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Measurement of D+s production and nuclear modification factor
in Pb–Pb collisions at

√
sNN = 2.76 TeV
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Abstract

The production of prompt D+s mesons was measured for the first time in collisions of heavy nuclei
with the ALICE detector at the LHC. The analysis was performed on a data sample of Pb–Pb
collisions at a centre-of-mass energy per nucleon pair,

√
sNN, of 2.76 TeV in two different centrality

classes, namely 0–10% and 20–50%. D+
s mesons and their antiparticles were reconstructed at

mid-rapidity from their hadronic decay channel D+
s → φπ+, with φ → K−K+, in the transverse

momentum intervals 4< pT < 12 GeV/c and 6< pT < 12 GeV/c for the 0–10% and 20–50%
centrality classes, respectively. The nuclear modification factorRAA was computed by comparing
the pT-differential production yields in Pb–Pb collisions to those in proton–proton (pp) collisions at
the same energy. This pp reference was obtained using the cross section measured at

√
s = 7 TeV and

scaled to
√

s = 2.76 TeV. TheRAA of D+
s mesons was compared to that of non-strange D mesons

in the 10% most central Pb–Pb collisions. At highpT (8 < pT < 12 GeV/c ) a suppression of the
D+

s -meson yield by a factor of about three, compatible within uncertainties with that of non-strange
D mesons, is observed. At lowerpT (4< pT < 8 GeV/c ) the values of the D+s -mesonRAA are larger
than those of non-strange D mesons, although compatible within uncertainties. The production ratios
D+

s /D0 and D+s /D+ were also measured in Pb–Pb collisions and compared to theirvalues in proton–
proton collisions.
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1 Introduction

Calculations of Quantum Chromodynamics (QCD) on the lattice predict that strongly-interacting matter
at temperatures exceeding the pseudo-critical value of about Tc ≈ 145−165 MeV and vanishing baryon
density behaves as a deconfined Plasma of Quarks and Gluons (QGP) [1,2]. In this state, partons are the
relevant degrees of freedom and chiral symmetry is predicted to be restored. The conditions to create a
QGP are expected to be attained in collisions of heavy nucleiat high energies. This deconfined state of
matter exists for a short time (few fm/c), during which the medium created in the collision expands and
cools down until its temperature drops below the pseudo-critical valueTc and the process of hadronisation
takes place.

Heavy quarks (charm and beauty) are sensitive probes to investigate the properties of the medium formed
in heavy-ion collisions. They are produced in quark-antiquark pairs predominantly at the initial stage
of the collision in hard-scattering processes characterized by timescales shorter than the QGP formation
time [3–5]. The heavy quarks propagate through the expanding hot and dense medium, thus experiencing
the effects of the medium over its entire evolution. While traversing the medium, they interact with its
constituents via both inelastic and elastic QCD processes,exchanging energy and momentum with the
expanding medium [5,6]. For heavy quarks at intermediate and high momentum, these interactions lead
to energy loss due to medium-induced gluon radiation and collisional processes.

Evidence for heavy-quark in-medium energy loss is providedby the observation of a substantial modifi-
cation of the transverse momentum (pT) distributions of heavy-flavour decay leptons [7–10], D mesons
[11,12] and non-prompt J/ψ [13] in Au–Au and Pb–Pb collisions at RHIC and LHC energies ascompared
to proton–proton (pp) collisions. This modification is usually quantified by the nuclear modification fac-
tor RAA , defined as the ratio between the yield measured in nucleus–nucleus collisions and the cross sec-
tion in pp interactions scaled by the average nuclear overlap function. In absence of nuclear effects,RAA

is expected to be unity. Parton in-medium energy loss causesa suppression of hadron yields,RAA < 1,
at intermediate and high transverse momentum (pT > 3 GeV/c). In central nucleus–nucleus collisions
at RHIC and LHC energies,RAA values significantly lower than unity were observed for heavy-flavour
hadrons withpT values larger than 3−4 GeV/c. In this pT range, the D-meson yields measured in p–Pb
collisions at

√
sNN = 5.02 TeV are consistent with binary-scaled pp cross sections [14], providing clear

evidence that the suppression observed in Pb–Pb collisionsis not due to cold nuclear matter effects and
is induced by a strong coupling of the charm quarks with the hot and dense medium.

In case of substantial interactions with the medium, heavy quarks lose a significant amount of energy
while traversing the fireball and may participate in the collective expansion of the system and possibly
reach thermal equilibrium with the medium constituents. Inthis respect, the measurement of a positive
elliptic flow v2 of D mesons at LHC energies [15, 16] and of heavy-flavour decayelectrons at RHIC
energies [8, 9, 17] provides an indication that the interactions with the medium constituents transfer to
charm quarks information on the azimuthal anisotropy of thesystem.

It is also predicted that a significant fraction of low- and intermediate-momentum heavy quarks could
hadronise via recombination with other quarks from the medium [18–20]. An important role of hadro-
nisation via (re)combination, either during the deconfinedphase [21] or at the phase boundary [22], is
indeed supported by the results of J/ψ nuclear modification factor and elliptic flow at lowpT [23–25].
Hadronisation via recombination allows in some models, e.g. [26–28], a better description of heavy-
flavour production measurements at RHIC and LHC energies, inparticular theRAA of D0 mesons at low
pT measured in Au–Au collisions at

√
sNN = 200 GeV [12] and the positive and sizable D-mesonv2 in

Pb–Pb collisions at
√

sNN = 2.76 TeV [15].

The measurement of D+s -meson production in Pb–Pb collisions can provide crucial additional informa-
tion for understanding the interactions of charm quarks with the strongly-interacting medium formed
in heavy-ion collisions at high energies. In particular, the D+

s -meson yield is sensitive to strangeness
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production and to the hadronisation mechanism of charm quarks.

An enhancement of strange particle production in heavy-ioncollisions as compared to pp interactions
was long suggested as a possible signal of QGP formation [29,30]. Strange quarks are expected to be
abundant in a deconfined medium due to the short time needed toreach equilibrium values among the
parton species and to the lower energy threshold forss production. A pattern of strangeness enhancement
increasing with the hadron strangeness content when going from pp (p–A) to heavy-ion collisions
was observed at the SPS [31–34], at RHIC [35] and at the LHC [36]. In the frame of the statistical
hadronisation models, strange particle production in heavy-ion collisions follows the expectation for a
grand-canonical ensemble. In contrast, for pp collisions canonical suppression effects are found to be
important, reducing the phase space available for strange particles [37, 38]. In this context, the increase
in strange particle yields in heavy-ion collisions compared to pp interactions is viewed as due primarily
to the lifting of the canonical suppression.

This strangeness enhancement effect could also affect the production of charmed hadrons if the dominant
mechanism for D-meson formation at low and intermediate momenta is in-medium hadronisation of
charm quarks via recombination with light quarks. Under these conditions, the relative yield of D+s
mesons with respect to non-strange charmed mesons at lowpT is predicted to be enhanced in nucleus–
nucleus collisions as compared to pp interactions [39–41].The comparison of thepT-differential
production yields of non-strange D mesons and of D+

s mesons in Pb–Pb and pp collisions is therefore
sensitive to the role of recombination in charm-quark hadronisation.

A consequence of the possibly enhanced production of D+
s mesons in heavy-ion collisions would be a

slight reduction of the fraction of charm quarks hadronising into non-strange meson species. Therefore,
the measurement of the D+s -meson production is also relevant for the interpretation of the comparison
of the nuclear modification factors of non-strange D mesons and light-flavour hadrons (pions) [11, 42],
which is predicted to be sensitive to the quark-mass and colour-charge dependence of parton in-medium
energy loss [6, 43, 44]. Furthermore, due to this possible modification of the relative abundances of D-
meson species, measuring the D+

s yield at low pT is needed also to determine the total charm production
cross section in Pb–Pb collisions.

The pT-differential inclusive production cross section of prompt1 D+
s mesons (average of particles and

antiparticles) was measured in pp collisions at
√

s = 7 TeV with the ALICE detector and it was found
to be described within uncertainties by perturbative QCD (pQCD) calculations [45]. The D+s nuclear
modification factor was measured in p–Pb collisions at

√
sNN = 5.02 TeV and found to be consistent

with unity [14]. In this paper, we report on the measurement of prompt D+
s -meson production and

nuclear modification factor in Pb–Pb collisions at
√

sNN = 2.76 TeV. D+
s mesons (and their antiparticles)

were reconstructed at mid-rapidity,|y| < 0.5, through their hadronic decay channel D+
s → φπ+ with a

subsequent decayφ → K−K+. The production yield was measured in two classes of collision centrality,
central (0–10%) and semi-central (20–50%), and compared toa binary-scaled pp reference obtained by
scaling the cross section measured at

√
s= 7 TeV to the Pb–Pb centre-of-mass energy via a pQCD-driven

approach. The experimental apparatus and the data sample ofPb–Pb collisions used for this analysis are
briefly presented in Section 2. In Section 3, the D+

s meson reconstruction strategy, the selection criteria
and the raw yield extraction from the KKπ invariant mass distributions are discussed. The corrections
applied to obtain thepT-differential production yields of D+s mesons, including the subtraction of the
non-prompt contribution from beauty-hadron decays, are described in Section 4. The various sources of
systematic uncertainty are discussed in detail in Section 5. The results on the D+s -meson production yield
and nuclear modification factor are presented in Section 6 together with the comparison to non-strange
D-mesonRAA and to model calculations. The D+s /D0 and D+s /D+ yield ratios in threepT intervals for

1In this paper, ’prompt’ indicates D mesons produced at the interaction point, either directly in the hadronisation of the
charm quark or in strong decays of excited charm resonances.The contribution from weak decays of beauty hadrons, which
gives rise to feed-down D mesons displaced from the interaction vertex, was subtracted.
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the 10% most central Pb–Pb collisions are compared to those in pp collisions.

2 Apparatus and data sample

The ALICE detector and its performance are described in detail in Refs. [46] and [47], respectively.
The apparatus consists of a central barrel covering the pseudorapidity region|η |< 0.9, a forward muon
spectrometer (−4.0< η <−2.5) and a set of detectors for triggering and event centralitydetermination.
The detectors of the central barrel are located inside a 0.5 Tmagnetic field parallel to the LHC beam
direction, that corresponds to thez-axis in the ALICE reference frame. The information provided by
the following detectors was utilised to perform the analysis presented in this paper: the Inner Tracking
System (ITS), the Time Projection Chamber (TPC) and the TimeOf Flight (TOF) detector were used
to reconstruct and identify charged particles at mid-rapidity, while the V0 scintillator detector provided
the information for triggering, centrality determinationand event selection. The neutron Zero Degree
Calorimeters (ZDC) were also used, together with the V0 detector, for the event selection.

The trajectories of the D-meson decay particles are reconstructed from their hits in the ITS and TPC
detectors. Particle identification is performed utilisingthe information from the TPC and TOF detectors.
The ITS consists of six cylindrical layers of silicon detectors covering the pseudorapidity interval
|η | < 0.9. The two innermost layers, located at 3.9 and 7.6 cm from thebeam line, are composed of
Silicon Pixel Detectors (SPD). The two intermediate layersare equipped with Silicon Drift Detectors
(SDD) and the two outermost layers, with a maximum radius of 43.0 cm, are composed of double-sided
Silicon Strip Detectors (SSD). The high spatial resolutionof the ITS detectors, together with the low
material budget (∼ 7.7% of a radiation length atη = 0) and the small distance from the interaction point,
provides a resolution on the track impact parameter (i.e. the distance of closest approach of the track to the
primary vertex) better than 65µm for transverse momentapT > 1 GeV/c in Pb–Pb collisions [47]. The
TPC, covering the pseudorapidity interval|η |< 0.9, provides track reconstruction with up to 159 points
along the trajectory of a charged particle and allows its identification via the measurement of specific
energy loss dE/dx. Particle identification is complemented with the particletime-of-flight measured with
the TOF detector, which is composed of Multi-gap Resistive Plate Chambers and is positioned at 370-399
cm from the beam axis, covering the full azimuth and the pseudorapidity interval|η | < 0.9. The TPC
and TOF information provides pion/kaon separation at better than 3σ level for tracks with momentum
up to 2.5 GeV/c [47].

The analysis was performed on a sample of Pb–Pb collisions atcentre-of-mass energy per nucleon pair,√
sNN, of 2.76 TeV collected in 2011. The events were recorded with an interaction trigger that required

coincident signals in both scintillator arrays of the V0 detector, covering the pseudorapidity ranges
−3.7< η <−1.7 and 2.8< η < 5.1, respectively. An online selection based on the V0 signal amplitude
was used to record samples of central and semi-central collisions through two separate trigger classes.
Events were further selected offline to remove background from beam-gas interactions on the basis of
the timing information provided by the V0 and the neutron ZDCdetectors (two hadronic calorimeters
located atz = 114 m on both sides of the interaction point covering the interval |η |> 8.7). Only events
with an interaction vertex reconstructed from ITS+TPC tracks with |zvertex|< 10 cm were considered in
the analysis.

Collisions were classified in centrality classes based on the sum of the signal amplitudes in the two
V0 scintillator arrays. Each class is defined in terms of percentiles of the hadronic Pb–Pb cross
section, as determined from a fit to the V0 signal amplitude distribution based on the Glauber-model
description of the geometry of the nuclear collision [48–50] and a two-component model for particle
production [51]. The analysis was performed in two centrality classes: 0–10% and 20–50%. In total,
16.5×106 events, corresponding to an integrated luminosityLint = (21.5±0.7) µb−1, were analysed in
the 0–10% centrality class, and 13.5×106 events,Lint = (5.9± 0.2) µb−1, in the 20–50% class. The
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average values of the nuclear overlap functionTAA (defined as the convolution of the nuclear density
profiles of the colliding ions [50] and proportional to the number Ncoll of binary nucleon–nucleon
collisions occurring in the Pb–Pb collision) are reported in Table 1 for the 0–10% and 20–50% centrality
classes, together with their systematic uncertainty estimated as described in [51].

Centrality class 〈TAA 〉 (mb−1) Nevt Lint (µb−1)
0–10% 23.44± 0.76 16.4×106 21.3±0.7
20–50% 5.46± 0.20 13.5×106 5.8±0.2

Table 1: Average value of the nuclear overlap function,〈TAA 〉, for the considered centrality classes, expressed as
percentiles of the hadronic Pb–Pb cross section. The valueswere obtained with a Monte Carlo implementation of
the Glauber model assuming an inelastic nucleon–nucleon cross section of 64 mb [51]. The number of analysed
events and the corresponding integrated luminosity in eachcentrality class are also shown. The uncertainty on
the integrated luminosity derives from the uncertainty of the hadronic Pb–Pb cross section from the Glauber
model [51].

3 D+
s meson reconstruction and selection

D+
s mesons and their antiparticles were reconstructed in the decay channel D+s → φπ+ → K−K+π+ (and

its charge conjugate), whose branching ratio (BR) is (2.24± 0.10)% [52]. Other D+s decay channels can

give rise to the same K−K+π+ final state, such as D+s → K
∗0

K+ and D+s → f0(980)π+, with BR of (2.58
± 0.11)% and (1.14± 0.31)%, respectively [52]. However, as explained in Ref. [45], the applied cuts for
the selection of the D+s signal candidates strongly reduce contributions from these channels, and therefore
the measured yield is dominated by the D+

s → φπ+ → K−K+π+ decays. The decay channel through the
φ resonance was chosen because the narrower width of theφ invariant-mass peak with respect to f0(980)

andK
∗0

provides the best discrimination between signal and background.

The analysis strategy for the extraction of the signal out ofa large combinatorial background is based
on the reconstruction of decay topologies with a secondary vertex significantly displaced from the
interaction point. The secondary vertex position and its covariance matrix were determined from the
decay tracks by using the same analyticχ2 minimization method as for the computation of the primary
vertex [53]. The resolution on the position of the D+

s decay vertex was estimated with Monte Carlo
simulations and it was found to be about 100µm. D+

s mesons have a mean proper decay length
cτ = 150±2 µm [52], which makes it possible to resolve their decay vertices from the primary vertex.
With the current data sample, the signal of D+

s mesons could be extracted in threepT intervals (4–6, 6–8
and 8–12 GeV/c) in the 0–10% centrality class and in twopT intervals (6–8 and 8–12 GeV/c) in the
20–50% centrality class.

D+
s candidates were defined from triplets of tracks with the proper charge sign combination. Tracks

were selected requiring|η |< 0.8 andpT > 0.6 (0.4) GeV/c in the 0–10% (20–50%) centrality class. In
addition, tracks were also required to have at least 70 (out of a maximum of 159) associated hits in the
TPC, aχ2/ndf< 2 of the track momentum fit in the TPC and at least one associated hit in one of the two
SPD layers. With these track selection criteria, the acceptance in rapidity for D mesons drops steeply
to zero for|y|>∼ 0.5 at low pT and for|y|>∼ 0.8 at pT

>∼5 GeV/c. A pT-dependent fiducial acceptance cut
was therefore applied on the D-meson rapidity,|y|< yfid(pT), with yfid(pT) increasing from 0.5 to 0.8 in
0< pT < 5 GeV/c according to a second order polynomial function and taking aconstant value of 0.8
for pT > 5 GeV/c.

D+
s candidates were filtered by applying kinematical cuts and geometrical selections on the decay

topology, together with particle identification criteria.The selection criteria were tuned in eachpT

interval and centrality class to have a good statistical significance of the signal, while keeping the
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selection efficiency as high as possible. It was also checkedthat background fluctuations were not
causing a distortion in the signal line shape by verifying that the D+s -meson mass and its resolution
were in agreement with the Particle Data Group (PDG) world-average value (1.969 GeV/c2 [52]) and
the Monte Carlo simulation results, respectively. The resulting selection criteria depend on the transverse
momentum of the candidate and provide a selection efficiencythat increases with increasingpT.

The main variables used to select the D+
s decay topology were the decay length (L), defined as the

distance between the primary and secondary vertices, and the cosine of the pointing angle (cosθpoint),
which is the angle between the reconstructed D+

s momentum and the line connecting the primary and
secondary vertices. Additional selections were applied onthe projections of decay length and cosine of
pointing angle in the transverse planexy (Lxy, cosθ xy

point), in order to exploit the better resolution on the
track parameters in that plane. A further cut was applied onLxy divided by its uncertainty (Lxy/σLxy). The
three tracks were also required to have a small distance to the reconstructed decay vertex, by defining the
variableσvertex as the square root of the sum in quadrature of the distances ofeach track to the secondary
vertex. To further suppress the combinatorial background,the anglesθ∗(π), i.e. the angle between the
pion in the KKπ rest frame and the KKπ flight line in the laboratory frame, andθ ′(K), i.e. the angle
between one of the kaons and the pion in the KK rest frame, wereexploited. The cut values used for D+

s
mesons with 4< pT < 6 GeV/c in the 0–10% centrality class were:L, Lxy > 500 µm, Lxy/σLxy > 7.5,
cosθpoint > 0.94, cosθ xy

point > 0.94,σvertex< 400 µm, cosθ∗(π) > 0.05 and|cos3 θ ′(K)| < 0.9. Looser
selection criteria were used for D+s selection at higherpT and in more peripheral events, due to the lower
combinatorial background.

In addition, to select D+s mesons decaying in the consideredφπ+ mode, withφ → K−K+, candidates
were rejected if none of the two pairs of opposite-charged tracks had an invariant mass compatible with
the PDG world average for theφ mass (1.0195 GeV/c2 [52]). The difference between the reconstructed
K+K− invariant mass and world-averageφ mass was required to be less than 4 MeV/c2 (a selection that
preserves about 70% of the signal) for D+

s candidates in the threepT intervals considered in the 0–10%
centrality class, while looser selections were used for semi-central events.

Particle identification was used to obtain a further reduction of the background. Compatibility cuts were
applied to the difference between the measured signals and those expected for a pion or a kaon. A track
was considered compatible with the kaon or pion hypothesis if both its dE/dx and time-of-flight were
within 3σ from the expected values. Tracks without a TOF signal (mostly at low momentum) were
identified using only the TPC information and requiring a 2σ compatibility with the expected dE/dx.
Triplets of selected tracks were required to have two trackscompatible with the kaon hypothesis and
one with the pion hypothesis. In addition, since the decay particle with opposite charge sign has to be a
kaon, a triplet was rejected if the opposite-sign track was not compatible with the kaon hypothesis. This
particle identification strategy preserves about 85% of theD+

s signal.

For each candidate, two values of invariant mass can be computed, corresponding to the two possible
assignments of the kaon and pion mass to the two same-sign tracks. Signal candidates with wrong mass
assignment to the same-sign tracks would give rise to a contribution to the invariant-mass distributions
that could potentially introduce a bias in the measured raw yield of D+

s mesons. It was verified, both in
data and in simulations, that this contribution is reduced to a negligible level by the particle identification
selection and by the requirement that the invariant mass of the two tracks identified as kaons is compatible
with theφ mass.

The invariant-mass distributions of the D+
s candidates (sum of D+s and D−s candidates) are shown in Fig. 1

in the threepT intervals for the 10% most central Pb–Pb collisions. The rawsignal yields were extracted
by fitting the invariant-mass distributions with a functionthat consists of the sum of a Gaussian term to
describe the signal peak and an exponential function to describe the background. The fit was performed
in the invariant-mass range 1.88< M(KKπ) < 2.1 GeV/c2 in all pT intervals. The lower limit of 1.88
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Centrality class pT interval ND±
s raw S/B (3σ ) S/

√
S+B (3σ ) χ2/ndf

(GeV/c)

4–6 438±144 0.02 3.0 27.4 / 18
0–10% 6–8 117± 38 0.10 3.2 17.5 / 18

8–12 89± 21 0.38 5.0 26.5 / 18
20–50% 6–8 197± 61 0.07 3.5 9.9 / 21

8–12 52± 20 0.29 3.4 17.9 / 21

Table 2: Measured raw yields (ND±
s raw), signal over background (S/B), statistical significance (S/

√
S+B ) and

χ2/ndf of the invariant-mass fit for D+s and their antiparticles in the consideredpT intervals for the 0–10% and
20–50% centrality classes. The uncertainty on the D±

s raw yield is the statistical uncertainty obtained from the fit.

GeV/c2 was chosen to exclude the contribution of D+ → K−K+π+ decays, BR= (0.265+0.008
−0.009)% [52],

which could give rise to a bump in the background shape for invariant-mass values around the D+ mass
(1.870 GeV/c2) [52]. The mean values of the Gaussian functions in all thepT intervals are compatible
within two times their uncertainty with the PDG world average for the D+s mass and the Gaussian widths
are in agreement with the expected values from Monte Carlo simulations.

)2) (GeV/cπM(KK
1.9 1.95 2 2.05

2
E

nt
rie

s 
/ 9

 M
eV

/c

0

1000

2000

3000

4000

5000 c<6 GeV/
T

p4<

0-10% Pb-Pb
 = 2.76 TeVNNs

ALICE

2 0.003 GeV/c± = 1.975 µ
2 0.003 GeV/c± = 0.008 σ

)2) (GeV/cπM(KK
1.9 1.95 2 2.05

2
E

nt
rie

s 
/ 9

 M
eV

/c

0

100

200

300

400

500 c<8 GeV/
T

p6<

+π+K
-

 K→ +
sD

and charge conj.

2 0.003 GeV/c± = 1.962 µ
2 0.003 GeV/c± = 0.009 σ

)2) (GeV/cπM(KK
1.9 1.95 2 2.05

2
E

nt
rie

s 
/ 9

 M
eV

/c

0

10

20

30

40

50
c<12 GeV/

T
p8<

2 0.004 GeV/c± = 1.963 µ
2 0.004 GeV/c± = 0.017 σ

Figure 1: Invariant-mass distributions of D+s candidates and charge conjugates in the three consideredpT intervals
in the 10% most central Pb–Pb collisions.

In Table 2 the extracted raw yields of D+s mesons (sum of particle and antiparticle), defined as the integral
of the Gaussian functions, are listed for the differentpT intervals in both the considered centrality classes,
together with the signal-over-background (S/B) ratios andthe statistical significance (S/

√
S+B). The

background was evaluated by integrating the background fit functions in±3σ around the centroid of the
Gaussian.

4 Corrections

The raw yields extracted from the fits to the invariant-mass distributions of D+s and D−s candidates were
corrected to obtain the production yields of prompt (i.e. not coming from weak decays of B mesons) D+

s
mesons. ThepT-differential yield of prompt D+s was computed as

dND+
s

dpT

∣

∣

∣

∣

∣

|y|<0.5

=
1

∆pT

1
BR·Nevt

fprompt(pT) · 1
2ND±

s raw(pT)
∣

∣

∣

|y|<yfid

2yfid(pT)(Acc× ε)prompt(pT)
, (1)

whereND±
s raw(pT) are the values of the raw yields (sum of particles and antiparticles) reported in Table 2,

which were corrected for the B-meson decay feed-down contribution (i.e. multiplied by the prompt
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Figure 2: Left: Acceptance-times-efficiency for D+s mesons in the 10% most central Pb–Pb collisions. The
efficiencies for prompt (solid lines) and feed-down (dottedlines) D+

s mesons are shown. Also displayed, for
comparison, the efficiency for prompt D+s mesons without PID selections (dashed lines). Right: Relative variation
of the prompt D+s -meson yield in the 0–10% centrality class as a function of the hypothesis onRfeed-down

AA /Rprompt
AA

for the B feed-down subtraction approach based on Eq. (2).

fraction fprompt), divided by the acceptance-times-efficiency for prompt D+
s mesons,(Acc×ε)prompt, and

divided by a factor of two to obtain the charge (particle and antiparticle) averaged yields. The corrected
yields were divided by the decay channel branching ratio (BR), the pT interval width (∆pT), the rapidity
coverage (2yfid) and the number of analysed events (Nevt).

The correction for the acceptance and the efficiency was determined using Monte Carlo simulations.
Pb–Pb collisions at

√
sNN = 2.76 TeV were simulated using the HIJING v1.383 event generator [54].

Prompt and feed-down D+s (and D−s ) signals were added with the PYTHIA v6.4.21 generator [55].In
order to minimize the bias on the detector occupancy, the number of D mesons injected into each HIJING
event was adjusted according to the Pb–Pb collision centrality. The pT distribution of the generated D+s
mesons in the 0–10% centrality class was weighted in order tomatch the shape measured for D0 mesons
in central Pb–Pb collisions [42]. For the 20–50% centralityclass, the generatedpT distribution was
defined based on FONLL perturbative QCD calculations [56,57] multiplied by the nuclear modification
factor predicted by the BAMPS partonic transport model [58], which reproduces the measured non-
strange D-mesonRAA in semi-central collisions within uncertainties [16].

The generated particles were transported through the ALICEdetector using the GEANT3 [59] particle
transport package together with a detailed description of the geometry of the apparatus and of the
detector response. The simulation was tuned to reproduce the position and width of the interaction
vertex distribution, the number of active electronic channels and the accuracy of the detector calibration,
and their time evolution within the Pb–Pb data taking period.

The efficiencies were evaluated in centrality classes corresponding to those used in the analysis of the
data in terms of charged-particle multiplicity, hence of detector occupancy. In the left-hand panel of
Fig. 2, the(Acc× ε) values for prompt and feed-down D+s mesons with rapidity|y|< yfid are shown for
the 0–10% centrality class. The same figure shows also the(Acc×ε) values for the case without the PID
selections, demonstrating that this selection is about 85%efficient for the signal.

The magnitude of(Acc× ε) increases with increasingpT, from 0.4% in the lowestpT interval up to

8



Ds production in Pb–Pb collisions ALICE Collaboration

2% in 8< pT < 12 GeV/c. The (Acc× ε) values for D+s from beauty-hadron decays are larger than
those for prompt D+s by a factor of approximately 2.5–3.5 depending onpT, because the decay vertices
of the feed-down D+s mesons are more displaced from the primary vertex and they are, therefore, more
efficiently selected by the analysis cuts. The efficiency of the selections used in the centrality interval
20–50% is higher by a factor of about two with respect to that in the most central events, because the
smaller combinatorial background in semi-peripheral collisions allowed the usage of looser selections
on the D+s candidates.

The ratio of prompt to inclusive contributions in the D+
s -meson raw yield,fprompt, was evaluated using a

procedure similar to the one adopted for the pp measurement [45]. The contribution of feed-down from B
decays in the raw yield depends onpT and on the applied geometrical selection criteria. The feed-down
contribution was estimated using the beauty-hadron production cross section from FONLL perturbative
QCD calculations for pp collisions at

√
s = 2.76 TeV scaled by the average nuclear overlap function

〈TAA 〉 in each centrality class, the B→D+X decay kinematics from the EvtGen package [60] and the
Monte Carlo efficiencies for feed-down D+s mesons. The resulting sample of feed-down D+

s mesons is
composed of two contributions: about 50% of the feed-down originates from B0s-meson decays, while the
remaining 50% comes from decays of non-strange B mesons (B0 and B+). A hypothesis on the nuclear
modification factor of feed-down D+s mesons,Rfeed-down

AA , was introduced to account for the different
modification of beauty and charm production in Pb–Pb collisions and for the possible enhancement of
the B0

s over non-strange B-meson yield due to the effect of hadronisation via recombination [61]. The
fraction of prompt D+s yield was therefore computed in eachpT interval as

fprompt= 1− ND+
s feed-down raw

ND+
s raw

=

= 1−〈TAA〉 ·
(

d2σ
dydpT

)FONLL

feed-down
· Rfeed-down

AA · (Acc× ε)feed-down·2yfid ∆pT ·BR·Nevt

ND±
s raw/2

,

(2)

where(Acc× ε)feed-downis the acceptance-times-efficiency for feed-down D+
s mesons. To determine the

central value offprompt, it was assumed that the nuclear modification factors of feed-down and prompt
D+

s mesons were equal (Rfeed-down
AA = Rprompt

AA ). The resulting feed-down contribution is about 20–25%
depending on thepT interval. To determine the systematic uncertainty the hypothesis was varied in the
range 1/3< Rfeed-down

AA /Rprompt
AA < 3, as discussed in detail in Section 5. It should be noted thatthe central

value and the range of the hypothesis onRfeed-down
AA /Rprompt

AA differ from those used for non-strange D
mesons in Refs. [15, 16, 42], owing to the unknown role of recombination in the beauty sector, which
could enhance the ratio of B0

s over non-strange B mesons, and to the large fraction of feed-down D+
s

mesons originating from non-strange B-meson decays.

The nuclear modification factor of D+s mesons was computed as

RAA (pT) =
dND+

s
AA /dpT

〈TAA 〉dσD+
s

pp /dpT

. (3)

The values of the average nuclear overlap function,〈TAA 〉, for the considered centrality classes are
reported in Table 1. ThepT-differential cross section of prompt D+s mesons with|y|< 0.5 in pp collisions
at

√
s = 2.76 TeV, used as reference forRAA , was obtained by scaling in energy the measurement at√

s = 7 TeV [45]. The ratio of the cross sections from FONLL pQCD calculations [57] at
√

s = 2.76
and 7 TeV was used as the scaling factor. Since FONLL does not have a specific prediction for D+s
mesons, the cross sections of the D-meson admixture (70% of D0 and 30% of D+) were used for the
scaling. The theoretical uncertainty on the scaling factorwas evaluated by considering the envelope of
the results obtained by varying independently the factorisation and renormalisation scales and the charm
quark mass, as explained in detail in Ref. [62]. For D0, D+ and D∗+ mesons, the result of the scaling was
validated by comparison with data [63].
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0–10% centrality 20–50% centrality

pT interval (GeV/c) pT interval (GeV/c)
4–6 6–8 8–12 6–8 8–12

Raw yield extraction 8% 8% 8% 8% 8%
Tracking efficiency 15% 15% 15% 15% 15%
Selection efficiency 20% 20% 20% 20% 20%
PID efficiency 7% 7% 7% 7% 7%
MC pT shape 2% 1% 1% 1% 1%
Feed-down from B

FONLL feed-down corr. + 6
−28%

+10
−27%

+ 7
−27%

+ 6
−20%

+ 7
−25%

Rfeed-down
AA /Rprompt

AA (Eq. (2)) +10
−22%

+16
−30%

+13
−26%

+11
−22%

+12
−24%

Centrality limits < 1% < 1%
Branching ratio 4.5%

Table 3: Relative systematic uncertainties onpT-differential yields of prompt D+s mesons in Pb–Pb collisions for
the two considered centrality classes.

5 Systematic uncertainties

The systematic uncertainties on the prompt D+
s -meson yields in Pb–Pb collisions are summarised in

Table 3.

The systematic uncertainty on the raw yield extraction was estimated from the distribution of the results
obtained by repeating the fit to the invariant-mass spectra varying i) the fit range and ii) the probability
distribution functions used to model the signal and background contributions. In particular, a second
order polynomial function was used as an alternative functional form to describe the background. The
signal line shape was varied by using Gaussian functions with mean and width fixed to the world-average
D+

s mass and to the values expected from Monte Carlo simulations, respectively. Furthermore, the raw
yield was also extracted by counting the entries in the invariant-mass distributions after subtraction
of the background estimated from a fit to the side bands of the D+

s peak. In case of fitting in an
extended mass range, it was verified that the effect on the D+

s yield due to the possible bump produced
in the candidate invariant-mass distribution by D+ → φπ+ → K−K+π+ decays was negligible. An
additional test was performed by fitting the D+

s candidate invariant-mass distribution after subtracting
the background estimated by coupling a pion track with K+K− pairs having an invariant mass in the side
bands of theφ peak. The uncertainty was estimated to be 8% in allpT intervals.

The contribution to the measured yield from D+
s decaying into the K−K+π+ final state via other resonant

channels (i.e. not via aφ meson) was found to be negligible, due to the much lower selection efficiency,
as discussed in Ref. [45].

Other contributions to the systematic uncertainty originate from the imperfect implementation of the
detector description in the Monte Carlo simulations, whichcould affect the particle reconstruction, the
D+

s selection efficiency, and the kaon and pion identification.

The systematic uncertainty on the tracking efficiency (including the effect of the track selection) was
estimated by comparing the efficiency (i) of track finding in the TPC and (ii) of track prolongation from
the TPC to the ITS between data and simulations, and (iii) by varying the track quality selections. The
estimated uncertainty is 5% per track, which results in 15% for the three-body decay of D+s mesons.

The effect of residual discrepancies between data and simulations on the variables used to select the D+
s

candidates was estimated by repeating the analysis with different geometrical selections on the decay
topology and varying the cut on the compatibility between the K+K− invariant mass and theφ mass. A

10
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systematic uncertainty of 20% was estimated from the spreadof the resulting corrected yields.

The systematic uncertainty induced by a different efficiency for particle identification in data and sim-
ulations was estimated by comparing the corrected D+

s yields obtained using different PID approaches,
testing both looser and tighter cuts with respect to the baseline selection described in Section 4. Due to
the limited statistical significance, an analysis without PID selection could not be carried out. Such a test
was performed in the analysis of D0 (→ K−π+), D+ (→ K−π+π+) and D∗+ (→ D0π+) and a 5% uncer-
tainty was estimated for the case of 3σ cuts on dE/dx and time-of-flight signals, which correspond to
the loosest selections that could be tested for the D+

s . Based on all these checks a systematic uncertainty
of 7% on the PID selection efficiency was estimated.

The efficiency is also sensitive to differences between the real and simulated D+s momentum distributions.
The effect depends on the width of thepT intervals and on the variation of the efficiency within them.A
systematic uncertainty was defined from the relative difference among the efficiencies obtained using
different pT shapes for the generated D+

s mesons, namely the measured dN/dpT of D0 mesons in
central Pb–Pb collisions, thepT shape predicted by FONLL pQCD calculations with and withoutthe
nuclear modification predicted by the BAMPS partonic transport model. The resulting contribution to
the systematic uncertainty was found to be 2% for the momentum interval 4< pT < 6 GeV/c, where the
selection efficiency is stronglypT dependent, and 1% at higherpT.

The systematic uncertainty due to the subtraction of D+
s mesons from B-meson decays was estimated

following the procedure described in Ref. [11]. The contribution of the uncertainties inherent in the
FONLL perturbative calculation was included by varying theheavy-quark masses and the factorisation
and renormalisation scales,µF andµR, independently in the ranges 0.5< µF/mT < 2, 0.5< µR/mT < 2,

with the constraint 0.5< µF/µR < 2, wheremT =
√

p2
T +m2

Q. Furthermore, the prompt fraction obtained

in eachpT interval was compared with the results of a different procedure in which the FONLL cross
sections for prompt and feed-down D mesons and their respective Monte Carlo efficiencies were the
input for evaluating the correction factor

f ′prompt=









1+
(Acc× ε)feed-down

(Acc× ε)prompt
·

(

d2σ
dydpT

)FONLL

feed-down
(

d2σ
dydpT

)FONLL

prompt

· Rfeed-down
AA

Rprompt
AA









−1

. (4)

Since FONLL does not have a specific prediction for D+
s mesons, four different approaches were used

to compute the predictedpT shapes of promptly produced D+s ,
(

d2σ/dydpT
)FONLL

prompt , as explained in
detail in Ref. [45]: (i) FONLL prediction for the admixture of charm hadrons; (ii) FONLL prediction
for D∗+ mesons (the D∗+ mass being close to that of the D+

s ); (iii) FONLL prediction for c quarks and
fragmentation functions from [64] with parameterr = (mD−mc)/mD (mD andmc being the masses of the
considered D-meson species and of the c quark, respectively); (iv) FONLL prediction for c quarks and
fragmentation functions from [64] with parameterr = 0.1 (as used in FONLL calculations) for all meson
species. In the latter two cases, the D∗+

s mesons produced in the c quark fragmentation were made to
decay with PYTHIA and the resulting D+s were summed to the primary ones to obtain the prompt yield.
The systematic uncertainty due to the B feed-down subtraction was finally evaluated as the envelope of
the results obtained with the two methods, namely Eq. (2) and(4), when varying the FONLL parameters
and the c→ D+

s fragmentation function used to determine
(

d2σ/dydpT
)FONLL

prompt in Eq. (4).

The contribution due to the different nuclear modification factor of prompt and feed-down D+s mesons
was estimated by varying the hypothesis onRfeed-down

AA /Rprompt
AA in the range 1/3< Rfeed-down

AA /Rprompt
AA < 3

for both feed-down subtraction methods. The variation of the hypothesis is motivated by the combined
effect on theRAA of (i) the different energy loss of charm and beauty quarks inthe QGP, as predicted
by energy loss models and supported by experimental data on Dmeson and non-prompt J/ψ RAA at the
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pT interval (GeV/c)
4–6 6–8 8–12

Data systematics in pp 26% 25% 29%

Feed-down from B + 4
−17%

+ 6
−15%

+ 5
−17%

√
s-scaling of the pp reference+14

− 7% +10
− 6% + 8

− 5%

Normalisation 3.5%
Branching ratio 4.5%

Table 4: Relative systematic uncertainties on the pp reference cross section. The row labeled ‘Data systematics’
reports the sum in quadrature of the contributions due to rawyield extraction, tracking efficiency, selection
efficiency, PID efficiency, MCpT shape and ’other resonant channels’ from Ref. [45].

LHC [11,13,42,65,66]; (ii) the possibly different contribution of coalescence in charm and beauty quark
hadronisation, leading to a different abundance of D+

s and B0
s mesons relative to non-strange mesons; and

(iii) the possibly different modulation of D and B spectra due to radial flow. The resulting uncertainty
for the case of B feed-down subtraction approach based on Eq.(2) is shown in the right-hand panel of
Fig. 2 for the threepT intervals in the 0–10% centrality class.

The Pb–Pb data are also affected by a systematic uncertaintyon the determination of the limits of the
centrality classes, due to the 1.1% relative uncertainty onthe fraction of the total hadronic cross section
used in the Glauber fit [51]. This contribution was estimatedfrom the variation of the D-meson dN/dpT

when the limits of the centrality classes are shifted by±1.1%. The resulting uncertainty, which is
common to allpT bins, is less than 1% for both the 0–10% and the 20–50% centrality classes.

Finally, the 4.5% uncertainty on the branching ratio [52] was considered.

In the calculation of theRAA , the uncertainties on the reference cross section for pp collisions, the Pb–Pb
yields, and the average nuclear overlap function were considered.

For the pp reference, the uncertainties on the measurement at
√

s = 7 TeV, described in Ref. [45] and
those due to the FONLL-based scaling to

√
s = 2.76 TeV, described in Section 4, were summed in

quadrature. The contributions to the systematic uncertainty on the pp reference cross section are reported
in Table 4.

The uncertainties on the pp reference were added in quadrature to those on the Pb–Pb prompt D+
s yields,

described above, except for the BR that cancels out in the ratio and the feed-down contribution deriving
from FONLL uncertainties, that partly cancels in the ratio.This contribution was evaluated by comparing
theRAA values obtained with the two methods for feed-down correction of Eq. (2) and (4) and with the
different heavy quark masses, fragmentation functions, factorisation and renormalisation scales used in
FONLL. In this study, these variations were done simultaneously for the Pb–Pb yield and for the pp
reference cross section, so as to take into account the correlations of these sources in the numerator and
denominator ofRAA .

Finally, theRAA normalisation uncertainty was computed as the quadratic sum of the 3.5% pp normal-
isation uncertainty [45], the contribution due to the 1.1% uncertainty on the fraction of hadronic cross
section used in the Glauber fit discussed above, and the uncertainty on〈TAA 〉, which is of 3.2% and 3.7%
for the 0–10% and 20–50% centrality classes, respectively.

6 Results

The transverse momentum distributions dN/dpT of prompt D+s mesons in Pb–Pb collisions are shown in
Fig. 3, for the 0–10% and 20–50% centrality classes. The yields reported in Fig. 3 refer to particles only,
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Figure 3: Transverse momentum distributions dN/dpT of prompt D+s mesons in the 0–10% (left panel) and
20–50% (right panel) centrality classes in Pb–Pb collisions at

√
sNN = 2.76 TeV. Statistical uncertainties (bars),

systematic uncertainties from data analysis (empty boxes)and systematic uncertainties due to beauty feed-down
subtraction (shaded boxes) are shown. The reference pp distributions〈TAA 〉 dσ/dpT are shown as well.

since they were computed as the average of particles and antiparticles under the assumption that the
production cross section is the same for D+

s and D−s . The vertical error bars represent the statistical
uncertainties. The symbols are positioned horizontally atthe centre of eachpT interval, with the
horizontal bars representing the width of thepT interval. The systematic uncertainties from data analysis
are shown as empty boxes around the data points, while those due to the B feed-down subtraction,
which include the contributions of the FONLL uncertaintiesand of the variation of the hypothesis on
Rfeed-down

AA /Rprompt
AA , are displayed as shaded boxes. The normalisation uncertainties are reported as text on

the figures.

The pT-differential yields measured in Pb–Pb collisions are compared to the reference yields in pp
collisions at the same energy, scaled by the nuclear overlapfunction 〈TAA 〉, reported in Table 1. The
pp reference at

√
s = 2.76 TeV is obtained by scaling the cross section measured at 7 TeV as described in

Section 4. A clear suppression of the D+
s -meson yield in the 10% most central Pb–Pb collisions relative

to the binary-scaled pp yields is observed in the highestpT interval (8< pT < 12 GeV/c). In the 20–
50% centrality class, an indication of suppression is foundin 8< pT < 12 GeV/c. At lower pT, in both
centrality classes, it is not possible to conclude on the presence of a suppression of the D+

s -meson yield
in heavy-ion collisions with respect to the pp reference.

The nuclear modification factorRAA of prompt D+s mesons was computed from the dN/dpT distributions.
The results are shown as a function ofpT in the left-hand panel of Fig. 4 for the two centrality classes. The
vertical bars represent the statistical uncertainties, the empty boxes are the totalpT-dependent systematic
uncertainties described in Section 5, except for the normalisation uncertainty, which is displayed as a
filled box atRAA = 1. A suppression by a factor of about three of the D+

s -meson yield in Pb–Pb collisions
relative to the binary-scaled pp cross section is observed in the highestpT interval (8< pT < 12 GeV/c)
for the 10% most central collisions. A smaller suppression (by a factor of about two) is measured
in the 20–50% centrality class in 8< pT < 12 GeV/c, even though with the current uncertainties no
conclusions can be drawn on the centrality dependence of theD+

s -meson nuclear modification factor
at high pT. Since no significant modification of the D+s -meson production relative to binary-scaled pp
collisions is observed in p–Pb reactions in thepT range considered here [14], the substantial suppression
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Figure 4: Left: RAA of prompt D+s mesons in the 0–10% and 20–50% centrality classes as a function of pT.
For the 20–50% case, the symbols are displaced horizontallyfor visibility. Right: RAA of prompt D+s mesons
compared to non-strange D mesons (average of D0, D+ and D∗+ [42]) in the 0–10% centrality class. Statistical
(bars), systematic (empty boxes), and normalisation (fullbox) uncertainties are shown.

of the D+
s -meson yield at highpT in Pb–Pb collisions cannot be explained in terms of initial state effects,

but it is predominantly due to strong final-state effects induced by the hot and dense partonic medium
created in the collisions of heavy nuclei. At lowerpT the central values of the measurement show a larger
RAA , however the large statistical and systematic uncertainties do not allow to draw a conclusion on the
pT dependence of the D+s nuclear modification factor.

TheRAA of prompt D+s mesons in the 10% most central collisions is compared in the right-hand panel
of Fig. 4 to the average nuclear modification factor of D0, D+ and D∗+ mesons measured in the same
centrality class [42]. This comparison is meant to address the expected effect of hadronisation via quark
recombination in the partonic medium on the relative abundances of strange and non-strange D-meson
species. In the threepT intervals, the values of the D+s -mesonRAA are higher than those of non-strange
D mesons, although compatible within uncertainties. Even considering that a part of the systematic
uncertainty is correlated between strange and non-strangeD mesons, the current uncertainties do not
allow a conclusive statement on the expected enhancement ofthe D+

s -meson yield relative to that of
non-strange D mesons in heavy-ion collisions.

An alternative approach to study the predicted modificationof the charm-quark hadronisation in the
presence of a QGP is to compare the ratios between the measured yields of D+s and D0(D+) mesons
in Pb–Pb and pp collisions. This comparison is shown in Fig. 5for the 10% most central Pb–Pb
collisions. In the left-hand panel the D+s /D0 ratio is displayed, while the right-hand panel shows the
ratio D+

s /D+. The ratios D+s /D0 and D+s /D+ in pp collisions are taken from the measurements at√
s = 7 TeV [45]2. No strong dependence on the collision energy is expected (see [45] and references

therein). In the evaluation of the systematic uncertainties on the D-meson yield ratios, the sources of
correlated and uncorrelated systematic effects were treated separately. In particular, the contributions of
the yield extraction, topological selection efficiency andPID efficiency were considered as uncorrelated
and summed in quadrature. The uncertainty on the tracking efficiency cancels completely in the ratios
between production cross sections of meson species reconstructed from three-body decay channels (D+

2 The values from Ref. [45] were re-computed with the most recent value for the branching ratio of the
D+

s → φπ+ → K−K+π+ decay chain, which is 2.24% [52], while it was 2.28% at the time of the pp publication.
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Figure 5: Ratios of prompt D-meson yields (D+s /D0 and D+s /D+) as a function ofpT in the 10% most central
Pb–Pb collisions at

√
sNN = 2.76 TeV compared to the results in pp collisions at

√
s = 7 TeV. Statistical (bars) and

systematic (boxes) uncertainties are shown.

and D+s ), while a 5% systematic uncertainty (4% in the pp case) was considered in the ratio to the D0

yields, which are reconstructed from a two-particle final state. To propagate the uncertainty due to the B
feed-down subtraction, the contribution of the FONLL crosssection was treated as completely correlated
among the D-meson species. It was estimated from the spread of the D-meson yield ratios obtained by
varying the factorisation and renormalisation scales and the heavy-quark mass in FONLL coherently for
the three meson species. The contribution due to the hypothesis onRfeed-down

AA /Rprompt
AA was considered as

uncorrelated between D+s and non-strange D mesons and summed in quadrature. The difference between
the D+

s /D0 ratios in pp and in central Pb–Pb collisions is of about 1σ of the combined statistical and
systematic uncertainties in both the two lowestpT intervals, 4< pT < 6 GeV/c and 6< pT < 8 GeV/c.
An enhancement of Ds/D ratios in heavy-ion collisions is predicted if recombination contributes to charm
quark hadronisation in the QGP. However, considering the current level of experimental uncertainties,
no conclusion on charm-quark hadronisation can be drawn from this first measurement of D+s -meson
production in Pb–Pb collisions.

In the framework of the Statistical Hadronisation Model [39,67,68], thepT-integrated ratios of D-meson
abundances for a chemical freeze-out temperatureT = 156 MeV (as extracted from fits to the measured
abundances of light-flavour hadrons [69]) and vanishing baryo-chemical potential, are expected to be
D+

s /D0 = 0.338 and D+s /D+ = 0.830, which are higher by a factor of about two with respect to the
values calculated for pp collisions at LHC energies [45].

In Fig. 6, the measuredRAA of non-strange D mesons and of D+
s are compared to the prediction of

the TAMU model [27, 61]. Among the several models available for open charm production in heavy-
ion collisions, TAMU is the only one providing a quantitative prediction for the D+s -meson nuclear
modification factor. This is a heavy-quark transport model based on heavy-quark diffusion, implemented
via simulations based on the relativistic Langevin equation, in a hydrodynamically expanding medium.
The interactions of the charm quarks with the medium are modeled including only elastic processes,
which are assumed to govern the heavy-quark scattering amplitudes at low and intermediate momenta.
The heavy-quark transport coefficients are calculated within a non-perturbativeT -matrix approach,
where the interactions proceed via resonance formation that transfers momentum from the heavy quarks
to the medium constituents. The hadronisation of charm quarks is performed via recombination with
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Figure 6: RAA of prompt D+s and non-strange D mesons (average of D0, D+ and D∗+) in the 0–10% centrality
class compared to predictions of the TAMU model [61]. The bands shown for the TAMU predictions encompass
the charm-shadowing uncertainty.

thermalized up, down and strange quarks. The remaining charm quarks are converted to hadrons using
the vacuum fragmentation functions from [64] and fragmentation fractions f (c→ D) from PYTHIA.
This model predicts an enhancement of the D+

s over the non-strange D-mesonRAA at low pT as a
consequence of the recombination of charm quarks with thermally equilibrated strange quarks in the
QGP. At higherpT, where the dominant hadronisation mechanism is fragmentation, similarRAA values
are predicted for the different D-meson species. The model describes the measured D+

s -meson nuclear
modification factor within uncertainties and at lowpT provides also a reasonable description of non-
strange D-mesonRAA . The measured suppression of non-strange D mesons is underestimated at higher
pT, where the contribution of inelastic processes (gluon radiation), which are missing in this transport
calculation, is expected to play a major role.

7 Summary

The production of D+s mesons was measured for the first time in heavy-ion collisions. The measurement
was carried out on a sample of Pb–Pb collisions at

√
sNN = 2.76 TeV in two centrality classes, namely

0–10% and 20–50%.

The results for the 10% most central collisions indicate a substantial suppression (RAA ≈ 0.3) of the
production of D+s mesons at highpT (8< pT < 12 GeV/c) with respect to the expectation based on the
pp cross section scaled by the average nuclear overlap function. The observed suppression is compatible
with that of non-strange D mesons and can be described by models including strong coupling of the
charm quarks with the deconfined medium formed in the collision.

At lower momenta (4< pT < 8 GeV/c), the values of the D+s -meson nuclear modification factor are
larger than those of non-strange D mesons, although compatible within uncertainties. This result provides
a possible hint for an enhancement of Ds/D ratio, which is expected if the recombination process
significantly contributes to the charm quark hadronisationin the QGP.

The precision of the measurements will be improved using thelarger data samples of Pb–Pb collisions
that will be collected during the ongoing LHC Run-2. The larger sample size will allow us to observe
the D+

s signal with less stringent selections, thus reducing the systematic uncertainty on the efficiency
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correction. In addition, the higher Pb–Pb collision centre-of-mass energy will reduce the impact of the√
s-scaling of the pp reference. This will open the possibilityto exploit the measurement of D+s -meson

production in heavy-ion collisions to assess the recombination effects in the charm-quark hadronisation
and to provide further constraints to models describing thecoupling of heavy quarks with the medium.
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Católica del Perú.
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J. Anielski54 , T. Antičić97 , F. Antinori107 , P. Antonioli104 , L. Aphecetche113 , H. Appelshäuser53 , S. Arcelli28 ,
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L. Görlich117 , S. Gotovac116, V. Grabski64 , O.A. Grachov136, L.K. Graczykowski133, K.L. Graham101 ,
A. Grelli57 , A. Grigoras36 , C. Grigoras36 , V. Grigoriev75 , A. Grigoryan1 , S. Grigoryan66 , B. Grinyov3 ,
N. Grion109 , J.M. Gronefeld96 , J.F. Grosse-Oetringhaus36 , J.-Y. Grossiord130 , R. Grosso96 , F. Guber56 ,
R. Guernane71 , B. Guerzoni28 , K. Gulbrandsen80 , T. Gunji127 , A. Gupta90 , R. Gupta90 , R. Haake54 ,
Ø. Haaland18 , C. Hadjidakis51 , M. Haiduc62 , H. Hamagaki127, G. Hamar135 , J.W. Harris136 , A. Harton13 ,
D. Hatzifotiadou104 , S. Hayashi127 , S.T. Heckel53 , M. Heide54 , H. Helstrup38 , A. Herghelegiu78 , G. Herrera
Corral11 , B.A. Hess35 , K.F. Hetland38 , H. Hillemanns36 , B. Hippolyte55 , R. Hosokawa128 , P. Hristov36 ,
M. Huang18 , T.J. Humanic20 , N. Hussain45 , T. Hussain19 , D. Hutter43 , D.S. Hwang21 , R. Ilkaev98 ,
M. Inaba128 , G.M. Innocenti27 , M. Ippolitov75 ,99, M. Irfan19 , M. Ivanov96 , V. Ivanov85 , V. Izucheev111,

22



Ds production in Pb–Pb collisions ALICE Collaboration

P.M. Jacobs74 , M.B. Jadhav48 , S. Jadlovska115 , J. Jadlovsky115 ,59, C. Jahnke120 , M.J. Jakubowska133,
H.J. Jang68 , M.A. Janik133 , P.H.S.Y. Jayarathna122, C. Jena30 , S. Jena122 , R.T. Jimenez Bustamante96 ,
P.G. Jones101 , H. Jung44 , A. Jusko101 , P. Kalinak59 , A. Kalweit36 , J. Kamin53 , J.H. Kang137 , V. Kaplin75 ,
S. Kar132 , A. Karasu Uysal69 , O. Karavichev56 , T. Karavicheva56 , L. Karayan96 ,93, E. Karpechev56 ,
U. Kebschull52 , R. Keidel138 , D.L.D. Keijdener57 , M. Keil36 , M. Mohisin Khan19 , P. Khan100 , S.A. Khan132 ,
A. Khanzadeev85 , Y. Kharlov111, B. Kileng38 , D.W. Kim44 , D.J. Kim123 , D. Kim137 , H. Kim137 , J.S. Kim44 ,
M. Kim44 , M. Kim137 , S. Kim21 , T. Kim137 , S. Kirsch43 , I. Kisel43 , S. Kiselev58 , A. Kisiel133 , G. Kiss135 ,
J.L. Klay6 , C. Klein53 , J. Klein36 ,93, C. Klein-Bösing54 , S. Klewin93 , A. Kluge36 , M.L. Knichel93 ,
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V. Manzari36 ,103, M. Marchisone27 ,65 ,126, J. Mareš60 , G.V. Margagliotti26 , A. Margotti104, J. Margutti57 ,
A. Marı́n96 , C. Markert118 , M. Marquard53 , N.A. Martin96 , J. Martin Blanco113 , P. Martinengo36 ,
M.I. Martı́nez2 , G. Martı́nez Garcı́a113 , M. Martinez Pedreira36 , A. Mas120 , S. Masciocchi96 , M. Masera27 ,
A. Masoni105 , L. Massacrier113 , A. Mastroserio33 , A. Matyja117 , C. Mayer117 , J. Mazer125 , M.A. Mazzoni108 ,
D. Mcdonald122 , F. Meddi24 , Y. Melikyan75 , A. Menchaca-Rocha64 , E. Meninno31 , J. Mercado Pérez93 ,
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27 Dipartimento di Fisica dell’Università and Sezione INFN,Turin, Italy
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36 European Organization for Nuclear Research (CERN), Geneva, Switzerland
37 Excellence Cluster Universe, Technische Universität München, Munich, Germany
38 Faculty of Engineering, Bergen University College, Bergen, Norway
39 Faculty of Mathematics, Physics and Informatics, ComeniusUniversity, Bratislava, Slovakia
40 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague,

Czech Republic
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