, to 
access additional liquid nodes in the term structure, all expiries between 2 and 60 
days from each timestamp are included.

We use inverse distance weighting (IDW) for all interpolation tasks, which gives 
us the flexibility to include additional expiries.8 Consider N known data points, e.g., 
expiry–variance pairs, represented as tuples {(x1, u1), (x2, u2), ..., (xN , uN)} . At an 
arbitrary point x, the interpolated value u(x) is given by IDW as

where the weight is decreasing with an increasing distance d(x, xj) = ‖x − xj‖ . A rel-
evant example for a multi-dimensional interpolation is a volatility surface, which 
naturally spans over a range of strike prices and maturities. Parameter p ∈ ℝ

+ modi-
fies the weight decay, i.e., a larger p leads to a faster weight decay and, hence, to a 
larger influence of observations that are close to the interpolated point. It is theo-
retically possible that the target and actual expiry fall on the same date and time 
and hence have d(x, xj) = 0 ; in this case, we set u(x) = uj.9 Linear interpolation is a 
special case of IDW with exactly two known data points and p = 1 . The remainder 
of the paper uses p = 1 , to remain comparable to existing volatility indices.10

The day count convention of the index is actual/365, more specifically, as options 
expire at 08:00 on their expiry date, we calculate option maturity in minutes to 
expiry for each observation timestamp and divide by 525,600 = 365 × 1440, the 
total number of minutes in a 365-day year. The resulting act/365 time-to-maturity is 
henceforward referred to as �.

Brenner and Galai (1989) envisioned that market participants would be able to 
hedge their exposure to changes in volatility by trading volatility itself. Our index 
lends itself to be used as such a tradable volatility asset and hence, also as an under-
lying for volatility futures and options. However, the currently relatively large and 
varying number of strikes and expiries entering the index increases complexity and, 
thus, makes it harder to physically replicate the index. That being said, decreasing 
the number of assets by focusing on fewer nodes would increase concentration risk 

(1)
u(x) =

N�

k=1

d(x, xk)
−p

∑N

j=1
d(x, xj)

−p

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
weight

uk, ∀ d(x, xj) ≠ 0,

8  Furthermore, this multivariate interpolation method allows us to interpolate on the volatility surface, 
i.e., to interpolate between different strikes and expiries.
9  This case is very unlikely as our intra-day data are collected with a timestamp in millisecond precision. 
For a multi-dimensional interpolation (volatility surface), this case becomes even more unlikely.
10  CBOE’s aforementioned VIX method uses linear interpolation between a near- and far-term option.
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and make the index more susceptible to manipulation. Considering that the young 
cryptocurrencies derivative market cannot provide the liquidity that is available 
on mature markets, we decided in favour of diversification over a larger number of 
strikes and expiries. This assessment might be updated once the liquidity situation 
for cryptocurrency derivatives improves.

3.2 � Model free volatility (CVX)

Britten-Jones and Neuberger (2000) pioneered a risk-neutral variance forecast that 
does not rely on a specific model, but only on market prices for option contracts. 
Their method is applied to most modern volatility assets, such as variance swaps or 
the VIX volatility index family.11

A variance swap is an over-the-counter derivative for the forward exchange of 
squared realized volatility �2

real
 of some underlying (e.g., S&P 500) at an ex-ante 

defined variance swap level (strike) v. At expiry, the difference (�2
real

− v) × A is 
settled in cash, where A is the notional amount of the swap per annualized vola-
tility point. The realized volatility is conventionally calculated on closing price 
log-returns.

The theory developed in Britten-Jones and Neuberger (2000), Carr and Madan 
(2001) and Demeterfi et  al. (1999a), who assume essentially only a positive and 
continuous price path for the underlying asset yields a self-financing strategy that 
replicates the continuously observed �2

real
 for a non-dividend-paying asset. Carr and 

Lee (2007) call this replicating portfolio, which only requires a static position in 
options12 and dynamic position in the underlying asset, a synthetic variance swap.

The replication of variance swaps enables us to determine the ex-ante fair swap 
level v∗ . The swap is fair if at inception E[�2

real
− v∗] = 0 , hence, today’s v∗ is the 

market implied future variance, i.e., the quantity that we want to track with our CVX 
index. As laid out in detail by Demeterfi et al. (1999b), the annualized variance swap 
level is

with prices for put P(.) and call C(.) options, strike K, current forward price of the 
underlying F, and risk-free interest rate r for maturity � . Note that Eq. (2) is a special 
case of the variance swap equation13, where F is both the forward level as well as the 
cut-off between put and call prices.

The fair variance swap level v is based on a continuum of strikes K; in prac-
tice, there exists a finite set of ordered strikes Ki ∈ ℝ

+ . To ease notation, strikes 

(2)v∗ =
2er�

�

(

∫
F

0

1

K2
P(K)dK + ∫

∞

F

1

K2
C(K)dK

)
,

12  More precisely, a static holding of put options with strikes below an arbitrary cut-off level and call 
options with strikes above.
13  Equation (26) in Demeterfi et al. (1999b) uses an arbitrary cut-off level S∗ . This paper uses an at-the-
money forward cut-off level, and hence, S∗ = F = S0e

rT , where S0 is today’s price of the underlying.

11  See Carr and Lee (2009) for an overview of volatility derivatives and Demeterfi et al. (1999b) for an 
in depth review of variance swaps.
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below the forward level F are indexed with i ∈ {1, 2, ..., n} and associated with mid-
prices for put options P(Ki) . Conversely, call options where Ki > F are index with 
i ∈ {n + 1, ...,N} . The only exception to this out-of-the-money principle is the case 
where Ki = Kn , i.e., the first strike below the forward level, where P(Ki) is the aver-
age mid-price of both put and call.

The following Riemann sum approximates Eq. (2) and is identical to the method 
underlying the CBOE (2019) VIX index family. The quantity of interest that enters 
the volatility index is the market implied variance, which is calculated from options 
with maturity � as

with strike interval

The intervals on both ends of the strike range are �K1 = K2 − K1 and 
�KN = KN − KN−1 , respectively.

It is unlikely that any discrete Ki coincides with the continuous F; however, 
the swap pricing formulae requires that Kn = F . The ATM adjustment therefore 
accounts for the distance between the forward level F and the first strike below the 
forward level Kn . This is, the forward adjustment shifts the strikes to their required 
at-the-money levels.

Equation (3) yields the implied at-the-money variance �2
�
 for maturity � . In a final 

step, these variances have to be interpolated over their respective maturities, because 
the CVX is designed to reflect the at-the-money volatility for exactly 30 days. For 
each � , the maturity distance to the ideal option can be written as

Using the interpolation from Eq. (1), where uk = ��2
t,�

 and d(x, xj) = d(�) , the inter-
polated annualized volatility is the index level at time t

Despite its popularity, the literature discusses shortcomings of the method, espe-
cially in lieu of heavy-tailed markets. Choi and Yang (2019) show empirically that 
the approximation error under a jump diffusion process can be as much as 5%; how-
ever, the authors also find that the error for the majority of their data is below 1% . 
Similarly, Chow et al. (2018) claim that VIX undervalues volatility when returns are 
expected to be negatively skewed and vice versa. Said authors propose an alterna-
tive method (‘GVIX’) that aims at resolving these shortcomings. However, for the 
purpose of this paper, comparability to existing benchmarks outweighs technical 
improvements.

(3)
�2
�
=

2er�

�

(
n∑

i=1

�Ki

K2
i

P(Ki) +

N∑

i=n+1

�Ki

K2
i

C(Ki)

)
−
1

�

[
F

Kn

− 1

]2

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
ATM adjustment

,

𝛥Ki =
Ki+1 − Ki−1

2
, for 1 < i < N.

(4)d(�) =
√
(30∕365 − �)2.

(5)CVX =
√
�2 × 365∕30 × 100.
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3.3 � Model implied volatility (CVX76)

In the simplest of option pricing models, volatility is the only free parameter that is 
not observable on the market. Once market prices for options become available, one 
can use said models to extract implied information by solving for volatility. There 
exists a plethora of more advanced option pricing models, with an interesting exer-
cise in financial engineering research being to ‘horse-race’ models to find the best 
fit for a given underlying. Madan et al. (2019) provide such a study for cryptocur-
rency options. For the purpose of a volatility index, however, it is paramount that 
the only information extracted, i.e., the only free parameter in the model, is implied 
volatility. This excludes many advanced option pricing formulae and brings us back 
to plain vanilla Black–Scholes type models. More specifically, this paper uses the 
Black (1976) model to compute the implied volatility from a market of cryptocur-
rency options and futures. This is similar to the implied volatility—sometimes called 
‘Black’ volatility—that is available, e.g., through Bloomberg’s volatility functions.

With forward price of the underlying F, for maturity � , risk-free interest rate14 r, 
strike K, and (implied) volatility � , the price of a European call option is

and for the put option

where

and �(.) is the cumulative normal distribution function.
Extracting implied volatility from a market of option prices is not possible 

in closed form, hence, a Newton–Raphson (NR) algorithm is used for the job.15 
Besides the pricing model in Eqs. (6) and (7), the algorithm requires the first-order 
sensitivity with respect to implied volatility, a quantity that is know to option traders 
as ‘Vega’

(6)C =
[
F�(d+) − K�(d−)

]
e−r� ,

(7)P =
[
K�(−d−) − F�(−d+)

]
e−r� ,

d± =
ln(F∕K) ±

�
�2∕2

�
�

�
√
�

,

15  Using the Brenner and Subrahmanyan (1988) approximation of implied volatility as initial guess for 
the search algorithm

did not provide satisfactory results as the method systematically underestimates implied volatility for our 
cryptocurrency options, and hence, often fails to converge to the target tolerance within the desired num-
ber of iterations. Increasing the initial guess to a constant �0 = 1.5 reduces the number of failed attempts 
to 0.45%.

�0 =
Catm

√
2�

F
√
�

,

14  We assume a 30-day risk-free interest rate of 0.
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The NR algorithm is used to compute the volatility surface for each timestamp in the 
sample. This leaves us, for every point in time t, with a surface of implied volatilities 
�(�,K) that spans over all strikes K and maturities � of the available options.

The index is designed to represent the implied volatility of a 30 days to matu-
rity at-the-money option. The surface is interpolated accordingly by inverse distance 
weighting as introduced in Eq. (1), where the distance to the target option at time t is

The interpolated volatility is the index level at time t

The first and foremost shortcoming of this method is the model itself, which 
requires a number of limiting assumptions. Most importantly, the Black 76 model 
assumes normally distributed log-returns, an assumption that is not warranted for 
financial assets in general and cryptocurrencies in particular. In a normally distrib-
uted world, both CVX and CVX76 should produce very similar results. However, 
it is well established that (cryptocurrency) returns are heteroskedastic and heavy-
tailed (Osterrieder & Lorenz, 2017), and thus, experience returns that are larger and 
in higher frequency than expected under a normal distribution. We will revisit the 
differences between CVX and CVX76 when analyzing the empirical data in the fol-
lowing section.

4 � The cryptocurrency volatility index (CVX)

Data are available and kept up-to-date at www.​thecvx.​com.

4.1 � Data

We collect data snapshots in 5 min intervals for all option and future contracts that 
are traded on Deribit. The data are available from February 6, 2020 until July 6, 
2021. In addition, we collect intra-day data for CBOE’s volatility indices16 from 
Reuters Eikon, namely:

–	 VIX: is designed to measure 30-day expected equity volatility. The index is 
derived from mid-quote prices of S&P 500 index options, as such it is closely 
related to the CVX that was introduced in Sect. 3.2.

–	 RVX: is a measure of 30-day expected equity volatility similar to VIX, however, 
with Russell 2000 index options as underlying.

Vega =
�c

��
= F

√
T�(d+)e

−r� .

d(�,K) =
√
(30∕365 − �)2 + (F − K)2.

(8)CVX76 =
√
�2 × 100.

16  An overview of all CBOE volatility indices is available at www.​cboe.​com/​produ​cts/​vix-​index-​volat​
ility/​volat​ility-​index​es.

https://thecvx.com/
http://www.cboe.com/products/vix-index-volatility/volatility-indexes
http://www.cboe.com/products/vix-index-volatility/volatility-indexes
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–	 VVIX: measures expected volatility of the 30-day forward price of the VIX, and 
hence, the index represents the volatility of volatility. VVIX is calculated from 
mid-quote prices of VIX index options using the same method used to calculate 
the VIX index itself.

–	 GVX: is designed to measure 30-day expected volatility of gold prices. The 
index is calculated by applying the VIX methodology to options on SPDR Gold 
Shares, an ETF representing gold bullion held by the SPDR Gold Trust.

–	 EUVIX: 30-day expected EUR/USD exchange rate volatility from FX options.
–	 TYVIX: 30-day expected volatility of U.S. Treasuries. The index is calculated 

from futures options on 10-year Treasury Notes (ticker TY), with a methodology 
similar to VIX.

–	 SRVIX: 1-year implied volatility of the 10-year swap rate. The index is calcu-
lated from 1-year swaptions on 10-year USD interest rate swaps.

A concise overview is provided in Table 2.

4.2 � Results

Figure  3 shows the expected Bitcoin volatility in hourly frequency as captured 
by CVX and CVX76. CVX is the model-free annualized expected volatility over 
the next 30 days, which is based on mid-prices for Bitcoin options (see Sect. 3.2). 
CVX76 is based on the Black 76 model implied volatility and interpolated from a 
volatility surface for each timestamp in the data (see Sect.  3.3). Both indices are 
based on the same option data.

The volatility indices CVX and CVX76 often appear inversely related to their 
underlying. This is a typical observation for volatility indices. On one hand, market 

Table 2   Volatility indices used in this paper

VCRIX is calculated from return data, whereas all other indices are based on option price data
Siriopoulos and Fassas (2019) provide a more complete overview of volatility indices for traditional 
financial assets

Symbol Underlying Time-range Methodology Data since

CVX Bitcoin 30-day Model-free 2020
CVX76 Bitcoin 30-day Black 76 2020
VCRIX CRIX 30-day HAR model 2014
VIX S&P 500 30-day Model-free 1990
RVX Russell 2000 30-day Model-free 2004
VVIX VIX 30-day Model-free 2006
GVX COMEX Gold futures 30-day Model-free 2011
EUVIX EUR/USD FX 30-day Model-free 2007
TYVIX 10-year Treasury Notes futures 30-day Model-free 2007
SRVIX 10-year swap rate 1-year Model-free 2012
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corrections are typically more rapid than upward moves and cause spikes in volatil-
ity. On the other hand, with a net long position over all investors in the underlying, 
the demand for downside protection drives volatility prices especially when markets 
are falling.

Figure  4 shows the Gaussian kernel density estimate for CVX and CVX log-
differences as a blue line. The black line indicates a log-normal (left) and normal 
(right) distribution fit. A rug plot just above the x-axis indicates the frequency and 
clustering of observations. One can clearly see the two main clusters of observa-
tions for CVX, i.e., a pre-COVID-19 regime around 50–60 and post-regime around 
75–85.

It is well established that asset returns, especially crypto-assets (Osterrieder & 
Lorenz, 2017), are heteroskedastic, heavy-tailed, and susceptible to jumps. Similar 
dynamics can be observed for our cryptocurrency volatility indices. This has inter-
esting implications, especially for the CVX76, as the index methodology relies on 
the assumption of normally distributed log-returns in the underlying, which is fre-
quently challenged by strong market movements. More specifically, when compar-
ing the index data of CVX and CVX76, one can see that the indices are more similar 
during less volatile times and vice versa. We want to further investigate these joint 
dynamics before returning to the analysis of cryptocurrency volatility.

Differences between CVX and CVX76 are obviously owed to the fundamentally 
different calculation methods; however, both methods are in principle designed to 
quantify the same information, i.e., 30-day market implied volatility. It appears that 
CVX76 is similar to CVX in ‘normal’ markets, but produces much more extreme 
results during times of strong market movements. We present evidence that both 
indices are cointegrated and that CVX76 tends to return to the level of CVX—not 
vice versa—which supports the argument that 

(1)	 CVX is a more accurate representation of market expected volatility,
(2)	 the deviation of the indices is caused by the CVX76 normality assumption, and
(3)	 the (CVX − CVX76) holds information on market implied tail-risk.

In a nutshell, out-of-the-money option prices, especially during strong market 
moves, are higher than suggested by a light-tailed normal distribution. This effect 
is compensated by a particularly high Black-76 implied volatility. Recall that the 
CVX76 is constructed as a measure for at-the-money volatility, by interpolation over 
a range of strikes, including out-of-the-money options. We postulate that both indi-
ces share a strong relationship that is sometimes distorted, especially during large 
movements in the underlying, but subsequently corrected. This claim is corrobo-
rated by the following cointegration analysis.

We follow the Engle and Granger (1987) two-step method to analyze the joint 
behaviour of CVX and CVX76. First, we use the Augmented Dickey–Fuller (ADF) 
test17 to confirm that the differences as well as the log-differences of CVX and 

17  We always run the ADF test in 3 settings: with constant, without constant and with trend. Only the 
least significant test statistic out of all settings is reported in the paper.
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CVX76 are stationary, and hence, the two time-series are integrated of order 1, in 
the sense of cointegration. Second, we estimate the cointegrating regression

and test �t for stationarity using the ADF test. A t-statistic of 5.856 confirms that 
CVX and CVX76 are indeed cointegrated. The strong relationship implies that dis-
tortions to the long-term equilibrium of both indices are temporary and correcting 
over time.

The adjustment behaviour can be analyzed by estimating the underlying error 
correction model. This is, given a distortion of the equilibrium level, a change in the 
index �CVX76t should include an adjustment component towards the equilibrium 
level. The error correction model is specified as

where � is the first difference operator, ut is i.i.d., and �t−1 can be interpreted as the 
equilibrium error in the previous period. If the error is 0, the model is in equilibrium 
and vice versa. Both � and � capture short-term dynamics; however, the actual equi-
librium error adjustment is captured by parameter � . In this model specification, a 
negative � implies that the CVX76 moves back towards CVX , until the equilibrium 
relationship is re-established.

We find the adjustment parameter (t-statistic) to be statistically significant at 
− 0.0475 (− 5.285). Finally, we want to estimate how long it takes for an existing 
error to be reduced by half, i.e., the half-life of the disequilibrium. Solving for the 
number of periods n in (1 + �)n = 50% yields a half-life of n = 14.25 . Recalling that 
the indices are calculated in hourly frequency leaves us with a half-life of roughly 14 
h. Swapping the indices in Eq. (9) does not yield a negative adjustment coefficient, 
and hence, CVX76 adjusts towards CVX but not vice versa.

Changes in the spread between both indices, i.e., deviations from the equilibrium, 
provide information as an indicator of market implied tail-risk. That is, the indi-
ces diverge in markets where a normal distribution is not able to reflect the actual 
price movements, i.e., a heavy-tailed market environment. A similar tail-risk metric, 
which is based on GARCH models with normal and heavy-tailed innovations, has 
previously been applied to construct tail-risk protection strategies (Packham et al., 
2017).

We make the following observations with respect to the spread between both 
indices that we define as 76spreadt = (CVX76t − CVXt)∕CVXt . First, there exists a 
strong correlation between the 76spread and negative tail returns18 (see Fig. 5), with 
a correlation coefficient of − 0.68. In comparison, the correlation with all returns 
is merely − 0.05. Second, there exists a positive correlation, yet less strong (0.14), 
between 76spread and changes in the Value at Risk (VaR)19, which also persists 

CVX76t = � CVXt + �t,

(9)�CVX76t = � �t−1 + � �CVXt + ut,

18  We account for heteroscedasticity and define negative (positive) tail-events as returns where the stand-
ardized residual of a GARCH(1,1) process is below (above) the 1% (99%) quantile.
19  We compute the Value at Risk as a quantile of the BTC return distribution. Figure 5 shows a historical 
simulation (HVaR) and delta-normal (VaR); both methods are standard in the literature and we refer to 
Jorion (2009) for technical details.
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when lagging the 76spread . These correlations could hint at the premium that inves-
tors are willing to pay for future tail-risk, an argument that has already been made 
for Equity markets (Bollerslev & Todorov, 2011). However, additional tests would 
be necessary to further substantiate this claim in the context of Cryptocurrencies.

Compared to classical asset volatilities, cryptocurrency volatility dynamics are 
often disconnected, yet, share common shocks. Figure  6 shows that Bitcoin was 
slow to react to the overall market distress that was caused by the COVID-19 cri-
sis, which transmitted to cryptocurrencies roughly 30 days after traditional assets 
already experienced a sharp increase in expected volatility. This supports the results 
in Alexander and Imeraj (2020), who examine the co-movement of Bitcoin variance 
and its risk premium with traditional assets, thereby showing that, after the outbreak, 
“Bitcoin itself and also its variance has been behaving very similarly to traditional 
assets”. The results are also similar to the paper on realized volatility from Conrad 
et  al. (2018), where the authors find that equity volatility has a delayed spill-over 
effect on cryptocurrency volatility.

The VCRIX in Fig.  6 is an econometric cryptocurrency volatility benchmark, 
proposed by Trimborn and Härdle (2018). It is based on price data and constructed 
using a heterogeneous autoregressive (HAR) model. As such, the index methodol-
ogy is fundamentally different from our implied volatility indices, which are based 
on option prices. The VCRIX is a true index in the sense that it is indexed to a value 
of 1, 000 as of its introduction on 2014-11-28. In contrast, all other implied volatil-
ity indices considered in this paper are not indexed but rather provide an ad-hoc 
value for implied volatility. The indices in Fig. 6 have been re-index to a basis of 100 
as of 2020-02-10, to make them comparable.

The heat-map in Fig.  7 shows Pearson correlations between log-differences of 
major volatility indices. The correlation between Bitcoin and other volatility ranges 
roughly between 0.1 and 0.3, whereas classical assets show higher correlations. The 
disconnection from the dynamics of traditional markets supports claims on the poten-
tial for portfolio diversification made by, e.g., Baur et al. (2015), Bouri et al. (2017a, 
2017b) and Dyhrberg (2016). Both CVX and VCRIX measure cryptocurrency volatil-
ity, but use fundamentally different index methodologies, hence, the low correlations.

It is well established that asset return correlations are not constant over time 
and may be strongly affected by specific events, hence, present an important risk 
factor.20 Engle and Figlewski (2015) provide similar evidence on the dependence 
among implied volatilities. This has important implications for hedging. In a nut-
shell, the prices for hedging increase when protection is needed most. This makes 
the somewhat disconnected dynamics of cryptocurrencies particularly interesting.

The current research that attributes great diversification potential to crypto-
assets is based on the presumption that these assets remain an exotic asset class with 
dynamics that are separated from traditional markets. While this claim is currently 
supported by the data, increasing acceptance of this market might drive overall 
market integration in the future and in turn bring crypto market dynamics closer 

20  See Longin and Solnik (2001), Packham and Woebbeking (2019), Pu and Zhao (2012) and Wied et al. 
(2012).
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to traditional assets. The COVID-19 crisis already showed that cryptocurrencies, 
despite their delayed response, are subject to systemic volatility shocks.

Box-plots in Fig.  8 show that—unsurprisingly—expected volatility is usually 
higher for cryptocurrencies than traditional assets. The two exceptions are volatility 
of volatility (VVIX) and crude oil volatility (OVX, not-shown). The first is natu-
rally an extremely volatile asset class. The latter recently saw its highest levels since 
inception in 2008, which was primarily driven by the 2020 oil price war between 
Russia and Saudia Arabia and is therefore of no further interest to this study.

5 � Conclusion

Since the invention of Bitcoin, cryptocurrencies have evolved into a new class of 
financial assets. Naturally, as cryptocurrency spot markets evolve, markets for deriv-
atives thereon follow. Of those, option markets offer the unique potential to extract 
volatility information that would otherwise be unobservable. We extract said infor-
mation through a cryptocurrency volatility index (CVX) that captures the market’s 
expectation of future volatility.

Volatility is an important metric and the most common risk measure in finance. 
Accessing stable and reliable volatility information is of fundamental interest to 
investors and risk managers alike. However, implied volatility must be based on 
a broad spectrum of liquid and reliable option prices, and hence, requires a much 
larger data foundation than realized volatility. Our method addresses liquidity con-
cerns for this young asset class by broadening the base of relevant options, when 
compared to volatility benchmarks for traditional assets (e.g., VIX). Given this 
method, we find that the liquidity on cryptocurrency option exchanges is sufficiently 
developed to produce stable results. This also means that, despite being calculated 
24/7 and only with the information and liquidity available at any given point in time, 
the CVX appears smooth and reflective of the underlying.

Comparing the volatility dynamics captured by CVX to traditional volatility 
benchmarks, we observe that cryptocurrencies live a somewhat secluded life and 
therefore bear diversification potential, a finding that is in line with the literature. 
However, despite a lag, the COVID-19 crisis is a good example for a global shock 
that affects cryptocurrencies and traditional assets alike. This is additional evidence 
on the limits of diversification during times where it is needed most.

The model-free CVX index should yield a better estimate for markets’ expected vol-
atility than the CVX76. However, due to the assumption of normally distributed log-
returns in the Black-76 method, the (CVX − CVX76) spread is an interesting indicator 
of market implied tail-risk. More specifically, the two indices share the strong statistical 
bound of cointegration, which is temporarily distorted during heavy-tailed markets. An 
error correction model shows that said distortions have an average half-life of roughly 
17 h. This gives an indication of the time it takes for this market to ‘normalize’.

Cryptocurrency option liquidity is centred on Bitcoin, which is currently a limit 
to the accessibility of cryptocurrency volatility. Until liquidity spreads out to other 
assets, Bitcoin has to be used as a surrogate for the entire asset class. Preferably, 
a liquid option market on an index such as the CRIX could be used in future to 
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significantly improve the scope of the CVX, without the risk of fragmented liquidity 
in the underlyings. This would ultimately provide two very interesting perspectives 
on volatility, namely, the econometric VCRIX and the market implied CVX.
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