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“But, of course, memory and responsibility are strangers. They're foreign to each other. 

Memory always goes its own way quite regardless.” 

― Ali Smith, Autumn 

 

 

“‘We dissect flies,’ answered the philosopher. ‘We measure lines. We study numbers. We agree 

on two or three points which we understand, and we disagree on two or three thousand which 

we don’t understand.’” 

― Voltaire, Micromegas  
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Summary 

Understanding the brain's proactive nature and its ability to anticipate the future has been a 

longstanding pursuit in philosophy and scientific research. The predictive processing 

framework explains how the brain generates predictions based on environmental regularities 

and adapts to both predicted and unpredicted events. Prediction errors (PE) occur when sensory 

evidence deviates from predictions, triggering cognitive and neural processes that enhance 

learning and subsequent memory. However, the effects of PE on episodic memory have not 

been clearly explained. This dissertation aims to address three key questions to advance our 

understanding of PE and episodic memory. First, how does the degree of PE influence episodic 

memory, and how do expected and unexpected events interact in this process? Second, what 

insights can be gained from studying the electrophysiological activity associated with 

prediction violations, and what role does PE play in subsequent memory benefits? Lastly, how 

do memory processes change across the lifespan, and how does this impact the brain's ability 

to remember events? By answering these questions, this dissertation contributes to advancing 

our understanding of the cognitive and neural mechanisms underlying the relationship PE and 

episodic memory. 

Study 1 investigated the impact of varying levels of PEs on episodic memory. Two 

experiments were conducted using different stimuli and designs. In Experiment 1, participants 

learned associations between cue-target pairs related to musical instrument sounds and object 

categories. In Experiment 2, participants learned associations between artificial creatures called 

"Wubbels" and environmental categories. Both experiments consisted of prediction learning, 

encoding, and recognition phases. The results showed that participants successfully generated 

predictions and exhibited increasing accuracy rates. The manipulation of PE levels was 

confirmed, with participants rating high PE trials as having the highest discrepancy between 

predicted and presented categories. However, contrary to the hypothesis, the U-shaped effect 

of PE on memory was not observed. Instead, a memory advantage was consistently found for 

low PE trials. The findings suggest a memory congruency effect, indicating that memory 

performance is better when the predicted and presented information align. The absence of a 

memory benefit for high PE trials suggests that additional factors and task sensitivity may 

influence the role of PE in facilitating improved memory. 

Study 2 examined the effects of PE on episodic memory and the companying cognitive 

processes using event-related potentials (ERPs). The study involved a three-day experiment. 

On the first two days, participants implicitly learned object pairs presented sequentially. On the 
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third day, new objects were introduced, either violating the expected item (violation items) or 

serving as a baseline (non-violation items). Item recognition memory and associative memory 

were tested. The results indicated that participants successfully learned the object pairs and 

exhibited faster reaction times for the second item of the pair, suggesting prediction learning. 

However, there were no significant differences in memory performance between violation and 

non-violation items. Despite the lack of behavioral effects, the neural correlates analysis 

revealed a significant relationship between the recollection component and item recognition 

memory for violated items. Higher amplitude values were observed for remembered violation 

items compared to forgotten violation trials. The familiarity component did not show a 

significant effect of PE, and there was no relationship between the P3 amplitude and subsequent 

memory. These findings suggest that recollection plays a crucial role in the interplay between 

PE and episodic memory. The study provides valuable insights into the complex nature of PE 

and its relationship with memory processes, emphasizing the importance of deviations from 

expectations in generating a stronger recollection signal and potentially facilitating better 

subsequent memory. 

Study 3 investigated the effects of PE on episodic memory across different age groups, 

specifically children, younger adults, and older adults. The study utilized a statistical learning 

paradigm similar to Study 2, where participants learned object pairs over two days and their 

memory was tested on the third day, including violation items (presented after the first item of 

a pair) and non-violation items (presented between pairs). Response rates and classification 

indices were calculated as behavioral measures. The results showed that there was no memory 

enhancement effect of PE in any of the age groups. Contrary to expectations, children exhibited 

better classification for non-violating similar items compared to violating similar items. This 

finding suggests that children may remember non-violation items in greater detail, challenging 

the assumption that PE consistently facilitates episodic memory. The observed memory 

advantages for non-violation similar items in children highlight the importance of exploring 

additional factors that may impact memory processes. The study did not find robust evidence 

supporting the role of PE in modulating episodic memory across the lifespan. 

In conclusion, the three studies presented in this dissertation did not find a subsequent 

memory advantage for events that violated predictions, strongly indicating that the effects of 

PE on episodic memory is not as straightforward and consistent as previously postulated. Even 

though our carefully designed experiments to isolate and manipulate PE indicated that 

participants effectively generated violations of predictions, these violations did not translate 
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into improved memory performance. This challenges the previous assumption that PE reliably 

improves memory performance. Nevertheless, the dissertation has provided valuable insights 

into several crucial aspects related to the interplay between PE and episodic memory. First, 

Study 1 revealed that events in line with our predictions were remembered better compared to 

events eliciting PE. This suggests that conforming to expectations may have a positive impact 

on memory encoding. Study 2 emphasized the significance of the recollection component as a 

potential moderator in the relationship between PE and episodic memory. Higher recollection 

component amplitude was observed for remembered violation trials, indicating that the 

violation of expectations can enhance the recollection process. Study 3 uncovered an intriguing 

finding that children exhibited more specific memory for non-violation items compared to 

violation items. This suggests that children may show increased pattern separation and a better 

ability to differentiate similar lures when the items do not violate the expected structure. 

Overall, these insights contribute to a deeper understanding of the complex interplay 

between PE and episodic memory. The results challenge the notion that PE consistently drives 

new learning and improves memory, highlighting the need for further investigation and 

consideration of factors that influence the impact of PE on memory processes. 

The dissertation concludes with a comprehensive discussion that explores additional 

modulating factors influencing the interaction between PE and episodic memory. It delves into 

methodological and theoretical considerations to further elucidate the topic. The discussion also 

encompasses an exploration of the neural correlates associated with the processing of PE and 

its potential enhancing effect on episodic memory. Furthermore, it investigates possible 

explanations for the intriguing finding that children exhibited better memory for details of non-

violation items. The limitations of the studies are identified, and future research directions are 

proposed. Lastly, the dissertation offers a broad perspective on the interplay between PE and 

episodic memory, highlighting the need for continued exploration and investigation in this field. 
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German Summary 

 

Das Verständnis der proaktiven Natur des Gehirns und seiner Fähigkeit, die Zukunft 

vorauszusehen, ist ein langjähriges Bestreben der Philosophie und der wissenschaftlichen 

Forschung. Das Konzept der prädiktiven Verarbeitung erklärt, wie das Gehirn auf der 

Grundlage von Regelmäßigkeiten in der Umwelt Vorhersagen trifft und sich sowohl an 

vorhergesagte als auch an nicht vorhergesagte Ereignisse anpasst. Vorhersagefehler (VF) treten 

auf, wenn die sensorische Evidenz von den Vorhersagen abweicht. Sie lösen kognitive und 

neuronale Prozesse aus, die das Lernen und das anschließende Gedächtnis verbessern. Die 

Auswirkungen von VF auf das episodische Gedächtnis sind jedoch noch nicht eindeutig geklärt. 

In dieser Dissertation sollen drei zentrale Fragen beantwortet werden, um unser Verständnis 

von VF und episodischem Gedächtnis zu verbessern. Erstens: Wie beeinflusst das Ausmaß von 

VF das episodische Gedächtnis, und wie interagieren erwartete und unerwartete Ereignisse in 

diesem Prozess? Zweitens: Welche Erkenntnisse lassen sich aus der Untersuchung der 

elektrophysiologischen Aktivität im Zusammenhang mit VF gewinnen, und welche Rolle 

spielen VF bei späteren Gedächtnisleistungen? Und schließlich: Wie verändern sich 

Gedächtnisprozesse über die Lebensspanne hinweg, insbesondere in Bezug auf VF und ihre 

Interaktion mit dem episodischen Gedächtnis, und wie wirkt sich dies auf die Fähigkeit des 

Gehirns aus, sich an Ereignisse zu erinnern? Durch die Beantwortung dieser Fragen trägt diese 

Dissertation dazu bei, unser Verständnis der kognitiven und neuronalen Mechanismen, die der 

Beziehung zwischen VF und episodischem Gedächtnis zugrunde liegen, zu verbessern. 

Studie 1 untersuchte die Auswirkung unterschiedlicher eVF-Stärken auf das episodische 

Gedächtnis. Es wurden zwei Experimente mit unterschiedlichen Stimuli und Designs 

durchgeführt. In Experiment 1 lernten die Teilnehmenden Assoziationen zwischen 

Hinweisreiz-Zielreiz-Paaren, die sich auf Musikinstrumentenklänge und Objektkategorien 

bezogen. In Experiment 2 lernten die Teilnehmenden Assoziationen zwischen künstlichen 
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Kreaturen namens "Wubbels" und Umweltkategorien. Beide Experimente bestanden aus 

Vorhersage-Lern-, Enkodierungs- und Wiedererkennungsphasen. Die Ergebnisse zeigten, dass 

die Teilnehmenden erfolgreich Vorhersagen generierten und dabei eine zunehmende 

Genauigkeit aufwiesen. Die Manipulation des VF-Niveaus wurde bestätigt, wobei die 

Teilnehmenden bei Versuchen mit hohem VF die größte Diskrepanz zwischen den 

vorhergesagten und den präsentierten Kategorien feststellten. Entgegen der Hypothese wurde 

jedoch kein U-förmiger Effekt von VF auf das Gedächtnis beobachtet. Stattdessen wurde 

durchweg ein Gedächtnisvorteil für die Bedingung mit niedrigem VF festgestellt. Die 

Ergebnisse deuten auf einen Gedächtniskongruenzeffekt hin, der besagt, dass die 

Gedächtnisleistung besser ist, wenn die vorhergesagten und präsentierten Informationen 

übereinstimmen. Das Fehlen eines Gedächtnisvorteils bei der Bedingung mit hohem VF lässt 

vermuten, dass zusätzliche Faktoren und die Aufgabensensitivität die Rolle von VF bei der 

Verbesserung des Gedächtnisses beeinflussen könnten. 

Studie 2 untersuchte die Auswirkungen von VF auf das episodische Gedächtnis und die 

begleitenden kognitiven Prozesse anhand ereigniskorrelierter Potenziale (EKPs). Die Studie 

umfasste ein dreitägiges Experiment. An den ersten beiden Tagen lernten die Teilnehmenden 

implizit Objektpaare, die nacheinander präsentiert wurden. Am dritten Tag wurden neue 

Objekte eingeführt, die entweder gegen das erwartete Objekt verstießen (Objekte mit VF) oder 

dies nicht taten und damit als Ausgangswert dienten (Objekte ohne VF). Das 

Wiedererkennungsgedächtnis und das assoziative Gedächtnis wurden getestet. Die Ergebnisse 

zeigten, dass die Teilnehmenden die Objektpaare erfolgreich lernten und schnellere 

Antwortzeiten für das zweite Objekt des Paares aufwiesen, was auf ein Vorhersage-Lernen 

schließen lässt. Es gab jedoch keine signifikanten Unterschiede in der Gedächtnisleistung 

zwischen Objekten mit und ohne VF. Trotz des Fehlens von Verhaltenseffekten ergab die 

Analyse der neuronalen Korrelate eine signifikante Beziehung zwischen der 
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Erinnerungskomponente und dem episodischen Gedächtnis für Objekte mit VF. Es wurden 

höhere Amplitudenwerte für erinnerte Objekte mit VF im Vergleich zu vergessenen Objekte 

mit VF beobachtet. Die Vertrautheitskomponente zeigte keine signifikante Auswirkung des VF, 

und es gab keine Beziehung zwischen der P3-Amplitude und der nachfolgenden Erinnerung. 

Diese Ergebnisse legen nahe, dass der Abruf eine entscheidende Rolle im Zusammenspiel 

zwischen VF und episodischem Gedächtnis spielt. Die Studie liefert wertvolle Einblicke in die 

komplexe Natur dees VF und seiner Beziehung zu Gedächtnisprozessen und unterstreicht die 

Bedeutung von Abweichungen von den Erwartungen für die Erzeugung eines stärkeren 

Erinnerungssignals und die mögliche Erleichterung einer besseren späteren Erinnerung. 

Studie 3 untersuchte die Auswirkungen von VF auf das episodische Gedächtnis in 

verschiedenen Altersgruppen, insbesondere bei Kindern, jüngeren Erwachsenen und älteren 

Erwachsenen. In der Studie wurde ein statistisches Lernparadigma ähnlich wie in Studie 2 

verwendet, bei dem die Teilnehmenden an zwei Tagen Objektpaare lernten und ihr Gedächtnis 

am dritten Tag getestet wurde, einschließlich der Objekte, die gegen die Regeln verstießen (die 

nach dem ersten Objekt eines Paares präsentiert wurden), und der Objekte, die nicht gegen die 

Regeln verstießen (die zwischen den Paaren präsentiert wurden). Als Verhaltensmaßzahlen 

wurden Antwortraten und Klassifikationsindizes berechnet. Die Ergebnisse zeigten, dass VF in 

keiner der Altersgruppen eine gedächtnisfördernde Wirkung hatte. Entgegen den Erwartungen 

zeigten die Kinder eine bessere Klassifizierung für ähnliche Objekte ohne VF als für ähnliche 

Objekte mit VF. Dieser Befund deutet darauf hin, dass sich Kinder an Objekte ohne VF 

detaillierter erinnern können, was die Annahme in Frage stellt, dass VF durchweg das 

episodische Gedächtnis fördert. Die beobachteten Gedächtnisvorteile für ähnliche Objekte ohne 

VF bei Kindern unterstreichen die Bedeutung der Erforschung zusätzlicher Faktoren, die 

Gedächtnisprozesse beeinflussen können. In der Studie wurden keine stichhaltigen Belege für 
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die Rolle von VF bei der Modulation des episodischen Gedächtnisses über die gesamte 

Lebensspanne hinweg gefunden. 

Zusammenfassend lässt sich sagen, dass die drei in dieser Dissertation vorgestellten 

Studien keinen nachträglichen Gedächtnisvorteil für Ereignisse ergaben, die Vorhersagen 

verletzten, was stark darauf hindeutet, dass die Auswirkungen von VF auf das episodische 

Gedächtnis nicht so einfach und konsistent sind wie bisher postuliert. Obwohl unsere sorgfältig 

konzipierten Experimente zur Isolierung und Manipulation von VF darauf hinwiesen, dass die 

Teilnehmenden tatsächlich Vorhersageverletzungen erlebten, führten diese Verletzungen nicht 

zu einer verbesserten Gedächtnisleistung. Dies stellt die bisherige Annahme in Frage, dass VF 

die Gedächtnisleistung zuverlässig verbessert. Nichtsdestotrotz hat die Dissertation wertvolle 

Einblicke in mehrere entscheidende Aspekte im Zusammenhang mit dem Zusammenspiel von 

VF und episodischem Gedächtnis geliefert. Erstens zeigte Studie 1, dass Ereignisse, die unseren 

Vorhersagen entsprachen, besser erinnert wurden als Ereignisse, die VF auslösten. Dies deutet 

darauf hin, dass die Übereinstimmung mit den Erwartungen einen positiven Einfluss auf die 

Gedächtnisenkodierung haben kann. In Studie 2 wurde die Bedeutung der 

Erinnerungskomponente als potenzieller Moderator für die Beziehung zwischen VF und 

episodischem Gedächtnis hervorgehoben. Eine höhere Amplitude der Erinnerungskomponente 

wurde bei Objekten mit VF beobachtet, was darauf hindeutet, dass die Verletzung von 

Erwartungen den Erinnerungsprozess verbessern kann. In Studie 3 wurde die interessante 

Erkenntnis gewonnen, dass Kinder ein spezifischeres Gedächtnis für Objekte ohne VF im 

Vergleich zu Objekten mit VF aufwiesen. Dies deutet darauf hin, dass Kinder möglicherweise 

eine verstärkte Tendenz zu stark unterscheidbaren Gedächtnisspuren und eine bessere Fähigkeit 

zur Unterscheidung ähnlicher Objekte zeigen, wenn die Objekte nicht gegen die erwartete 

Struktur verstoßen. 
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Insgesamt tragen diese Erkenntnisse zu einem tieferen Verständnis des komplexen 

Zusammenspiels zwischen VF und episodischem Gedächtnis bei. Die Ergebnisse stellen die 

Vorstellung in Frage, dass VF durchgängig neues Lernen fördert und das Gedächtnis 

verbessern, und unterstreichen die Notwendigkeit weiterer Untersuchungen und Überlegungen 

zu Faktoren, die die Auswirkungen von VF auf Gedächtnisprozesse beeinflussen. 

Die Dissertation schließt mit einer umfassenden Diskussion, in der weitere modulierende 

Faktoren untersucht werden, die die Interaktion zwischen VF und episodischem Gedächtnis 

beeinflussen. Sie geht auf methodische und theoretische Überlegungen ein, um das Thema 

weiter zu erhellen. Die Diskussion umfasst auch eine Untersuchung der neuronalen Korrelate, 

die mit der Verarbeitung von VF und ihrer potenziell verstärkenden Wirkung auf das 

episodische Gedächtnis verbunden sind. Darüber hinaus werden mögliche Erklärungen für das 

verblüffende Ergebnis untersucht, dass Kinder ein besseres Gedächtnis für Details von 

Objekten ohne VF aufwiesen. Die Grenzen der Studien werden aufgezeigt, und es werden 

künftige Forschungsrichtungen vorgeschlagen. Schließlich bietet die Dissertation eine 

umfassende Perspektive auf die komplizierte Dynamik zwischen VF und episodischem 

Gedächtnis und unterstreicht den Bedarf an fortgesetzter Erforschung und Untersuchung in 

diesem Bereich.
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1. Theoretical Background 

Understanding the principles of the brain and its interaction with the environment has 

been a longstanding pursuit in various philosophical and scientific research. One fundamental 

principle regarding the brain is its proactive nature and its ability to anticipate the future (Bar, 

2007; Friston, 2010). The predictive coding framework, which has gained recent attention, 

proposes that the brain works as a prediction machine, aiming to minimize surprise and adapt 

to the complexities of the environment. This is achieved through hierarchically organized 

cognitive systems that compare predictions with sensory inputs from the environment (Clark, 

2013; Heilbron & Chait, 2018; Knill & Pouget, 2004). When incoming sensory evidence 

deviates from predictions, it results in prediction error (PE), which is then processed and passed 

up the hierarchy to update internal models, thus improving predictions over time (Bar, 2007). 

Moreover, the degree of PE initiates cognitive and neural processes that enhance learning, 

related to the subsequent memory (Henson & Gagnepain, 2010). Yet, the effects of PE on 

episodic memory, as compared to learning from regularities, have been comparatively 

underexplored. 

 The predictive coding framework thus suggests that our brain utilizes past experiences 

to anticipate and prepare for the future. To gain a better understanding of these processes and 

their impact on episodic memory, the presented dissertation addressed three key questions: 

1. How does the degree of PE affect episodic memory, how do expected and unexpected1 

events interact in the process of episodic memory? 

2. What insights can be derived from the electrophysiological activity associated with the 

violation of predictions regarding the relationship between PE and episodic memory, 

and what role does PE play in subsequent memory benefits? 

3. What can we2 learn about changes in the processes of PE as we age, how does this 

knowledge improve our understanding of the brain’s ability to remember events over 

the lifespan? 

These inquiries can contribute to advancing our comprehension of the cognitive and 

neural mechanisms underlie the processes of PE as a fundamental brain function and its 

significance in supporting episodic memory. With this aim, three studies that all aimed at 

 
1 Even though we are aware of the conceptual differences among the terms, for the ease of readability, the term 

expectation will be utilized to refer prediction, while violation of predictions will be employed interchangeably 

with PE. For a more comprehensive overview of various forms of novelty, please refer to Quent et al. (2021).  
2 The inclusive pronoun ‘we’ is utilized throughout the entire work instead of the singular pronoun ‘I’. 
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examining the interplay between PE and episodic memory were conducted. In the following 

sections, the theoretical background for the presented work will be provided. Chapter 1 presents 

the predictive account of episodic memory, with a particular focus on the varying levels of PE 

and their impact on subsequent memory. This chapter addresses the gaps in the current literature 

and highlights the need for further investigation. Chapter 2 comprises the electrophysiological 

correlates of PE, which emphasizes the importance of understanding the neural underpinnings 

of the interplay between PE and memory benefits. The chapter explores the relationship 

between PE and neural activity to shed light on the mechanisms involved. Chapter 3 takes a 

lifespan perspective on the prediction account of memory and motivates the investigation of 

age-related changes in memory processes and their interaction with PE. This chapter examines 

how memory processes change across the lifespan and how they interact with PE across 

different stages of life. Finally, the present findings are integrated into a larger research context, 

and their implications are discussed, along with limitations that should be acknowledged.  

1.1. Predictive Account of Episodic Memory 

Episodic memory refers to the cognitive ability of remembering specific events from 

one’s personal past (Tulving, 197(Tulving, 2012). It involves encoding, storage and retrieving 

details such as the time, place, and context in which the specific event occurred (Underwood, 

1969). Its function includes binding details belonging to the same event while separating them 

from other details associated with different events (O’Reilly & Norman, 2002) Zimmer et al., 

2006). Broadly speaking, research on episodic memory investigates its behavioral and neural 

mechanisms and seeks to understand why some events are more memorable than others. To 

comprehend the factors influencing event memorability, for example, the predictive processing 

framework (Bar, 2007; Friston, 2010; Knill & Pouget, 2004) suggests that events deviating 

from our expectations are better remembered compared to those aligning with them.  

The predictive processing framework (Bar, 2007; Friston, 2010; Knill & Pouget, 2004) 

elucidates how the brain generates predictions based on environmental regularities and adapts 

itself to both predicted and unpredicted events. Given the importance of performing efficiently 

and being functional in daily life, it becomes necessary to extract statistical regularities from 

the environment and continually update the predictions to account for conflicts between 

established regularities and incoming sensory input. The framework suggests that remembering 

and learning from PEs improve future predictions. In other words, the ability to encode and 
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retrieve PEs contributes to better anticipation and adaptation to complex and ever-changing 

environments. 

1.1.1. Memory-Enhancement for PE and Memory Congruency Effect 

Several recent studies have examined the relationship between PE and memory 

processes, aiming to elucidate the mechanisms underlaying memory-enhancing effects of PE 

(Bein et al., 2021; Brod et al., 2018; Greve et al., 2017; Kafkas & Montaldi, 2018; Ortiz-Tudela 

et al., 2023; Quent et al., 2022; Rouhani et al., 2020; Wahlheim et al., 2022). These studies 

typically involve an encoding phase where PE occurs, followed by a subsequent memory phase. 

Consistent with the predictive processing framework, it has been observed that events giving 

rise to PE are often better remembered due to the encoding of detailed snapshots of these events 

(Henson & Gagnepain, 2010). Furthermore, it has been proposed that events that violate our 

predictions are encoded as distinct memory traces, separate from those those related to previous 

predictions, without disrupting our existing predictions (Frank et al., 2020). Thus, the new 

information provided by PE is integrated into memory alongside existing predictions, allowing 

the ability to update predictions by incorporating unexpected elements while preserving the 

coherence of our existing predictions. 

On the contrary, an alternative line of research, known as the memory congruency effect, 

points that events aligning with our predictions are also better remembered (Alba & Hasher, 

1983; Anderson, 1981; Craik & Tulving, 1975). For instance, congruent associations tend to 

exhibit better memory compared to incongruent associations. Recent behavioral studies have 

provided substantial support for this notion, such as research involving pairs of items and scenes 

(Brod & Shing, 2019; Liu et al., 2018; Ortiz-Tudela et al., 2017; van Kesteren et al., 2013), 

pairs of items and locations (Atienza et al., 2011), and non-preexisting relations (Ostreicher et 

al., 2010). In summary, research indicates that both events eliciting PE and events aligning with 

our predictions can lead to enhanced memory performance. 

1.1.2. The U-Shape Function of PE on Memory 

When considering the lines of research, namely memory-enhancement for PEs and 

memory congruency effects, two key questions arise: (i) how do different levels of PE affect 

memory, and (ii) how do expected and unexpected events compete in memory processes? To 

address these questions, the Schema-Linked Interactions between Medial Prefrontal and Medial 

Temporal Lobe Model (SLIMM, Van Kesteren et al., 2012) proposed a U-shaped relationship 
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between PE and memory, involving the collaboration of different brain systems. According to 

the model, the process of generating predictions and subsequent memory operations consists of 

several stages. First, when encountering an event, relevant information from memory is 

activated, which assumingly reinstates perceptual traces and facilitates consolidation. This 

process is aided by the hippocampus via pattern completion, which involves the reinstatement 

of information based on partial cues. Thus, the related representation of the entire event is 

activated upon exposure. The generated prediction is then compared to the sensory input, 

resulting in the computation of PE at varying levels. These levels of PE influence subsequent 

cognitive and neural processes. Specifically, events with low or high levels of PE are better 

remembered compared to those with medium levels. Low PEs are associated with increased 

activity in the medial prefrontal cortex (mPFC), which strengthens existing connections 

underlying predictions and facilitates future information at retrieval. Conversely, events 

generating high PE enhance learning and memory through the involvement of the medial 

temporal lobe (MTL), which creates snapshots of these events, resulting in memory advantage. 

Events that are neither strongly predicted nor unpredicted do not benefit memory since the 

activation of mPFC and MTL is weak. In summary, varying levels of PE, ranging from low to 

high, are expected to demonstrate a U-shaped relationship with episodic memory: events 

generating low and high PEs are better remembered compared to events with medium levels.  

The U-shaped relationship between PE and episodic memory has received support from 

recent research (Greve et al., 2018; Quent et al., 2022). In one study, Greve and colleagues 

(2018) conducted experiments where participants learned a rule regarding the pairing of object 

exemplars. This rule was then manipulated at three levels: congruent, incongruent, and 

unrelated, based on the strength of their relatedness to previously learned associations. The 

congruent level maintained the rule, while the incongruent level reserved it. In the unrelated 

level, the rule changed after the first trial, with no specific rule established. These rules were 

violated or confirmed on critical trials just before testing memory performance. The results 

indicated the U-shape relationship between PE levels and memory, with worse memory 

performance observed for the unrelated level compared to congruent and incongruent levels. 

However, it is important to note that the poorer memory observed for the medium level might 

be attributed to the need to create new associations rather than representing the medium level 

within the overall spectrum for PE. To address the issue of the continuous spectrum for PE, 

Quent et al. (2022) conducted a virtual reality study. Participants were immersed in a virtual 

kitchen where kitchen objects were positioned in different locations, each varying in degrees of 
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congruency based on semantic predictions. For instance, a kettle placed on the counter would 

be predicted (i.e., low PE), a kettle on the table would be neither strongly predicted nor 

unpredicted (i.e., medium PE), and a kettle near the trash can would be unpredicted (i.e., high 

PE). Memory for the object-location pairs was tested using free recall and an alternative forced-

choice task. The results aligned with the U-shaped function of PE on memory, indicating a 

memory advantage for predicted and unpredicted object-location pairs compared to the medium 

level. However, it remains unclear how the U-shaped function operates when predictions are 

derived from an episodic context rather than relying on pre-experimental knowledge. 

1.1.3. Interim Summary 

Although given the importance of these studies providing evidence for the U-shape 

function of PE on memory (Greve et al., 2018; Quent et al., 2022), further investigation is 

required to explore the role of PE with a medium level in the context of episodic memory. A 

significant gap exists in the research concerning the medium level of prediction. This level 

holds importance in the spectrum as its memory performance compared to the other levels to 

draw conclusions, representing a state where predictions are neither violated nor confirmed. 

However, previous studies either lacked a medium level (Bein et al., 2021; Kafkas & Montaldi, 

2018) or had a medium level that was unrelated to the previously induced prediction learning 

(Greve et al., 2018). Therefore, to address this gap in the literature, it is essential to examine 

the U-shaped function of PE on memory, specifically with a medium level directly associated 

with previously induced prediction learning. This approach facilitates a comprehensive 

understanding of the impact of PE on episodic memory across the prediction spectrum, 

including a comparable medium level, and provides valuable insights into this process.  
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1. 2. The Electrophysiological Correlates of PE and Episodic Memory 

To understand how memory works, implementing behavioral measures with neuroimaging 

techniques is crucial (Ranganath, 2022). Given the nature of PE processing, which involves an 

explicit evaluation of events, relying solely on behavioral measures may not capture its 

underlying components. Electrophysiological measures enable us to investigate data on a trial-

by-trial basis. By comparing the electrophysiological changes in time-locked to the events that 

generate PE, we can gain deeper insights into how the brain processes PE and underlying 

mechanisms that enhance memory performance. Currently, there is limited knowledge 

regarding the neural basis of the effects of PE on episodic memory.  

Electroencephalography (EEG) is one of the widely employed neuroimaging tools that 

involves recording the brain's electrophysiological activity through electrodes placed on the 

scalp. It allows monitoring various cognitive processes with a high temporal resolution. The 

Event-related Potentials (ERPs) are derived from the EEG signal by extracting and averaging 

the neural responses that are time-locked to specific events. Researchers have been using the 

distinct components observed in the ERP waveforms to associate these components with 

specific cognitive processes or stages of information processing (Luck, 2014). In this 

dissertation, it is proposed that the ERPs can provide a precise and objective measure of neural 

activity associated with encoding and retrieval of events eliciting PE. 

➢ Recent research has identified two main factors that impact subsequent memory 

performance: the memory benefit for PE and memory congruency effect. 

➢ The U-shaped function of PE has been proposed, with both low and high levels of 

PE resulting in better memory performance compared to medium levels. 

➢ However, previous studies investigating the effect of PE on episodic memory have 

lacked a comparable medium level of PE that is related to previously induced 

prediction learning. 

➢ Therefore, it is crucial to study the full range of PE to fully understand the interplay 

between PE and subsequent memory performance. 

➢ Dissertation aim 1: Testing the U-shape relationship between PE and episodic 

memory. 
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1.2.1. The Electrophysiological Correlates During Encoding  

The investigation of novelty processing has a longstanding tradition in ERP research3,4. 

For instance, one widely used experimental design in this domain is the oddball paradigm, 

which allows for a comparison of ERPs elicited by unexpected and expected stimuli. Among 

the ERP components that have been studied extensively within the oddball paradigm, the P3 

component stands out. It is typically a positive deflection in the signal occurring around 300 – 

500 ms after the stimuli presentation. Numerous studies have consistently demonstrated that 

the P3 component exhibits higher amplitude and displays a distinct scalp distribution in 

response to unexpected stimuli as compared to expected stimuli (Donchin, 1981; Friedman et 

al., 2001; Linden, 2005; Polich, 2007). 

Prior research has shown that context-driven expectations influence the amplitude of P3 

component (Cycowicz & Friedman, 2007; Schomaker et al., 2014; Schomaker & Meeter, 

2018). That is, expectations about upcoming stimuli can significantly impact their processing. 

For instance, when participants anticipate encountering complex and novel stimuli, the P3 

novelty effect, which reflects unexpectedness, diminishes compared to situations where no 

expectations are formed, irrespective of stimulus complexity. This implies that the presence of 

expectations reduces the extent of unexpectedness elicited by novel stimuli, consequently 

resulting in a reduced P3 response. These findings highlight the influential role of expectations 

in shaping the processing of novel information, as reflected in differences in P3 amplitude.  

In addition to its involvement in expectancy processing, the P3 component has been 

investigated in relation to reward PE (as demonstrated in a recent meta-analysis by Stewardson 

and Sambrook (2020)) and with hierarchical violations (Vidal-Gran et al., 2020) as suggested 

by the predictive coding theory (Clark, 2013; Heilbron & Chait, 2018; Knill & Pouget, 2004). 

Previous studies (Stewardson & Sambrook, 2020; Vidal-Gran et al.,2020) have revealed that 

events giving rise to PE are encoded more effectively, leading to improved memory. However, 

no previous research has yet examined the electrophysiological correlates of PE together with 

its influence on episodic memory. It is still unclear whether P3 elicited by violations contributes 

to the subsequent memory of events that violate these predictions. Our study aims to bridge this 

 
3 Various ERP studies have investigated novelty processing and have identified different components such as 

mismatch negativity (MMN), N2, and N400. Although we acknowledge their importance for the literature, these 

components are beyond the scope of the present work. 
4 Unlike P3, MMN is associated with unattended deviants and involuntary orienting response (Friedman et al., 

2001). Based on our understanding of PE, its processing is dynamic and requires an active evaluation of 

deviants. Therefore, although we are aware of the importance of the MMN in the Predictive Coding Framework 

(Baldeweg, 2007; Wacongne et al., 2012), this component is out of our scope.  



Theoretical Background 

8 

 

gap in the literature by investigating the relationship between PE, P3 and subsequent memory, 

thereby advancing our understanding of the intricate interplay between PE and episodic 

memory. 

1.2.2. The Electrophysiological Correlates During Retrieval  

In terms of the ERP components regarding the retrieval, the dual process theories of 

recognition (Curran & Cleary, 2003; Jacoby, 1991; Mandler, 1980; Yonelinas, 2002, for a 

review Cowell et al., 2019) revealed that there are two distinct cognitive processes which 

contribute to episodic memory retrieval: familiarity and recollection. Familiarity refers a 

relatively undifferentiated feeling of having experienced the previous evet before, without 

recalling specific contextual and encoding details, whereas recollection involves a clear and 

distinct experience of contextual encoding details of an event (Doidge et al., 2017; Isingrini et 

al., 2016). The studies showed that familiarity and recollection have distinct patterns in scalp 

distribution, amplitude, and latency. Familiar items elicit a negative-going response, which is 

higher in amplitude between 300 – 500 ms at frontal electrodes. On the other hand, recollected 

items produce a positive-going response, which is higher in amplitude between 400 – 800 ms 

after the stimulus onset (Curran & Cleary, 2003).  

Previous research showed that the effects of PE on memory are not limited to the 

encoding but also extended to retrieval process, for instance, Kafkas and Montaldi (2018) asked 

their participants to learn associations between symbols and object categories, which were then 

violated during encoding or retrieval. They employed a remember/know procedure to assess 

memory performance, requiring participants to judge if presented objects had been seen before 

or not. This procedure aimed to examine memory retrieval processes: familiarity and 

recollection. The findings revealed that unexpected objects improved recollection memory 

performance, conversely, expected objects enhanced familiarity performance. This suggests 

that the assessment of PE plays a vital role in facilitating subsequent retrieval mechanisms. 

Furthermore, the selective retrieval process (Lu et al., 2022) also proposes that error signals 

originating from PE may contribute to subsequent recollection during retrieval (Fenerci & 

Sheldon, 2022; Wahlheim et al., 2022). However, the neural processes underlying differences 

during retrieval of predicted and unpredicted events have not been understood well, yet. The 

aim of this dissertation was to establish a connection between the findings from 

electrophysiological and behavioral studies to shed light on the underlying neural processes 

involved in how PE affects episodic memory.  
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1.2.3. Interim Summary 

Taken together, ERPs offer a precise and objective measure of neural activity associated 

with the processing of PEs. The preceding evidence highlights the significance of encoding and 

retrieval processes in the memory enhancement effect of PE. However, the specific 

electrophysiological correlates of these processes have not been directly investigated directly 

within the same experiment. To fill this research gap, the present dissertation aimed to 

investigate the relationship between PE, its ERP components, and memory within a single 

paradigm. Investigating the ERPs as an online measure of PE can significantly advance our 

understanding of the neural basis underlying the effects of PE on episodic memory. 

 

1.3. Predictive Account Across the Lifespan 

From childhood to old age, there are continuous changes in episodic memory processes. 

Existing literature indicates a pattern of rapid improvement during childhood, followed by a 

peak and subsequent decline during adulthood (Langnes et al., 2019; Shing et al., 2016). 

Moreover, this age-specific pattern of episodic memory has been linked to structural and 

functional brain correlates, specifically the MTL, the hippocamous, and the prefrontal cortex 

(PFC) (for reviews see (Cabeza et al., 2018; Ofen & Shing, 2013). The maturation of the 

hippocampal regions in early childhood has been associated with age-related memory 

improvement (Lee et al., 2014). At the other end of the lifespan, age-related impairments in 

MTL regions have been linked to difficulties in episodic memory processes among older adults, 

➢ Previous EEG research has provided evidence that expected and unexpected events 

are processed differently in the brain, as indexed by P3 amplitude. 

➢ However, no previous studies have examined the relationship between PE and its 

temporal correlates together with its effect on subsequent memory. 

➢ Two distinct neural processes for familiarity and recollection play a role in PE 

retrieval: predicted events enhance familiarity, while unpredicted ones are 

recollected. 

➢ Nonetheless, the neural processes underlying this difference have not been 

thoroughly explored. 

➢ To conclude, a comparison of the neural correlates of PE can enhance our 

understanding of the conditions under which PE enhances memory performance. 

➢ Dissertation aim 2: Investigating the ERPs of PE in relation to episodic memory. 
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particularly in separating new associations from previous events (Daselaar et al., 2003, 2006). 

On the other hand, the PFC exhibits a more extended developmental trajectory compared to the 

MTL (Sowell et al., 2003). The PFC has long been associated with metamemory, which refers 

to the ability to monitor and control one's own memory functions (Janowsky et al., 1989; 

Schwartz, 1994). Research has demonstrated that both children and older adults often struggle 

with memory monitoring, leading to difficulties in recalling specific details associated with past 

events (Ghetti et al., 2010; Johnson et al., 1993; Souchay & Isingrini, 2004; Wahlheim & Zacks, 

2019). Overall, investigations into the varying lifespan trajectories of the brain and memory 

functions have sought to understand the age-related effects on episodic memory processes. 

However, research on lifespan differences in predictive processing and its impact on memory 

remains relatively limited. 

Taking a lifespan approach is crucial for understanding the interplay between PE and 

episodic memory. Although the predictive coding framework has been used to investigate 

disorders associated with abnormal prediction patterns (e.g., schizophrenia, Fletcher & Frith, 

2008), little is known about how predictive processing develops in children and older adults 

who undergo significant changes in their internal knowledge structure and neurocognitive 

architecture. To qualify as a unifying framework of the brain, it is essential to examine the 

boundaries and adaptiveness of the predictive brain principle within the neuroarchitectures of 

both developing and aging brains. In sum, it was capitalized in the presented dissertation that 

the differences between the episodic memory processes across the lifespan provide a unique 

opportunity to derive specific hypotheses about potential age differences in predictive 

processing such as, how predictions are generated, and how PEs, in turn, shape the episodic 

memory. 

1.3.1. Two-Component Framework of Episodic Memory 

A notable framework, the two-component framework of episodic memory (Shing et al., 

2008, 2010; Shing & Lindenberger, 2011)  emphasizes the dynamic nature of episodic memory 

functioning throughout the lifespan. The model consists of two key interactive components: the 

associative component and the strategic component. The associative component facilitates the 

integration of various features of memory content into coherent representations, while the 

strategic component controls and regulates memory processes. According to the framework, 

these two components follow distinct developmental trajectories over the lifespan. Specifically, 

the associative component exhibits relatively faster development during childhood and 
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undergoes a decline in late adulthood and old age. On the other hand, the strategic component 

matures later, but also shows a decline in older age, similar to the associative component.  

There is ample evidence available on the age-related differences in the neural and 

behavioral correlates of the two components of episodic memory. For instance, the seminal 

study from Moscovitch (1992) proposed that strategic component primarily relies on the frontal 

cortex, whereas the associative component predominantly related to the MTL regions, 

specifically the hippocampus. Research has provided an empirical support for this neural and 

structural distinction between the associative and strategic components (Shing et al., 2008; 

Werkle-Bergner et al., 2006). For the associative component, studies suggest that the maturation 

in MTL areas during childhood is correlated with improvements in the ability to form and 

remember associations between different elements of an event (Daselaar et al., 2003; 2006). On 

the other hand, the strategic component has been linked to the PFC in the processes related to 

memory control (Fletcher & Henson, 2001; Rugg & Wilding, 2000). At the other end of the life 

span, there is a decline in activity within posterior brain areas but an increasing activity in 

frontal areas (Davis et al., 2008; Grady et al., 2003). This shift in older age may reflect a 

compensatory mechanism for difficulties in forming new associations and integrating of new 

information (for a review see Maillet & Rajah, 2013).  Moreover, research has shown that older 

adults exhibit higher activation in the anterior cingulate cortex (ACC) during conflict 

monitoring compared to younger adults (Davis et al., 2008; Jimura & Braver, 2010), which 

suggests that older adults may rely more extensively on cognitive control mechanisms in the 

ACC to resolve conflicts. Conversely, during memory development in children, significant 

changes in frontal areas and their interaction with MTL are primarily associated with processes 

involved in organizing and structuring information for later recall (Nolden et al., 2021; Ofen et 

al., 2007). All in all, the differences in neural and behavioral aspects of the associative and 

strategic component suggest that the challenges in episodic memory for children stem mainly 

from underdeveloped strategic operations, while the difficulties experienced by older adults are 

associated with impairments in both the associative and strategic components. 

The first direct evidence for the two-component framework was provided by Shing et 

al.’s (2010) study. In the study, the authors investigated age-related differences in the 

associative and strategic components within a similar task across four age groups (children, 

teenagers, young and older adults). Participants were required to remember words and words 

pairs, and the task included two manipulations: the associative component involved forming 

associations between the words, while the strategic component involved utilizing memory 
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strategies to enhance memory performance. During the task, participants were given different 

instructions that emphasized either item encoding, pair encoding, or elaborative pair encoding 

as a strategy. The results were in line with the notion that distinct patterns of memory 

performance are observed across different age groups. Specifically, children exhibited the 

greatest benefit from the combined instructions, indicating their reliance on associative binding. 

In contrast, older adults did not show a memory benefit related to the task instructions, 

suggesting a decline in both the strategic and the associative components. Taken together, these 

findings support the different developmental trajectories of the two components of episodic 

memory. It suggests that children may have tendency to benefit from associative strategies to 

bind different features of an event, while older adults may have difficulties in employing 

effective strategies for processing new information.    

1.3.2. Pattern Completion and Pattern Separation  

Previous research has demonstrated that the ability to form and remember precise 

memories, characterized by specific details and without confusion with similar information, 

undergoes changes throughout lifespan (Graf & Ohta, 2002; Ofen & Shing, 2013; Sommer et 

al., 2021). This adaptive encoding, remembering, and discrimination of different memories rely 

on the interplay between two crucial processes: pattern completion and pattern separation 

(McClelland et al., 1995; Ngo et al., 2021). Pattern completion serves as a mechanism for 

memory retrieval by activating a network of related elements or constituents of an event. When 

pattern completion occurs, the activation of one element can trigger the retrieval of other 

associated elements within the same event. In contrast, pattern separation involves extracting 

unique features or details that enable the differentiation of similar events from one another. This 

process aids in encoding similar events as distinct, non-overlapping representations in memory, 

preventing them from being conflated. 

Studies have indicated that children demonstrate improved ability to remember 

associations, aided by pattern completion processes (Ngo et al., 2018). However, their 

memories are also heavily influenced by specific perceptual properties rather than abstract or 

semantic knowledge (Ofen & Shing, 2013), suggesting a pattern separation-like process. 

Previous research has highlighted the involvement of the hippocampus in both pattern 

separation (Doxey & Kirwan; 2015; cf. Quian Quiroga, 2020) and pattern completion (Schapiro 

et al., 2012).  Regarding the development of the hippocampal regions, it has been proposed that 

children’s ability to form distinct memories and bind them together aligns with age-related 
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improvements in pattern separation and completion during childhood (James et al., 2021; Ngo 

et al., 2018; Rollins & Cloude, 2018). Conversely, at the other end of the lifespan, older adults 

tend to rely more on general concepts and similarities, resulting in difficulties in discriminating 

similar events (Fandakova et al., 2018). Studies have consistently shown reduced neural 

distinctiveness in older adults when presented with different events compared to young adults 

(Koen et al., 2019; Park et al., 2010, 2012; Sommer et al., 2019). This loss of details may be 

associated with older adults’ difficulties in forming new memories. Taken together, the 

evidence suggests that a developmental trajectory wherein the precision of encoding and 

retrieval improves from childhood to adulthood and then declines during aging.  

1.3.3. Interim Summary 

By integrating evidence from various research domains that investigate changes in 

memory processes across the lifespan, it becomes reasonable to assume that the differences in 

episodic memory processes may impact how predictions are generated and how violations to 

predictions affect memory. Additionally, considering the role of pattern separation in 

supporting subsequent memory for unexpected events (Aitken & Kok, 2022) Frank et al., 2020), 

the neural and behavioral changes underlaying the relationship between PE and episodic 

memory are expected to change over the lifespan, as well. Specifically, children may be more 

sensitive to events that elicit PE due to their bias towards the associative component, resulting 

in more pronounced PE and enhanced subsequent memory. In contrast, older adults may exhibit 

reduced sensitivity to the effects of PE on memory, as the associative component tends to 

decline with age and predictions based on previously formed associations become less reliable. 

However, despite the potential significance of these assumptions for the literature, there is a 

scarcity of empirical research examining the lifespan differences in the relationship between 

PE and episodic memory. Lifespan studies play a crucial role in bridging the gaps between 

specific age periods studied in psychology and cognitive neuroscience, enabling a 

comprehensive understanding of memory and prediction processing throughout the lifespan. 

Such comparisons provide valuable insights that would not be attainable without this broader 

perspective. In this dissertation, the investigation of predictive processing in different age 

groups provides a better understanding of the relationship between PE and episodic memory, 

shedding light on the dynamics of this interaction across the lifespan.   
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1.4. The Aims and the Relevance of the Presented Work 

In this dissertation, we aimed to gain valuable insights into the fundamental processes 

related to PE that shape our cognitive experiences and contribute to our understanding of how 

memories are encoded, stored, and retrieved. Three main research goals were pursued to address 

these objectives. 

Study 1 explored and addressed the limitations and gaps in previous research on the 

manipulation of the U-shaped function of PE on memory. By incorporating three levels of PE 

in one experimental setup, this study offered a comprehensive and nuanced approach to 

understanding the effects of PE on episodic memory. The inclusion of a medium level that was 

previously lacking in the literature added depth and richness to the investigation. Through two 

carefully designed experiments, this Study 1 provided a broader perspective on the relationship 

between PE and episodic memory. The objective of Study 2 was to investigate neural ERP 

correlates associated with encoding and retrieval of events accompanied by PE. While previous 

research has explored the differential processing of expected and unexpected events, no 

previous studies have examined the role of PE, as reflected by P3 amplitude, in subsequent 

memory benefits. Furthermore, the distinct neural processes involved in the retrieval of PE, 

specifically familiarity and recollection, have not been fully understood. By analyzing the ERP 

correlates associated with these processes, Study 2 aimed to provide crucial insights into the 

➢ The two-component framework of episodic memory comprises two interactive 

components which change over the lifespan: associative and strategic. 

➢ The associative component develops relatively faster in childhood than the strategic 

component, whereas both components decline similarly in older age. 

➢ It can be hypothesized that children are more sensitive to PE, as they are biased 

towards the associative component. Conversely, older adults may be less sensitive 

to PE, as the associative component declines with age. 

➢ However, there is no previous research on lifespan differences in predictive 

processing and its effect on memory. 

➢ It is crucial to investigate how PE affects memory processes in both developing and 

aging brains to fully comprehend the mechanisms of PE and episodic memory. 

➢ Dissertation aim 3: Investigating age differences in the relationship between PE 

and episodic memory. 
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conditions under which PE enhances memory performance. Study 3 adopted a lifespan 

approach to investigate the interplay between PE and episodic memory processes, offering 

novel insights into the cognitive mechanisms underlying memory across different age groups. 

Little is known about how predictive processing evolves in children and older adults, who 

undergo substantial changes in their internal knowledge structures and neurocognitive 

architectures. To establish the predictive coding framework as a unifying framework of the 

brain, it is imperative to investigate the boundaries and adaptiveness of the predictive coding 

framework within both developing and aging brains. By investigating age-related differences 

in the relationship between PE and episodic memory, Study 3 aimed to fill these knowledge 

gaps related to the generation of predictions and the impact of PE on shaping episodic memory. 

To conclude, this dissertation aimed to provide a broader understanding of how PE 

affects episodic memory. The proposed U-shape effect of PE on memory, its ERP correlates, 

and age-related differences in the processes of PE were investigated. Last but not least, it is 

worth highlighting that all three studies presented in this dissertation adhered to Open Science 

Practices to ensure research integrity and transparency. This included preregistration of research 

and analysis plans, sample size justifications, reporting deviations from the original plans and 

open availability of materials, data, and code in online repositories. Through these transparent 

research practices, unique perspectives on the effects of PE on episodic memory were offered, 

promoting accessibility and scientific progress. 
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2. Summary of Empirical Studies 

2.1. Study 1 - From Generating to Violating Predictions: The Effects of Prediction Error 

on Episodic Memory 

2.1.1. Background 

The ability to generate predictions and adjust them when there is a discrepancy between 

the predictions and incoming sensory information (i.e., PE) is essential for adaptive behavior. 

Recent research has identified several factors that influence subsequent memory performance, 

such as the memory congruency effect and memory benefit for PE. As a result, the U-shaped 

relationship has been postulated, with low and high levels of PE leading to better subsequent 

memory performance compared to medium levels. However, previous studies (Bein et al., 2021; 

Greve et al., 2018; Kafkas & Montaldi, 2018) lacked a comparable medium level of PE that is 

related to previously induced prediction generation in episodic memory context. In our two 

preregistered studies, we aimed to fill this gap in the literature by investigating the impact of 

varying levels of PE on episodic memory. 

 

2.1.2. Method 

Two experiments were conducted to test the U-shaped function of PE on memory. In 

both experiments, we followed the same overall structure: The experiments were conducted 

over two consecutive days, with the prediction learning phase on the first day and the encoding 

of PE and surprise memory test phases on the second day. Initially, we asked the participants 

to learn associations between cue-target pairs, to let them generate predictions based on these 

Pre-registered hypoteses: 

➢ There is a U-shape relationship between PE level and recognition memory: Low and 

high PE levels have better recognition memory performance in comparison to 

medium PE. 

➢ Association memory performance varies as a function of PE: High PE level has 

better association memory performance than low and medium PE. 

➢ There is a difference between confidence ratings across different PE levels: High PE 

levels have higher confidence ratings compared to the other levels of PE. 
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associations. Based on the studies on statistical learning (Kim et al., 2017; Schapiro et al., 2012; 

Turk- Browne et al., 2012), participants develop the ability to predict targets after repeated 

exposure and learn the associations between cue-target pairs. Subsequently, we violated their 

predictions with individual items in three PE levels: low, medium, and high. Finally, we 

evaluated subsequent memory performance for the individual items and their associations. 

The two experiments differed in several key aspects. (i) In Experiment 1, the PE levels 

were generated based on semantic sub-categorization (i.e., instrument sounds and object 

categories, please see below for details). However, to rule out potential effects of semantic 

knowledge, in Experiment 2, the associations between artificial creatures called “Wubbels” and 

their environments were used. (ii) In Experiment 1, the contingency structure was built during 

the prediction learning phase. This might have affected participants’ sensitivity to medium and 

high PE trials during the encoding phase. To address this, Experiment 2 had a deterministic 

prediction learning phase where the contingency between cue and targets was set to 100 %. (iii) 

in Experiment 2, two additional aspects of associative memory were measured namely Wubbel-

scene and Wubbel-location pairs to provide a more comprehensive assessment of associative 

memory compared to Experiment 1.   

2.1.2.1. Experiment 1. In Experiment 1, 60 university students participated in the study 

(46 females and 14 males, aged 18–29 years, mean age = 21.92 (SD = 2.84)). Musical 

instrument sounds and object pictures were used as stimuli. Four categories of musical 

instrument sounds, namely guitar, trumpet, violin, and piano, each with eight distinct sounds, 

were selected. The object pictures were evenly divided into two main categories, natural and 

human-made, each with two sub-categories. The natural objects were classified as animals and 

fruits/vegetables/nuts, while the human-made objects were categorized as household and 

toys/school/sports objects. 

 The study structure for Experiment 1 can be seen in Figure 1. The study was conducted 

over two consecutive days and consisted of three phases: prediction learning, encoding, and 

recognition. On the first day, during the prediction learning phase, participants were presented 

with musical instrument sounds and asked to predict whether the upcoming object would be 

natural or human-made. After participants’ response, an object exemplar was shown. The 

contingency structure for the associations between sounds and object categories was derived 

from one of the main categories, namely natural or human-made, with varying degrees (i.e., 

low, medium, and high). The contingency structure for the encoding phase was 70% (low PE), 
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20% (medium PE), and 10% (high PE). For example, as shown in Figure 1, if guitar sounds 

were associated with animal exemplars, for later, presenting an animal object would elicit a low 

level of PE, a fruit object would elicit a medium and a human-made object would elicit a high 

level of PE.  

The second day started with the encoding phase where participants were presented with 

sounds and predicted the most likely object category among four different sub-categories. They 

were then shown novel object pictures and indicated if the presented object belonged to the 

predicted category. The contingency structure for the encoding phase was 50%, 30%, and 20% 

for low, medium, and high PE levels, respectively, to maintain the original contingencies as 

close as possible to the prediction learning phase while increasing the number of trials possible 

for the weakly associated category. After the encoding phase, the recognition phase was studied 

where participants were asked to make old/new judgments on the test pictures with their 

confidence ratings. For the associative memory phase, participants were asked to indicate the 

paired sound as well. 
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2.1.2.2. Experiment 2. In Experiment 2, 51 participants (28 females and 23 males, aged 

18-35 years, mean age = 23.14 (SD = 4.49)) were recruited. As study material, we used artificial 

creatures called “Wubbels” and natural environment pictures to prevent the influence of prior 

knowledge. Four distinct categories of environments (i.e., beach, snowy mountains, desert, and 

savanna) were selected. The Wubbels were structured into two main groups: the Wubbel parents 

used in the prediction learning phase and the Wubbel children used in the encoding and 

recognition phases (see Figure 2D). The body shapes of the four Wubbel families were 

consistent with their primary species, and each prototype had a unique combination of features 

complementing its body. The parents differed in the assigned color patterns, while the children 

had varying features, such as hat shape, arm shape, skin type, body color, pattern color, and 

pattern.  The purpose of these design variations was to maintain similarity among the children 

based on key features shared with the parents and to establish relationships between certain 

families of Wubbels. 

Figure 1 

Study Design for Experiment 1 

Note. A. On Day 1, participants were asked to make predictions about sound-object category 

associations. During the prediction learning phase, participants were presented with a musical 

instrument sound and asked to predict the upcoming object category based on two levels. After their 

response, an object exemplar was shown. As in the example in Panel D, the guitar sounds were 

followed by exemplar objects from animal categories 70% of the time (Low PE, yellow). Thus, the 

contingencies for exemplar objects from fruit categories (Medium PE, green) and human-made 

categories (High PE, blue) were 20% and 10%, respectively. B. On Day 2, for the encoding phase, a 

sound was presented, and participants were asked to predict the most likely object category among 

four different sub-categories. Participants were then presented with object pictures and asked to 

indicate if the presented object belonged to the same category they predicted. The contingency 

structure was 50%, 30%, and 20% for low, medium, and high PE levels, respectively. C. During the 

recognition phase, participants were asked to make old/new judgments on the test pictures with their 

confidence ratings, and they were asked to indicate the paired sound as well. D. An example of the 

contingency structure for the guitar sound. 
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Figure 2 shows the study structure for Experiment 2 which involved three phases: 

prediction learning, encoding, and recognition. In the prediction learning phase, participants 

learned associations between Wubbel families and environmental categories. Participants were 

presented with two Wubbel parents from different families on different screen locations and 

asked to indicate which Wubbel matched the presented scene. Feedback was given based on 

their response. As in the example Figure 2D., participants were expected to learn that one of 

the long-shaped Wubbel families lives on the beach. The associations between Wubbels and 

environments were predetermined, and the contingency was 100 %. 

 

On Day 2, the encoding phase was conducted where participants were presented with a 

scene and asked to predict the most likely Wubbel family in their minds. Then, a Wubbel child 

was presented on one of four possible screen locations. Participants were asked to indicate if 

Figure 2 

The Study Design for Experiment 2 

Note. A. On day 1, participants were asked to learn associations between Wubbel families and 

environment categories. In each trial of the prediction learning phase, participants were presented 

with two Wubbel parents from different families on different screen locations and asked to indicate 

which Wubbel matches the presented scene. Participants received feedback based on their response. 

For example, participants were expected to learn that one of the long-shaped Wubbel families lives 

on the beach. B. On day 2, the encoding phase was conducted first. Participants were presented with 

a scene and asked to predict the most likely Wubbel family in their minds. Then, a Wubbel child was 

presented on one of four possible screen locations. Participants were asked to indicate whether the 

presented Wubbel child belongs to the family which they predicted. For example, a long-shaped 

Wubbel child presented in a beach scene would elicit a low PE (yellow). Presenting the same Wubbel 

in a desert, which was an environment for the other long-shaped family, would lead to a medium PE 

(green). Lastly, presenting the same Wubbel with environments associated with the round-shaped 

families would elicit a high PE (blue). C. During the recognition phase, participants were asked to 

make old/new judgments and report their confidence. Participants were then asked to indicate the 

paired scene and paired location. D. The relationship structure between Wubbel families and children 

is illustrated in the example. 
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the presented Wubbel child belongs to the family which they predicted. For example, a long-

shaped Wubbel child presented in a beach scene would elicit a low PE, depicted in yellow. 

Presenting the same long-shaped Wubbel child in a desert, which was an environment for the 

other long-shaped family, would lead to medium PE (green). Lastly, presenting the same 

Wubbel child with environments associated with the round-shaped families would elicit high 

PE (blue). In the recall alternatives and participants had to indicate if they had seen the presented 

Wubbel before and rate their confidence, choose the correct scene from four alternatives, and 

identify the location on the screen the Wubbel was presented. 

 

Figure 3 

Results for Experiment 1 and 2 

Note. A. Cumulated accuracy for prediction learning. Grey lines indicate the performance of 

single participants. Green lines indicate the group mean. B. Encoding ratings for low, medium, 

and high PE levels. C. Hit responses for low, medium, and high PE levels. D. Hit responses for 

low, medium, and high PE levels separated by confidence ratings (1- Very sure, 2- Sure, 3- 

Unsure, 4- Very Unsure). Grey lines indicate the performance of single participants. Black lines 

indicate the group mean with error bars reflecting ± SEM. Asterisks denote statistically 

significant differences, * p < .05, *** p < .001.   
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2.1.3. Results and Discussion 

We first checked if participants generate predictions about the cue-target pairs via 

accuracy rates from the prediction learning phases. For both Experiment 1 and 2, accuracy rates 

of predicting the upcoming object category increased with trials and it was significantly 

different than chance levels of performance (Figure 3A). We then tested our manipulation on 

the PE levels. We examined the ratings for category judgment collected during the encoding 

phase, with the highest rating (4- Strongly no) meaning the presented object does not belong to 

the same category that participant predicted earlier and the lowest rating indicating the 

presented object belongs to the same category that participant predicted earlier (1- Strongly 

yes). The results showed that the three PE levels were significantly different from each other, 

while high PE level had the highest category judgment ratings (Figure 3B). We concluded that 

this result verifies our manipulation of the PE levels, such that participants reported that objects 

from high and medium PE levels are not from the category they predicted. Importantly, the 

results for the main research question on the U-shape effect of PE on memory indicated that 

recognition memory performance was better for low PE level than high PE level (Figure 3C). 

The results for association memory and confidence-weighted hit rates (Figure 3D) did not show 

a significant difference on the main effect of PE levels. Taken together, our results suggested a 

memory congruency effect and an absence of memory benefit for PE.  

2.1.4. Conclusion 

 Study 1 provided novel paradigms to generate and violate PEs to varying degrees. The 

results indicate that our participants successfully learned from the provided regularities and 

formed predictions. While our findings provided strong evidence for the manipulation of PE, 

we did not observe a memory advantage for high PE levels in either the recognition or 

association memory tasks. Instead, we consistently found a memory advantage for low PE trials, 

and this is consistent with the memory congruency effect observed in previous studies (Alba & 

Hasher, 1983; Anderson, 1981; Craik & Tulving, 1975). We therefore conclude that the effect 

of PE on memory benefit is not straightforward, and there may be additional factors, such as 

task sensitivity concerning how PEs are experimentally generated and how their subsequent 

memory tested that influence its role in facilitating improved memory. Specifically, regarding 

the generation of PEs, previous studies reported better memory for PE had their PE 

manipulation on item level (Bein et al., 2021; Kim et al., 2017), whereas our manipulation was 

based on category level due to the nature of the tasks. In terms of retrieval of events with PE, it 
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can be concluded that studies that found memory enhancement for PEs tested memory 

performance via alternative forced-choice (Greve et al., 2017; Quent et al, 2022) and mixed 

lists with similar lures (Bein et al., 2021; Frank et al., 2020), unlike our paradigms which used 

an old/new task. Thus, it is reasonable to argue that only a level of familiarity can be sufficient 

to dissociate the old items from the new ones, and not boost memory for high PE trials 

specifically. Further investigation of these modulating factors could provide valuable insights 

and a clearer direction for understanding the relationship between PE and memory processes.  
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2.2. Study 2 - Unexpected Twists: Electrophysiological Correlates of Encoding and 

Retrieval of Events eliciting Prediction Error 

2.2.1. Background 

 Previous EEG research has shown that the brain processes expected and unexpected 

events differently, as indicated by the P3 amplitude. However, no previous studies have 

examined whether the process of PE reflected by P3 amplitude plays a role in remembering 

those events later. On the other hand, in the retrieval of PE, two distinct neural processes, 

familiarity and recollection, are involved. Predicted events tend to enhance familiarity, while 

unpredicted events are more likely to be recollected. Nevertheless, the specific ERP correlates 

that are associated with these differences have not been fully understood. Comparing the neural 

correlates of PE can provide valuable insights into the conditions under which PE enhances 

memory performance. 

 

2.2.2. Method 

 45 university students participated in the study (32 women, 13 men, aged 18-30 years, 

mean age = 23.52 (SD = 2.67)). The pictures of everyday objects from the previous study by 

Bein et al., 2021 were used. The study was conducted over three consecutive days, with EEG 

recorded during the last day (Figure 4). On the first two days, in a statistical learning paradigm, 

participants implicitly learned sequentially presented object pairs embedded within a stream of 

objects (i.e., prediction learning phase). Participants were presented with object pictures and 

asked to indicate if the presented object was bigger or smaller than the previous one. 

Unbeknownst to the participants, the task was structured in such a way that there were pairs of 

Pre-registered hypoteses: 

➢ Better memory performance is observed for events that elicit PE compared to 

events that do not violate predictions. 

➢ Violation events that are later remembered elicit higher P3 amplitudes compared to 

violation events that are later forgotten. 

➢ The recollection effect is observed in ERPs for violation trials that are later 

remembered than later forgotten. 

➢ The familiarity effect is observed in ERPs for non-violation trials that are later 

remembered than later forgotten. 
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objects that always followed each other. On the third day, new objects which had not been 

presented before (i.e., violation phase) were added. Half of the objects were inserted instead of 

the second item of the pair, eliciting PE (violation items). The other half of the objects were 

presented between pairs to create a base line (non-violation items). Hereafter, item recognition 

memory was tested for violation and non-violation items via old, similar, and new task. Lastly, 

associative memory was assessed for the original pairs that were studied during the prediction 

learning phase. This method allows us to have an item level PE manipulation and more sensitive 

measure for memory performance via similar lures.  

Figure 4 

Study Design 

 

 For the behavioral measures to test the effect of PE on memory, we calculated two main 

measures: response rates and a classification index. Response rates were computed as “old” 

response rates to violation and non-violation items and the classification index was assessed to 

capture mnemonic discrimination via precision and sensitivity measures. Precision was 

computed as the ratio of correct old responses to old items, whereas sensitivity was calculated 

as the proportion of correctly identified trials out of total. Then, classification index was 

Note. A. During prediction learning (Day 1 and 2), participants viewed pairs of sequentially 

presented objects and asked to indicate whether each object was bigger or smaller than the previous 

object. B. In the prediction violation phase (Day 3), new object pictures were inserted into the 

sequence of objects, either instead of the second object in the pair (violation) or after the second 

object in a pair (non-violation). C. Following the violation phase, participants completed an item 

recognition memory test (Day 3) where they were presented with violation and non-violation, similar 

lures, or new items, and asked to indicate whether each item was old, similar, or new. Memory for 

the original predictive pair was also tested (Day 3) by presenting participants with the first object in 

a pair and asking which of three objects followed the top object.  
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calculated by multiplying precision and sensitivity by two, adding them together, and lastly 

dividing by the sum of precision and sensitivity (Ngo et al., 2020). 

 For the neural correlates of PE, we used ERPs that were time-locked to the onset of 

stimuli. P3 mean amplitude values were measured during the prediction learning phase. The 

mean amplitude values of familiarity and recollection components were measured during the 

recognition phase. We decided on the time windows and topographical positions for our 

components by means of the previous literature (Polich, 2007) and our pilot study. Also, the 

validity of time windows was checked with cluster-based permutation tests. The P3 was 

obtained from 400 – 800 ms at centroparietal electrodes. The familiarity component was 

obtained from 300 – 500 ms at frontocentral electrodes. The recollection component was 

obtained from 400 to 800 ms at parietooccipital electrodes. 

Figure 5 

Response Rates and Classification Index 

 

2.2.3. Results and Discussion 

 Since the primary objective of the study was to examine the effects of PE on memory, 

we first checked if participants learned the object pairs to build up predictions to ensure clear 

interpretation of the results. With this aim we analyzed reaction times (RTs) during the 

prediction learning phase and accuracy rates during the associative memory phase. The results 

indicated that participants were faster for the second item of the pair compared to the first item, 

Note. The raincloud plot shows the distribution of response rates and classification index for violation 

and non-violation conditions. A. Proportion of old responses to old items. B. The proportion of 

correct responses (true positives and true negatives) out of all instances. The box plots display the 

median, interquartile range, and 95 % confidence interval for each group using, while the density 

plots show the distribution of the data points for each condition. The individual data points are 

displayed as scatter plots. 
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suggesting a learning process due to prediction of the upcoming object. Participants selected 

associated pairs significantly above the chance level, again indicating a successful learning 

process. For the main research question, the results for the effects of PE on memory were not 

significantly different between violation and non-violation items neither for response rates nor 

for classification index (Figure 5). Although we did not find a behavioral effect, we proceeded 

to investigate the neural correlates of PE, as they could give better insights into mechanisms 

involved in encoding and retrieval processes of PE. 

Figure 6 

Recollection component during the item recognition phase 

 

 We observed a significant relationship between the recollection component and item 

recognition memory for previously violated items (Figure 6 and 7). Our results revealed that 

there was an interaction effect, indicating higher amplitude values were obtained for 

Note. Stimulus-locked ERPs during the item recognition phase. A. Color-coded ERP grand average 

recorded at parietooccipital electrodes with highlighted time window in gray. B. Topographical 

map plot of remembered violation minus forgotten violation difference in the recollection 

component time window.   
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remembered violation items compared to forgotten violation trials, while no difference was 

observed between remembered and forgotten non-violation items. The results for the familiarity 

component did not show a significant effect of PE. Additionally, we did not find a relationship 

between P3 mean amplitude during encoding, PE, and subsequent memory (Figure 7). Overall, 

these findings suggest that recollection plays an important role in the interplay between PE and 

episodic memory. Furthermore, our exploratory analysis confirmed that the pre-registered time 

windows for ERP components aligned with the cluster-permutation results, validating our 

approach in selecting relevant time-windows of interest. 

Figure 7 

Average ERP amplitude values 

 

2.2.4. Conclusion 

 Study 2 investigated the ERP correlates of PE during encoding and retrieval within the 

same paradigm. Contrary to our expectations and the results from previous research (Bein et 

al., 2021), no memory advantage was found for items generating PE. However, this study 

highlights the significance of recollection in understanding how PE influences episodic 

memory. These findings suggest that violation of expectations enhances recollection, aligning 

with previous research on the retrieval-enhancing effects of PE (Kafkas & Montaldi, 2018) and 

Note. Average ERP amplitude values for each condition within the relevant time windows. Error 

bars represent the within-participant standard error of the mean. A. Mean amplitude values of P3 

component during the violation phase. B. Mean amplitude values of recollection component during 

the item recognition phase. ** p < .01. 
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the role of memory-guided predictions in enhancing recollection (Fenerci & Sheldon, 2022; 

Henson & Gagnepain, 2010; Theobald et al., 2022; Van Kesteren et al., 2012; Wahlheim et al., 

2022). Our results emphasize that deviations from expectations generate a stronger recollection 

signal, potentially facilitating better subsequent memory. Overall, our study contributes to the 

growing knowledge of the complex nature of PE and its relationship with memory processes. 

We provide insights into the underlying neural mechanisms involved. However, further 

research is warranted to identify a reliable condition or understand the moderator effects that 

determine how PE enhances subsequent memory. 
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2.3. Study 3 - The impact of mnemonic prediction errors on episodic memory: A lifespan 

study 

2.3.1. Background 

 The two-component framework of episodic memory encompasses two interactive 

components, namely the associative and strategic components, which undergo changes 

throughout the lifespan. The associative component exhibits relatively faster development 

during childhood compared to the strategic component, while both components demonstrate 

similar declines in older age. Given these developmental trajectories, it can be hypothesized 

that children, with their reliance on the associative component, may be more sensitive to PE 

compared to older adults, whose associative component diminishes with age. However, there 

is a lack of previous research investigating lifespan differences in predictive processing and its 

impact on memory. Therefore, it is crucial to examine how PE influences memory processes in 

both developing and aging brains to gain a comprehensive understanding of the mechanisms 

underlying PE and its relationship with episodic memory. 

 

2.3.3. Method 

 We tested 85 children (10-12 years old), 48 younger adults (18-30 years old), and 50 

older adults (66-70 years old). The age ranges for children were chosen based on the 

understanding that the development of MTL-based associative binding undergoes significant 

changes during this developmental period. We can observe the enduring influence of PE during 

pre-puberty stages. As for older adults, their MTL structural and functional integrity is likely to 

decline by this age, although semantic memory functioning remains relatively intact until 

around 70 years of age, before the retirement period. Despite the procedural differences due to 

online testing, the identical statistical learning paradigm as in Study 2 was employed (Figure 

4). Briefly, participants learned pairs of objects over two days and their memory was tested on 

the third day. The test included new objects presented either after the first item of a pair (i.e., 

Pre-registered hypoteses: 

➢ Memory performance for items that violate predictions are expected to be better 

than those for items that do not violate a prediction. 

➢ The expected difference in memory performance is the greatest in children, 

followed by young adults, and the smallest in older adults. 

➢ No differences are expected in “old” responses for similar lures. 
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violation items) or between pairs (i.e., non-violation items). As in Study 2, response rates and 

classification indices (Ngo et al., 2020) were calculated. 

2.3.4. Results and Discussion 

 The results from response rates showed that there was no memory enhancement effect 

of PE in any of the age groups. The findings regarding the classification indices (Figure 8) 

showed no significant effects on classification for old items. However, for similar items, a 

significant main effect of age group was found. Contrary to the hypothesis, children showed 

better classification for non-violating similar items compared to violating similar items. 

Figure 8 

Classification results for old and similar items 

 

2.3.5. Conclusion 

 The aim of our study was to comprehensively investigate the influence of prediction PE 

on episodic memory across different age groups. As in Study 1 and 2, our results did not yield 

memory enhancement effect of PE in any of the age groups. This suggests that the role of PE 

in modulating episodic memory may not be as strong or consistent as previously assumed. 

Interestingly, our study revealed novel findings regarding the memory performance of children. 

We observed that non-violation items were remembered in greater detail compared to violating 

items. This memory advantage for non-violating items in children represents a new and 

intriguing finding, which warrants replication and further investigation in future research. In 

summary, our study challenges the notion of PE as a robust facilitator of episodic memory 

across the lifespan. Our results emphasize the need for careful consideration and rigorous 

Note. Error bars depict confidence intervals A. Classification of old items. B. Classification of similar 

items. * p < .05, ~ p < .10, n.s. non-significant 
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investigation of the factors influencing the relationship between PE and memory. Moreover, 

the observed memory advantages for non-violation similar items in children highlight the 

importance of exploring additional factors that may influence memory processes. 
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3. General Discussion 

 The aim of the presented dissertation was to investigate the impact of PE on episodic 

memory. In Study 1, participants were trained on cue-target category associations and later 

exposed to violations of associations with varying levels of PE. The results showed no memory 

advantage effect of PE on recognition and associative memory but revealed a memory 

congruency effect. In Study 2, we used object pairs and violated predictions at the item level. 

The behavioral findings aligned with Study 1, indicating a lack of the boosting effect of PE on 

memory. However, the analyses of ERPs highlight the significance of recollection in the 

relationship between PE and memory. In Study 3, participants from different age groups, 

children, young and older adults, underwent the same paradigm as in Study 2. Again, the results 

indicated the absence of memory-enhancing effect of PE. Nevertheless, age comparisons 

offered insights into the developmental aspects of memory specificity. In conclusion, our 

consistent findings underscore the complexity of the effects of PE on episodic memory, 

suggesting the presence of other modulating factors that warrant further investigation. 

3.1. PE Does not Generally Enhance Memory 

 None of the three studies revealed a subsequent memory advantage for events that 

violate predictions. This consistent finding suggests that the impact of PE on memory is not as 

straightforward and consistent as previously demonstrated. Relatedly, our findings align with a 

recent study by Ortiz-Tudela et al. (2023) that also reported no memory improvement for PE 

using continuous manipulation. It is worth noting that, in our studies, the results from the 

encoding phases demonstrated that the task structures effectively generated violations for the 

previously learned associations. We examined response ratings (Study 1), the P3 component 

(Study 2), and RT savings (Study 1 & 2) as indicators of our experimental manipulations on 

PE. Our results confirmed that PE trials indeed violated predictions. However, this effect did 

not translate into improved memory performance. Thus, it can be concluded that while PE is 

commonly assumed to drive new learning (Greve et al., 2017), its direct impact on memory 

may depend on various factors that require careful consideration. In the following, the 

methodological differences to other studies and the possible moderating factors that might 

influence the relationship between PE and episodic memory will be discussed. 
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3.1.1. Methodological considerations 

One possible explanation for the absence of a memory benefit for PE in our studies 

could be attributed to the task sensitivity in terms of how PEs were experimentally generated 

and tested. It is important to consider the operational structure of the encoding and retrieval 

processes. Previous studies that reported memory benefits for PE often manipulated and tested 

PEs at the item level (Bein et al., 2021; Kim et al., 2017). In Study 1, due to the nature of our 

task, our manipulation was conducted at the categorical level to generate a medium level of PE 

that was related to previous learning. Consequently, the findings from Study 1 could be 

attributed to the differences between the item-level and categorical-level task structures. It is 

possible to assume that our participants primarily focused on the category-level information 

during encoding rather than on individual items that were tested later. However, in Studies 2 

and 3, where the task structure was at the item level, we still did not observe the beneficial 

effect of PE on memory. Moreover, the evidence from studies which used category level 

manipulation of violation, reported a memory enhancement for the events that deviate from the 

previously expected ones (Frank et al., 2020; Kafkas, 2021; Kafkas & Montaldi, 2018). Thus, 

we can conclude that the categorical level manipulation of violation should not be a main 

concern and that there must be other factors influencing the nuanced relationship between PE 

and memory. 

Following the experimental differences that might play a role on the relationship 

between PE and subsequent memory, it is plausible to speculate that the methods used to assess 

memory performance might have influenced our results. Previous studies that demonstrated a 

memory-enhancing effect of PE utilized memory tests such as alternative forced-choice tests 

(e.g., Greve et al., 2017; Quent et al., 2022) or mixed lists with similar lures (e.g., Bein et al., 

2021; Frank et al., 2020), whereas Study 1 employed an old/new paradigm. It can be argued 

that PE facilitates memory through a pattern separation-like process by creating distinct 

memory snapshots. Therefore, to effectively track memory traces and rule out familiarity 

effects, the effect of PE on memory should be assessed with more sensitive measures. In Study 

1, we addressed the familiarity issue by assessing memory performance through confidence 

ratings. However, even with confidence-weighted hit rates, the results did not indicate a 

memory benefit for high PE. Furthermore, in Study 2 and 3, despite incorporating a recognition 

phase with similar lures and employing more sensitive measures than old/new tasks (i.e., 

classification indices), the results did not yield an effect of PE on subsequent memory. 

Considering the other studies that used the same task structure (Bein et al., 2021) reported an 
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effect, it is unlikely that task sensitivity alone can explain our results. Therefore, we will explore 

other potential moderating factors that may elucidate our findings. 

3.1.2. Possible Moderating Effects between PE and Subsequent Memory 

 Once we rule out the potential effects of task sensitivity in generating and testing PE, 

we can further explore other factors that may contribute to the relationship between PE and 

memory. These factors include the strength and precision of prior expectations (Greve et al., 

2018; Ortiz-Tudela et al., 2023), the novelty of the violation (Schomaker & Meeter, 2018), and 

the assessment of the violation (Gruber & Ranganath, 2019).  

 Although Study 2 and 3 followed a similar protocol to a previous study (Bein et al., 

2021), there was one notable difference: the extended prediction generation phase. In order to 

ensure an effective learning threshold for the EEG signal in Study 2 and due to the online nature 

of Study 3 with participants from children to older adults, we increased the number of sessions. 

As a result, our extended learning phase likely led to stronger predictions compared to the 

previous study, as evidenced by higher accuracy rates5. Our task involved extensive exposure 

to the paired structure of object associations, which may have created context surprise (Quent 

et al., 2021) when participants encountered non-violation items that violated the expected task 

structure. In other words, violation items violated the expected object at the item level, while 

non-violation items violated the expected task structure by presenting an object that had not 

been seen in that specific position before (i.e., after the second object of a pair), creating a 

context surprise and novelty. This distinction may have elicited different cognitive and neural 

responses compared to the violation items that violated the expected object at the item level. 

Therefore, the absence of a memory benefit for PE in our studies could be attributed to the 

notion that our both experimental conditions, violation and non-violation trials, were generating 

expectations and lead to subsequent violations of those expectations either item or context level 

(Schomaker & Meeter, 2018). 

  Regarding our results, an alternative framework can provide an explanation for the 

nuanced relationship between PE and memory (i.e., Prediction, Appraisal, Curiosity, and 

Exploration (PACE), Gruber & Ranganath, 2019). The PACE framework posits that the 

memory enhancement associated with PEs is not solely determined by the strength of the 

prediction but also by the assessment or appraisal of the PE. According to this framework, when 

 
5 We reported .78 and .65 accuracy rates in Study 2 and 3, respectively, compared to .60 in Bein et al., 2021. 
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individuals encounter a PE, it triggers an appraisal process that influences their subsequent 

actions and subjective experience in resolving the uncertainty caused by the PE. The assessment 

of a PE involves evaluating its significance and potential relevance for future functioning. If 

the appraisal process deems the PE as valuable and informative, it can trigger curiosity and 

motivation to engage with the unexpected event, leading to enhanced memory encoding. On 

the other hand, if the appraisal process categorizes PE as unimportant or potentially negative, 

it may elicit behavioral inhibition and a tendency to disregard the unexpected event, resulting 

in reduced subsequent memory. 

 In Study 1, one possible explanation is that high PE items were disregarded because the 

task emphasized making "better" predictions to respond accurately to the presented stimuli. 

During the encoding phase, participants were instructed to predict the upcoming object 

category, and objects with varying levels of PE were presented. To make accurate predictions 

for future stimuli, participants may have tended to ignore items that did not align with their 

predictions. This type of semantic encoding has been suggested to have adaptive value for 

enhancing memory system functionality, even though it may introduce distortions (Schacter et 

al., 2011). This focus on making better predictions and the potential lack of appraisal for the 

high PE trials might have resulted in reduced memory encoding for these items, and 

consequently lower memory performance. 

 Furthermore, in Studies 2 and 3, despite having a task structure that allowed for violation 

detection at the item level (Bein et al., 2021), the extended learning phase and stronger 

predictions (Quent et al., 2021) might have influenced the assessment of uncertainty resolution, 

as stated in the PACE framework. Participants may have exhibited a tendency to disregard the 

violation and non-violation items presented during the violation phase, relying more heavily on 

previously learned object pairs. This suggests a negative assessment of uncertainty resolution, 

which may reflect a tendency to have difficulties in dealing with ambiguity, potentially leading 

to reduced memory encoding for the unexpected stimuli. Therefore, the lack of memory benefits 

for PE in our studies may be attributed to participants' tendency to prioritize previously 

generated predictions and a negative assessment of uncertainty resolution. 

 To conclude, the results from the presented dissertation indicated that the impact of PE 

on memory may not be as straightforward as initially proposed. A methodological advantage 

of our study was the careful control of various factors that can influence memory such as 

surprise and response consistency (Antony et al., 2021; Frank & Kafkas, 2021). However, even 
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with these meticulous controls, it is possible that the effect of PE on memory may be relatively 

small and not consistently observed across all studies. 

3.2. Recollection Plays a Role in the Interplay between PE and Subsequent Memory 

 In Study 2, we observed that the recollection component amplitude was higher for 

violation trials that were remembered compared to those that were forgotten. Importantly, we 

found a significant interaction effect, revealing a substantial difference in mean amplitudes of 

the recollection component between remembered and forgotten violation items, but not within 

the non-violation items. This result suggests that the violation of expectations can enhance 

recollection. 

 Our observation of the recollection component aligns with the growing body of evidence 

supporting the idea that unpredicted events enhance recollection (Frank et al., 2020; Kafkas, 

2021; Kafkas & Montaldi, 2018). Relatedly, previous research showed that memory-guided 

predictions can enhance memory performance (Fenerci & Sheldon, 2022; Henson & 

Gagnepain, 2010; Theobald et al., 2022; Van Kesteren et al., 2012). Memory-guided predictions 

refer to the process by which retrieved memories of past events influence and shape predictions 

during the comprehension of events. For example, Wahlheim et al. (2022) conducted a study 

investigating the effects of predictive-looking errors on remembering event changes. They 

found that memory guidance led to predictive-looking errors, which were associated with better 

recollection memory for changed event features. This suggests that retrieving recent event 

features can guide predictions during unfolding events, and PE can contribute to enhanced 

recollection when it is driven by expectations. Consistent with these findings, our study 

revealed a recollection effect specifically for violation items, which were presented as 

replacements for the second object of the pairs that participants had predicted to see. This 

indicates that deviations from expected events generate a stronger recollection signal, 

potentially facilitating better subsequent memory. 

 In summary, our findings highlight the importance of recollection in the mechanisms 

underlying the interplay between PE and episodic memory processes. It contributes to the 

growing understanding of memory-guided PEs and their impact on subsequent memory 

performance.  
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3.3. Children were Better to Remember Details of Non-Violation Items 

 In Study 3, we found that children exhibited more specific memory for non-violation 

items compared to violation items. This means that children were better at recognizing similar 

lures and less likely to confuse them with old items when the items did not violate the expected 

structure. It suggests that children showed increased pattern separation for non-violation items 

compared to violation items. Previous research has indicated that in young adults, PE leads to 

the encoding of distinct memory traces, where events associated with PE are remembered 

separately from previous memory traces (Aitken & Kok, 2022; Frank et al., 2020). This clear 

separation of memory traces helps avoid interference and allows old and new memory traces to 

coexist without competing. However, in our study with children, an opposite pattern was 

observed. 

An explanation for our finding can be attributed to the effect of context surprise (Quent 

et al., 2021). As previously stated, due to the online procedure of the task, we extended the 

prediction learning phase, which may have increased context surprises for non-violation items. 

Briefly, non-violation items might violate the task structure by being presented as singletons, 

not as part of previously learned paired structure. As children tend to have a bias toward the 

associative memory component (Shing et al., 2008, 2010; Shing & Lindenberger, 2011), they 

may have formed stronger associations with the task structure and processed non-violation 

items more deeply compared to violation items. Consequently, they remembered the specificity 

of non-violation items that violated the task structure better than violation items. 

 Furthermore, our findings on violations leading to lower memory specificity in children 

compared to non-violation items may have implications for understanding the role of curiosity 

in memory enhancement. Curiosity is known to promote learning and memory by making 

knowledge gaps more relevant and engaging individuals with new information (for a recent 

review, Gruber & Ranganath, 2019). However, violations can potentially diminish curiosity in 

children, particularly when they generate cognitive conflict (Brod et al., 2020). Violations 

disrupt predictability and coherence, potentially reducing intrinsic motivation to explore and 

remember information associated with the violation. Therefore, in our study, children may 

exhibit lower memory specificity for violating items as their curiosity and interest in violations 

are not effectively engaged. The benefits of prediction generation depend on children's 

inhibitory capacities to effectively use cognitive conflict to revisit their previous knowledge 

and update it (Brod et al., 2020). In our task, it is possible that violation items did not elicit a 
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curiosity process since they merely represented deviations from what was predicted earlier. 

Consequently, there was no perceived need or motivation to update the previously learned 

associations. In contrast, non-violation items might be evaluated as more informative than 

violation items as they are inconsistent with the previously learned task structure, which might 

explain why they elicited curiosity and led to better memory specificity. Taken together, it can 

be concluded that further investigations are needed, particularly exploring the impact of PE on 

curiosity, inhibition, and memory processes to better understand the observed differences in 

children who were better to dissociate non-violation items. 

 3.4. Limitations and Future Directions 

The presented work possesses several limitations that should be acknowledged. First 

our research designs lack the ability to sufficiently motivate participants to update their 

predictions. Despite demonstrating methodological rigor, such as encoding ratings in Study 1, 

participants were only exposed to PE without any subsequent actions that would prompt them 

to update their internal models or revisit the events that elicited PE. The lack of perceived 

importance or relevance for future tasks may have hindered participants' motivation to engage 

in updating processes. Second, our task structures align with traditional memory studies, which 

involve participants studying lists of items and aiming for direct recall (following the principles 

of Ebbinghaus (1885)). Recent discussions emphasize the importance of adopting a more 

naturalistic approach in memory research to gain a deeper understanding of how memory 

functions in real-world contexts (Ranganath, 2022). In order to understand how the brain 

encodes and retrieves PE, researchers could focus on more naturalistic approaches rather than 

having a clear distinction when and how to process the events (Lu et al., 2022). Lastly, 

incorporating more comprehensive methods, such as decoding the EEG signal, could provide 

more valuable insights into the underlying neural mechanisms of PE (Postle, 2016). Previous 

research revealed that decoding the signal of expected stimulus even before the onset is possible 

(Kok et al., 2017). In a similar vein, researchers could decode neural signals associated with 

expected and unexpected events, providing specific neural patterns to understand the 

representations of PE. Future research aiming to investigate the impact of PE on episodic 

memory could address these issues to enhance the validity and generalizability of the findings. 
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3.5. A Metascientific Perspective on The Relationship Between PE and Episodic 

Memory 

Overall, our findings did not replicate 6  previous research showing the memory-

enhancing effect of PE (e.g., Bein et al., 2021; Brod et al., 2018; Kafkas & Montaldi, 2018; 

Quent et al., 2022). The replication crisis in psychology research has garnered significant 

attention, prompting more transparent practices such as pre-registration and openly sharing 

methods, data, and analysis scripts. While we adhered to these recommendations in all our 

studies, it is evident that these steps alone may not suffice in addressing the replication problem. 

One potential contributing factor to the replication crisis lies in the limitations of existing 

theories in psychological research (Szollosi & Donkin, 2021). Importantly, this concern has 

longer traditions than the replication crisis itself (i.e., theory crisis in psychology, Meehl, 1978; 

Newell, 1973). In the presented work, we adopted the predictive processing framework (Bar, 

2007; Friston, 2010; Knill & Pouget, 2004), which postulates that PE leads to enhanced 

memory. However, our results repeatedly indicated that this explanatory power of the 

framework may not be readily replicable, as it appears to be more complex and contingent on 

moderating factors. Nevertheless, adhering to open science practices is a strength of the 

presented dissertation, it allows us to reveal the challenges associated with replicating the PE 

effect. We believe that our work has provided valuable insights into the advancement of 

scientific knowledge within this field. 

It is important to emphasize that, in terms of scientific knowledge growth, which differs 

from mere accumulation of observations (Popper, 1963), our results can be viewed as anomalies 

within the predictive processing theory with Kuhn’s terminology. Anomalies refer to 

observations that deviate from what is predicted by a prevailing theory (Kuhn, 1970). The 

identification and analysis of anomalies play a crucial role in scientific inquiry as they can lead 

to the refinement of theories, or even paradigm shifts in a field of study. The presented results 

failing to replicate previous findings have prompted critical discussions regarding the 

conditions under which PE influences memory. Our primary objective was to move closer to a 

comprehensive explanation of the relationship between PE and episodic memory. Otherwise, 

the explanatory power of the predictive processing framework may fall short, rendering it 

merely a proof-of-concept exercise rather than a framework that can be applied across various 

studies in psychology and neuroscience research. On the other hand, it should be noted that the 

 
6 Here, the term replication was used to describe the degree to which the consistent predictions of a theory can be 

observed across multiple testing instances, rather than repeating a study under the same or similar conditions. 
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pursuit of understanding complex cognitive functions such as memory and PE, as well as their 

relationship, is undoubtedly challenging. However, it remains a promising endeavor. 

Researchers can draw inspiration from successful explanations of other complex systems, such 

as evolution and natural selection (Szollosi & Donkin, 2021). These examples give researchers 

hope that the pursuit should not be abandoned. Answers to the complex questions, like how the 

brain works, emerge through experience. We must first attempt to test explanations, 

acknowledge results, learn from them, and persist in our efforts. In conclusion, we believe that 

our results remain fruitful, as they open avenues for new explorations. Our insights into the 

relationship between PE and episodic memory have expanded through these findings, which 

have presented us with novel problems to solve. 

3.6. Concluding Remarks 

The presented dissertation aimed to understand the relationship between PE and 

episodic memory. By means of the presented work, we gained insights on the following matters 

that are important to highlight: (i) the effect of PE on memory benefit is not systematic as 

previously postulated (In Study 1, 2, & 3). (ii) Study 1 suggests that events which are in line 

with our predictions are remembered better compared to events eliciting PE. (iii) Study 2 

highlights the importance of recollection process as a possible moderator for the relationship 

between PE and episodic memory. (iiii) Study 3 showed that children can benefit from 

violations of the context. We believe that these findings advance our understanding of the 

complex interplay between PE and episodic memory. That is, the notion that PE is a driver of 

new learning and a possible reason for better memory may not direct as previously postulated. 
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Abstract 

Generating predictions about environmental regularities, relying on these predictions, 

and updating these predictions when there is a violation from incoming sensory evidence are 

considered crucial functions of our cognitive system for being adaptive in the future. The 

violation of a prediction can result in a prediction error (PE) which affects subsequent memory 

processing. In our preregistered studies, we examined the effects of different levels of PE on 

episodic memory. Participants were asked to generate predictions about the associations 

between sequentially presented cue-target pairs, which were violated later with individual items 

in three PE levels, namely low, medium, and high PE. Hereafter, participants were asked to 

provide old/new judgments on the items with confidence ratings, and to retrieve the paired cues. 

Our results indicated a better recognition memory for low PE than medium and high PE levels, 

suggesting a memory congruency effect. On the other hand, there was no evidence of memory 

benefit for high PE level. Together, these novel and coherent findings strongly suggest that high 

PE does not guarantee better memory.  

 

Keywords: prediction error, episodic memory, predictive processing  
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Introduction 

According to the predictive processing framework (Bar, 2007; Friston, 2010; Henson 

& Gagnepain, 2010), key functions of the cognitive system are to generate predictions about 

environmental regularities and to update these predictions when there is a violation from 

incoming sensory evidence, giving rise to a prediction error (PE). Building up abstracted 

knowledge can be achieved by extracting the statistical regularities of the environment. The 

violation of the abstracted knowledge can result in a PE. It may be important to remember 

these events giving rise to PEs to ensure better predictions in the future.  

The memory benefit of events giving rise to PE has been demonstrated in a series of 

recent studies (Bein et al., 2021; Brod et al., 2018; Greve et al., 2017; Kafkas & Montaldi, 

2018; Quent et al., 2022). When we encounter an event that gives rise to PE, we tend to 

remember it better, possibly because it can be important for improving our predictions in the 

future. For example, to investigate the memory benefit for such events, Kafkas and Montaldi 

(2018) used a rule learning task in which participants learned a contingency relationship 

between six different symbols and two stimulus categories, i.e., natural or human-made. 

Then, they violated the previously experimentally-induced relationships either in memory 

encoding or retrieval phases. Their results showed that the presentation of unpredicted 

stimuli enhanced the subsequent recollection performance regardless of the position of the 

violation (i.e., at memory encoding or retrieval).  

On the contrary, another body of research has shown that events that are in line with 

our predictions are remembered better, i.e., the memory congruency effect (Alba & Hasher, 

1983; Anderson, 1981; Craik & Tulving, 1975). For example, congruent associations (e.g., 

wood-chair) would be easier to remember than incongruent associations (e.g., wood-cookie). 

This account has been largely corroborated by recent behavioral evidence, e.g., in studies 

with item-scene pairs (Brod & Shing, 2019; Liu et al., 2018; Ortiz-Tudela et al., 2017; van 

Kesteren et al., 2013), item-location pairs (Atienza et al., 2011) and non-preexisting relations 

(Ostreicher et al., 2010). 

To bridge these diverging findings in the literature, a recent model called Schema-

Linked Interactions between Medial Prefrontal and Medial Temporal Lobe (SLIMM, van 

Kesteren et al., 2012) suggests a U-shape relationship between prediction and memory, in 

which different brain systems are involved. The model postulates that memory benefit is 

proportional to the degree of PE, where the degree is calculated via the difference between 

the prediction and the actual outcome. That is, events that are correctly predicted (i.e., low 
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PE) would lead to better memory, as the memory congruency effect suggests (Brod et al., 

2013), and this process is supported by the medial prefrontal cortex (mPFC). By means of 

the mPFC, already existing connections between representations upon which predictions are 

built become strengthened, facilitating the retrieval of the respective information. Similarly, 

events giving rise to PE (i.e., high PE) would also improve learning and memory (Henson & 

Gagnepain, 2010). The model postulates that the medial temporal lobe (MTL) creates 

“snapshots” for those events, resulting in a memory advantage. Lastly, events that are neither 

strongly predicted nor unpredicted would lead to medium PE. Since the activation of mPFC 

and MTL is weak for those events with medium PE, they would not benefit memory. Taken 

together, the varying differences between predictions and actual outcomes would result in 

low, medium, to high PE levels, which in turn is postulated to exhibit a U-shape relationship 

with episodic memory: Events of two ends of PE, namely low and high PEs, are assumed to 

be remembered better compared to medium levels.   

A recent study by (Greve et al., 2018) showed evidence for this U-shape function. In 

their series of experiments, the authors first led their participants to learn a rule about the 

pairing of object exemplars, which was then manipulated in three levels based on the 

strength of matching level with previous learned associations, namely, congruent, 

incongruent, and unrelated. While the rule remains unchanged for the congruent level, the 

incongruent level has a reversed rule. On the other hand, for the unrelated level, the rule 

reversed after the first trial. The authors aimed to establish a rule about the paired objects 

and subsequently violate or confirm them on the critical trial just before testing memory 

performance. Importantly, for the unrelated level, there was no rule to establish. Even though 

their results were in line with the U-shape function, it should be noted that the medium level 

was unrelated to the previous learned associations. One can argue that the poor memory 

performance for the medium level might be related to the requirement to create new 

associations instead of representing the medium level in the spectrum.  

Another study from the same group of researchers (Quent et al., 2022) addressed this 

issue via a continuous function of prediction. The authors conducted a virtual reality study in 

which participants had to explore a virtual kitchen with kitchen objects positioned in 

different locations which had varying degrees of congruency based on semantic predictions. 

For example, kettle placed at the counter would be predicted (low PE), kettle placed at table 

would be neither strongly predicted nor unpredicted (medium PE), and kettle placed at trash 

can would be unpredicted (high PE). The authors used both recall and an alternative forced-

choice task to test subsequent memory for the object-location pairs. Their results followed 
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the U-shape function of PE, suggesting better memory for predicted and unpredicted events 

when compared to the medium level. On the other hand, the authors also pointed out that it 

remains unknown to investigate the U-shape function when predictions are driven from an 

episodic context rather than pre-experimental knowledge (Ortiz-Tudela et al., 2021).  

We aimed to address the issue of the two conflicting ends of the U-shape, i.e., the 

memory congruency effect and the boosting effect of PE, in an episodic memory context. 

Importantly, previous studies that showed the benefits of PE on subsequent memory were 

either missing a medium level (Kafkas & Montaldi, 2018) or their medium level was 

unrelated to experimentally-induced associations (Greve et al., 2018). In our two preregistered 

studies, we attempted to address this issue by creating a medium level that was being related 

to the previously induced prediction learning. We asked our participants to learn associations 

between cue-target pairs (i.e., Experiment 1: musical instrument sound and object categories; 

Experiment 2: environment and item categories) and to generate predictions based on these 

associations. Hereafter, we violated their predictions with individual items in three PE levels, 

low, medium, and high, respectively. The subsequent memory for the individual items and 

their associations were assessed. We expected that this paradigm would help us to test the U-

shape function of PE as a continuum, with the medium level related to experimentally induced 

prediction learning. Testing the SLIMM model with these two preregistered studies that were 

meant to be conceptual replicates of each other, we hypothesized that there is a U-shape 

relationship between PE level and recognition memory performance. We further hypothesized 

that low and high PE levels would have better recognition memory in comparison to medium 

PE level. Moreover, we expected that performance on the association test varies as a function 

of PE and there is a significant difference between confidence ratings across different PE 

levels. 

Experiment 1 

Experiment 1 sought to test the U-shape function of different PE levels on recognition 

memory using associations between auditory and visual stimulus categories. During the first 

day, participants were presented with sounds of musical instruments and asked to predict the 

upcoming object category which can be either natural or human-made. More importantly, the 

musical instrument categories predicted the object categories in varying degrees (please see 

Figure 1D). In line with the study from (Schapiro et al., 2012), repeated pairing of 

associations would enable one to generate better predictions over time, through statistical 

learning. On the second day, they were again presented with sounds of musical instruments 
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and asked to predict the upcoming object category in their mind based on what they have 

learned on the previous day. After their prediction, individual objects were presented to create 

three levels of PE, low, medium, and high PE. It should be noted that three levels of PE were 

not only based on the varying levels of contingency, but also on categorical differentiation 

which comes from subcategories of natural and human-made objects (see Procedure section 

below for details). A surprise memory task followed the encoding phase in which item 

memory for the objects and associative memory for the object-sound pairs were tested.   

Method 

Participants 

 60 participants (46 females, aged 18–29 years, mean age = 21.92 (SD = 2.84)) 

were recruited for the study. They were recruited through advertisements across the campuses 

of Goethe University of Frankfurt, student social media groups, and Prolific 

(https://www.prolific.co/). For their compensation, participants received either course credits 

or eight € per hour. All participants had normal or corrected-to-normal vision and hearing. 

Participants who reported a history of neurologic or psychiatric disorder were excluded from 

participation. They all signed an informed consent approved by the local ethics committee of 

the Goethe University Frankfurt before their participation. The study design and analyses 

were preregistered on the Open Science Framework (https://osf.io/wybtn) before data 

collection.  

Since the main aim of the study was to understand the effect of PE on recognition 

memory, an absence of generating accurate predictions on the associations between object and 

sound categories would make the memory results difficult to interpret. Therefore, in line with 

our preregistration, we decided to exclude participants with poor learning performances of 

less than a 65 % accuracy rate. Ten participants who could not reach the criterion were 

excluded from the further analysis steps.   

Material 

 The stimuli consisted of sounds of musical instruments and object pictures. The 

sounds of musical instruments were selected from four categories: guitar, trumpet, violin, and 

piano with eight distinct sounds per category. A total number of 196 object pictures was 

selected from the BOSS database (Brodeur et al., 2014). The objects were equally divided into 

two main object categories, natural and human-made, with two sub-categories each. For 
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natural objects the sub-categories consisted of animals and fruits/vegetables/nuts, for human-

made objects the sub-categories consisted of household and toys/school/sports objects. 

Procedure 

The study was conducted over two sessions taking place on two consecutive days and 

lasting one hour each (see Figure 1). On the first day, participants were trained to learn the 

sound-object category associations to build up predictions. On the next day, they were asked 

to complete encoding and recognition phases. Since the study took place online due to the 

pandemic, we implemented additional steps into the data collection procedure to gain traction 

on data quality (Newman et al., 2021). Each session started with a video call with the 

participant to check their overall well-being and physical environment. All participants were 

informed that they must be in a quiet room, sitting in a comfortable chair, using a computer 

with a stable internet connection, and to minimize distractions to be able to focus on the task.  

Also, we subdivided each task into several blocks and suggested our participants to take short 

breaks in between. The information about online testing was followed by the task instructions. 

The instructions were given in both spoken (during the video call) and written form (during 

the task). Once the participant completed the task, they were asked to video call the 

experimenter again to give feedback about their participation and talk about any unforeseen 

problems that might resulted in the incompletion of the task. In addition to the video call, they 

were strongly encouraged to watch the video prepared by our team to get familiarized with 

online testing prior to the study (https://www.psychologie.uni-

frankfurt.de/102061001/Instructions_for_Online_Testing___English_Version). The 

presentation of stimulus and response collection were programmed in PsychoPy v2021.1.4 

and https://pavlovia.org was used to run the task (Peirce, 2007). 

Prediction Learning Phase. The prediction learning phase served to build up 

predictions about the sound-object category associations (see Figure 1A). For each of four 

sound categories, there were one strongly (70 %), one mildly (20 %), and two weakly (10 %) 

associated object categories. Most importantly, strongly and mildly associated categories were 

derived from one of the main categories, namely natural or human-made. Figure 1D 

demonstrates an example of the structure of the association between sound and object 

categories. In the figure, guitar sounds were strongly associated with animals. Consequently, 

whereas the mild association was fruits/vegetables/nuts, the weak associations were human-

made categories. 
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During the task, participants were asked, after hearing the sound, to predict the 

upcoming object category. The contingency structure of the task was unknown to participants, 

and they had to learn the associations across trials. Each trial started with a fixation cross at 

the center of the screen for 1000 ms and was followed by the sound for 3000 ms. Participants 

were then asked to predict the category of the upcoming object based on two levels, natural or 

human-made. After their response, an object from the sixteen exemplars was presented for 

3000 ms following the designated contingencies. Although the category prediction task was 

self-paced with no time limit, participants were encouraged to be as fast and accurate as 

possible. All participants completed 200 trials equally spread over five blocks. The 

association between sound and object categories was counterbalanced across participants to 

keep the sub-category structure stable. 

Encoding Phase. The second session of the study took place approximately 24 hours 

after the first session and started with the encoding phase (Figure 1B). In this phase, we aimed 

to violate predictions with individual object pictures which have not been presented before. 

The following contingencies were used: 50 %, 30 %, and 20 % for strongly, mildly, and 

weakly associated pairs, respectively, to maintain the original contingencies as close as 

possible to the prediction learning phase while increasing the number of trials possible for the 

weakly associated category. As in the prediction learning phase, the strongly and mildly 

associated categories were derived from one of two main object categories. 

Each trial started with a fixation cross at the center of the screen for 1000 ms and the 

musical instrument sound was presented for 3000 ms. After hearing the sound, participants 

were presented with a blank screen and asked to predict the most likely object category in 

their mind for 2000 ms. More importantly, they were previously informed about the four 

different object categories, namely, animals, fruits/vegetables/nuts, household, and 

toys/school/sports objects, and were instructed to predict one of those categories. Participants 

were informed about the four object categories on Day 2 because it was aimed to create 

medium PE level via varying levels of contingencies and semantic subcategories. The paired 

object picture was presented for 3000 ms. Then, participants were asked to indicate whether 

the presented object belongs to the same category which they predicted based on a 4-level 

Likert scale (from 1: Strongly yes to 4: Strongly no). The encoding phase consisted of three 

blocks of 40 trials, for a total of 120 trials.  
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Recognition Phase. Immediately after the encoding phase, a surprise recognition 

phase started (Figure 1C). In addition to the 120 object pictures from the previous phase, 60 

new objects were included. The new objects were equally selected from the four object 

categories. Each trial started with a fixation cross for 1000 ms and was followed by the object 

picture presentation for 3000 ms. Participants were required to give an old/new judgment and 

to provide their confidence based on a 4-level Likert scale (from 1: very sure to 4: very 

unsure). Hereafter they were asked to select the sound (between two options) that was 

associated with the presented object. They listened to two sounds one after another and 

indicated which one was paired with the object. To avoid guessing biases based on the 

previously learned associations, the alternatives were selected from the same musical 

instrument category. All responses were self-paced with no time limit. A total of 180 trials 

was distributed across three blocks. 

Statistical Analyses 

 To test the effect of PE levels on recognition memory performances, we assessed the 

participants’ hit responses based on correct answers for old items. Before testing the main 

hypothesis, cumulative accuracy scores were computed to exclude participants with poor 

learning performances (below 65 %). Also, mean prediction rates from the encoding phase 

were assessed as a sanity check for our PE manipulation. For all phases of the study, trials 

with reaction time shorter than 100 ms or longer than 1500 ms were excluded. 

 To determine whether PE level was a significant predictor of recognition memory 

performance, we conducted a linear mixed effect model with participant as random intercept 

to account for between-participant variability in hit responses. The model included PE level 

(low, medium, and high PE) and confidence ratings (from 1: very sure to 4: not unsure) as 

fixed within-participant factor. Model estimations were determined with maximum likelihood 

ratio and the statistical significance of the fixed effects was determined using χ2 (chi-squared) 

tests. In addition to our primary analyses on the effect of PE level on hit responses, we also 

analyzed the responses for the associated sound pair with the same model specification. All 

analyses were performed using custom-made R scripts with the lmer function in the lme4 

package (Bates et al., 2015) that can be found on the OSF page (https://osf.io/pfgyb/). 

In addition to our primary hypothesis of mean differences across PE levels, we also 

exploratorily analyzed the relationship between learning, PE, and recognition performance. 

Assumingly, participants whose learning performance was better would benefit more from 
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high PE compared to participants with lower learning performance. We assessed learning 

performance via cumulative accuracy from the last third of trials from the prediction learning 

phase. A linear mixed effect model was calculated with participant as random intercept. We 

included learning performance and PE level as fixed factors into the model.  

Deviations from the registered protocol 

 The current study was preregistered prior to the data collection (https://osf.io/wybtn) 

and there are some deviations from it which are important to mention (Claesen et al., 2021). 

Firstly, even though we planned to test 45 participants assuming an effect size of .25 to 

observe .80 power, additional participants had to be recruited due to problems related to 

exclusion criteria, online testing and failed data transmission. The second main difference 

from the preregistered plan was in the encoding phase. We had planned to ask our participants 

to report the category of the presented object (e.g., animal or fruit). However, during the pilot 

studies, it revealed that participants were not attentive to the associations between sounds and 

objects, since attending the object only would be sufficient to solve the task which was 

selecting its category. Therefore, generating different PE levels for associations between 

sound and object categories was not possible although it was crucial for the study. We 

correspondingly decided to update the encoding phase in which participants indicated if the 

presented object belongs to the same category which they predicted. Lastly, the preregistered 

plan was to test hypotheses with a within factors repeated measures ANOVA. We changed 

our statistical model to a linear mixed model because it allows us to control for the variance 

attributed to random factors (e.g., participants) and it was more suitable for an unbalanced 

number of observations since in the present study the number of trials differed among PE 

levels due to the nature of the experimental design. 

Results 

First, to check if participants generate predictions about the sounds of musical 

instruments and object categories, we examined the accuracy results from the prediction 

learning phase. Mean accuracy across participants was .87 (SD = .33) during the prediction 

learning phase that was significantly above chance levels of performance (t(49) = 28.75, p < 

.001, d = 4.07). Figure 3A shows that the accuracy of predicting the upcoming object category 

increased with trials. This shows that participants could generate predictions about the 

associations between musical instruments and object categories.  
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Then, to test our manipulation on the PE levels, participants’ category judgments 

during the encoding phase were investigated. Ratings about the distance between the 

presented object category and the category they previously predicted were collected. While 

the highest ratings (i.e., 4- Strongly no) mean that the presented object did not belong to the 

same category that participants predicted earlier, the lowest ratings (i.e., 1- Strongly yes) 

indicate that the presented object was from the same category that they predicted. The results 

can be seen in Figure 3B. The model for the encoding phase with participant as random 

intercept and PE level as fixed factor showed that there was a significant main effect of PE 

(χ²(2) = 292.3, p < .001), indicating that higher ratings were obtained for high PE trials (β = 

1.98, t = 16.88, p < .001) and medium PE trials (β = .56, t = 5.76, p < .001) compared to low 

PE trials. This result indicates a strong verification for our manipulation on the PE levels, 

such that our participants reported that objects from high and medium PE levels are not from 

the category they predicted.  

 The model to predict recognition memory performance for PE levels with participant 

as random intercept indicated a significant main effect of PE (χ²(2) = 8.27, p = .02).  Post-hoc 

contrasts showed that hit responses for high PE levels (β = -.24, z = -2.79, p = .01) were lower 

than low PE level (see Figure 3C). In addition to PE level, we added confidence ratings as 

fixed effect for random intercept and random slope into the model and compared both models. 

The model fit was significantly improved, χ2(81) = 871.58, p < .001; AIC first: 6293.6, 

second: 5584.1. The main effect of confidence (χ²(3) = 169.08, p < .001) was significant, 

indicating higher hit responses obtained at the highest confidence rating (1- Very sure) 

compared to the other confidence ratings (2- Sure: β = -1.77, z = -6.89, p < .001; 3- Unsure: β 

= -2.78, z = -9.18, p < .001; 4- Very unsure: β = -3.42, z = -8.99, p < .001). The interaction 

effect between PE and confidence was significant (χ²(6) = 12.91, p = .04), which indicated 

that participants’ hit responses were lower for high PE level compared to low PE level at 

lower confidence ratings (3- Unsure: β = .81, z = 2.57, p = .01; 4- Very unsure: β = 1.08, z = 

2.37, p = .02). The results can be seen in Figure 3D. Lastly, we applied a similar model to test 

the association memory accuracy. There was neither significant main nor interaction effect of 

PE level on association memory accuracy, χ2(2) = 1.90, p = .45. 

We further tested our exploratory question about the relationship between learning, 

PE, and recognition memory. The model was run to predict recognition memory performance 

with PE levels and cumulative accuracy scores with fixed effects and participant as random 

intercept. Results showed significant main effect of PE (χ²(2) = 8.40, p = .02). Post hoc 
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comparisons indicated that highest hit responses were measured for low PE level (β = .75, t = 

4.87, p < .001). Neither the effect of learning nor the interaction was significant.   

Discussion 

 Experiment 1 showed that while three levels of PE were successfully constructed 

during the encoding phase by generating predictions about the associations between sound 

and object categories in the prediction learning phase, the hypothesized U-shape function of 

PE on recognition memory was not observed. In contrast, our results indicated that 

recognition memory was better for low PE than high PE, suggesting a memory congruency 

effect. As one can argue that the U-shape function of PE is observable mostly for associative 

memory because of its role in creating “snapshots” for high PEs (Henson & Gagnepain, 

2010), we also assessed associations between individual items and their sound pairs, but we 

did not observe a memory benefit for high PE. Even though these findings provide 

contradicting evidence for the U-shape relationship between PE and memory, it is crucial to 

rule out that the absence of this PE effect might be linked to the task-related differences. For 

example, we argue that it should be revisited how predictions are experimentally built up. It is 

very likely to make a difference if pre-experimental knowledge (i.e., semantic categories) is 

used or certain contingency structures are established during the prediction learning phase. In 

other words, in Experiment 1, the contingency structure that was built up during the very first 

phase of the study with varying degrees of PE was also based on semantic categories of the 

objects. The issue with this task structure might be that participants were not sensitive to the 

individual items shown during the encoding phase because participants had been acquainted 

with being presented with objects which were from different semantic categories than their 

predictions. Experiment 2 sought to address these issues.   

Experiment 2 

 Experiment 2 followed the same rationale as Experiment 1: Testing the U-shape 

function of PE on memory with all levels based on experimentally-induced prediction 

learning. However, there are three main differences between our two experiments worthwhile 

highlighting. First, due to the nature of Experiment 1, the PE levels were based on semantic 

sub-categorization (e.g., animals and fruits/vegetables/nuts for the natural object category). 

We aimed to rule out any potential effects of previous semantic knowledge by using 

associations between artificial creatures called “Wubbels” and their environments in 

Experiment 2 (Watson et al., 2019). Secondly, in Experiment 1, varying contingencies started 
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from the very first phase (i.e., the prediction learning phase). During the prediction learning 

phase, the musical instrument categories predicted the object categories to varying degrees, 

thus this setup might have resulted in participants having the understanding that their 

predictions can be sometimes incorrect. As a consequence, participants might not have been 

sensitive to medium and high PE trials during the encoding phase, because they already knew 

from the first phase that sometimes the presented object does not match with their predictions. 

Therefore, in Experiment 2, we decided to have a deterministic prediction learning phase in 

which the contingency was set to 100 %. Lastly, in Experiment 2 we measured two additional 

aspects of associative memory, i.e., Wubbel-scene pair and Wubbel-location pair (see 

Procedure section for details). 

As in Experiment 1, the study consisted of three phases: Prediction learning, encoding, 

and recognition (see Figure 2). In the prediction learning phase, participants were asked to 

learn Wubbel-scene associations via feedback across trials. During the encoding phase, they 

were presented with individual, unique Wubbels that varied to certain degrees to create three 

PE levels. In the end, recognition and associative memory were assessed to test the U-shape 

function of PE on memory. 

Method 

Participants 

 51 participants (28 females, aged 18-35 years, mean age = 23.14 (SD = 4.49)) were 

recruited in this study. They were recruited through advertisements across the campus, student 

social media groups, and Prolific (https://www.prolific.co/). The inclusion criteria were 

having normal or corrected-to-normal vision and hearing. Participants with a history of 

neurologic or psychiatric disease were not recruited for the study. All participants signed an 

informed consent approved by the local ethics committee prior to their participation and they 

were given either course credits or honorarium for their compensation. The preregistered 

study design and analyses can be found in the Open Science Framework 

(https://osf.io/bwujz). With the same rationale as in Experiment 1, we excluded one 

participant from the analysis due to poor learning performance with a less than 40% accuracy 

rate.  

Material 

https://www.prolific.co/
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 We used associations between the artificial creatures called “Wubbels” and certain 

environments to prevent the effect of prior knowledge (Watson et al., 2019). The scenes for 

environments were selected from the ECOS database 

(https://sites.google.com/view/ecosdatabase/) with four distinct categories: beach, snowy 

mountains, desert, and savannah. There were four different exemplars for each environment 

category. 

The Wubbels were created with the Autodesk 3DS Max software using the provided 

script by Watson et al. (2019). The creation of Wubbels followed a schema according to 

which the main feature defining the affiliation with one of the two species is the body shape, 

i.e., longish or roundish. The body shapes of the four Wubbel families were consistent with 

their primary species. That is, families one and two, which are affiliated with the long-shaped 

species, have concave and oblong body shapes, whereas families three and four, which are 

affiliated with the round-shaped species, have compressed oblong and spherical body shapes 

(see Figure 2D). We structured Wubbels into two main groups, the so-called Wubbel parents 

and Wubbel children to use them during the prediction learning and the remaining phases 

(i.e., encoding and recognition), respectively. 

The main difference between Wubbel parents and Wubbel children was that the 

children have varying features. Except for the Wubbel parents, i.e., the prototype pairs used 

for the prediction learning phase, the additional features of the Wubbel children, such as hat 

shape (6 instances), arm shape (4 instances), skin type (6 instances), body color (13 

instances), pattern color (13 instances), and pattern (50 instances) were variable. They were 

attached to the body strategically to ensure that the Wubbels are as dissimilar from another as 

possible. To this end, a matrix with all possible feature combinations was built from which 80 

combinations with a distance of at least three features were randomly drawn. The drawn 

combinations provided the building instructions for the Wubbels. That is, we aimed to 

guarantee that at least three features do not overlap when one compares all Wubbels to one 

another. This procedure resulted in a set of 80 unique Wubbel children which were used in the 

encoding and recognition phases. In contrast to the Wubbel children, the parents differ as the 

assigned color patterns are for one prototype vertically striped and for the other prototype 

horizontally striped rainbow colors, respectively. Similarly, as for the Wubbel children, each 

prototype had a unique combination of the remaining features complementing its body. All 

color and pattern patches were created with Python 3.7.4 using the OpenCV library. 
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Procedure 

  There were three study phases on two consecutive days and each lasted for one hour. 

On day 1 in the prediction learning phase, participants learned associations between Wubbels 

and environments. The second session on day 2 started with the encoding phase and was 

followed by the recognition phase. This study was also run online. Therefore, we followed the 

same structure as in Experiment 1 including the video call with participants in order to 

increase data quality. The presentation of stimulus and response collection were programmed 

in PsychoPy v2021.1.4 and https://pavlovia.org was used to run the task. 

Prediction Learning Phase. The purpose of the prediction learning phase was to let 

participants learn the Wubbel-environment associations to be able to generate predictions. 

The phase started with a cover story in which the Wubbels, their species, and their families 

were introduced. Participants were told that each Wubbel family lives in a different 

environment and they were asked to learn these combinations as quickly as possible (Figure 

2A). There were two prototypes for each four families and four scene pictures for each four 

scene categories. The associations between Wubbels and environments were predetermined, 

and the contingency was 100 %. 

 Each trial started with a scene and a fixation cross in the center for 500 ms. Then, two 

Wubbels from different families were presented in two out of four possible screen locations 

(i.e., top-right, top-left, bottom-right, and bottom-left). Here, participants were asked to decide 

which Wubbel matches with the presented scene by giving a response. After their response, 

feedback was presented via a green (correct) or red (incorrect) frame around the chosen 

Wubbel according to the pre-determined associations based on 100 % contingency for 3000 

ms. The prediction learning task was self-paced with no time limit, but we encouraged our 

participants to be as fast and accurate as possible. The total number of trials was 96 for one 

block. The associations between Wubbels and environments were counterbalanced across 

participants. 

Encoding Phase. The second session started with the encoding phase approximately 

24 hours after the first session (Figure 2B). To create three different levels of PE, individual, 

unique Wubbel pictures, which we told the participants as Wubbel children, were used. We 

used twelve Wubbel-children for each family and divided them into three conditions, low, 

medium, and high PE levels. In detail, a Wubbel child shown in an environment of its own 

family would elicit a low PE, a Wubbel child from a different family but within the same 
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species would lead to a medium PE in that same environment, and a Wubbel child from the 

other species would lead a high PE. As in the example presented in Figure 2, participants 

learned in the prediction learning phase that one family prototype of the long-shaped Wubbel 

species lives on the beach. When a child from this family was presented with a beach during 

encoding, it would lead to low PE because participants would have expected to find a family 

member with such a longish body shape. When the same child was presented with an 

environment category associated with the other long-shaped family, i.e., a desert, it would 

result in medium PE level. Lastly, presenting the same child with any environment associated 

with a round-shaped family, i.e., a savannah, would create high PE. 

Prior to the task, participants were first instructed about the structure of Wubbel 

families and their children. It was explained that the children have the same body shapes as 

their parents and that they are similar to their relatives as they have similar body shapes 

(please see Figure 2D). It was also described that they are very different from the other two 

unrelated families who have very different body shapes. Moreover, they were told that they 

can see them in different environments since the children of Wubbels always visit each other 

because they enjoy meeting other Wubbels. The contingencies for PE levels were equal, 

meaning twelve Wubbels for each PE level. The participants’ task was to indicate the 

matching level between Wubbels and the environments. 

 Each trial started with a fixation cross at the center of the screen for 500 ms and a 

scene was presented for 3000 ms. During the scene presentation, participants were asked to 

predict the most likely Wubbel family in their minds based on what they have learned the day 

before. Then, a Wubbel child was presented on one out of four possible screen locations for 

3000 ms. Participants were asked to indicate whether the presented Wubbel child belongs to 

the same family which they predicted or not, using a 4-level Likert scale (from 1: Strongly yes 

to 4: Strongly no). This was followed by a 2500 ms blank screen to wait for the next Wubbel 

child. The total number of trials was 48 and the association structure from the previous day 

was the same. Different from Experiment 1, we told participants that there will be a memory 

test for the Wubbel children, their features, the environment as well as the location on the 

screen they were shown at. Thus, whereas Experiment 1 was incidental, this study was based 

on intentional learning. 

Recognition Phase. The recognition phase followed the encoding phase (Figure 2C). 

The Wubbels from the previous phase were presented with 32 new Wubbel children - eight 
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from each family. Each trial started with a fixation cross for 500 ms. Then, participants had to 

indicate whether they have seen the presented Wubbel before or not and rate their confidence 

based on a 4-level Likert scale (from 1: very sure to 4: very unsure). Regardless of their 

response, scene association and scene location tasks were employed for old Wubbel children. 

Participants had to choose the correct scene from four alternatives. Importantly, the 

alternative scenes were from the same scene category to prevent guessing biases. Lastly, 

participants were asked in which location on the screen the Wubbel was presented. All 

responses were self-paced with no time limit. All participants completed 80 trials. 

Statistical Analyses 

 The steps for statistical analyses were identical to Experiment 1.  

Deviations from the registered protocol 

Our preregistered study and analysis plan can be found here: https://osf.io/bwujz. Due 

to unforeseen reasons, we had to deviate in several aspects during the study, with the reasons 

being summarized here. As in Experiment 1, due to problems related to online testing, we had 

to test more participants than we originally reported. The initial sample size was 40 to obtain 

.80 power with an effect size of .40 at the standard .05 alpha error probability. During the 

pilot task, Wubbels had two main features, namely body shape, and color. However, it had not 

been anticipated that the color information overshadowed body shape information, as a 

consequence, participants considered solely the body shape information to accomplish the 

task. Unfortunately, we could not create the different levels of PE even though it was our 

main manipulation of the task. Thus, we decided to only have the body shape as the main 

characteristics to define species but not color information. The other important deviation was 

to have a different structure for the encoding phase. The pilot task with the like/dislike task 

did not show significant difference in PE levels. Therefore, we changed the structure and 

asked participants to evaluate if the presented Wubbel matched with the scene. The last 

deviation concerned the analysis plan. Similar to Experiment 1, we decided to run linear 

mixed models instead of repeated measure ANOVA due to the aforementioned reasons. 

Results 

We first checked prediction learning performance during the first phase. Mean 

accuracy across participants was .88 (SD =.32) which was significantly above chance levels 

of performance (t(50) = 29.34, p < .001, d = 4.11). As in Experiment 1, learning performance 
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for the associations between Wubbels and scene categories increased with trials indicating 

that participants were able to generate accurate predictions (Figure 3A). Then, we tested the 

effect of PE level on the category judgments in the encoding phase (Figure 3B). The results 

showed a main effect of PE, χ²(2) = 690.66, p < .001. The ratings were higher for high PE 

trials (β = 2.39, t = 25.83, p < .001) and medium PE (β = .96, t = 10.58, p < .001) compared to 

low PE. Together with these results, we further supported our PE manipulation.  

As in Experiment 1, the model to predict hit responses for PE levels with participants 

as random intercept showed a significant main effect of PE (χ²(2) = 13.63, p = .01). Post-hoc 

comparisons indicated that hit responses for high PE level were lower than low PE level, β = -

.36, z = -3.23, p = .01. Results can be seen in Figure 3C. Next, we continued by adding 

confidence ratings to the model. The model fit was significantly improved, χ2(81) = 153.36, p 

< .001; AIC first: 3173.2, second: 3181.8. The main effects of PE level (χ²(2) = 9.30, p = .01) 

and confidence ratings (χ²(3) = 8.24, p = .05) were significant but there was no interaction 

effect, χ2(6) = 5.28, p = .51. Post hoc comparisons only showed that higher hit responses were 

recorded at rating level 2- Sure, β = .53, z = 1.77, p = .07 (Figure 3D). Neither the results for 

association memory for scene pair (χ2(2) = 2.94, p = .23) nor the results for association 

memory for location (χ2(2) = .02, p = .99) indicated a main effect of PE level.  

For our exploratory analysis, the mixed-effect logistic regression to predict recognition 

memory performance for different PE levels and cumulative accuracy scores from the 

prediction learning phase indicated that there was a significant main effect of PE (χ²(2) = 

12.14, p < .01). Post hoc comparisons indicated that hit responses for high PE levels (β = -.01, 

t = -.02, p = .02) were lower than for low PE levels. Neither the effect of learning nor the 

interaction was significant. These findings demonstrate that beyond the proxy of recognition 

memory, better performances were obtained at low PE compared to high PE level, which was 

in line with Experiment 1.  

Discussion 

 Experiment 2 replicated the better recognition memory for low PE, i.e., memory 

congruency effect, and the absence of memory benefit for high PE which were found in 

Experiment 1. This stands in contrary to some previous studies (Brod et al., 2018; Greve et 

al., 2017; 2019; Kafkas & Montaldi, 2018; Quent et al., 2022) that documented better memory 

for events that elicit high PE. Despite not using pre-experimental knowledge to rule out the 

semantic memory processes and despite having a fully deterministic contingency in the 
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prediction learning phase, better recognition memory results were obtained only for low PE. 

Notably, Experiments 1 and 2 both indicate coherently the lack of evidence for memory 

advantages for high PE.  

General Discussion 

Within two preregistered studies, we examined the effects of different PE levels on 

recognition memory performance. To test the hypothesized U-shape function of PE on 

episodic memory, we first asked our participants to learn novel contingency structures and 

generate predictions, then violated these predictions on three levels (i.e., low, medium, and 

high PE) with all levels being related to experimentally-induced prediction learning. We 

showed that participants were able to learn from the provided regularities and successfully 

formed predictions. Even though our findings indicated a strong verification for our 

manipulation of PE, there was no memory advantage for high PE level neither in the 

recognition nor in the association tasks. Rather, we consistently found a memory advantage 

for low PE trials, in line with memory congruency effect (Alba & Hasher, 1983; Anderson, 

1981; Craik & Tulving, 1975). In addition to our primary findings, we exploratorily 

investigated the relationship between learning performance and recognition memory. We 

hypothesized that a better learning performance would lead to better recognition performance 

for high PE trials. Contrary to our hypothesis, the results were in line with our main findings 

suggesting a memory congruency effect but no memory advantage for high PE. Thus, the 

current studies clearly show that high PE does not guarantee subsequent memory benefit.  

 A body of research has shown that events giving rise to PE are remembered better, 

such that they facilitate new learning for better predictions in the future (Bein et al., 2021; 

Brod et al., 2018; Greve et al., 2017; Kafkas & Montaldi, 2018; Quent et al., 2022). Although 

PE is sometimes taken for granted as a driver of new learning (Greve et al., 2017), its direct 

behavioral effect on memory may depend on several factors, such as the task sensitivity 

concerning how PEs are experimentally generated and tested. One explanation why there was 

no memory benefit for high PE trials in the current studies can be the differences in the 

experimental paradigms, for example, how the encoding and the recognition phases were 

structured. In the following sections, we will discuss these points. 

The first of these differences in the experimental designs can be examined via the 

differences in encoding of PEs. The studies which reported high PE benefits on memory had 

their PE manipulation and memory test based on the item level (Bein et al., 2021; Kim et al., 
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2017). In the current studies, we let our participants to generate predictions on the category 

level, because the task was to learn the associations between cue-target categories and predict 

the upcoming target category based on the cue. Nevertheless, participants were tested on their 

memory for the target (i.e., item level) at retrieval. Our participants might have only focused 

on the category-level information during encoding rather than on individual items which were 

tested later. Evidence for the effect of PE on association memory has also been demonstrated 

in previous studies (Greve et al., 2017; Quent et al., 2022). Unfortunately, the obtained 

association memory performance was below chance in our experiments. The difficulty level 

of study materials can be an issue both for musical instruments and the Wubbels. For 

example, participants might have found it challenging to discriminate guitar sounds from each 

other. On top of that, since processing the guitar sound category was already informative 

enough to accomplish the task, participants might have had a shallow encoding for the 

sounds. 

Yet, another explanation for why the current studies did not show a memory advantage 

for high PE levels would stem from our experimental approach to assessing memory 

performance. Previous studies that provided a PE benefit tested recognition memory via 

alternative forced-choice tests (Greve et al., 2017; Quent et al., 2022) or mixed lists with 

similar lures (Bein et al., 2021; Frank et al., 2020), unlike our study which used an old/new 

paradigm. One can argue that PE creates distinct memory traces (i.e., snapshots) which leads 

to better recognition memory in return. However, it may not be possible to evaluate its 

memory traces via old/new paradigms since only a level of familiarity would be sufficient to 

dissociate the old items from the new ones. Even though we assessed the memory 

performance via confidence ratings to deal with the issue of familiarity, the results still did not 

suggest a memory benefit for high PE with high confidence.  

On the contrary, our results were in line with the rich literature on the memory 

congruency effect (Alba & Hasher, 1983; Anderson, 1981; Craik & Tulving, 1975). One 

possible reason could be that high PE items were ignored because the task was making 

“better” predictions to correctly respond to what will be presented. During the encoding 

phase, participants were asked to predict the upcoming object category in their mind, and they 

were presented with objects with varying degrees of PE. In order to make correct predictions 

for the future, participants might have tended to leave out the items which were not in line 

with their predictions. This semantic encoding has been considered to have a great adaptive 

value to enhance the functionality of the memory system even though it may result in 
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distortions (Schacter et al., 2011). For example, the previous research on the effects of 

confirmation bias on episodic memory suggests that participants tend to learn more from PEs 

that confirm their choices, indicating that events which are associated with successful 

decision-making are preferentially encoded (Palminteri & Lebreton, 2022; Pupillo et al., n.d.). 

In our study, the memory congruency effect can be interpreted as a byproduct of this 

processes that emphasizes the participants’ responses which were later confirmed and utilized 

for future choices.  

A recent framework, i.e., PACE (Gruber & Ranganath, 2019), postulated that 

enhanced memory encoding for PE is also based on the evaluation of information that can be 

valuable in the future. PEs might not be sufficient to trigger new learning because its appraisal 

is not important. As stated previously, high PE trials in our studies were not informative for 

the task at hand, potentially leading to these trials not being encoded better. One can thus infer 

that PE does not necessarily benefit memory. If events that give rise to PE are not evaluated 

as informative for future functioning, our memory system may tend to ignore them and rely 

more on the existing predictions. 

Besides preceding explanations regarding why high PE does not benefit subsequent 

memory, additional evidence might derive from the research on cognitive conflict. A recent 

study (Ptok et al., 2021) showed that where the manipulation for conflict took place might 

have a crucial impact on the memory benefit. The authors run a series of experiments to 

investigate the effect of locus of processing conflict on memory benefit. They found memory 

benefit for incongruent items when the conflict is on the to-be-tested item. On the other hand, 

changing the attentional focus from the to-be-tested-item to the response does not lead to 

better memory. For example, Lisa (female name) with an incongruent distractor, male, would 

lead to a better recognition memory, whereas “Lisa – press right button” as an incongruent 

response information does not show a memory benefit. The authors concluded that having a 

violation and attentional focus on the to-be-tested item predicts the subsequent memory 

benefit. On the other hand, in our studies, although we had our PE (cf. conflict) on the 

individual level, namely the to-be-tested items, the task was to decide whether the presented 

object matched with participants’ prediction. Therefore, participants might need to revisit 

their previous knowledge about the associations in order to do the task. As a consequence, 

they might have had an attentional switch from the item to the category level. This attentional 

switch could explain the better recognition memory for low PE trials than for high PE trials.  
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To conclude, our two preregistered studies provided novel paradigms to generate and 

violate PEs in varying degrees that indicated memory advantage for the events in line with 

predictions but not for the ones giving rise to PE. These findings suggest that it remains 

elusive to illustrate the U-shape relationship between prediction and memory. We conclude 

that it is important to investigate the specific condition in which a U-shape relationship could 

be reliably found. Relatedly, we showed in another study (Ortiz-Tudela et al., 2022) an 

inverted U-shape function instead of the U-shape function as suggested in the SLIMM Model 

(van Kesteren et al., 2012) in which we used a different experimental manipulation of 

continuous PE through prior strength. This indicated that the uncertainty level of generated 

prediction can modulate how PE affects memory. Our convergent results underscore that the 

effects of PE on episodic memory are complex, and there are potentially other modulating 

factors that may offer a better roadmap for further exploring PE as a driver of new learning 

and a possible reason for better memory. 
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Figure 1. Study design for Experiment 1. The study was conducted on two consecutive days. 

A) On day 1, participants were asked to build up predictions about the sound-object category 

associations. In each trial of prediction learning phase, participants were presented with a 

musical instrument sound and asked to predict and indicate the upcoming object category 

based on two levels (i.e., natural and human-made). After their response, an object exemplar 

was shown. The contingency structure for the associations between sounds of musical 

instruments and object categories was unknown to participants. As also seen in panel D, the 

guitar sounds were followed by exemplar objects from animal categories 70% of the times 

(Low PE, yellow). Thus, the contingencies for exemplar objects from fruit categories 

(Medium PE, green) and human-made categories (High PE, blue) were 20% and 10%, 

respectively. B) On Day 2, during the encoding phase, a musical instrument sound was firstly 

presented. Participants were asked to predict the most likely object category in their mind 

among four different sub-categories. Participants were then presented with object pictures and 

asked to indicate if the presented object belongs to the same category they predicted. The 

contingency structure as follows, 50%, 30%, and 20% for low, medium, and high PE levels, 

respectively. C) During the recognition phase, participants were asked to make old/new 

judgments on the test pictures with their confidence ratings, and they were asked to indicate 

the paired sound as well. D) Example of the contingency structure for the guitar sound. 
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Figure 2. Study design for Experiment 2. The study was conducted on two consecutive days. 

A) On day 1, participants were asked to learn Wubbel family-environment category 

associations. In each trial of prediction learning phase, participants were presented with two 

Wubbel parents from different families on different screen locations and asked to indicate 

which Wubbel matches with the presented scene. Participants were then presented with 

feedback based on their response. As in the example, participants were expected to learn that 

one of the long-shaped Wubbel family lives on the beach. B) On day 2, the encoding phase 

was first run. Participants were presented with a scene and asked to predict the most likely 

Wubbel family in their minds. Then, a Wubbel child was presented on one out of four 

possible screen locations. Participants were further asked to indicate whether the presented 

Wubbel child belongs to the family which they predicted. As in the example, a long-shaped 

Wubbel child presented in a beach scene would elicit a low PE (yellow). Presenting the same 

Wubbel on a desert which was an environment for the other long-shaped family would lead a 

medium PE (green). Lastly, presenting the same Wubbel with the environments associated 

with the round-shaped families would elicit a high PE (blue). C) During the recognition 

phase, participants were asked to make old/new judgments and report their confidence. 

Participants were then asked to indicate the paired scene and paired location. D) Example for 

the relationship structure for Wubbel families and children. 
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Figure 3. Results for Experiment 1 and 2. A) Cumulated accuracy for prediction learning. 

Grey lines indicate the performance of single participants. Green lines indicate the group 

mean. B) Encoding ratings for low, medium, and high PE levels. C) Hit responses for low, 

medium, and high PE levels. D) Hit responses for low, medium, and high PE levels separated 

by confidence ratings (1- Very sure, 2- Sure, 3- Unsure, 4- Very Unsure). Grey lines indicate 

the performance of single participants. Black lines indicate the group mean with error bars 

reflecting ± SEM. Asterisks denote statistically significant differences, * p < .05, *** p < .001
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Abstract 

The human brain is postulated to function as a prediction machine, constantly comparing 

incoming sensory input to predictions based on past experiences. When an event contradicts 

these predictions, it results in a prediction error (PE), which has been shown to enhance 

subsequent memory. However, the neural mechanisms underlying the influence of PE on 

subsequent memory remain unclear. This study investigated the electrophysiological correlates 

during encoding and retrieval of events eliciting PE. We employed a statistical learning task in 

which participants were presented with pairs of objects in sequence. Subsequently, while 

recording electroencephalography (EEG), we introduced PE by replacing the second object of 

each pair with new objects and we then tested the participants’ memory. Behaviorally, PE did 

not enhance memory. During retrieval, we observed higher amplitudes of the posterior 

recollection component for violation items that were remembered compared to those that were 

forgotten. In contrast, no evidence for the presence of the frontal negative familiarity 

component was found. These results suggest that recollection, but not familiarity, plays a crucial 

role in the interplay between PE and memory. Contrary to our hypothesis, we did not observe 

a relationship between PE and the P3 component during encoding. In conclusion, our study 

contributes to the growing body of knowledge concerning the intricate relationship between PE 

and episodic memory. It sheds light on the underlying neural mechanisms involved and 

emphasizes the importance of recollection in this context. 

Keywords: prediction error, statistical learning, episodic memory, predictive 

processing, Electroencephalography, Event-Related Potentials  
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Introduction 

 Although the first season of Game of Thrones was broadcast 12 years ago, many 

viewers still remember the execution of the main character, Ned Stark. According to 

storytelling conventions, the viewers of the show might have predicted that the protagonist 

would ultimately be spared or that justice would be served in the end. However, when Ned 

was beheaded in a sudden twist, it violated the viewers’ prediction. This violation might have 

led the viewers to process the unexpected event in a distinctive way since it differed from 

their prediction. Distinctive processing could explain why Ned’s execution remains such a 

memorable event, illustrating the role of prediction error (PE) in memory processes. Indeed, 

whether and how PEs modulate memory is a topic of intense investigation in cognitive 

psychology and neuroscience (Aitchison & Lengyel, 2017; Ergo et al., 2020; Quent et al., 

2021). Here, we investigated the electrophysiological correlates of encoding and retrieval of 

PE to gain a better understanding of the relationship between PE and memory. 

According to the predictive processing framework, our brain constantly predicts likely 

occurrences based on past experiences (Bar, 2007; Friston, 2010; Henson & Gagnepain, 

2010). The brain continually compares sensory information with its predictions. When a 

prediction is confirmed, it reinforces existing internal models and increases confidence in 

future predictions. Conversely, when a prediction is violated, a PE occurs, signaling the need 

for additional processing to update predictions. This way, the brain utilizes PE to adaptively 

refine its predictions over time. However, we have limited knowledge regarding how the brain 

processes events that give rise to PE and how the underlying mechanisms contribute to 

subsequent memory. 

Previous research showed that PE facilitates memory. These studies have suggested 

that events accompanied by PE contain significant information that requires enhanced 

encoding for memory (Bein et al., 2021; Brod et al., 2018; Kafkas & Montaldi, 2018; Quent et 
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al., 2022). Improved encoding of events that elicit PE might generate detailed 'snapshots' of 

these events, resulting in a memory advantage (Henson & Gagnepain, 2010). Additionally, 

PEs might enhance pattern separation, a process by which distinct memory traces are created, 

potentially separate from those associated with previous predictions (Frank et al., 2020). 

Furthermore, according to event segmentation theory (Zacks et al., 2007), which addresses 

how continuous experience is separated into discrete events, PE triggers an upregulation of 

attentional resources toward the specific event. This increased attention enables the brain to 

process information more deeply and prompts the identification of an event boundary, 

potentially leading to the separation of events and to robust memory. Triggering an event 

boundary in this manner aids in segmenting the continuous stream of sensory information into 

discrete events and facilitates subsequent memory benefits (Wahlheim et al., 2022). To 

summarize, previous research suggests that events giving rise to PE are encoded more 

effectively and result in better memory. 

In addition to encoding, retrieval processes might also contribute to how PE enhances 

memory. For example, a recent study by Kafkas and Montaldi (2018) investigated the effects 

of PE during encoding and retrieval.  Their results revealed that predicted events enhanced 

familiarity, which refers to a subjective feeling that an event has been experienced before, 

while unpredicted events enhanced recollection which involves the retrieval of specific 

episodic details (Cowell et al., 2019). This finding aligns with the framework proposed by 

Henson and Gagnepain (2010), which suggests that predictive events aided by familiarity 

benefited during the retrieval. Conversely, unpredicted events elicit a memory characterized 

by snapshot-like details, leading to enhanced recollection. A relevant concept is the selective 

retrieval process (Lu et al., 2022), which proposes that error signals originating from PE may 

contribute to subsequent recollection during retrieval (Fenerci & Sheldon, 2022; Wahlheim et 
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al., 2022). Taken together, these findings suggest that the effects of PE on memory are not 

limited to the encoding stage but also extended to retrieval phase. 

Notwithstanding the importance of the aforementioned studies, PEs might not always 

enhance memory. A recent body of research has consistently reported that PE does not 

guarantee subsequent memory advantage (Nolden et al., 2023; Ortiz-Tudela et al., 2023; 

Turan et al., 2023). For instance, in one study, participants were asked to make explicit 

predictions regarding associations between sequentially presented pairs, and these predictions 

were either met or violated in varying levels of PE. The results revealed better recognition 

memory for items that were consistent with participants’ predictions but not for items eliciting 

PE. These results are consistent with prior work showing better memory for expected 

compared to unexpected events, indicating a memory congruency effect (Alba & Hasher, 

1983; Brod & Shing, 2019; Craik & Tulving, 1975; Liu et al., 2018; Ortiz-Tudela et al., 

2017). Thus, the effect of PE on subsequent memory is not straightforward and further 

exploration is warranted. Currently, there is limited empirical evidence regarding the reliable 

conditions under which PE facilitates memory, highlighting the need for additional research. 

Through the investigation of how the brain processes PE and how its underlying 

operations influence subsequent memory, we can enhance our understanding of the effects of 

PE and potentially reconcile the divergent findings in the literature. Event-related potentials 

(ERPs) can provide an ongoing evaluation of neural processes that correlate with PE. By 

comparing the time-locked changes in the brain's electrophysiological activity in response to 

violating events that are later remembered versus later forgotten, we can identify neural 

processes that contribute to subsequent memory enhancement for PE. For instance, the P3 

component has been one of the highly studied ERP components which was traditionally 

associated with oddball signals (Polich, 2007), attention (Kramer et al., 1985), evaluation of 

novelty (Friedman et al., 2001), and context updating (Donchin, 1981). It has also been 
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demonstrated that P3 amplitude is an indicator of successful subsequent memory (Fabiani et 

al., 1986). This implies that memory-related changes in P3 amplitude might index encoding 

processes that might accompany PE (even if not specific to PE) and that facilitate subsequent 

memory. Furthermore, in addition to the mentioned traditional origins, P3 has also been 

linked to reward PE (see a recent meta-analysis, Stewardson & Sambrook, 2020), novelty 

processing influenced by expectations (Schomaker & Meeter, 2018) and hierarchical 

violations as suggested by the predictive coding theory (Vidal-Gran et al., 2020). Even though 

these studies demonstrated the associations between P3 and the processing of violation (i.e., 

PE), it is still unclear whether P3 elicited by violations contributes to the subsequent memory 

of events that violate these predictions. 

At the retrieval side, behavioral and neural research suggests two distinct processes 

that contribute to memory recognition: familiarity and recollection (Jacoby, 1991; Mandler, 

1980; Yonelinas, 2002; see a recent review Cowell et al., 2019). As previously defined, 

recollection involves the assessment of specific details of an episode. Familiarity, in contrast, 

is the subjective feeling that an event has been experienced before, but in the absence of 

additional mnemonic details. ERP studies have indicated that recollection-based memory is 

associated with a parietal effect occurring between 400 and 800 ms, while the familiarity 

effect is observed between 300 and 500 ms in frontal sites (Curran & Cleary, 2003). As 

previously mentioned, behaviorally, the effects of PE on memory have been shown to extend 

to the retrieval phase, with distinct differences between behavioral measures of familiarity and 

recollection (Kafkas & Montaldi, 2018). However, neural evidence underlying these 

differences is thus far lacking. 

To gain a deeper understanding of how PE influences the encoding and retrieval 

processes and their impact on episodic memory, we investigated the relationship between PE, 

its ERP components, and memory within a single paradigm. We employed a statistical 
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learning paradigm, whereby participants implicitly learned sequentially presented object pairs 

embedded within a stream of objects over two consecutive days (Bein et al., 2021). On the 

third day, new objects were introduced into the list. Half of the new objects were inserted 

instead of the second item of the pair, inducing PEs (violation items). The other half was 

presented between pairs, serving as a non-violation baseline. Subsequently, participants’ 

memory was assessed. We recorded electroencephalography (EEG) during encoding and 

retrieval phases. 

We expected to replicate previous behavioral findings (Bein et al., 2021), which 

demonstrated better memory performance for events that elicit PE compared to events that did 

not violate predictions. Additionally, we hypothesized that violating events that were later 

remembered would elicit larger P3 amplitudes compared to violating events that were later 

forgotten. Inspired by previous behavioral research (Kafkas & Montaldi, 2018), we 

hypothesized that during retrieval, recollection effects would be observed in ERPs for 

previously violated trials that were remembered, while familiarity effects would be observed 

in ERPs for non-violation trials that were remembered. 

Method 

Participants 

  51 university students (32 women, 13 men, mean age 23.52 (SD = 2.67)) were 

recruited for the study. A target sample size of 40 participants was determined by a power 

analysis of generalized linear mixed models (Green & Macleod, 2016) on our pilot data from 

13 participants, which was not part of the final sample. The model was calculated with 

maximum-likelihood estimation and participants as random intercept to account for between-

participant variability in the P3 mean amplitude during the violation phase. As fixed factors, 

we included the within-participant factor of condition (violation and non-violation) and item 

recognition accuracy (later remembered and later forgotten). The effect size for the interaction 
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between condition and item recognition accuracy obtained from the pilot participants was .28. 

We accounted for potential effect size inflation by taking 90 % of the effect size. Thus, we 

aimed to detect an effect size of .25 with the standard .05 alpha error to obtain 80 % power. 

The pilot data and analysis scripts can be found at the study’s OSF page 

(https://osf.io/sbc7d/). 

 Participants were recruited through an online experiment scheduling system of 

Goethe-University Frankfurt am Main and personal contacts. All participants reported normal 

or corrected-to-normal vision, no neurological or psychiatric disorders, and right-handedness. 

They were asked to sign informed consent approved by the local ethics committee of the 

Goethe-University Frankfurt prior to the study, debriefed at the end, and compensated either 

with 10 € per hour or partial course credits. 

 Since the primary objective of the study was to examine the effects of violation on 

memory performance, we set two main exclusion criteria to ensure clear interpretation of the 

results. In accordance with our pre-registered plan, we excluded six participants with poor 

associative memory performance of less than 40 % accuracy rate and who showed poor 

recognition memory performance, meaning d’ below .35. Additionally, four participants due 

to missing or noisy EEG data were excluded from the further analysis steps. We ran the 

statistical analysis on the remaining 35 participants (26 women and 9 men, mean age 23.26, 

SD =3.24). 

Material 

 The stimulus set consisted of 370 pictures of everyday namable objects from the 

database used in the previous study (Bein, et al., 2021). The set was altered only in a few 

instances, where a picture of an object that may not be common in Germany was replaced 

with another object picture. The objects were presented with a white square background sized 

https://osf.io/sbc7d/
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set to 350 x 350 pixels. The images were equally divided into two main categories according 

to their real-life size based on whether they are bigger than a shoe box or not.  

General Procedure 

 The study was conducted over three consecutive days (Figure 1). On the first two 

days, prediction learning phase took place and violation and retrieval phases were employed 

on the third day. Participants were presented with object pictures and asked to indicate if the 

presented object was bigger or smaller than the previous one. However, unbeknownst to the 

participants, there were pairs of objects that always followed each other, while the order of the 

pairs was randomized in each block. Participants who did not demonstrate signs of learning 

the pairs during the statistical learning phase were not invited to the third session, as they 

would not engage in prediction violation phase and therefore not experience PE. Thus, based 

on participants’ response times (RTs) and accuracy rates on the bigger and smaller task, we 

decided if they were eligible to participate in the third day. We invited participants with RT 

differences of less than 200 ms between the first and second items across pairs and with 

accuracy rate more than 90 % (n = 45). The third day started with a reminder, which included 

one block identical to the learning phase. Then, during the prediction violation phase, half of 

the original pairs were violated by replacing the second item in the pair with a new item. The 

other half remained intact and were followed by a new item to create a non-violation baseline. 

Participants were then tested on surprise item recognition memory and associative memory, 

with a distraction task before and after the recognition memory phase. 

To ensure participants’ comfort and attention, we divided each task into multiple 

blocks and advised taking breaks in between. All instructions were provided both verbally and 

in written form. We used PsychoPy v2021.1.4 (Peirce, 2007) to program the stimulus 

presentation and response collection. Each session was scheduled approximately 24 hours 

apart. 
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Figure 1 

Study Design 

  

Prediction Learning Phase  

The prediction learning phase used a statistical learning paradigm to build-up 

predictions about object pairs. Participants implicitly learned sequentially presented object 

pairs embedded within a stream of objects over two consecutive days (Kim et al., 2017; 

Schapiro et al., 2012; Turk-Browne et al., 2012). Unbeknownst to the participants, there were 

object pairs that always followed each other, while the order of the pairs was randomized in 

each block. Each pair consisted of a big and a small object. Half of the pairs were presented 

with the big object first and the other half with the small object first. The pairing of objects 

was randomized for each participant while ensuring that each pair included one big and one 

small object. 

Note. A. During prediction learning (Day 1 and 2), participants viewed pairs of sequentially presented 

objects and asked to indicate whether each object was bigger or smaller than the previous object. B. In 

the prediction violation phase (Day 3), new object pictures were inserted into the sequence of objects, 

either instead of the second object in the pair (violation) or after the second object in a pair (non-

violation). C. Following the violation phase, participants completed an item recognition memory test 

(Day 3) where they were presented with violation and non-violation targets, similar lures, or new items, 

and were asked to indicate whether each item was old, similar, or new. Memory for the original 

predictive pair was also tested (associative memory) by presenting participants with the first object in 

a pair and asking which of three objects followed the top object.  
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During the task, participants were presented with a stream of object pictures and asked 

to indicate if the presented object was bigger or smaller than the previous one. Each trial 

started with a fixation cross at the center of the screen for 1.5 seconds and was followed by 

the object picture for 1.5 seconds. Participants were then asked to give a response by pressing 

C or M keys on the keyboard with their left or right index fingers. They were instructed to be 

as fast and as accurate as possible. Despite all object pictures on the screen appearing to be 

relatively the same size, they should base their judgments on the real-life sizes of the objects. 

Before the initial task, participants received detailed instructions and completed eight practice 

trials. For each day, all participants completed 200 trails (100 pairs) equally spread over nine 

blocks. 

Reminder Phase 

 The third session of the study took place in the EEG laboratory. It started with a 

reminder phase, which was constructed as a block of the prediction learning phase. 

Participants covered one block of the previously presented 100 original pairs, in total 200 

trials.  

Prediction Violation Phase  

 Immediately after the reminder phase, participants were presented with the prediction 

violation phase. The task structure was the same as the previous phases (i.e., prediction 

learning and reminder phases) and participants were not provided with additional instructions. 

Therefore, they were not explicitly informed of the transition to the prediction violation phase. 

In order to violate the pair associations, we added new object pictures to the list. For the 

violation condition, half of the original pairs (i.e., 50) were violated by replacing the second 

item in the pair with a new object picture. The other half of the original pairs (i.e., 50) 

remained intact and were followed by a new object picture to generate the non-violation 

condition as a baseline. Only the identity of the item was violated but not the response, 
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meaning that we replaced previously presented small objects with small new object pictures, 

and likewise big object pictures. Within each block, all pairs were presented twice. First, the 

original pairs were presented. For the second presentation, half of the pairs were violated, 

while the other half remained intact. There were 20 original pairs in each block. The 

presentation of the original, violation, and non-violation pairs were randomized, with the 

constraint that there were at least six pairs between an original pair and its subsequent 

appearance as a violation or non-violation pair. The prediction violation phase consisted of 

five blocks of 90 trials, for a total of 450 trials.  

Distraction Phase 

 Before and after the Item Recognition Phase (see below), participants performed a 

distraction task for three minutes in which simple math equations were presented together 

with three alternative forced choices. In each trial, an equation was presented in the center of 

the screen and three response options appeared below. Participants used the “A”, “S”, or “D” 

keys on the keyboard to select the correct response and responded with their left hand's ring, 

middle, or index finger. The respective letters were displayed under the response options to 

indicate the response keys. Once participants responded, the equation disappeared, and a new 

one appeared after a 500 ms delay. We informed participants to be as fast and accurate as 

possible.  

Item Recognition Phase  

 To test item recognition memory for both violation and non-violation items, 

participants were presented with object pictures and were asked to indicate if the presented 

object was old, similar, or new. A total of 170 items were presented with 80 being identical to 

the items presented during the violation phase (half of the items were violation items and the 

other half was non-violation items), 20 being similar lures that were different exemplars of 

objects presented during the violation phase, 20 being similar lures to the objects just seen in 
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the recognition phase. In addition to violation items, non-violation items, and similar lures, 50 

new object pictures were also included. Our main focus was on the old trials. For that reason, 

we added similar lures to execute the task, while maximizing the number of old trials we 

could use for analysis. 

Each trial started with a fixation cross at the center of the screen for 1.5 seconds and 

was followed by the object picture for three seconds. To give a response, participants were 

instructed to press left, right, or down arrow keys on the keyboard with their ring, middle, or 

index finger of the right hand. The mapping of the left and right arrow key to indicate “old” or 

“new” responses was counterbalanced, while the down arrow key was consistently used for 

“similar” responses. Participants were clearly instructed to respond with “old” if the object 

was the same as an object presented during the previous phase, “similar” if the object was 

presented before, but it was not the exact object in the previous phase (i.e., a different 

exemplar), and “new” if the object was not presented before. During the task, there were 

indicators to provide participants to show which key to use for each response which 

disappeared once response was made. They started with a practice phase consisting of 12 

trials via detailed instructions from the experimenter. All participants completed 85 trails 

equally spread over two blocks.  

Associative Memory Phase  

 After the item recognition phase, participants were given the second distraction task to 

reduce potential interference between the two memory phases. This was followed by an 

associative memory test, in which we aimed to assess explicit memory of the original pairs 

which were studied during the first two sessions of the study (i.e., prediction learning phase). 

At the beginning of each trial, a fixation cross appeared at the upper center of the screen for 

1.5 seconds. The first item of a pair was then presented at the upper center of the screen, 

accompanied by three alternative items located at the lower part of the screen. One of the 
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three alternatives was the second item that corresponded to the first item of the original pair 

(i.e., target item). The other two alternatives were chosen from the second items that belonged 

to the same size category as the target item. Participants were asked to indicate which object 

appears after the upper object by pressing “A”, “S”, or “D” keys on the keyboard with their 

left hand's ring, middle, or index finger. Indicators were presented during the task to guide 

participants on which key to press for each object response. These indicators disappeared 

once the participant had made a response. 100 trials were tested in one block after a practice 

phase of eight trials. 

EEG Recording and Preprocessing 

 EEG was recorded during the third day of the study with 64 Ag/AgCI BrainProducts 

active electrodes (actiCAP; Brainproducts, Munich, Germany) following the international 10–

10 system at Fp1, Fpz, Fp2, AF7, AF3, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, 

FC3, FC1, FC2, FC4, FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz, 

CP2, CP4, CP6, TP8, PO9, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO10, PO7, PO3, POz, PO4, 

PO8, O1, Oz, and O2 electrodes with a sampling rate of 1000 Hz (actiCHamp Plus amplifier; 

Brainproducts, Munich, Germany), online band-pass filtered between 0 to 100 Hz. EEG data 

were online referenced to the left mastoid and a common ground was placed at the FCz. To 

record eye movements, three additional electrodes were placed at the outer canthi (horizontal 

electrooculography, EOG) and below the left eye (vertical EOG). Electrode impedance values 

were maintained below 20 kΩ during the recording. 

EEG data preprocessing were performed offline with custom scripts in MNE-Python 

(Gramfort et al., 2014). It was run for each participant separately. As the first step, data were 

re-referenced to both mastoid electrodes. Then, an independent component analysis was 

applied to correct eye blinks on cropped and high pass (i.e., 1 Hz) filtered data. Those 

components were corrected in three steps: automatic detection, visual check, and correction. 
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Hereafter, data epochs were extracted according to the stimulus-locked experimental 

conditions 100 ms prior to the onset of the stimuli presentation through 1500 ms post-stimuli. 

We excluded the epochs containing values higher than 60 µV. The Autoreject function (Jas et 

al., 2017) was used to detect, interpolate, and reject bad epochs. Lastly, baseline corrected 

data were filtered between 0.1 and 30 Hz. After preprocessing, the mean total number of 

violation trials was 47.49 (SD = 2.89) and non-violation trials was 47.83 (SD = 2.37) during 

the violation phase. For the recognition phase, the mean total number of violation trials was 

38.31 (SD = 2.30) and non-violation trials was 37.94 (SD = 2.48). 

Behavioral Analyses 

 As the first step, we calculated participants’ “old” response rates to violation and non-

violation items, following Bein et al. (2021) to compare our results. This was done only for 

the items for which the original pair was remembered correctly in the associative memory 

task. Second, we calculated classification indices based on confusion matrices (Ngo et al., 

2020) to capture mnemonic discrimination. These classification indices are more sensitive 

than the traditional signal detection measures such as d’ and receiver operating characteristic 

curves (see also Nolden et al., 2023). To calculate classification indices, we first calculated 

the precision and sensitivity of violation and non-violation items, each separately. Precision 

was computed as the ratio of correct old responses to all old responses, while sensitivity was 

calculated as the ratio of correct old responses to all old items. A classification index was then 

determined by multiplying precision and sensitivity by two, adding them together, and then 

dividing by the sum of precision and sensitivity (Ngo et al., 2020). 

We then conducted general linear mixed-effect models for response rates and linear 

mixed-effect models for classification indices to investigate whether violation was a 

significant predictor of memory performance. The models included participants as random 

intercepts, violation as fixed effect and random slope. Starting from the full model, we 
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compared the explanatory power of each model for the random effects via likelihood ratio 

test. We reduced the fixed effects by removing non-significant predictors and interactions, 

and then compared these reduced models. Maximum likelihood ratio was assessed for model 

estimations and χ2 (chi-squared) was used for the statistical significance of the fixed effects. 

The model comparisons repeated until a significant decrease was observed. We also compared 

the models using AIC (Akaike Information Criterion) and BIC (Bayesian Information 

Criterion). An analysis of variance (ANOVA) was conducted to compare models in terms of 

their model fit and determine if the inclusion of random slopes for violation condition 

significantly improved model. In the case of a significant interaction effect, we used the 

emmeans function to calculate estimated marginal means and performed post hoc tests with 

Bonferroni adjustment to compare the levels of predictors for each level of the other variable. 

All analyses were conducted with custom-made R scripts (lme4 package: Bates et al., 2015) 

and can be found on the study’s OSF page (https://osf.io/sbc7d/).  

ERP Analyses  

 To investigate electrophysiological correlates of PE, we measured P3 mean amplitude 

values at parietal electrodes during the violation phase. The mean amplitude values were 

calculated for the familiarity and recollection components during the item recognition phase. 

ERPs were time-locked to the onset of the stimuli. In line with our pre-registered report, we 

defined time windows and electrodes for each component differently. The time window for 

the P3 component was 400 – 800 ms at centroparietal electrodes (CP3, CP1, CPz, CP2, CP4, 

P3, P1, Pz, P2, and P4). The familiarity component was obtained during 300 – 500 ms after 

stimulus onset at frontocentral (F3, F1, Fz, F2, F4, F3, FC1, FC2, and FC4) electrodes. Lastly, 

the recollection component was measured from 400 to 800 ms at parietooccipital (P3, P1, Pz, 

P2, P4, PO3, POz, and PO4) electrodes.  

https://osf.io/sbc7d/
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 As suggested by Frömer et al. (2018), linear mixed effect models were used to analyze 

trial-based data with lmer function (lme4 package: Bates et al., 2015). The participants’ mean-

centered amplitude values were introduced as fixed effects and modeled separately for P3, 

familiarity, and recollection components. Participants and objects were added as random 

intercepts. The random slopes were modeled for the predictors: violation condition (violation 

vs. non-violation) and item accuracy (remembered vs. forgotten). As in the behavioral 

analyses, we follow the same rationale to test model comparisons for the random and 

interaction effects.  

 We also exploratorily used spatiotemporal cluster-based permutation t-tests (CBPT) to 

check the time window and topographical distributions. We created 3D data with channels, 

time points, and trials by participants for all scalp electrodes. Clusters were created by 

grouping adjacent channels and time points where the p-values were lower than .05. The sum 

of all t-values within a cluster was used to detect the following test statistic. This involved 

randomly assigning the samples into two classes and contrasting the differences between 

these random classes with the actual differences between our experimental conditions (e.g., 

violation vs non-violation trials for the prediction violation phase). This process was repeated 

10,000 times for each permutation. Later, t-statistics were calculated for each permutation and 

t-values were summed for each cluster. Lastly, we tested clusters with p-values lower than .05 

with an additional linear mixed model as suggested by Sassenhagen and Draschkow (2019)7. 

All analyses were run with custom MNE-Python scripts (Gramfort et al., 2014) and can be 

found on the study’s OSF page (https://osf.io/sbc7d/). 

Results 

 
7 In their simulation study, Sassenhagen and Draschkow (2019) showed that discovering a cluster does not 

guarantee that the experimental conditions within that cluster differ significantly from each other. Therefore, it is 

important to conduct additional analyses to further investigate the statistical differences between experimental 

conditions. 

https://osf.io/sbc7d/
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Behavioral Results 

 Before conducting our primary analysis on the response rates and classification index, 

we first checked if participants learned the object pairs to build up predictions. Thus, we 

investigated the results from prediction learning, reminder, and associative memory phases. 

The RTs during the prediction learning and reminder phase were faster for the second item of 

the pair (M = .56, SD = .10) than the first pair (M = .72, SD = .15), t(1, 38) = 60.97, p < .001, 

d = .38, indicating a learning process due to prediction of the upcoming object (see Appendix 

A.). The accuracy rate during the associative memory phase to test original pairs was .78 (SD 

= .17) and all participants selected the associated pair significantly above chance level, t(38) = 

39.20, p < .001, d = 4.44. The accuracy rate for the original pairs was not different between 

violation and non-violation trials, t(38) = -.01, p = .99. 

For the effects of PE on item recognition memory performance, the response rates and 

classification index are displayed in Figure 2. First, the full model to test the effect of 

violation condition on response rates did not show a significant main effect, χ²(1) = .39, p = 

.53, and the full model did not significantly differ at the reduced model without violation as a 

predictor, Δχ²(2) = 3.39, p = .18. Secondly, the classification index did not differ between 

violation items (M = .45, SD = .24) and non-violation items (M = .49, SD = .19), χ²(1) = 3.50, 

p = .06. All together, these findings indicate that there was no significant difference in item 

recognition memory performance between violation and non-violation trials8. Although we 

did not find a behavioral difference in response rates and classification index, we proceeded to 

investigate our main hypotheses concerning ERP components as they could give better 

insights into mechanisms involved in encoding and retrieval processes of PE.  

Figure 2 

 
8 In addition to response rates and classification index, we also calculated d’ scores as stated in the pre-registered 

report. The results did not show a main effect of violation on d’ scores, either, χ²(1) = 2.37, p = .12. 
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Response Rates and Classification Index

 

ERP Results 

P3 Amplitude During Encoding 

 The ERP results for the P3 amplitude can be seen in Figure 3. The average mean 

amplitude values are displayed in Figure 4A. We ran the analysis with mean amplitude values 

measured at centroparietal electrodes within the time window of 400 ms and 800 as in the pre-

registered report. We started with the full model with participants and objects as random 

intercepts and random slopes together with random slopes for the predictors to examine how 

P3 amplitude is influenced by violation condition and item accuracy. Model comparison 

favored the reduced model excluding violation, item accuracy, and their interaction as random 

slopes, Δχ²(18) = 8.05, p = .98 (AIC: 23394 vs 23366, BIC: 235451 vs 23408). The reduced 

model showed that the main effect of violation condition (χ²(1) = 2.59, p = .11), item 

accuracy (χ²(1) = 3.24, p = .07), and the interaction effect (χ²(1) = .08, p = .08) was not 

significant. CBPT to compare violation and non-violation trials found a cluster from 260 ms 

after stimulus onset to 532 ms for 53 electrodes (see Appendix B.). Converging with the fixed 

time-window analysis above, the results did not show a significant main effect of condition on 

mean amplitude values, χ²(1) = 1.65, p = .21. 

Note. The raincloud plot shows the distribution of response rates and classification index for violation and non-

violation conditions. A. Proportion of old responses to old items. B. The proportion of correct responses (true 

positives and true negatives) out of all instances. The box plots display the median, interquartile range, and 95 

% confidence interval for each group using, while the density plots show the distribution of the data points for 

each condition. The individual data points are displayed as scatter plots. 
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Figure 3 

P3 component during the violation phase 

 

 

Recollection Component Amplitude During Retrieval 

 Figure 5 displays the ERP outcomes for the recollection component. Figure 4B shows 

the average mean amplitude values for each condition. We conducted an analysis using mean 

amplitude values obtained at parietooccipital electrodes between 400 and 800 ms, as pre-

registered. To test the effects of violation condition and item accuracy on the recollection 

component amplitude, we run the full model with participants and trials as random intercepts 

and random slopes together with random slopes for the predictors. Model comparison favored 

the reduced model excluding violation, item accuracy, and their interaction as random slopes, 

Note. Stimulus-locked ERPs during the prediction violation phase. A. Color-coded ERP grand average 

recorded at centroparietal electrodes with highlighted time window in gray. B. Topographical map plot 

of violation minus non-violation difference in the P3 time window. 



Original Manuscripts – Study 2 

104 

 

Δχ²(18) = 12, p = .81 (AIC: 18445 vs 18421, BIC: 18591 vs 18462). In this reduced model 

without random slopes, the main effect of violation condition (χ²(1) = .02, p = .88) and the 

item accuracy (χ²(1) = 2.55, p = .11) was not significant. However the interaction of violation 

and item accuracy was significant, χ²(1) = 3.87, p < .05. The follow-up results showed that 

remembered violation trials had higher amplitudes than forgotten violation trials, b = 1.31, SE 

= .52, p = .01. There was no significant difference between remembered non-violation and 

forgotten non-violation trials, b = .15, SE = .54, p = .78.  

Figure 4 

Average ERP amplitude values 

 

 Since we hypothesized that amplitude values during the late window of the item 

recognition phase would be higher for remembered violation items compared to forgotten 

violation items, suggesting a recollection effect, we conducted a CBPT only for remembered 

versus forgotten violation items. The results revealed a cluster between 524 ms and 1.177 ms 

after stimulus onset, involving 56 electrodes (see Appendix C.). There was a significant main 

Note. Average ERP amplitude values for each condition within the relevant time windows. Error 

bars represent the within-participant standard error of the mean. A. Mean amplitude values of P3 

component during the violation phase. B. Mean amplitude values of recollection component 

during the item recognition phase. ** p < .01. 
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effect of memory performance on mean amplitude values, χ²(1) = 8.38, p = .01, namely there 

was higher amplitude values for remembered violation than forgotten violation trials (b = 

3.25, SE = .80, p < .001). Additionally, we run a CBPT only for non-violation trials to test the 

effect of item memory, which found a cluster between 625 – 869 ms (see Appendix D). Yet, 

the main effect of memory performance on mean amplitude values was not significant, χ²(1) = 

.31, p = .58. 

Figure 5 

Recollection component during the item recognition phase 

 

 

Familiarity Component Amplitude During Retrieval 

Note. Stimulus-locked ERPs during the item recognition phase. A. Color-coded ERP grand average 

recorded at parietooccipital electrodes with highlighted time window in gray. B. Topographical map 

plot of remembered violation minus forgotten violation difference in the recollection component time 

window.   
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 First, we conducted linear mixed effects models to investigate the effects of violation 

and item accuracy on the familiarity mean amplitudes obtained at frontocentral electrodes 

within 300 ms and 500 ms. Starting from the full model to the reduced model, there was no 

significant decrease in the model fit, Δχ²(18) = 8.20, p = .98. The main effects of violation, 

χ²(1) = .66, p = .42, and item accuracy, χ²(1) = 1.00, p = .32, and the interaction effect, χ²(1) = 

1.78, p = .18, were non-significant. CBPT analysis comparing the remembered and forgotten 

non-violation trials did not find a cluster. 

Discussion 

 The aim of this study was to investigate the electrophysiological correlates of 

encoding and retrieval of events eliciting PE. To achieve this, we employed a statistical 

learning task, whereby participants learned pairs of objects. Subsequently, their memory was 

tested for predictions that were violated. Our behavioral results revealed successful learning 

of the object pairs. However, contrary to our pre-registered hypothesis and prior findings 

(Bein et al., 2021), we did not observe a memory advantage for items giving rise to PE. Based 

on our ERP results, during retrieval, we found a significant association between the 

recollection component and item recognition memory for previously violated items. 

Specifically, there was a significant interaction, with higher amplitudes of the recollection 

component for remembered violation trials compared to forgotten violation trials, but no 

difference between remembered and forgotten non-violation trials. The results did not yield 

supporting evidence for the frontal negative familiarity component. Furthermore, our data also 

did not show a link between P3 mean amplitude during encoding, PE, and subsequent 

memory. Overall, these findings suggest that recollection influences the interplay between PE 

and episodic memory. Lastly, our exploratory analysis showed that our pre-registered time 
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windows for ERP components aligned with the cluster-permutation results, indicating the 

validity of our approach in selecting relevant time-windows of interest9. 

In line with our pre-registered hypothesis, we found higher amplitude values from 400 

ms to 800 ms at parietooccipital electrodes for remembered violation trials compared to 

forgotten violation trials, indicating a recollection effect during retrieval of items that 

previously elicited PEs. This recollection component suggests that retrieval of PE might 

involve the assessment of specific details of an episode. Notably, we observed a significant 

interaction effect, revealing a substantial difference in mean amplitudes of recollection 

component, specifically between remembered and forgotten violation items, but not within the 

non-violation items. This finding suggests that the violation of expectations can enhance 

recollection, aligning with previous behavioral research demonstrating the retrieval-enhancing 

effects of PE (Kafkas & Montaldi, 2018). The lack of a significant difference in the non-

violation condition implies that the mere presentation of baseline items may not be sufficient 

to enhance recollection. This could be because novel items, in the absence of a strong 

violation, fail to engage deeper levels of processing, such as retrieving episodic details of an 

event (Cowell et al., 2019). 

Our results regarding the recollection component contributes to the growing body of 

evidence supporting the notion that memory-guided predictions can enhance memory 

performance (Fenerci & Sheldon, 2022; Henson & Gagnepain, 2010; Theobald et al., 2022; 

Van Kesteren et al., 2012). Memory-guided predictions refer to the process by which 

retrieved memories of past events influence and shape predictions during the comprehension 

of unfolding events. For instance, Wahlheim et al. (2022) conducted a study investigating the 

effects of predictive-looking errors on remembering event changes. Predictive-looking errors 

 
9 The CBPT not only allowed us to identify significant effects but also served as a confirmatory tool, validating 

our choice of time windows for investigating the ERP components (Frömer et al., 2018). 
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occur when viewers direct their gaze to incorrect locations based on their memory of past 

experiences, but the actual event deviates from their predictions. In their study, participants 

watched movies of everyday activities, including actions that were repeated either identically 

or with changed features. Their findings demonstrated that memory guidance led to 

predictive-looking errors, which were associated with better recollection memory for changed 

event features. This suggests that retrieving recent event features can guide predictions during 

unfolding events, and PE can contribute to enhanced recollection when it is driven by 

expectations. In line with these findings, we observed a recollection effect only for violation 

items, which were presented instead of the second object of the pairs that the participants had 

predicted to see. Taken together, our findings show that deviations from what was expected 

generate a stronger recollection signal that may facilitate better subsequent memory. 

In contrast to previous studies that have demonstrated better memory for events 

eliciting PE (Antony et al., 2021; Bein et al., 2021; Brod et al., 2018; Greve et al., 2017; 

Quent et al., 2022), our study, despite utilizing a similar setup (Bein et al., 2021), revealed a 

more nuanced pattern. We did not observe an overall memory advantage for PE, but only 

differences in the neural correlates of retrieval of events that elicited PE. The behavioral 

observation is also consistent with recent studies that did not show memory-enhancing effect 

of PE (Nolden et al., n.d., Ortiz-Tudela et al., 2023; Turan et al., 2023). Thus, it is reasonable 

to consider that there may be additional factors moderating the relationship between PE and 

subsequent memory benefit. Factors such as the strength and the precision of the prior (Greve 

et al., 2018; Ortiz-Tudela et al., 2023), the appraisal (Gruber & Ranganath, 2019) and the 

novelty (Schomaker & Meeter, 2018) of the violation could potentially influence the effect of 

PE on memory. In the following, we will discuss these factors and provide potential 

explanations for their presence in our results. 
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Our study protocol was similar to a previous study that demonstrated the beneficial 

effect of PE on memory (Bein et al., 2021). However, there was a main difference between 

our study and the study by Bein et al.’s (2021) which was the increased number of object 

pairs and blocks. To ensure an adequate signal-to-noise ratio for the EEG signal, we increased 

the number of trials from 36 to 50 for each condition, necessitating additional blocks and 

sessions to achieve an effective learning threshold. Consequently, our extended learning phase 

likely resulted in stronger predictions compared to the previous study (Bein et al., 2021), 

where the reported accuracy rate was .60, whereas in our study, it was .78. As a result, our 

participants may have had stronger predictions, leading to higher item surprise for violation 

trials (Greve et al., 2017; Quent et al., 2021). It is reasonable to assume that stronger 

predictions are associated with higher PE and that might have resulted in improved 

subsequent memory. However, according to a recent framework (PACE: Gruber & 

Ranganath, 2019), the memory enhancement for PEs is not solely determined by prediction 

strength but also by appraisal. This framework proposes that PE triggers an appraisal process 

that influences one’s actions and subjective experience in resolving the uncertainty elicited by 

PE. This process can either trigger curiosity and subsequent memory enhancement or elicit 

behavioral inhibition due to negative uncertainty assessment. In our study, participants may 

have exhibited a tendency to disregard the new objects altogether, violation and non-violation 

objects presented during the violation phase, instead relied more heavily on the previously 

learned objects, possibly indicating a negative assessment of uncertainty resolution. 

Congruently, a similar finding was reported in one of our recent studies (Ortiz-Tudela et al., 

2023), which demonstrated a decreased memory performance for violations of strong 

predictions derived from low-uncertainty priors. Furthermore, the role of context surprise 

(Quent et al., 2021) should be taken into account when interpreting our findings. Our task 

involved extensive exposure to the paired structure of object associations, which could have 
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created context surprise when participants encountered a non-violation item that violated the 

expected task structure. Specifically, violation items violated the expected object at the item 

level, whereas non-violation items violated the expected task structure by presenting an object 

that had not been previously seen in that specific position (i.e., after the second object of a 

pair), thereby creating a context surprise and leading to novelty. This distinction may have 

elicited different cognitive and neural responses compared to the violation items that violated 

the expected object at the item level. Therefore, the absence of a memory benefit for PE and 

its relationship to the P3 component in our study could potentially be attributed to both 

experimental conditions engendering expectations and subsequent violations of those 

expectations (Schomaker & Meeter, 2018). 

In conclusion, our results highlight the importance of recollection in the mechanisms 

underlying the association between PE and episodic memory processes. It is important to note 

that solely relying on behavioral data from our study may not provide a complete 

understanding of the effect of recollection. Further investigation into the recollection effect 

could provide a more comprehensive understanding of how PE influences memory. 

Moreover, future research could consider additional factors that moderate the relationship 

between PE and memory benefit, such as the strength and the precision of priors, appraisal, 

and novelty of the violation (Greve et al., 2018; Gruber & Ranganath, 2019; Ortiz-Tudela et 

al., 2023; Schomaker & Meeter, 2018). Overall, our study contributes to the growing body of 

knowledge on the complex and nuanced nature of the relationship between PE and episodic 

memory processes, shedding light on the underlying neural mechanisms involved. 
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Appendices 

A. RT differences between the first and second item of the pairs during the prediction 

learning and reminder phases. 

B. CBPT results for the P3 mean amplitude for the comparison violation and non-

violation trials. 

C. CBPT results for the recollection component for the comparison remembered violation 

and forgotten violation trials. 

D. CBPT results for the recollection component for the comparison remembered non-

violation and forgotten non-violation trials. 
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Abstract 

Memory-derived predictions help us to anticipate incoming sensory evidence. A mismatch 

between prediction and evidence leads to a prediction error (PE). Previous research suggested 

that PEs enhance memory of the surprising events. Here, we systematically investigated the 

effect of PE on episodic memory in children (10-12 years old), younger adults (18-30 years 

old), and older adults (66-70 years old). Participants learned visual object pairs over two days. 

On Day 3, new objects were shown among the pairs, either after the first item of a pair (violation 

items), i.e., instead of the second item, or between pairs (non-violation items), i.e., when no 

specific predictions were possible. Our results did not reveal a significant boosting effect of PE 

on memory in any of the age groups. In contrast, in children, violations resulted in lower 

memory specificity compared to non-violations. Older adults showed lower memory specificity 

than the other age groups across violations and non-violations. We conclude that the beneficial 

effect of PE on episodic memory may be less consistent than theoretically postulated and may 

not always be observed in experimental settings involving statistical learning and item-specific 

violations, and that children’s memory specificity may indeed suffer from PE. 

 

Keywords: Prediction error; episodic memory; memory specificity; associative learning; 

lifespan; development  
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 The impact of mnemonic prediction errors on episodic memory: A lifespan study 

Throughout the lifespan, humans are constantly confronted with changing 

environments. What was once stable might change, which requires adaptation to new 

situations. This process may entail dynamic mental representations that comprise sequential 

information. Imagine a person who wants to get to a store that she typically reaches by first 

taking the bus to the city center, and then taking the tram. After making the same route several 

times, she has integrated the bus and the tram parts of her trip into memory.  Upon arriving to 

the city center, she could already predict the tram and maybe some of its details. However, 

sometimes predictions are not met, and one may experience prediction errors (PEs). For 

example, if there is construction work, she might need to substitute the tram part with a rental 

bike. Learning from PEs are particularly important for adaptive behavior in our changing 

environments. Thus, it is important to remember the events that generated them and integrate 

these events into our preexisting knowledge, or modify the knowledge (Frank and Kafkas, 

2021; Henson & Gagnepain, 2010; Quent et al., 2021). 

There is some evidence that PE may lead to distinct memory traces (Frank et al., 2020; 

Gershman et al., 2014; Love et al., 2004). In addition, it has been shown that events that give 

rise to PEs are remembered better than events that do not (Antony et al. 2021; Brod et al. 

2018; Greve et al. 2017; Kafkas & Montaldi, 2018; Kalbe & Schwalbe, 2021). In a recent 

study with young adults (Bein et al., 2021), participants incidentally learned associations 

between sequentially presented pairs of objects. Pairs were shown repeatedly, with the 

assumption that participants would eventually predict the second item of a pair when seeing 

the first item of a pair (Kim et al., 2014, 2017). In the encoding phase that followed, these 

predictions were violated in some cases by showing a different item at the second position. A 

later memory test revealed that these violation items were remembered better than comparable 
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items that did not violate predictions (Bein et al., 2021, but see also Ortiz-Tudela et al., 2023; 

Turan et al., 2023). 

Situations in which memory-derived predictions are violated, and thus knowledge 

update is required,  can occur at any point in life. However, studies examining the effect of PE 

on memory in different age-groups are lacking. It is important to shed light on such 

fundamental learning and memory processes over the lifespan to better understand how a 

dynamic environments shape the memories of children, younger adults, and older adults, and 

to infer how age-adequate learning environments could be constructed. In the current study, 

we aimed to fill this gap by having children, younger adults, and older adults perform a 

statistical learning task combined with events that give rise to PEs, very similar to the 

paradigm by Bein et al. (2021). Participants learned associations between objects that had no 

semantic relation, such that age-related differences in knowledge were controlled for. These 

associations were then used as the basis for mnemonic predictions that were sometimes 

violated. The goal of the current study was to isolate age-specific memory effects of 

remembering items related to PEs. 

According to the two memory components framework (Shing et al. 2008, 2010; Shing 

& Lindenberger, 2011), mechanisms underlying episodic memory differ across the lifespan. 

The two interacting components refer to (i) an associative component, which is responsible 

for binding and is related to hippocampal development; (ii) a strategic component, which 

mediates mnemonic control processes and is related to prefrontal cortex development (e.g., 

Ofen et al., 2007, Nolden et al., 2021). The developmental trajectories of these two 

components differ across the lifespan, such that the associative component develops relatively 

faster than the strategic component in childhood, whereas both components decline in a 

similar way in older age. In other words, the two-component framework suggests that children 

rely relatively more on the associative component of episodic memory, creating bound 
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representations which may eventually be used to generate predictions. Due to this bias 

towards the associative component, events eliciting PEs may be especially salient for 

children, leading to more pronounced PEs, and presumably also relatively better memory for 

these events, than in adults. 

Evidence supporting the idea that PEs might especially benefit memory at a younger 

age comes from a recent study showing that 9-11year-old children remembered facts better 

when they made an (often incorrect) prediction compared to providing an example. This 

difference was less pronounced in younger adults (Breitwieser & Brod, 2021). In their study, 

the authors used a numerical-facts learning task to compare the effectiveness of two learning 

strategies, that is (i) making a prediction and (ii) example generation. For the prediction 

condition, the participants were asked to provide answers for questions, for example, how 

many animals out of ten are insects. On the other hand, for the example condition, the 

participants had to think about an example of an insect. The results showed that generating 

predictions led to better memory performance in children than generating examples, while 

both strategies were similarly effective in adults. Hence, based on current theory and 

empirical data, the effects of PE on memory may be magnified in children. 

On the other end of the lifespan, older adults may be less sensitive than younger age 

groups to the effects of PE on memory. Given that the associative component declines in old 

age, and related to this, predictions based on remembered associations presumably decline as 

well, the effect of PE on memory may be reduced. In addition, fluid abilities have been shown 

to decline over the lifespan and crystallized knowledge becomes more important (Baltes et al., 

1999; Cattell, 1971, Li et al., 2004). This could suggest a less malleable knowledge structure, 

such that the effects of PE on episodic memory may be less pronounced in older adults, 

compared to younger adults and children. 
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When investigating the effect of PE on memory, it is particularly important to examine 

whether PE affects the details remembered (e.g., Frank et al., 2020 for a study with younger 

adults). When testing memory with a mnemonic similarity task, one can draw conclusions on 

how detailed or gist-like memories are. In this memory test, participants are required to 

indicate whether an item is identical to that they have seen during encoding, or whether it is 

similar, but not identical, or new. When memory is gist-like, identical old and similar items 

might be confused. However, if one has detailed memory of the item they saw during 

encoding, old versus similar items can be accurately classified. Pattern separation, a process 

by which distinct representations are allocated to similar information and that is thought to 

mediate high-fidelity detailed memories, was shown to decline in older adults (e.g., Doxey & 

Kirwan, 2015; Holden et al., 2013; Stark et al., 2013). Consistent with that, sensory memories 

evoke less specific brain activity in older adults compared to younger adults (neural 

dedifferentiation, e.g., Koen et al., 2020, Koen & Rugg, 2019; Park et al., 2004; Voss et al., 

2008). A critical question is thus whether PE, which might boost memory specificity (at least 

in younger adults; Bein et al., 2021), could attenuate reduced memory specificity in aging. 

In the current study, we aimed to systematically compare the effects of PE on memory 

across different age groups. One challenge is the difference in the amount of knowledge 

between age groups. Children have the least knowledge of the world and constantly need to 

acquire and update their knowledge structures. On the other hand, younger and older adults 

may be similar in the amount of knowledge, but older adults seem to rely more heavily on this 

knowledge than younger adults (Horn & Cattel, 1967; Horn & Hofer, 1992). Thus, one of the 

key components of the current study is that we taught participants sequential associations 

during the experiment through intensive training. After training, novel items were introduced 

in positions where they either violated predictions or not. Memory for these novel items was 

tested in a recognition test comparing memory of identical old items, similar lures, and new 
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items. We expected better memory for items that violated predictions compared to items that 

did not violate predictions (Bein et al., 2021). Regarding the age effects, we expected the 

greatest difference in the effect of PE on memory in children, followed by younger adults, and 

the smallest effect in older adults. 

Methods 

 This study had been preregistered prior to data collection. (The link to the 

preregistration will be made available at publication in order to enable an anonymous review 

process.) 

Participants. 

 Seventy-five children (10-12 years old), 48 younger adults (18-30 years old), and 50 

older adults (66-70 years old) took part in this online study. Participants were recruited 

through our participant data bank, advertising sheets and posters, the institute’s digital 

recruitment platform, and personal contact. 

 The data of 21 children was excluded because of incomplete data (6 participants 

decided to not continue, 8 participants experienced problems when executing the software, 

and in 7 cases the data was not completely saved due to technical errors). The data of 7 further 

children was excluded due to errors during task execution made by experimenter or 

participants. The data of 4 younger adults was excluded because of incomplete data (1 

participant experienced problems when executing the software, and in 3 cases the data was 

not completely saved due to technical errors). One additional younger adult was excluded due 

to misunderstanding of the task. The data of 3 older adults were excluded because of 

incomplete data (1 participant decided to not continue, 1 participant experienced problems 

when executing the software, and in 1 case the data was not completely saved due to technical 

errors). The data of 6 further older adults was excluded due to errors during task execution, 
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driven by experimenter or participants. In the final sample, there were 47 children (mean age 

= 11.06 years, range: 10-12 years; 23 girls, 24 boys), 43 younger adults (mean age = 22.56 

years, range: 18-30 years; 32 women, 11 men), and 41 older adults (mean age = 67.63 years, 

range: 66-70 years; 20 women, 21 men). 

All participants spoke German or English as their native language or at level close to 

native language. The instructions were given in German or English, depending on the 

participants’ preference. All participants received 8 € per hour or course credit for their 

participation and gave informed consent. The study was approved by the ethics committee of 

University where the research was conducted. 

 Power analysis. Prior to data collection, a power analysis was conducted with 

g*power (Faul et al., 2007). The effect size for the interaction (violation/non-violation, age 

group) was estimated to be 0.25 at the standard .05 alpha error probability in order to obtain 

.80 power, based on conservative consideration of the effect sizes reported in Bein et al. 

(2021). Additionally, a power analysis was conducted using an R package titled WebPower 

(https://webpower.psychstat.org) to confirm the sample size estimation. Based on these 

analyses, we targeted to collect usable data from 120 participants, 40 for each age group. 

Stimuli. 

  Our stimulus set included pictures of everyday nameable objects, and was nearly 

identical to the stimulus set of Bein et al., (2021, based on DuBrow & Davachi 2013; Kuhl et 

al. 2011; Polyn et al. 2005; Tompary & Davachi 2017). In very few cases, we replaced 

pictures of objects that may be uncommon in Germany (compared to the USA; e.g., air 

conditioner) with other pictures. Objects were presented in a 350 x 350 pixels white square on 

gray background and were sized to maximize the size of the objects without distorting 

proportions. The items were shown as predictive pairs that were intended to build up 
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predictions, violation and non-violation items that were introduced during the violation phase, 

and new items that were used in the recognition test. A set of 180 pictures was used, from 

which 144 stimuli were randomly selected to be used as predictive pairs, and 36 stimuli to be 

used as new items during the recognition test. Half of them were big items and the other half 

were small items, defined as being bigger or smaller than a shoe box. Each predictive pair 

consisted of a big and a small item, and in half of the pairs, the big item of a pair was 

presented before the small item, vice versa in the other half of the pairs. The violation and 

non-violation items (32 each) as well as their similar lures were randomly chosen from 

another set of 72 objects, that each existed twice such that there were two similar but 

distinguishable pictures of the same object (144 items in total in this picture set). In the 

violation phase, both violation and non-violation items were always of different size category 

than the previously presented item (big or small). This is so that, in case of violation items, 

only the item itself violated the expectation while the size category and the correct responses 

remained the same. Half of the violation and non-violation items were shown both in the 

violation phase as well as during the recognition test as targets, whereas the other half of the 

violation and non-violation items were only shown during the violation phase and the 

respective similar lure (same object but different exemplar) was shown in the recognition test 

as similar lures. 

Procedure. 

 The study was done completely online due to the COVID-19 pandemic when onsite 

testing was not possible. Trial lists containing information on the stimuli and stimulus 

categories to be shown were created with custom Matlab scripts (R2021b). The tasks 

themselves were programmed in PsychoPy (Peirce et al., 2019) and uploaded to Pavlovia 

(pavlovia.org). Participants downloaded the tasks via links that they received from us. As the 

study was conducted online due to the pandemic, additional procedures were taken to ensure 
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data quality (Newman et al., 2021). At the beginning of session on each day, the experimenter 

video called the participants to check their well-being and physical environment. All 

participants were instructed to be in a quiet room, sit in a comfortable chair, use a computer 

with a stable internet connection, and minimize distractions. Participants performed the study 

on their personal computers or laptops on a keyboard, not on cell phones or tablets. Also, 

before the study, our participants were familiarized with the online procedure through 

instructional videos that can be found in our lab’s webpage (www.psychologie.uni-

frankfurt.de/102061001/Instructions_for_Online_Testing___English_Version). During the 

video call, the experimenter explained the task. To make the task more interesting for kids, 

there was a cover story in which an architect and an engineer guided the participants through 

the blocks and introduced the individual tasks. The practice trials were presented using a slide 

show that the experiment shared on the screen with the participants. 

 The study took place on three consecutive days, with the sessions taking place roughly 

at the same time of the day. On Day 1 and Day 2, participants learned the predictive pairs in 

the bigger-or-smaller task (learning phase). On Day 3, participants started again with the 

bigger-or-smaller task, that comprised a reminder phase and the violation phase. Afterwards, 

participants did an item recognition test, a math distractor task, and an associative memory 

test (see Fig. 1). 

Figure 1 

Tasks and procedure. 
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Note. (First row). During learning on Day 1 and Day 2, participants indicated, for each trial, 

if the current picture was bigger or smaller than the previous one in real life. There was a 

hidden sequential structure, such that two items made a pair with invariant order, while the 

order of pairs was randomized in each block. We expected participants to eventually predict 

the 2nd item of a pair at the occurrence of the 1st item of a pair. (Second row). During the 

violation phase on Day 3, participants performed the bigger-or-smaller task as in the learning 

phase. New objects were presented in between pairs (non-violation items) or they replaced the 

2nd  item of a pair (violation items). (Third row). During the item recognition test, 

participants classified items as old, similar, or new. Apart from new items, non-violation and 

violation items or their respective similar lures were presented. (Fourth row). During the pair 

association test, participants indicated which items had usually been shown in succession. The 

1st item of a pair was presented as cue; there were three alternative choices for the 2nd item, 

with one of them being the correct one. 
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 Learning phase. Participants completed 14 blocks of the bigger-or-smaller task, seven 

blocks on Day 1 and seven on Day 2 (see Fig. 1). In each block, the 144 items were presented 

consecutively and participants had to indicate if the present object was bigger or smaller than 

the previous one, by pressing the right or left arrow key, respectively. Participants were 

informed that during the experiment all objects have relatively the same size on the screen, 

but that they should make their judgments based on the real-life sizes of the objects. They 

were additionally asked to respond as quickly as possible, while still being accurate. No 

response was expected for the first item of a block. Unbeknownst to the participants, items 

were organized in pairs, such that the items of each pair were always presented consecutively 

and in the same order in all the blocks. Thus, participants could implicitly learn to predict the 

second item of a pair after the first item (see also Kim et al. 2014, 2017; Schapiro et al. 2012; 

Turk-Browne et al. 2012). The order of the pairs was randomized across blocks. Each item 

was presented for 1.5 s and was followed by a fixation cross located at the center of the screen 

for an interstimulus interval (ISI) of 2.5 s. Below the picture, we presented a left-pointing 

arrow and small circle (on the left side), and a right-pointing arrow and big circle (on the right 

side), to remind participants of the possible responses. These disappeared as soon as a 

response was made. Responses could be made from the stimulus onset until the next trial. 

Between blocks, participants could take self-paced breaks of 15 s to 3 minutes in duration. 

Before participants started the main learning task on both Day 1 and Day 2, they did 10 

practice trials with the help of the slide show shared by the experimenter. Responses during 

practice were given verbally and practice was repeated if participants gave less than 6 correct 

answers on the bigger-or-smaller task. All participants completed the practice trials 

successfully with very few cases of repeated practice needed. 
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 Reminder and violation phases. Day 3 started with the reminder and the violation 

phases (see Fig. 1). From the perspective of the participants, the task did not change. They 

were again asked to complete the bigger-or-smaller task during both phases, with the same 

timing and response options as during learning. Again, this task was preceded by 10 practice 

trials. The first block was a reminder block, in which the 72 pairs were shown again to refresh 

the memory of the learned pairs. After the reminder block, four violation blocks followed. 

Each of these blocks contained 18 of the originally learned pairs. Each pair was first presented 

intact, and then a second time either with a violation item that replaced the second item of the 

original predictive pair (for half of the pairs), or with a non-violation item that simply 

followed the second item of a pair (for the other half of the pairs). In the violation condition, 

we assumed that participants predicted to see the second item of the pair after seeing the first 

item, and that this prediction was violated when the violation item showed up instead. In the 

non-violation condition, we assumed that participants would not predict to see a specific item 

after the second item of a pair, thus the non-violation item did not violate a prediction. The 

presentation of the intact pairs, the violated, and the non-violated pairs was randomized, with 

the constraint that there were at least six intervening pairs between an intact pair and its 

second occurrence as a violated or non-violated pair.  

 Item recognition test. The item recognition test followed the violation phase (see Fig. 

1). Participants were asked to classify items as old, new, or similar. They saw 18 violation 

trials exactly as they were presented during the violation trials (old violation items), and 18 

violation trials as similar lures, that is the same object as originally presented, but a different 

exemplar. Similarly, 18 old non-violation items and 18 similar non-violation trials were 

presented, alongside 36 new items. The items were distributed across two blocks with 

identical proportions. The order of the items within each block was randomized. The items 

were presented on the center of the screen for 3 s, followed by a fixation cross of 3 s. 
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Participants responded with the left arrow key, the down arrow key, and the right arrow key, 

using the ring, middle, and index finger of the right hand. “Similar” responses were always 

given with the down arrow key. The mapping of the left or right arrow key to “old” or “new” 

responses was counterbalanced across participants. The participants could respond as soon as 

the item was shown and until the beginning of the next trial. Below the image, arrow symbols 

with the respective response words appeared to remind participants of the possible responses 

and their mapping to the arrow keys. They disappeared as soon as a response was made. 

Before the recognition test, participants completed 12 practice trials.  

 Math distractor task. Participants were asked to complete simple mathematical tasks 

for three minutes. An equation was shown in the center of the screen, alongside three possible 

response options depicted below. Participants were asked to select the correct response via the 

“A”, “S”, or “D” keys on their keyboards. They were asked to respond with the ring, middle, 

or index finger of their left hand. The letters “A”, “S”, and “D” were depicted under the three 

response options in order to point to the respective response keys. The equation stayed on the 

screen until the participants responded. After 500 ms, the next equation was shown. The task 

stopped automatically after 3 minutes. A different set of equations was used for children than 

for younger and older adults. 

 Associative memory test. This task targeted explicit memory of the originally learned 

predictive pairs of Day 1 and Day 2 (see Fig. 1). The first item of each pair was presented 

centrally in the upper part of the screen, and three different items were presented next to each 

other in the lower part of the screen, one of them being the second item that belonged to the 

same pair as the item in the upper part of the screen. The other two items were also taken 

from the set of originally learned pairs. Participants were asked to select the correct second 

item by pressing “A”, “S”, or “D” with the ring, middle, or index finger of their left hand. As 

in the math distractor task, the letters “A”, “S”, and “D” were depicted under the three 
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response options, alongside a short description of the task. The letters and the description 

disappeared as soon as a response was made. The items were shown for 5 s, followed by a 

fixation cross for 1 s. Participants could respond as soon as the items were shown, and until 

the next trial started. Before the associative memory test, participants completed 8 practice 

trials. 

Design and analyses. 

 Exclusion criteria. Participants’ data were excluded if they showed very poor 

performance in the recognition test, defined as recognition memory performance (hit rates for 

old items minus false alarm rates for new items < .05). Hits were defined as old or similar 

responses to old items. This exclusion criterion was preregistered. In addition, we realized 

during data collection that not all participants, especially among the children, were able to 

remain focused throughout the bigger-or-smaller task. Thus, we excluded data if performance 

was less than 85 % correct during learning or during the reminder and violation phase. We 

only looked at accuracy for the second item of a pair because the first and second items of a 

pair were always from different size categories (big, small), and thus, the decision should be 

easy to make. Based on the criteria, we excluded the data of 11 children (mean age of the 

remaining children = 11.11 years; 20 female and 16 male children remaining), four younger 

adults (mean age of the remaining younger adults = 22.54 years; 28 female and 11 male 

younger adults remaining), and one older adult (mean age of the remaining older adults = 

67.62 years; 20 female and 20 male older adults remaining). 

 Analyses of response rates. Three preregistered analyses on the rates of “old” 

responses in the recognition test, to compare the current study to the results of Bein et al. 

(2021). First, in an analysis without any filters, the effects of three independent variables were 

examined with a mixed ANOVA. The between-subjects variable was age group (children, 
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younger adults, older adults), and the two within-subjects variables were violation (non-

violation items, violation items) and test item (old, similar). 

 Second, the analysis just described was repeated, but including only violation items for 

which the participants explicitly remembered the corresponding pair in the associative 

memory test. The rationale was to only include trials in which  participants encoded the 

predictive pairs, and thus presumably had strong predictions and strong PEs when the 

violation occurred. A similar approach was taken by Bein et al. (2021). To ensure there were 

enough trials per condition, only the data of participants with an average associative memory 

performance > .38 % was included. This criterion led to the additional exclusion (only for this 

particular analysis step) of eight children (mean age of the remaining children = 11.18 years; 

16 female and 12 male children remaining), seven younger adults (mean age of the remaining 

younger adults = 22.75 years; 23 female and 9 male younger adults remaining), and fourteen 

older adults (mean age of the remaining older adults = 67.69 years; 11 female and 15 male 

older adults remaining). 

 Third, the same analysis was modified such that items were differentiated based on the 

decrease in response times (RTs) for the corresponding predictive pair during learning. We 

relied on the notion that decrease in RT reflects learning. Thus, we reasoned that pairs that 

show a larger RT decrease might reflect better learning, and potentially strong predictions and 

strong PEs in face of a violation. Given that the explicit memory test is done after learning, 

we thought that response times during learning might be more effective in revealing 

differences between strong and weak predictions. For the second item in each pair, we 

calculated the difference in RT between the first learning block and the last learning block. 

This difference controls for RT that is just due to responding to this item and allows us to look 

specifically at the change due to learning. We then created two bins of items based on a 

median-split: items with larger RT decrease were considered as stronger predictions, whereas 
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items with smaller RT decrease were considered as weak predictions. The same analysis as 

above was repeated, but including this prediction strength variable. This resulted in the 

between-subjects variable age group (children, younger adults, older adults), and the three 

within-subjects variables RT savings (strong, weak), violation (non-violation items, violation 

items) and test item (old, similar). Trials with missing responses or RT outliers (responses 

faster than 50 ms, responses +/- 3 SD from participants’ average RTs) were not analyzed. The 

data of one additional child was excluded from this analysis due to too few trials to 

meaningfully calculate learning RT decrease for all other conditions (mean age of the 

remaining children = 11.11 years; 19 female and 16 male children remaining). 

 Confusion matrix analysis. In addition to the analyses of the response rate, the data 

was analyzed using confusion matrices (Ngo et al., 2021) to account for possible age-specific 

response biases and to better delineate the effects of pattern separation between the age-

groups. This analysis was not preregistered. For violation and non-violation items separately, 

precision was calculated (e.g., for old items: rate of correct old responses divided by all old 

responses, see Fig. 2) and sensitivity (e.g., for old items: rate of correct old, responses divided 

by all old items) for old classifications. Naturally, new items could not be divided into the 

violation vs. non-violation items. Precision and Sensitivity were used to calculate F1 scores 

which were the basis for indices for old and similar classifications (see Fig. 2). These indices 

were submitted to linear mixed effect models (modeled in lmer for R) with violation and age 

group as fixed effects and participant as random effect. 

Figure 2 

Confusion matrices and calculation of classification indices. 
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Note. For both old and similar items (left and right panels, respectively), an F1 score based on 

precision and similarity was calculated. The relevant rows and columns of the matrices are 

highlighted in red and blue. 

Precision = correctly identified items (black cell) / all responses of this type (black and blue 

cells) 

Sensitivity = correctly identified items (black cell) / all items of this type (black and red cells) 

F1 score = 2*Precision*Sensitivity/(Precision+Sensitivity) 

Index for old classifications: F1 score minus rate of new responses to old items 

Index for similar classifications: F1 score minus rate of old responses to similar items 

___ 

Deviations from the preregistered protocol. 

 There were deviations from the original plan (e.g., Claesen et al., 2021; Nosek et a., 

2019). First, due to aforementioned problems related to exclusion criteria, online testing, and 

data transmission, additional participants had to be recruited. Secondly, an additional 

exclusion criterion was introduced due to poor performance during the bigger-or-smaller task, 

which was found to be challenging for some participants, mostly for the children. This 

criterion was added to the preregistered exclusion criteria. Lastly, we further analyzed the 

confusion matrices (Ngo et al., 2021), since it has been considered as more sensitive than the 
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response rate analyses in accounting for age-specific response biases and the effects of pattern 

separation and completion between different age groups. 

Results 

Analyses of response rate in recognition test. 

 A mixed ANOVA for ‘old’ responses, with the between-subjects variable age group 

(children, younger adults, older adults), and the within-subjects variables violation (non-

violation, violation) and test item (old, similar) on old response rate (see Fig. 3) revealed a 

significant main effect of age group, F(2, 112) = 15.71, p < .001, ηg
2 = .14, a significant main 

effect of test item, F(1, 112) = 582.78, p < .001, ηg
2 = .56, and a significant interaction of age 

group and test item, F(2, 112) = 3.21, p < .05, ηg
2 = .01. To decompose the interaction, mixed 

ANOVAs were conducted with the within-subjects variables test item (old, similar) and age 

group, whereas each time two of the three age groups were contrasted to each other. A 

significant interaction of age group and test item was revealed when contrasting younger 

adults and older adults: F(1, 77) = 7.43, p < .01, ηg
2 = .03. This reflects a high proportion of 

old responses to similar items in older adults  (children: M =.20; younger adults: M  = .19; 

older adults: M = .38). All other effects of the main ANOVA were not significant (main effect 

of violation: F < 110, interaction of age group and violation, F(2, 112) = 1.61, p > .20, ηg
2 = 

.00, interaction of violation and test item, F < 1, three-way interaction, F(2, 112) = 2.06, p > 

.13, ηg
2 = .00). 

Figure 3 

 
10 Our analysis of response rate did not replicate the results by Bein et al. (2021). We thus also ran the 

exact analysis as reported in that paper. Participants with performance < .4 in the associative memory task were 

excluded from the analysis (n = 8), all trials with incorrect decisions in the associative memory task were 

removed from the analysis, and only younger adults’ correct responses for old items were contrasted regarding 

violation. Performance was similar in non-violation (66%) and violation items (65%), and did not differ 

significantly, t(34) = .12, p > .90. We further calculated a Bayes factor with the “BayesFactor” package in R 

because the frequentist analysis pointed to a null effect. The Bayes factor was 0.18, thus, there was substantial 

evidence for the null hypothesis. 
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Response rates in the recognition test. 

Note. Individual old responses across the different age groups. 

___ 

 Next, the data was filtered to include only items for which the corresponding pair was 

remembered in the associative memory test. Overall, the pattern of results was similar to the 

first analysis. A mixed ANOVA with a between-subjects variable of age group (children, 

younger adults, older adults), and within-subjects variables of violation (non-violation, 

violation) and test item (old, similar) revealed a significant main effect of age group, F(2, 83) 

= 7.90, p < .001, ηg
2 = .09, a significant main effect of test item, F(1, 83) = 542.61, p < .001, 

ηg
2 = .61, and a significant interaction of age group and test item, F(2, 83) = 4.11, p < .02, ηg

2 

= .02. To decompose the interaction, mixed ANOVAs were conducted with the within-

subjects variables test item (old, similar) and age group, whereas each time two of the three 

age groups were contrasted to each other. A significant interaction of age group and test item 

was revealed when contrasting younger and older adults: F(1, 56) = 8.78, p < .01, ηg
2 = .05, 
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due to a high proportion of old responses to similar lures, but not to old items, in older adults 

(‘old’ responses to similar lures: children: M = .22, younger adults: M = .20, older adults: M = 

.38. All other effects of the main ANOVA were not significant, main effect of violation: F < 

1, interaction of age group and violation, F(2, 83) = 2.43, p > .09, ηg
2 = .01, interaction of 

violation and test item, F < 1, three-way interaction, F < 1. 

 In our third analysis, small and large RT savings were contrasted in a mixed ANOVA 

with the between-subjects variable age group (children, younger adults, older adults), and the 

within-subjects variables violation (non-violation, violation), test item (old, similar), and RT 

savings (small, large). To avoid redundancy, only effects concerning the variable RT savings 

will be reported. Neither the main effect nor any of the concerned interactions reached 

significance. The interaction of violation, test item, and RT savings showed a non-significant 

trend, F(1, 111) = 3.47, p = .07, ηg
2 = .00. To decompose the trend, mixed ANOVAs were 

conducted with the within-subjects variables violation (non-violation, violation) and test item 

(old, similar), separately for small and large RT savings. The interaction of violation and test 

item was significant for small RT savings, F(1, 113) = 3.94, p < .05, ηg
2 = .00, due to a 

memory advantage of violated old items over non-violated old items (“old” response rate to 

old items, non-violation = .64, violation = .67), and the opposite pattern for similar items  

(“old” response rate to similar items, non-violation = .27, violation = .25). For large RT 

savings, we did not observe such interaction. All other effects concerning the variable RT 

savings of the main ANOVA were not significant; four-way interaction, F(2, 111) = 1.16, p > 

.31, ηg
2 = .00, all other Fs < 1.  

Confusion matrix analysis in the recognition test. 

 For old items, linear mixed effect models (modeled in lmer function, package lme4 in 

R) with violation and age group as fixed effects and participant as random effect did not 
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reveal any significant fixed effects, main effect of age group, χ²(2) = 1.44, p > .49, main effect 

of violation, χ²(1) = 1.71, p > .19, interaction, χ²(2) = 2.78, p > .24 (see Fig. 4.A). 

Figure 4 

Results of the confusion matrix analysis. 

A 

 

B 
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Note. Error bars depict confidence intervals were calculated based on the method of 

Cousineau (2005) and Morey (2008). 

A. Classification of old items across the different age groups. 

B. Classification of similar items across the different age groups. Children show a significant 

violation effect and older adults are outperformed by both children and younger adults. * ≙ p 

< .05; ~ ≙ p < .10; n.s. ≙ non-significant, p > .1. 

___ 

 For similar items, the linear mixed effect models  with violation and age group as 

fixed effects and participant as random effect revealed a significant main effect of age group, 

χ²(2) = 38.21, p < .001, indicating that older adults were outperformed both by children, β = 

.33, t = 5.46, p < .001, and younger adults, β = .31, t = 5.18, p < .001. Importantly, the model 

further revealed a significant main effect of violation, χ²(1) = 3.96, p < .04, and a significant 

interaction, χ²(2) = 8.44, p < .02. To better understand the violation effect within the different 
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age groups, linear mixed effect models were used with violation as fixed effect and participant 

as random effect, for each age group separately. The effect of violation was significant in 

children, χ²(2) = 4.55, p < .04, with better performance for non-violation than violation items. 

There was no significant violation effect in younger adults, χ²(2) = 0.58, p > .44. In older 

adults, there was a non-significant trend in the opposite direction, χ²(2) = 3.27, p > .07 (see 

Fig. 4.B). In other words, children showed better classification for non-violation similar items 

(M = .33) than for violation similar items (M = .26), whereas the other age groups did not 

show this pattern. 

Discussion 

In the current study, we set out to systematically investigate the effect of PE on 

episodic memory across the lifespan. Although numerically younger adults did show slightly 

better memory for violation items, but contrary to our hypothesis, we did not find a significant 

boosting effect of PE on memory in younger adults, or in any other age groups (children or 

older adults). Consequently, the expected age-related differences in the PE effect over the 

lifespan were not observed. 

One explanation could be that the PE effect on memory may not be as systematic as 

previously postulated (Antony et al. 2021; Bein et al., 2021; Brod et al. 2018; Greve et al. 

2017; Kafkas & Montaldi, 2018). Indeed, the current results are in line with two recent studies 

from our lab. In these studies, participants predicted picture categories, and then items from 

the predicted category or the unpredicted category were shown. None of the experiments 

revealed a boosting effect of PE on memory (Ortiz-Tudela et al., 2023; Turan et al., 2023). 

Note that the current study had a methodological advantage of ensuring that the violation 

and non-violation items differed only in whether they violated participants' predictions about 

the specific object that was presented. Other factors that influence memory such as item and 
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category novelty, as well as surprise were controlled, since both violation and non-violation 

items were novel objects (Antony et al., 2021; Frank & Kafkas, 2021). We also made sure not 

to violate the response participants were made, as the violation item in each pair kept the same 

response as the predicted item. It is possible that, when controlling for all these additional 

factors, the effect of PE on episodic memory, in this case derived by violation item-specific 

predictions, may be rather small and not be observed in all studies. 

The strategies we used to isolate the effects of PE from other potential factors 

described above were also applied in the study of Bein et al. (2021). Of note, there are some 

differences between that study and the current study that might have led to the difference in 

results. In our study, participants did the tasks at home due to the COVID 19 pandemic, 

whereas the study by Bein et al. (2021) took place in the laboratory. We expected somewhat 

more noise in our data (online data collection may be related to less attention and more 

distractions for the participants, e.g., Aruguete et al., 2019). Although we did increase power 

by increasing the sample size in about 30 %, this might not be enough to overcome additional 

noise. Additionally, we aimed to compensate for these factors by adding more learning blocks 

and an additional night of sleep for consolidation, hence, in general, an extended learning 

phase. We did not have any a priori reasons to believe that these differences may attenuate the 

PE effect. However, consolidation is known to increase semantization and loss of episodic 

details (e.g., Tompary & Davachi, 2017; Gilboa & Moscovitch, 2021; Moscovitch et al., 

2016). Thus, an interesting possibility is that the predictions made were lacking specific item 

details. Since item-prediction was violated here, this might have yielded different, or less 

specific, predictions and violations compared to Bein et al. (2021). Other potentially more 

sensitive measures of PE, such as electroencephalography or eye-tracking, could be used for 

indices for PE strength that can than more sensitive for in predicting memory performance. 

Indeed, a recent study using eye-tracking showed that items giving rise to PE were only 



 

146 

 

related to better memory performance when additional changes in pupil dilation occurred 

during prediction violation (Theobald et al., 2022). 

Of all three tested age groups, older adults, contrary to our hypotheses, were the age 

group that showed the strongest numerical trend for the memory boosting effect of PE. In the 

descriptive data (response rates), there was a small descriptive trend for a memory advantage 

of violation over non-violation items, but as in the younger adults, the effect was rather small 

and cannot be interpreted in favor for the notion of a boosting effect on memory through PE. 

The confusion matrix analysis corroborates this finding, revealing a slightly stronger, yet non-

significant trend, for better memory specificity for violation items than for non-violation 

items. This rises the question if PE can help older adults counter the decline in memory 

specificity (by forming more specific memories of items giving rise to PE). While the PE 

effect was not clearly revealed in older adults, the data showed a strong effect on memory 

specificity in general. In previous research, older adults have been shown to form fewer 

specific memories and rely more on gist-like representations, possibly due to a decrease in 

pattern separation in this age group (e.g., Doxey & Kirwan, 2015; Holden et al., 2013; Stark 

et al., 2013). Our data consistently showed this effect in all analyses, namely in the relatively 

high number of similar items being misclassified as “old”; thus, our results nicely align with 

previous lifespan research. 

One interesting, yet unexpected, result was that for children, memory for non-violation 

items was more specific than for violation items. For non-violation items, children were better 

able to identify similar lures, and were less likely to confuse similar lures with old items, 

compared violation items. This effect is in contrast to what has been previously reported in 

the literature on younger adults. To our knowledge, this is the first time such an effect was 

reported. It suggests decreased pattern separation for violation items compared to non-

violation items in children. It has been argued that PE leads to encoding of distinct memory 
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traces in young adults, such that the events giving rise to PE are remembered separately from 

previous memory traces (Frank et al., 2020; Gershman et al., 2014; Love et al., 2004). One 

advantage of such a clear separation of previous memory traces and new memory traces is the 

avoidance of catastrophic interference, as argued in the complementary learning systems 

framework (Kumaran et al., 2016; McClelland et al., 1995). Old and new memory traces can 

thus co-exist and do not necessarily compete. In our children’s data, however, the opposite 

was shown. Together with the absence of a memory boost, this suggests that PE may give rise 

to conflict that needs to be resolved, and that may restrict encoding of clearly separated 

memory traces for violations in children compared to adults (see also Brod et al., 2020). 

Conclusion 

Our objective in this study was to comprehensively examine how PE enhances 

episodic memory across the lifespan. Unexpectedly, our data did not show that PE was related 

to significantly better memory in any of the age groups. This finding suggests that PE may not 

be a strong or consistent modulator of episodic memory after tight control of stimuli 

properties. The relation of PE and episodic memory encoding may be influenced by further 

moderators such as individual differences in inhibition, or the nature of the mnemonic 

representation (detailed, or gist-like). Interestingly, our study provides novel evidence for 

memory advantages of non-violation items compared to violation items in children for 

detailed memory, which needs to be replicated and further investigated in future research.  
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