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pions, kaons, and protons in Pb-Pb collisions at

√
sNN = 2.76 TeV

ALICE Collaboration∗

Abstract

Transverse momentum (pT) spectra of pions, kaons, and protons up to pT = 20 GeV/c have been
measured in Pb–Pb collisions at

√
sNN = 2.76 TeV using the ALICE detector for six different cen-

trality classes covering 0-80%. The proton-to-pion and the kaon-to-pion ratios both show a distinct
peak at pT ≈ 3 GeV/c in central Pb–Pb collisions that decreases towards more peripheral collisions.
For pT > 10 GeV/c, the nuclear modification factor is found to be the same for all three particle
species in each centrality interval within systematic uncertainties of 10–20%. This suggests there is
no direct interplay between the energy loss in the medium and the particle species composition in the
hard core of the quenched jet. For pT < 10 GeV/c, the data provide important constraints for models
aimed at describing the transition from soft to hard physics.

∗See Appendix A for the list of collaboration members
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1 Introduction

In ultra-relativistic heavy-ion collisions a strongly-interacting deconfined medium of quarks and gluons
is created. Experimental evidence for this state of matter has been found both at the Relativistic Heavy-
Ion Collider (RHIC) [1–4] as well as at the LHC [5–9]. Transverse momentum (pT) spectra probe many
different properties of this medium. At low pT (pT . 2 GeV/c) the spectra provide information on bulk
production, while at high pT (pT & 10 GeV/c) transport properties of the medium can be studied via jet
quenching [10–12]. The microscopic QCD processes are different at low and high pT and it is an open
question if additional physics processes occur in the intermediate pT region (2 . pT . 10 GeV/c). In
this paper the centrality evolution of the transverse momentum spectra of pions, kaons, and protons as
a function of pT for Pb–Pb collisions at

√
sNN = 2.76 TeV is presented. The focus is on intermediate

and high pT, where these measurements allow comparison between baryons and mesons, strange and
non-strange particles, and the search for particle mass-dependent effects.

For inclusive charged particle pT spectra, jet quenching leads to a suppression of high-pT particle pro-
duction at the RHIC [13–15] and over an extended pT range, up to 100 GeV/c, at the LHC [6, 16–18].
The microscopic mechanism of jet quenching is not completely understood and one of the main goals
of the experimental programs at the RHIC and the LHC is to identify additional signatures associated
with the jet quenching to constrain theoretical modeling. Particle identification (PID) is of fundamental
interest since, due to the color Casimir factor, gluons interact two times stronger with the medium than
quarks [19, 20] and it is known from e+e− studies of 3-jet events that gluons are more likely to fragment
to leading baryons than quarks are [21]. In addition, some models for jet quenching predict large particle
species dependent effects [22–24]. Measurements at the RHIC, in particular for baryons, have so far been
inconclusive due to the limited pT-range and the large systematic and statistical uncertainties [25–27].

In the intermediate transverse momentum regime the baryon-to-meson ratios, e.g. the proton yield di-
vided by the pion yield, measured by experiments at the RHIC revealed a, so far, not well understood
enhancement [28–30]. This so-called “baryon anomaly” could indicate the presence of new hadroniza-
tion mechanisms such as parton recombination [31–33] that could be significantly enhanced and/or ex-
tended out to higher pT at the LHC due to larger mini-jet production [34]. In recombination models the
enhancement at intermediate pT is an effect of the coalescence of lower pT quark-like particles that leads
to a larger production of baryons than mesons. In a model without new intermediate pT physics the rise
of the baryon-to-meson ratio is due to hydrodynamics and the decrease is solely a consequence of the
growing importance of fragmentation.

In a recent letter [35] ALICE reported the charged pions, kaons, and proton pT spectra for pp and the
most central and most peripheral Pb–Pb collisions. The main observation was that, within statistical
and systematic uncertainties, the nuclear modification factor is the same for pT > 10 GeV/c for all three
particle species. This suggests that there are no significant particle-species-dependent effects related to
the energy loss. In this paper the analysis used to obtain the measurements at high pT is presented in full
detail and the results for all centrality classes are included. Recent measurements at low and interme-
diate pT of identified particle production and correlations in p–Pb collisions have revealed phenomena
typically associated with fluid-like behavior in heavy-ion collisions [36–38]. This raises questions if
hydrodynamics and/or recombination can also be applied to describe these small systems [39–41]. The
centrality evolution studies for Pb–Pb collisions can therefore also be seen as a possible experimental
interconnection between the smallest and the largest QCD bulk systems.

The outline of this paper is as follows. In Sec. 2 the data analysis is described. The method using
the energy loss in the TPC for particle identification is laid out first and then the procedure using the
Cherenkov angle measured by the HMPID is presented. In Sec. 3 the final spectra are presented and the
particle ratios and nuclear modification factors are discussed and compared with theoretical calculations
and results from previous experiments at lower center-of-mass energies.

2



Nuclear modification factor of charged pions, kaons, and protons ALICE Collaboration

2 Data analysis

The results reported in this paper have been obtained with the central barrel of the ALICE detector, which
has full azimuthal coverage around midrapidity, |η | < 0.8 [42]. Different Particle IDentification (PID)
devices are used for the identification of π±,K±,and p(p̄) (see Table 4 for exact pT ranges). Ordering
by pT, from lowest to highest, the results are obtained using the specific energy loss, dE/dx, in the
silicon Inner Tracking System (ITS), the dE/dx in the Time Projection Chamber (TPC), the time-of-flight
measured by the Time-Of-Flight (TOF) detector, the Cherenkov angle measured by the High Momentum
Particle Identification Detector (HMPID), and the TPC dE/dx in the relativistic rise region. The general
performance of these devices is reported in [43]. Detailed description of the lower pT analyses and the
resulting π±,K±,and p(p̄) pT spectra in Pb–Pb collisions are already published [44]. In this section the
method used to extract these pT spectra in the HMPID and the TPC dE/dx relativistic rise analysis is
described in detail.

Due to the limited acceptance of the HMPID the analysis has been performed with the larger 2011 dataset
where a centrality trigger was used, restricting the HMPID results to 0-50% central Pb–Pb collisions.

2.1 TPC dE/dx relativistic rise analysis

The relativistic rise of the dE/dx in the TPC, where the average energy loss increases as logβγ (3�
βγ � 1000), allows ALICE to extend the PID of π±,K±,and p(p̄) up to pT = 20 GeV/c. This section
will focus on details of this analysis.

2.1.1 Event and track selection

The event and track selection follows closely that of the inclusive charged particle analysis [16]. The
same spectrum normalization is adopted so that the systematic uncertainties related to event and track
selection are common, allowing a precise comparison between the nuclear modification factors for in-
clusive and identified charged particles. The analysis with PID described here has additional systematic
uncertainties related to the particle identification that we will describe in Sec. 2.1.9.

A total of 11×106 Pb–Pb collision events recorded in 2010 are used in this analysis. The online (offline)
trigger for minimum bias interactions in Pb–Pb collisions requires signals in two (three) out of the three
following detector elements: the Silicon Pixel Detector (SPD) layers of the ITS and the two forward
scintillators (V0) located on opposite sides of the interaction point. The centrality is determined from the
measured amplitude in the V0 detector [45].

Primary tracks are reconstructed in the ALICE TPC [46] from clusters in up to 159 pad rows. The
tracks used in the analysis are restricted to |η | < 0.8 in order to be fully contained in the TPC active
volume. Furthermore, tracks are required to have at least one hit in one of the two innermost SPD layers
of the ITS, and the distance of closest approach to the primary vertex is required to be less than 2 cm
along the beam axis and less than 7 standard deviations in the transverse plane (≈350 µm for tracks
with pT = 2 GeV/c, decreasing slightly with pT). The resulting relative pT resolution for these tracks is
better than 5% at pT = 20 GeV/c [16]. The pT spectra have been corrected for this resolution using an
unfolding procedure for pT > 10 GeV/c [16, 47]. This correction is smaller than 2% at pT = 20 GeV/c.

2.1.2 Particle identification at large transverse momentum

Figure 1 shows the dE/dx as a function of momentum p in 0-5% central Pb–Pb collisions. It is evi-
dent that particle identification in the relativistic rise region requires precise knowledge of the 〈dE/dx〉
response and resolution σ . To quantify this, and to motivate the detailed studies in the following, the
final response functions are used to estimate the separation power, where e.g. the charged pion-to-kaon
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Fig. 1: (Color online) The dE/dx as a function of the momentum p at mid-rapidity η < 0.2 for 0-5% (left panel)
and 60-80% (right panel) Pb–Pb collisions. In each momentum bin the dE/dx spectra have been normalized to
have unit integrals and only bins with more than 0.1% of the counts are shown (making electrons not visible in this
plot except at very low momentum). The curves show the final 〈dE/dx〉 responses for pions, kaons, and protons.
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Fig. 2: Separation in number of standard deviations (Sσ ) as a function of momentum between: pions and protons
(upper panels), pions and kaons (middle panels), and kaons and protons (lower panels). Results are shown for
0-5% (left panels) and 40-60% (middle panels) Pb–Pb; and pp (right panels) collisions. Because the TPC response
is track-length dependent, the separation is better for tracks at forward pseudorapidities (solid lines) than for
those at smaller η (dashed lines). The degradation in separation power in more central collisions is expected
from occupancy effects – in the most peripheral collisions an average of 149 clusters are assigned to tracks with
pT > 2 GeV/c, while in the most central collisions only 127 clusters are assigned.
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separation in number of standard deviations, Sσ , is

Sσ =

〈dE
dx

〉
π++π−

−
〈dE

dx

〉
K++K−

0.5(σπ++π−+σK++K−)
, (1)

i.e., the absolute 〈dE/dx〉 difference normalized to the arithmetic average of the resolutions. Fig. 2 shows
that the separation power between particle species is only a few standard deviations, making PID very
challenging, requiring optimization of the dE/dx signal itself and the use of external PID constraints to
calibrate the response. In the following, these analysis aspects will be covered in detail.

2.1.3 The dE/dx calibration

The dE/dx is obtained as a truncated mean, where the average is performed considering only the 60%
lowest cluster charge values to remove the tail of the Landau like cluster charge distribution. It is custom-
ary to use the notation dE/dx and talk about the Bethe-Bloch curve even if the dE/dx used in the analysis
is only the truncated mean and does not contain energy losses deposited as sub-ionization-threshold ex-
citations or the full ionization from delta-electrons, discussed in detail in [48]. While the Bethe-Bloch
specific energy loss depends only on βγ = p/m, the one obtained from the detected truncated mean also
depends on other parameters such as the actual cluster sample length, i.e., the pad length and/or track
inclination over the pad. In the following, we shall refer to the relationship between the two types of
specific energy losses as the transfer function and it is this relationship that is optimized in the dE/dx
calibration, and used also as input for the analysis strategy discussed later.

Each of the up to 159 clusters used to reconstruct a track contains information on the ionization energy
loss in the TPC. To equalize the gain, each individual readout channel has been calibrated using ionization
clusters produced by the decay of radioactive krypton, 86

36Kr, released into the TPC gas [46].

In pp collisions the cluster integrated charge is used for calculating the dE/dx. The integrated charge is
corrected for the tails of the charge distribution that are below the readout threshold. Due to the large
probability for overlapping clusters in Pb–Pb collisions, the maximum charge in the cluster1 is used to
calculate the dE/dx in this case. The maximum charge has to be corrected for the drift-length dependent
reduction due to diffusion and the dependence on the relative pad position of the induced signal2.

The performance and stability of the dE/dx transfer function, with respect to gain variations, is improved
in the following two ways. Reconstructed space points where the charge is deposited on a single pad,
that are not used for track fitting, are included in the dE/dx calculation. An attempt is done to identify
clusters below the readout threshold. If a row has no cluster assigned to the track but clusters were
assigned in both neighboring rows it is assumed that the cluster charge was below the readout threshold
and a virtual cluster is assigned with charge corresponding to the lowest reconstructed charge cluster on
the track. This virtual cluster is then included in the calculation of the truncated mean3.

The η dependence of the dE/dx is sensitive to corrections for the track-length and the diffusion4. At
η = 0 the ionization electrons drift the full 250 cm to the readout chambers and, as a result, the signal
is spread out, due to diffusion, making threshold effects more prominent than for tracks with η = 0.8.
At the same time the sampled track length is longer for track with η = 0.8 than with η = 0. The dE/dx
calibration is validated using pions in the Minimum Ionizing Particle (MIP) regime and electrons in the
Fermi Plateau region. A clean sample of MIP pions is selected via tracks with momenta 0.4 < p <
0.6 GeV/c and energy loss 0.8 < (dE/dx)/〈dE/dx〉MIP < 1.2. A clean electron sample is obtained in

1A cluster consists of a group of cells covering a few neighboring pads and time bins. The maximum charge is the largest
charge in a cell.

2The measured maximum charge is largest if the cluster center is also the pad center, and smallest if it is between two pads.
3This is similar to the strategy adopted by ALEPH, but without changing the truncation range [49].
4There is also a small correction for the direct drift-length dependent signal attenuation, due to absorption, of ionization

electrons by Oxygen [46].
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Fig. 3: The dE/dx as a function of η for electrons on the Fermi Plateau (upper panel) and MIP pions (middle
panel); the selection criteria are described in the text. The solid round markers indicate the average, 〈dE/dx〉, and
the height of the boxes is given by the standard deviation, σ . The lower panel shows the ratio of between the
Plateau and MIP 〈dE/dx〉. The statistical uncertainty is smaller than the marker sizes. These results were obtained
for pp collisions at

√
s =2.76 TeV.

the same momentum range via centrality dependent dE/dx cuts (as Sσ depends on centrality) and by
rejecting kaons using Time-Of-Flight (TOF) information: 0.9 < βTOF < 1.1. For both samples it is found
that the η-dependence of the 〈dE/dx〉 is negligible. We note that one expects these two classes of tracks
to have different sensitivity to threshold corrections. The result of the validation test for pp collisions is
shown in Fig. 3, which displays the 〈dE/dx〉 response as a function of η for electrons (upper panel) and
pions (middle panel).

2.1.4 Division into homogenous samples

From studies of the transfer function one expects a significant track-length dependence. For the “stiff”
high-pT tracks used in this analysis, the track-length in the transverse bending plane is rather similar,
but there is a significant η dependence and the effect of this on the dE/dx resolution is visible in Fig. 3
for the pion MIPs. This motivates performing the analysis in |η | intervals: |η | < 0.2, 0.2 ≤ |η | < 0.4,
0.4≤ |η |< 0.6 and 0.6≤ |η |< 0.8 and then combining the results.

Furthermore, tracks close to and/or crossing the TPC sector boundaries have significantly fewer clusters
assigned. Because the analyzed tracks are “stiff” those tracks close to the sector boundaries can be easily
rejected using a geometric cut in the azimuthal track angle ϕ , which excludes approximately 10% of the
tracks for pT > 6 GeV/c. Figure 4 shows the effect of the geometric cut on the distribution of the number
of clusters per track. The cases before and after the ϕ cut are shown for pp (upper panel) and central
Pb–Pb (lower panel) collisions. The large difference between the distributions for pp and central Pb–
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Pb is an occupancy effect and essentially independent of pT. The cut significantly improves the dE/dx
performance by rejecting tracks with less information (fewer clusters) in regions where the calibration
is more sensitive to complex edge behaviors that can have larger effects on “stiff” tracks. This also
simplifies the analysis because in each |η | interval, a single resolution parameter is sufficient to describe
individual particles species (e.g., all pions) in a given momentum bin.

2.1.5 Obtaining the high-pT yields

Since, as already mentioned, the event and track selection is identical to the one used for the inclusive
charged particle spectra [16], and each charged track has an associated TPC dE/dx measurement, the
charged pion, kaon, and (anti)proton yields measured in this analysis are normalized to the inclusive
charged particle spectra. This highlights the unique direct correspondence between the two analyses and
guarantees that the results are fully consistent even at the level of statistical uncertainties. The analysis
of the dE/dx spectra is therefore aimed at extracting the relative yields of π±,K±,and p(p̄), referred to
as the particle fractions in the following.

In a narrow momentum and |η | interval, the dE/dx distribution can be described by a sum of four
Gaussians (π , K, p, and e), see e.g. Fig. 5, and the requirements for the analysis to be able to extract
the yields with high precision is that the means and widths of the Gaussians are constrained. Additional
external track samples such as protons from Λ decays are used to obtain the constraints. The method
presented in the following has been benchmarked using Monte Carlo (MC) simulations and the closure
tests, comparing reconstructed output with generated input, for all yields show less than 2% systematic
deviations. From studies comparing test beam data results with the ALICE specific MC implementation
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Fig. 5: (Color online) Four-Gaussian fits (line) to the dE/dx spectra (markers) for tracks having momentum in
the range 3.4–3.6 GeV/c (upper figure) and 8.0–9.0 GeV/c (lower figure) with |η |< 0.2. In each panel the signals
of pions (rightmost Gaussian), kaons, and protons (leftmost Gaussian) are shown as red, green, and blue dashed
areas, respectively. The contribution of electrons is small (< 1%) and therefore not visible in the figure. Results for
all six Pb–Pb centrality classes are presented. The dE/dx spectra have all been normalized to have unit integrals.
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of the energy-loss in the TPC, the MC is known to be precise and to take into account all important
detector effects [50], with the limit that the test beam data was recorded under controlled conditions
(fixed track topology and large gas gain) and that ion tail effects are not included in the MC simulations.

2.1.6 Measurement of the TPC response: parameterization of the Bethe-Bloch and resolution curves

The first step of the analysis is to extract the response parameterizations used to constrain the fits. The
Bethe-Bloch curve is parameterized as follows:〈

dE
dx

〉
= a

[
1+(βγ)2

(βγ)2

]e

+
b
c

log
[

(1+βγ)c

1+d′(1+βγ)c

]
, (2)

where a,b,c,d, and e are free parameters (the variable d′ is used to simplify the expression and is defined
as d′ = exp[c(a−d)/b] where d is the 〈dE/dx〉 in the Fermi Plateau regime, βγ & 1000).

For d′ � 1, as is the case here, the parameterization has a simple behavior in different regions of βγ .
For small βγ , βγ � 3–4,

〈dE
dx

〉
≈ a

(βγ)2e , while on the logarithmic rise:
〈dE

dx

〉
≈ a+b log(1+βγ). The

parameterization has been motivated by demanding this behavior in the discussed βγ limits, while at the
same time requiring that each parameter has a clear meaning. It uses 1+βγ to ensure that the logarithmic
term is always positive.

The relative resolution, σ/〈dE/dx〉, as a function of 〈dE/dx〉 is parameterized with a second-degree
polynomial, which was found to describe the data well:

σ/〈dE/dx〉= a0 +a1〈dE/dx〉+a2〈dE/dx〉2. (3)

The TPC response (Bethe-Bloch and resolution curves) is determined for each η region. Due to the
deterioration of the TPC dE/dx performance with increasing multiplicity the curves differ significantly
and have to be extracted separately for pp and each Pb–Pb centrality class.

The parameters a,b,d, and e are well determined using external PID information. Secondary pion (pro-
ton) tracks identified via the reconstruction of the weak decay topology of K0

S (Λ) and data samples with
TOF enhanced (βTOF > 1) primary pions are used. The V 0 selection used in this analysis is similar to the
one used in the dedicated analysis [51], but with 10 MeV/c2 wide invariant mass cuts around the peaks
to select signal and reject background. Using this information the Bethe-Bloch function is constrained
in the βγ interval of 3–60. Figure 6 shows examples of the TPC dE/dx spectra for these samples in
the momentum (η) range: 5–7 GeV/c (0.6 ≤ |η |< 0.8) for the most central and most peripheral Pb–Pb
collisions analyzed. Note that the pions (protons) from K0

S (Λ) contains in general also protons (pions)
from the background under the invariant mass peak (but no kaons). The Fermi Plateau is fixed using
electron-positron pairs from photon conversions (a photon conversion is reconstructed similar to a V0

decay and identified from the low invariant mass). The same information is used to measure the dE/dx
resolution as a function of 〈dE/dx〉. The relative resolution around the MIP5 is ≈5.5–7.5% and im-
proves with increasing 〈dE/dx〉 (primary ionization) in the relativistic rise region to ≈4.5–5.5%. These
data samples are henceforth referred to as the external PID data.

In the relativistic rise region the analysis is very stable because in this region 〈dE/dx〉 ≈ a+ b logβγ ,
so the dE/dx separation between particle species, e.g., protons and pions, is constant: 〈dE/dx〉p −
〈dE/dx〉π ≈ a+ b log(p/mp)− (a+ b log(p/mπ)) ≈ b log(mπ/mp). So as long as all particle species
are in this βγ regime a simple extrapolation can be applied. For βγ & 100 the pions (p & 14 GeV/c)
start to approach the Fermi Plateau region and the 〈dE/dx〉 dependence on βγ is more complex. To
address this a two dimensional fit to the dE/dx vs p distribution is performed. All the parameters of the
resolution function and the parameters a,b,d, and e of Eq. 2 are fixed. The parameter c and the yields

5The resolution depends on centrality and track length and is worse in central events and for smaller |η |.
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Fig. 6: (Color online) dE/dx spectra for secondary pions (open triangles) and protons (full circles) identified via
the reconstruction of the weak decay topology of K0

S and Λ, respectively. The spectra have been normalized to
have the same integrals. The spectrum for primary pions (full triangles) is obtained by requiring βTOF > 1. Results
for peripheral (upper panel) and central (lower panel) Pb–Pb collisions are shown. The tracks were chosen in the
momentum (pseudorapidity) interval 5 < p < 7 GeV/c (0.6 ≤ |η | < 0.8). Note that most spectra also contain a
small well-understood background.

of π++π−, K++K− and p+ p̄ in different momentum intervals are free parameters. This fit method
works fine if the corrections to the logarithmic rise, due to the transition to the Plateau, are small, which
restricts the current analysis to pT < 20 GeV/c. With higher statistics and the use of cosmic muons as
additional constraints we expect to be able to extend the method up to 50 GeV/c.

There is a final subtle point that should be mentioned here. The systematic uncertainty on the yields from
the dE/dx method alone is rather large close to the MIP, but additional information from other analyses
can be used to constrain the results. One would like to avoid using the actual lower pT π±,K±,and p(p̄)
measurements as this will introduce a direct bias in the final combined spectra (Sec. 3). Instead, the
neutral kaon yields are used to constrain the charged kaons in Pb–Pb collisions6. The two dimensional
fit is applied again but the parameter e, which mainly affects the proton 〈dE/dx〉, is now allowed to vary
while the other parameters, a–d, are constrained and the charged kaon yield in the fit is also restricted to
be consistent with the neutral kaon yield (the pion and proton yields are free). The effect of this refit is
largest in central collisions at low pT (< 4 GeV/c) and decreases with centrality; at 3 GeV/c the effect on

6The assumption is that the invariant pT spectra are the same. The charged kaon fraction ( fK++K− ) is obtained working
backwards through Eq. 5 and Eq.4.
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the extracted kaon yield is 10% (< 1%) for 0-5% (60-80%) collision centrality.
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Fig. 7: (Color online) Final Bethe-Bloch (upper figure) and resolution (lower figure) curves obtained as described
in the text. Results are shown for pp (left panels) and 0-5% Pb–Pb (right panels) collisions. The Bethe-Bloch curve
is shown in the region relevant for pions, kaons, and protons in this analysis. The external PID data samples of
pions, protons and electrons are used to obtain the parameterizations, these data are plotted as markers. The shaded
areas represent the systematic uncertainty of the parameterizations.

Parameter Pb–Pb 0-5% Pb–Pb 60-80% pp
a 33.9–35.4 32.9–33.1 32.5–33.3
b 7.66–7.89 8.58–9.01 8.52–8.77
c 2.18–7.18 1.25–2.38 1.65–43.0
d 78.0–78.5 80.0–80.6 80.6–80.7
e 1.22–1.30 1.37–1.39 1.43–1.55

Table 1: Parameters obtained for the Bethe-Bloch function (Eq. 2) for central and peripheral Pb–Pb collisions
and pp collisions. Results are given as the range found for the four |η | intervals.

Figure 7 shows the final parameterizations of the Bethe-Bloch and resolution curves for pp and the most
central Pb–Pb collisions. The values obtained for the external PID data are also shown. Table 1 shows the
values of the parameters of Eq. 2 for different centrality classes and pp collisions. All parameters except
c are close for the four |η | intervals and similar across systems. As previously mentioned, the parameter
c is related to the transition in the logarithmic rise to the Plateau and the large difference mainly reflects
that the parameter is statistically not well constrained for some of the datasets. For the pp dataset, where
the largest variation is observed, we obtain similar results within statistical uncertainties if c = 2 is used
for all |η |-slices .

The separation power, Sσ , obtained with the final parameterizations for pp, 0-5% Pb–Pb, and 40-60% Pb–
Pb collisions are shown in Fig. 2. As expected, the performance is the best for low multiplicity events and
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decreases as the multiplicity increases and the separation is better for the longest tracks (0.6≤ |η |< 0.8).
For p > 6.0 GeV/c the Sσ separation is nearly constant as expected because of the logarithmic relativistic
rise (as σ ∝ 〈dE/dx〉 a small decrease of the separation is observed). The separation power plays an
important role in the determination of the systematic uncertainties described in Sec. 2.1.9.

2.1.7 Extraction of the particle fractions

We present in the following always the results for the sum of positive and negative pions, kaons, and
protons. Positive and negative yields were found to be comparable at the 5% level or better for all six
centrality classes and pp collisions.

Having determined the Bethe-Bloch and resolution curves as described in the previous section, it is now
straightforward to fit the dE/dx spectra using the sum of four Gaussian distributions for pions, kaons,
protons, and electrons. For each momentum interval the 〈dE/dx〉 position and width of each Gaussian are
fixed. Figure 5 shows examples of these fits for the momentum intervals 3.4–3.6 GeV/c and 8–9 GeV/c.
The electrons are hardly visible in any of the fits as the yield is below 1% of the total. For pT > 10 GeV/c
it is no longer possible to separate electrons from pions and the relative fraction of electrons is assumed
to remain constant above this pT. There is a small contamination of primary muons in the pions due to
the similar mass (and therefor similar 〈dE/dx〉). High-pT muons are predominantly the result of semi-
leptonic decays of hadrons containing heavy quarks and for those decays one expects muon and electron
branching ratios to be similar, so the electron yield (fraction) is subtracted from the pions to correct for
the muon contamination. This correction changes the pion yield by less than 1% in the full pT range
in agreement with MC simulations based on the PYTHIA generator [52]. Since this dE/dx analysis is
not optimized for electrons and the contamination is extrapolated to high pT, half of the correction is
assigned as a systematic uncertainty. The contamination of (anti)deuterons in the (anti)proton sample is
negligible (< 1%).

The particle fractions, i.e., the contribution of charged pions ( f ′
π++π−), kaons ( f ′K++K−), and (anti)protons

( f ′p+p̄) to the yield of inclusive charged particles, obtained as a function of momentum are plotted in Fig. 8
(upper figure) as a function of centrality for the two extreme |η | intervals. One observes a significant η

dependence for p < 10 GeV/c.

The extracted fractions as a function of transverse momentum are obtained bin-by-bin using a weighting
procedure

fid(〈pT〉i) = ∑
j

f ′id(〈p〉 j)R(〈p〉i,〈pT〉 j), (4)

where fid ( f ′id) is given in bins of pT (p) and R is a response matrix reflecting the relation between p
and pT bins. This averaging introduces some smoothing of the fractions as neighboring pT fractions
have contributions from the same p fractions, but the analysis is done in narrow |η | intervals so only
few momentum bins contribute and the fractions depend only weakly on p; therefore, we consider the
systematic effect of this procedure negligible. The fractions fid are shown in the lower panel of Fig. 8.
The transformation has little effect for |η |< 0.2, as expected, but we now observe that for 0.6≤ |η |< 0.8
the results are consistent with particle ratios being constant at midrapidity. We find that all four pseudo-
rapidity intervals are consistent and the final fractions used to obtain the spectra in the next section are
computed as the weighted average of the four pseudorapidity intervals.

2.1.8 Spectra

The invariant yields are obtained from the particle fractions using the relation

d2Nid

dpTdy
= Jid

εch

εid
fid×

d2Nch

dpTdη
. (5)
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Fig. 8: (Color online) Uncorrected particle fractions as a function of momentum (upper figure) and as a function
of pT (lower figure) for |η |< 0.2 (full markers) and 0.6≤ |η |< 0.8 (empty markers). Charged pions, kaons, and
(anti)protons are plotted with circles, squares, and triangles, respectively. The error bars indicate the statistical
uncertainty. Results for six centrality classes are presented.
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The first expression on the right hand side is the input from the PID analysis, where (εis) εch is the effi-
ciency for (inclusive) identified charged particles and Jid is the Jacobian correction (from pseudorapidity
η to rapidity y) and fid is the fractional yield. The second expression is the fully corrected transverse
momentum spectrum of inclusive charged particles that has already been published by ALICE [16].

The relative efficiency correction, εid/εch, was found to be consistent within ±3% for all centrality
classes and pp collisions, and event generators: PYTHIA [52], PHOJET [53], and HIJING [54]. Thus, an
average correction was used and a systematic uncertainty of 3% was assigned. At high pT the correction
is nearly constant and on the order of 0.95. It is below 1 because the inclusive charged particle spectra
contain weakly decaying baryons such as Σ+ that are not reconstructed with the charged particle selection
for primary particles. The proton and pion spectra have been corrected for feed-down from weak decays
using MC simulations for the relative fraction of secondaries scaled to those extracted from Distance-of-
Closest-Approach MC template fits to data [44]. For pT ≈ 2 (3) GeV/c, the correction is approximately
0.3% (4%) for the pion (proton) yield and decreasing with increasing pT. Scaling between data and MC
has a limited precision and could be different at higher pT. To be conservative, half of the correction
is therefore assigned as a systematic uncertainty. This contribution to the systematic uncertainty is still
small, as shown in Table 2.
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Fig. 9: (Color online) Correction factors as a function of pT. These are applied to the fractions of pions (left
panels), kaons (middle panels), and protons (right panels). Results are presented for peripheral (upper figure) and
central (lower figure) Pb–Pb collisions. The correction to the pion fraction due to the muon contamination is not
drawn, but is ≤ 1%. Only pions and protons are corrected for feed-down.

The efficiency and feed-down corrections are plotted in Fig. 9 as a function of pT for central and pe-
ripheral Pb–Pb collisions. The Jacobian correction from η to y, which has to be included for the lower
pT bins, is also shown and the largest effect is observed for protons, as expected. At pT ≈ 3 GeV/c, the
correction is ≈5%, ≈1% and�1% for protons, kaons and pions, respectively.
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2.1.9 Systematic uncertainties

The systematic uncertainty on the invariant yields has three main components: event and track selection,
efficiency correction of the fractions, and the fraction extraction. Contributions from the event and track
selection are taken directly from the inclusive charged particle result [16]. The systematic uncertainties
for the corrections have been covered in the previous sections and are summarized in Table 2.
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Fig. 10: (Color online) Upper figure: Relative variation of the width parameterizations with respect to the measured
values in different dE/dx/〈dE/dxMIP〉 intervals. Lower figure: Relative variation of the Bethe-Bloch 〈dE/dx〉
parameterization with respect to the measured values in different dE/dx/〈dE/dxMIP〉 intervals. The distributions
were constructed using all the available data, six centrality classes and pp collisions with four sub-samples (|η |
intervals) each.

The systematic uncertainty on the fractions is mainly due to the uncertainties in the parameterization of
the Bethe-Bloch and resolution curves used to constrain the fits. This systematic uncertainty can be due
to calibration effects such that, e.g., the 〈dE/dx〉 does not depend on βγ alone, it can be related to the
parameterizations not being able to describe the data properly, or it can be due to the statistical precision
of the external PID data sets. To evaluate the uncertainty due to these effects the deviation of the fitted
curves from the actual measured means and widths of the dE/dx spectra obtained from the analysis of
the external pion, proton and electron samples are used. Figure 10 shows the relative variations; all the
available data were used for constructing the distributions, i.e., each of the six centrality classes and pp
collisions have four sub-samples of tracks at different |η |. It was found that the precision of all these
data sets is similar, so the final variation in systematic uncertainties for the same observable for different
centrality classes and pp collisions is caused by the different separation power shown in Fig. 2. The
results for the width (Fig. 10 upper panel) are shown for p+ p̄, π++π− and e++e− corresponding to the
different samples and covering different 〈dE/dx〉/〈dE/dxMIP〉 ranges. In a given 〈dE/dx〉/〈dE/dxMIP〉
interval, the standard deviation of the distribution was taken as the systematic uncertainty associated with
the extraction of the widths. An analogous analysis was done for the Bethe-Bloch curve, an example of
which is shown in the lower panel of Fig. 10.
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In peripheral collisions an additional contribution originating from the statistical uncertainty in the fits
to the external PID data has to be taken into account for the Bethe-Bloch curve. The total systematic
uncertainty is assigned as the quadratic sum of both contributions and is the band shown around the
parameterizations in Fig. 7.
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Fig. 11: (Color online). An example of the systematic uncertainty estimation in 0-5% Pb–Pb and pp collisions for
3.4 < p ≤ 3.6 GeV/c. Upper figure: From left to right: the variation of extracted fractional yields for pions (left
panel), kaons (middle panel), and protons (right panel) when the fixed values for the 〈dE/dx〉 and the resolution
are randomly varied. Lower figure: the corresponding variation of the particle ratios.

The propagation of the uncertainties to the particle fractions is done by refitting the dE/dx spectra, while
randomly varying the constrained parameters, 〈dE/dx〉 and σ , within the uncertainty for the parameteri-
zations assuming a Gaussian variation centered at the nominal value. For each pT bin all the 〈dE/dx〉 and
σ values are randomly varied and refitted 1000 times resulting in fraction distributions like those shown
in Fig. 11. The systematic uncertainties assigned to the particle fractions are the standard deviation of
the associated distributions. By using the same method for the particle ratios (Fig. 10 lower panel), the
correlation in the fit between the extracted yields for the two different particle species are directly taken
into account. At high pT the variation becomes dominated by statistical fluctuations due to the limited
amount of data. But, as the fractions are nearly constant there (see Fig. 8) and the separation is also
nearly constant (see Fig. 2), a constant absolute systematic uncertainty is assigned for pT > 8 GeV/c.

A summary of the different contributions to the systematic uncertainty is shown in Table 2 for all cen-
trality classes and for two representative pT regions. For pions the dominant contribution comes from
the event and track selection, which amounts to 7–8% over the whole pT range while the PID systematic
uncertainty stays between 1–2%. For kaons and protons the PID systematic uncertainty is the largest.
The systematic uncertainty decreases with increasing separation and is smaller where the fractions are
larger, see Fig. 8. For protons at pT = 3 GeV/c the two effects largely compensate (the fractional yields
increase for more central collisions) to keep the systematic uncertainty nearly constant. For kaons, at the
same pT, there is a strong centrality dependence because the fractional yields also are lower for more
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central collisions. For the lower multiplicity intervals (pp and 60-80% centrality) this trend is broken
because of the significant statistical uncertainty in the parameterized curves.

At high pT (≈10 GeV/c) the PID systematic uncertainty for kaons stays between 7–8% for Pb–Pb col-
lisions and is around 5% for pp collisions. For protons the contribution is 16–20% except for 60-80%
Pb–Pb collisions where it is 29% due to a much larger statistical uncertainty in the fits to the external
PID data.

π++π− K++K− p+ p̄ K/π p/π

pT (GeV/c) 2.0 10 3.0 10 3.0 10 3.0 10 3.0 10

Pb–Pb collisions (0-5%)
(a) 8.4% 8.1% 8.2% 8.1% 8.2% 8.1% -
(b) < 0.1% - 2.1% 1.5% < 0.1% 2.1% 1.5%
(c) 0.1% 1.7% - 0.6% 1.7% 0.6% 1.7%
(d) 1.5% 2.2% 18% 8.4% 9.8% 17% 22% 10% 11% 16%

Pb–Pb collisions (5-10%)
(a) 8.4% 8.2% 8.2% 8.2% 8.2% 8.2% -
(b) < 0.1% - 2.1% 1.5% < 0.1% 2.1% 1.5%
(c) 0.2% 1.5% - 0.6% 1.5% 0.6% 1.5%
(d) 1.4% 2.2% 16% 8.0% 9.5% 16% 18% 10% 9.8% 15%

Pb–Pb collisions (10-20%)
(a) 8.3% 8.1% 8.2% 8.1% 8.2% 8.1% -
(b) < 0.1% - 2.2% 1.8% < 0.1% 2.2% 1.8%
(c) 0.3% 1.3% - 0.6% 1.3% 0.6% 1.3%
(d) 1.5% 2.3% 16% 8.9% 10% 20% 16% 11% 9.2% 18%

Pb–Pb collisions (20-40%)
(a) 8.4% 8.2% 8.2% 8.2% 8.2% 8.2% -
(b) < 0.1% - 2.1% 1.6% < 0.1% 2.1% 1.6%
(c) 0.2% 1.3% - 0.5% 1.3% 0.5% 1.3%
(d) 1.5% 2.2% 15% 8.4% 10% 17% 16% 11% 10% 17%

Pb–Pb collisions (40-60%)
(a) 8.7% 8.5% 8.6% 8.5% 8.6% 8.5% -
(b) < 0.1% - 1.9% 1.6% < 0.1% 1.9% 1.6%
(c) 0.3% 1.1% - 0.5% 1.1% 0.5% 1.1%
(d) 1.4% 2.1% 14% 8.0% 11% 17% 15% 10% 11% 17%

Pb–Pb collisions (60-80%)
(a) 10% 9.7% 9.8% 9.7% 9.8% 9.7% -
(b) ≤ 0.1% - 2.0% 1.8% ≤ 0.1% 2.0% 1.8%
(c) 0.3% 0.8% - 0.4% 0.8% 0.4% 0.8%
(d) 1.4% 2.4% 16% 7.1% 20% 29% 16% 8.9% 18% 22%

pp collisions
(a) 7.4% 7.6% 7.4% 7.6% 7.4% 7.6% -
(b) ≤ 0.1% - 2.0% 1.8% ≤ 0.1% 2.0% 1.8%
(c) 0.4% 0.6% - 0.5% 0.6% 0.5% 0.6%
(d) 1.1% 1.7% 16% 5.7% 24% 17% 16% 6.8% 25% 13%
(e) 3.0% 4.2%

Table 2: Summary of the systematic uncertainties for the charged pion, kaon, and (anti)proton spectra and for the
particle ratios. The different contributions are (a) event and track selection, (b) feed-down correction, (c) correction
for muons, (d) parameterization of Bethe-Bloch and resolution curves, and (e) efficiency correction (same for all
systems). Note that K/π = (K++K−)/(π++π−) and p/π = (p+ p̄)/(π++π−).

2.2 HMPID analysis of Pb-Pb data

The HMPID is used in order to constrain the uncertainty of the charged pion, kaon, and (anti)proton
measurements in the transition region between the TOF and TPC relativistic rise methods (in the region
around pT = 3 GeV/c). Thus, it both improves the precision of the measurement and validates the other
methods in the region where they have the worst PID separation.
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Fig. 12: Cherenkov angle measured in the HMPID as a function of the momentum p in 0-10% central Pb–Pb
collisions. The solid lines represent the theoretical curves for each particle species.

The HMPID [55] detector consists of seven identical proximity focusing RICH (Ring Imaging Cherenkov)
counters. Photon and charged particle detection is provided by a Multi-Wire Proportional Chamber
(MWPC) coupled to a CsI photocathode segmented into pads of size 0.8×0.84 cm2 (the probability to
obtain an amplified signals for an incident photon, the quantum efficiency, is ≈ 25% for λph = 175 nm).
The amplification gas is CH4 at atmospheric pressure with an anode-cathode gap of 2 mm, the opera-
tional voltage is 2050 V corresponding to a gain of≈4·104. It is located at about 5 m from the beam axis,
covering a limited acceptance of |η |< 0.5 and 1.2◦ < ϕ < 58.5◦.

The HMPID analysis uses the 2011 Pb–Pb data with around 7.8× 106 central triggered events (0-10%
centrality) and 5×106 semi-central triggered events (10-50% centrality7). The event and track selection
is similar to the one described in Sec. 2.1.1, but in addition it is required that the tracks are propagated
and matched to the corresponding primary ionization cluster in the Multi-Wire Proportional Chamber
(MWPC) gap of the HMPID detector (denoted matched cluster in the following). The PID in the HMPID
is done by measuring the Cherenkov angle, θCh [55], given by

cosθCh =
1

nβ
⇒ θCh = arccos

(√
p2 +m2

np

)
, (6)

where n is the refractive index of the radiator used (liquid C6F14 with n = 1.29 at temperature T = 20 ◦C
for photons with energy 6.68 eV). Figure 12 shows the Cherenkov angle as a function of the momentum
for central Pb–Pb collisions.

The measurement of the single photon θCh angle in the HMPID requires knowledge of the track impact
position and angle. These are estimated from the track extrapolation from the central tracking devices
up to the radiator volume, where the Cherenkov photons are emitted. Only one matched cluster is
associated to each extrapolated track, selected as the closest cluster to the extrapolated track point on the
cathode plane, with a charge above ≈120 ADC. The cut on the charge excludes clusters from electronic
noise (σpedestal ≈ 1 ADC) and photons. The matching efficiency is defined for tracks extrapolated to the
HMPID acceptance as

εmatch =
N(Extrapolated with matched cluster)

N(Extrapolated)
. (7)

This efficiency is ≈95% and independent of momentum, particle species, and event multiplicity.

In Fig. 13, the residuals distribution between the track extrapolation and the matched cluster position in
local chamber coordinates, X and Y , for tracks with pT > 1.5 GeV/c is shown. The distributions have

7To match centrality classes with the high-pT analysis only spectra for 0-40% will be shown in this paper. Results for
20-30%, 30-40%, and 40-50% are available on HepData.
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(blue) tracks, respectively, in Pb–Pb collisions (0-50% centrality).

a resolution of σres ≈ 2 cm. To reject fake matched cluster associations in the detector, a selection on
the distance computed on the cathode plane between the track extrapolation and the matched cluster
is applied. The distance has to be less than 5 cm, corresponding to 2.5σres. This represents the best
compromise between the loss of statistics and the probability of an incorrect association, where the latter
becomes negligible (<0.1%) even in the most central collisions, as estimated from MC simulations. The
distance cut leads to a correction factor

Cdistance =
N(Extrapolated with matched cluster distance < 5 cm)

N(Extrapolated with matched cluster)
, (8)

for each momentum bin and does not depend on event multiplicity. Fig. 14 shows this correction factor
as a function of pT for positive and negative tracks integrated over the centrality classes (0-50%).

Starting from the photon cluster coordinates on the photocathode, a back-tracking algorithm calculates
the corresponding emission angle. The Cherenkov photons are selected by the Hough Transform Method
(HTM) [56], which for each track transforms the coordinates of photon hits into emission angles. The
angle interval with most hit candidates is selected and θCh is computed as the weighted mean of the single
photon angles. In central Pb–Pb collisions, where the total number of signals in the HMPID chambers is
large, it is possible that the angle is constructed based on hits not corresponding to the Cherenkov photons
associated with the track. This results in a significant reduction of the PID efficiency in the most central

19



Nuclear modification factor of charged pions, kaons, and protons ALICE Collaboration

 (rad)
Ch

θCherenkov angle, 

C
o
u
n
ts

/m
ra

d
 (

a
rb

. 
u
n
it
)

π

Background

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 = 2.76 TeV
NN

sMonte Carlo 05% PbPb 

c < 2.6 GeV/
T

 < pc2.5 GeV/ c < 2.6 GeV/
T

 < pc2.5 GeV/

0

100

200

300

400

500

600

700

800

π

Background

c < 4.0 GeV/
T

 < pc3.8 GeV/

Cherenkov angle (rad)
0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74

p

Background

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 c < 2.6 GeV/
T

 < pc2.5 GeV/

Cherenkov angle (rad)
0.62 0.64 0.66 0.68 0.7 0.72

0

10

20

30

40

50

60

70

80

p

Background

c < 4.0 GeV/
T

 < pc3.8 GeV/

Fig. 15: (Color online) Fit to the θCh-distributions of pions (upper panel) and protons (lower panel) obtained in
MC simulations for two different momentum bins.

collisions. Figure 15 gives an example of the same effect in MC simulations. The response function con-
sists of a Gaussian distribution for correctly assigned rings (signal) plus a distribution strongly increasing
with the Cherenkov angle for incorrectly assigned rings (background). The signals from other tracks and
photons in the same event are uniformly distributed on the chamber plane, and so the background rises
with θCh since the probability of finding background clusters increases. The background contribution
decreases with increasing track momentum because higher momentum tracks give rise to a larger num-
ber of Cherenkov photons and have a smaller inclination angle, producing rings that are more likely to
be fully contained inside the acceptance. As a result of this, the probability of incorrectly associating an
angle computed from background clusters to the track decreases. The shoulder in the distribution starting
at 0.7 rad is a boundary effect due to the finite geometrical acceptance of the chamber.

Figure 16 gives examples of the reconstructed Cherenkov angle distributions in two narrow pT intervals
for different centrality classes; the reconstructed angle distribution is fitted with a sum of three Gaussian
distributions, corresponding to the signals from pions, kaons, and protons, plus a distribution associated
with the misidentified tracks that is modeled with a 6th-degree polynomial function that minimizes the
reduced χ2 of the fit.

The fitting is performed in 2 steps. In the first step the initial parameters are based on the expected
values. For the signal, the means 〈θCh〉i are obtained from Eq. 6, tuning the refractive index to match
the observed Cherenkov angles, and the sigma values σi are taken from the MC distribution in the given
transverse momentum bin. The initial shape of the 6th-degree polynomial background is taken from MC
simulations. Furthermore, the signal parameters are constrained to the ranges: [〈θCh〉i - σi,〈θCh〉i + σi]
for the means, and [σi - 0.1·σi, σi + 0.1·σi] for the widths. After this first step, the pT dependence of
each parameter is fitted with a continuous function. In the second step, the fitting is repeated with only
the yields as free parameters and constraining the mean and sigma values to the continuous functions.
The means and widths constrained in this way are all found to be independent of centrality as shown in
Fig. 17 for 0-5% and 40-50% centrality classes. In Fig. 18, a comparison is shown between the mean
values of the Cherenkov angle obtained from the fitting procedure with those obtained using a clean
sample of protons and pions identified from Λ and K0

S decays.

To correct for the incorrectly assigned Cherenkov rings, a PID efficiency is used. This efficiency has to
be derived from a dataset containing identified particles of a single species, so one can use MC or V 0
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Fig. 16: (Color online) Distributions of the Cherenkov angle measured in the HMPID for positive tracks having pT

in the range 2.6–2.7 GeV/c (upper figure) and in the range 3.8–4.0 GeV/c (lower figure), for six different centrality
classes, 0-5%, 5-10%, 10-20%, 20-30%, 30-40%, and 40-50%. The shoulder in the distributions starting at 0.7 rad
is a boundary effect due to the finite chamber geometrical acceptance.
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Fig. 18: (Color online) Comparison of the mean Cherenkov angle values obtained by the three-Gaussian fitting
procedure and those evaluated from the V0s study for pions (left panel) and protons (right panel) in the most central
Pb–Pb collisions.

daughters. For such a clean set of particles that passes the distance cut, e.g. MC pions as in Fig. 15, the
PID efficiency is

εPID =
N(signal)

N(signal and background)
, (9)

where the signal is the integral of the Gaussian fit function. The PID efficiency has been evaluated from
MC simulations that reproduce the background observed in the data well. A data-driven cross check of
the efficiency has been performed using a clean sample of V 0 daughter tracks. The comparison between
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data and MC is shown in Fig. 19 for 0-5% and 40-50% centrality classes, and shows good agreement.
We also observe that, as expected, the efficiency decreases for more central collisions due to the occu-
pancy effects mentioned above. The maximum value of the PID efficiency is ≈80% at pT ∼ 6 GeV/c
in the 40-50% centrality class. As an additional check of the PID efficiency, the ratio between the raw
yields extracted from the fit (signal) corrected by the PID efficiency and the total entries in the original
histogram (signal and background) has been evaluated for each pT bin for all centralities. The ratio is
consistent with unity within systematic uncertainties (see Table 3).

The systematic uncertainty for the HMPID analysis has contributions from tracking and PID. These
uncertainties have been estimated by changing individually the track selection cuts and the parameters of
the fit function used to extract the raw yields. The means of the Gaussian functions have been changed
by ±σ . Similarly, the widths of the Gaussian functions have been varied by ±10%, accounting for
the maximum expected variation of the resolution as a result of the different running conditions of the
detector during data taking that can have an impact on the performance. When the means are changed,
the widths are fixed to the default value, and vice versa. The parameter variation is done for all three
particles species. In addition, the uncertainty on the association of the track to the matched cluster is
obtained by varying the value of the distance cut required for the match by ±1 cm. These contributions
do not vary with the collision centrality. To estimate the uncertainty due to the incomplete knowledge of
the shape of the background distribution, an alternative background function, depending on tan(θ ) and
derived from geometrical considerations in case of orthogonal tracks [55], has been used:

f (θ) = a+b× tanθ + c× [tanθ(1+ tan2
θ)]d , (10)
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where a,b,c,d are free parameters. The corresponding systematic uncertainty reaches a maximum value
at low momenta for the most central collisions (≈ 15% for pions and ≈ 8% for kaons and protons). The
systematic uncertainty decreases with pT because, as previously explained, the background contribution
decreases with increasing track momentum. A summary of the different contributions to the systematic
uncertainty for the HMPID Pb–Pb analysis is given in Table 3.

Effect π± K± p and p
pT range (GeV/c) 2.5 4 2.5 4 2.5 4
PID 6% 12% 6% 12% 4% 5%
Tracking efficiency 6% 6% 7%
Distance cut correction 6% 2% 6% 2% 4% 2%
Background (Pb-Pb 0-5%) 10% 4% 5% 3% 5% 3%
Background (Pb-Pb 5-10%) 7% 4% 3% 2% 3% 2%
Background (Pb-Pb 10-20%) 6% 4% 3% 2% 3% 2%
Background (Pb-Pb 20-30%) 5% 3% 3% 2% 2% 2%
Background (Pb-Pb 30-40%) 3% 1% 2% 1% 2% 1%
Background (Pb-Pb 40-50%) 2% 1% 2% 1% 2% 1%

Table 3: Main sources of systematic uncertainties for the HMPID Pb–Pb analysis.

3 Results and discussion

The measurement of charged pion, kaon, and (anti)proton transverse momentum spectra has been per-
formed via several independent analyses, each one focusing on a sub-range of the total pT distribution,
using individual detectors and specific techniques to optimize the signal extraction (see Table 4). The re-
sults were combined in the overlapping ranges using a weighted average with the independent systematic
uncertainties as weights (a 3% common systematic uncertainty due to the TPC tracking is added directly
to the combined spectrum). The statistical uncertainties are much smaller and therefore neglected in the
combination weights. For pT > 4 GeV/c only the TPC dE/dx relativistic rise analysis is used for all
species. Figure 20 shows the ratio of individual spectra to the combined spectrum for the 0-5%, 20-40%,
and 60-80% central Pb–Pb data, illustrating the compatibility between the different analyses. In the cen-
trality intervals where the HMPID measurements are available they improve the systematic uncertainty
of the kaon and proton yields by approximately a factor of two in the pT region where it is later observed
that the peaks of the kaon-to-pion and the proton-to-pion ratios are located (see Fig. 24 and Fig. 25). We
note that the final charged pion spectra are consistent with the neutral pion spectra scaled by a factor of
two within statistical and systematic uncertainties [57].

ITS+TPC+TOF HMPID TPC dE/dx rel. rise
π± 0.1 – 3.0 1.5 – 4.0 2.0 – 20.0
K± 0.2 – 3.0 1.5 – 4.0 3.0 – 20.0
p(p̄) 0.3 – 4.6 1.5 – 6.0 3.0 – 20.0
K/π 0.2 – 3.0 1.5 – 4.0 3.0 – 20.0
p/π 0.3 – 3.0 1.5 – 4.0 3.0 – 20.0

Table 4: The pT ranges (GeV/c) used in the combination of the most central results. In pp and peripheral Pb–Pb
collisions the separation power is different and in some cases the pT ranges therefore changes a little.

The final combined transverse momentum distributions for the three particle species are shown in Fig. 21.
For pT < 3 GeV/c a hardening of the spectra is observed going from peripheral to central events. This
effect is mass dependent and is characteristic of hydrodynamic flow as discussed in [44]. For high
pT (> 10 GeV/c) the spectra follow a power law shape as expected from perturbative QCD (pQCD)
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and only include those on the individual spectra.
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calculations. In the following the high-pT results are first discussed before going on to the intermediate
pT region.
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√
sNN = 2.76 TeV. The systematic and statistical

error are plotted as color boxes and vertical error bars (hard to see), respectively. The spectra have been scaled by
the factors listed in the legend for clarity.

3.1 The high-pT results

To study jet quenching at high pT, the nuclear modification factor, RAA, is constructed. The RAA is

RAA =
d2NAA

id /dydpT

〈TAA〉d2σ
pp
id /dydpT

, (11)

where NAA
id and σ

pp
id are the charged particle yield in nucleus-nucleus (A–A) collisions and the cross

section in pp collisions, respectively, and 〈TAA〉 is the nuclear overlap function. The latter is obtained
from a Glauber model [58] and is related to the average number of binary nucleon-nucleon collisions
(Ncoll) and the inelastic nucleon-nucleon cross section as 〈TAA〉= 〈Ncoll〉/σNN

inel .

Figure 22 shows the RAA for all centrality classes. The results show that for all centrality classes any
particle species dependence of the nuclear modification for pT > 10 GeV/c is small, compared with the
large suppression (RAA� 1). This suggests that jet quenching does not produce signatures that affects
the particle species composition for the leading particles. The results presented in the paper are all done
at the particle level while for some models, that motivated these studies, the predictions are done for
jets, e.g. the Sapeta-Wiedemann model [22]. It is not obvious how to compare the results presented here
with such calculations. In the following we therefore discuss how inclusive pT spectra compare with
inclusive jet pT spectra. In particular it is examined if the results are likely to be affected by a quenched
jet fragmentation bias (if quenched jets emit less high-pT particles than unquenched ones) or a surface
bias (if unquenched jets from the surface dominate).
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Fig. 22: (Color online). The nuclear modification factor RAA as a function of pT for different particle species.
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At the LHC, by studying dijets in Pb–Pb collisions and selecting on the dijet asymmetry one can study
samples with large asymmetries where one knows, based on comparisons with pp results, that at least the
subleading jet have suffered a large energy loss [8, 9]. The study of the Fragmentation Functions (FFs)
for these quenched jets have shown that for charged tracks with pT > 4 GeV/c they are similar to the ones
observed in pp collisions for subleading jets with pT,jet > 50 GeV/c [59], in agreement with what one also
finds for inclusive jets [60]. This rules out a large fragmentation bias (for lower jet pT see below) and
suggests that any surface bias is the same as for inclusive jets. To understand the jet pT covered by the
results presented here one can now, thanks to the similarity of the FFs in pp and Pb–Pb collisions, rely
on NLO pQCD calculations for pp collisions. The FFs found to describe the inclusive charged particle
spectra the best [61] are the Kretzer distributions [62]. NLO pQCD calculations using the Kretzer FFs
suggest that more than half of the particles with pT between 10 and 20 GeV/c are from gluon jets and that
the typical jet pT is roughly a factor of 2-3 larger than the hadron pT (〈z〉= pT,hadron/pT,jet ≈ 0.4) [61]8.
The conclusions for jets with pT,jet > 50 GeV/c is therefore expected to be directly applicable also for the
highest-pT particles studied here. ALICE has studied charged jets in Pb–Pb collisions where it was found
that requiring minimum one track with pT > 10 GeV/c in a jet gives the same fragmentation bias of the
jet reconstruction efficiency in Pb–Pb collisions as in PYTHIA for 20 < pT,ch. jet < 110 GeV/c [63], so
there is no evidence even for lower pT jets that there is a different fragmentation bias in Pb–Pb collisions
than in pp collisions. Based on the discussion in this paragraph we conclude that the results for charged
pT spectra presented here is expected to contain the same information about the jet quenching as leading
pT spectra for inclusive jets. The results in Fig. 22 therefore indicate that for jets with final pT of order
25 to 50 GeV/c, jet quenching does not produce large particle species dependent effects in the hard core
of the jet where leading particle production mainly occurs.

8The publication contains only calculations for
√

s = 900 GeV and
√

s = 7 TeV that have been averaged as an approximate
estimate for the energy of

√
s = 2.76 TeV shown here since the energy dependence is not that strong.
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To be able to set stronger constraints one needs theoretical modeling. As the RAA for charged pions,
kaons, and protons reported here for pT > 10 GeV/c are all compatible to the RAA for inclusive charged
particles [16] and neutral pions [57] we refer to these papers for comparisons with models without large
particle specie dependent effects. When compared with models which includes large particle species
dependent effects the results indicate that the jet quenching mechanism does not involve direct exchange
of quantum numbers with the medium and there are also no indications of a modified color structure
of the fragmentation [22] or that the probe is excited to other color states [23]. Models in which the
hadronization of jet fragments occurs in the medium also appear to be ruled out [24]. It seems that the
medium quenches the jet as a whole rather than directly interacting with its fragments. Such a picture
has recently been proposed [64], arguing that the medium typically cannot resolve the structure inside
the hard core of the jet such that all fragments lose energy coherently.
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Fig. 23: (Color online). The nuclear modification factor RAA as a function of pT for charged pions, compared
with PHENIX results for neutral pions [65]. Results for different collision centralities are shown. Statistical and
PID systematic uncertainties are plotted as vertical error bars and boxes around the points, respectively.

In Fig. 23, the RAA for charged pions, the most precise measurement in this work and the one least
sensitive to radial flow, is compared with the RAA for neutral pions measured by PHENIX [65] at the
RHIC9. We note that while the ALICE results are below the PHENIX values, the relative centrality
evolution is very similar at the two center-of-mass energies. In [66], a simple study of the RAA at
pT = 10 GeV/c found that the energyloss is ≈40% larger at the LHC than at the RHIC in all centrality
classes (it scales as

√
dN/dη for a fixed initial geometry).

The proton-to-pion and the kaon-to-pion ratios as a function of pT are shown in Fig. 24 and Fig. 25. The
similarity at high pT for the RAA implies that the particle ratios there are also the same in pp and Pb–Pb
collisions. Since the particle ratios are independent of pT in this region we use the integrated particle
ratios for pT > 10 GeV/c to elucidate the precision with which the suppression of pions, kaons, and pro-
tons is similar, see Fig. 26. The advantage of particle ratios is that the result for heavy-ion collisions can
be shown separately from the pp results. Furthermore, in the ratios the systematic uncertainty associated

9The results have been obtained from the tables at the PHENIX website and the 5-10% data set have been constructed from
the 0-5% and 0-10%.
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around the points, respectively. Note that this kaon-to-pion (proton-to-pion) “high-pT” ratio is ≈4 (≈2) times
larger than the bulk ratio [44].

with the inclusive charged particle pT spectra normalization cancels. All the steps in the high-pT dE/dx
analysis discussed in Sec. 2.1 are done independently for each centrality class (using disjunct datasets)
so one does not expect any direct correlations of the results. We conclude that all kaon-to-pion (proton-
to-pion) ratios as a function of Npart are consistent within the systematic uncertainty of ≈10 % (≈20%).
Measurements with improved precision using Run 2 and Run 3 LHC data could reveal possible subtle
particle species differences.

3.2 The intermediate pT results

In the following the intermediate pT regions in Fig. 24 and Fig. 25, where the proton-to-pion and the
kaon-to-pion ratios are enhanced, are discussed.

The observation of the large proton-to-pion ratio at intermediate pT at the RHIC generated numerous
speculations that the degrees of freedom in the medium are constituent quark-like and that they recom-
bine when hadronizing to give rise to distinct meson and baryon properties. As the φ meson has a similar
mass to a proton, it is crucial in testing these ideas and results indeed seemed to confirm this picture at the
RHIC [67], while at LHC the pictures seems more complicated [68, 69]. Some of the models developed
to describe results at the RHIC have been extended to the LHC energies. One can, in general, sepa-
rate recombination models into two classes. In soft models, recombination only occurs for soft thermal
radially-flowing partons. In [68] ALICE showed calculations for such a model [31] and the prediction
is that at the LHC energies the particle ratios in central collisions are similar to those measured at the
highest RHIC energy. In hard recombination models, jet fragments can recombine with both partons
from the medium and other jets. At LHC energies the mini-jet activity is much larger than at RHIC en-
ergies, which motivated predictions for central collisions of particle ratios an order of magnitude larger
(p/π ∼ 10–20) than the peak values reported here and persisting out to much higher pT [34]. The fail-
ure of hard recombination is in qualitative agreement with the picture where the jet interacts with the
medium as a whole so that the hard fragments of the jet cannot recombine with partons in the medium
or in another jet.

EPOS [70] is a full MC generator which contains both soft and hard physics. It incorporates a hydrody-
namical phase and additional hadronization processes at intermediate pT where the interaction between
bulk matter and quenched jets is considered [71]. This interaction introduces a baryon-meson effect,
where fully quenched jets are allowed to hadronize with flowing medium quarks. When we study the
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full set of ratios at all centralities (Fig. 24 and Fig. 25) EPOS generally reproduces the centrality depen-
dence well, even for very peripheral events, where it is known that pure hydrodynamical calculations
fail to describe the data [44]. However, EPOS overpredicts the magnitude of both the proton-to-pion and
the kaon-to-pion peak; it is therefore critical to understand how important the additional hadronization
processes are, relative to the hydrodynamic flow, when all parameters have been tuned.
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Figure 27 shows a comparison of particle ratios with results from STAR [25] and PHENIX [27] at the
RHIC measured in Au–Au collision at

√
sNN = 200 GeV. In both cases the results have been averaged

for both charge signs for pions and protons. We use the STAR feeddown corrected data for this com-
parison 10. The proton-to-pion peak at the LHC is approximately 25% larger than at the RHIC, which
is consistent with an average larger radial flow velocity. At high pT the systematic uncertainties of
the STAR data are very large and it was noted in a later publication that they might even be underesti-
mated [26]. Interestingly, there is no evidence for a peak in the kaon-to-pion ratio measured by PHENIX,
which is similar to the ALICE data points for pT ≤ 3 GeV/c, but continues to rise in the few data points
above this pT.

Careful modeling of pT spectra and azimuthal flow is needed to answer the question of whether there
are additional hadronization processes such as soft recombination at the LHC11. Since the multiplicity
evolution of particle ratios in p–Pb collisions is similar to what is observed for Pb–Pb collisions [37] it
would be interesting to include those results in the modeling, in particular, since there is no indication of
jet quenching [73] which conceptually simplifies the problem.

4 Conclusion

We have reported the centrality dependent measurement of charged pions, kaons and (anti)protons at
large transverse momenta in Pb–Pb collisions at the LHC. When combined with already published data
at lower pT, the new results provide a comprehensive dataset of pion, kaon, and (anti)proton pT spectra
with unprecedented systematic precision and pT reach. The spectra are sensitive to physics mechanism
that differentiate between baryons and mesons, strange and non-strange, or heavy and light hadrons.

10Values taken from https://drupal.star.bnl.gov/STAR/files/starpublications/65/data.html for protons and a similar feed-down
correction has been assumed for anti-protons.

11We note that in a recent preprint it is shown that soft recombination together with pQCD+quenching can give a good
description of pion, kaon, and (anti)proton spectra in central heavy-ion collisions both at the RHIC and the LHC for 1.5 < pT <
10 GeV/c [72].
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At high pT (pT > 10 GeV/c), particle ratios and nuclear modification factors allow the study of effects
related to jet quenching. The measurements in this pT range do not show any difference in the nuclear
modification factor for pions, kaons, and protons. A comparison of the present results with jet mea-
surements and theoretical calculations establishes that jet quenching does not introduce large species-
dependent modifications for leading particles. Instead at high pT, for all 6 centrality classes and the pp
data analyzed here, the same kaon-to-pion and proton-to-pion ratios are obtained within a systematic
precision of ≈10–20%.

At intermediate pT calculations are needed to determine whether models containing only hydrodynamics
and jet quenching can obtain a good description across many observables of the available experimental
results or if additional processes such as recombination are needed. Since the initial geometry of the
collision directly affects both the flow and the energy loss, the centrality dependence presented in this
paper is important for constraining both the low-pT hydrodynamics and the high-pT jet quenching in the
calculations.

The results in this paper, taken together with the wealth of other high pT and jet results from the LHC,
points toward a need for further development of a microscopic QCD-based picture that explains in detail
the interplay between the jet, the medium, and the energy loss.
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M.G. Tarzila78 , A. Tauro36 , G. Tejeda Muñoz2 , A. Telesca36 , K. Terasaki127 , C. Terrevoli30 ,25 , B. Teyssier130 ,
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133 Vinča Institute of Nuclear Sciences, Belgrade, Serbia
134 Warsaw University of Technology, Warsaw, Poland
135 Wayne State University, Detroit, Michigan, United States
136 Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
137 Yale University, New Haven, Connecticut, United States
138 Yonsei University, Seoul, South Korea
139 Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms,

Germany

44


	1 Introduction
	2  Data analysis
	2.1  TPC dE/dx relativistic rise analysis 
	2.1.1 Event and track selection
	2.1.2 Particle identification at large transverse momentum
	2.1.3 The dE/dx calibration
	2.1.4 Division into homogenous samples
	2.1.5 Obtaining the high-pT yields
	2.1.6 Measurement of the TPC response: parameterization of the Bethe-Bloch and resolution curves
	2.1.7 Extraction of the particle fractions
	2.1.8 Spectra
	2.1.9 Systematic uncertainties

	2.2 HMPID analysis of Pb-Pb data

	3 Results and discussion
	3.1 The high-pT results
	3.2 The intermediate pT results

	4 Conclusion
	A The ALICE Collaboration

