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Zusammenfassung

In dieser Dissertation schlagen wir eine detaillierte Untersuchung von Lösun-
gen der Einstein-Gleichungen mit statischen, minimal gekoppelten selbst-
wechselwirkenden skalaren Feldern vor, die statische kugelsymmetrische Kon-
figurationen mit asymptotisch flachem Raum-Zeit-Verlauf in der Allgemeinen
Relativitätstheorie beschreiben. Das Hauptmerkmal besteht darin, dass wir
nichtlineare Effekte aufgrund verschiedener Selbstwechselwirkungspotenziale
untersuchen. Ein weiteres Merkmal sind die nackten Singularitäten, die in
statischen Systemen mit skalaren Feldern häufig auftreten und eine beson-
dere Beachtung erfordern, wenn das asymptotische Verhalten in der Nähe der
nackten Singularität betrachtet wird.

In der Regel gibt es keine analytischen Lösungen für die untersuchten
Probleme, und ein erheblicher Teil der Dissertation befasst sich mit nu-
merischen Simulationen. Bevor jedoch Berechnungen durchgeführt werden,
ist es wichtig, sich über das qualitative Verhalten der Ergebnisse im Klaren zu
sein. In diesem Zusammenhang wird besonderes Augenmerk auf allgemeine
Eigenschaften der Lösungen gelegt. Dies bestimmt die Hauptforschungsrich-
tungen in dieser Arbeit:

• Globale und asymptotische Eigenschaften der statisch kugelsymmetrischen
Konfiguration, die durch die Einstein-Gleichungen in Gegenwart von
statischen, minimal gekoppelten selbstwechselwirkenden skalaren Feldern
beschrieben wird.

• Numerische Analyse von statisch kugelsymmetrischen Lösungen mit spez-
ifischer Wahl der Selbstwechselwirkung des skalaren Feldes.

– Untersuchung der linearen Stabilität der entsprechenden Lösung gegenüber
gravitativen (ungeradzahligen) Störungen.

– Untersuchung der Bewegung von Testteilchen mit Schwerpunkt auf
der Struktur der Verteilung stabiler kreisförmiger Bahnen und möglicher
Beobachtungsmerkmale.

Auf diesem Weg betrachten wir:
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Chapter 0

(a) Die allgemeine Form von monotonen, positiv-definierten, exponentiell be-
grenzten Selbstwechselwirkungspotenzialen V (ϕ) ≥ 0, ϕV ′(ϕ) > 0, V (ϕ) ≤
eκϕ.

(b) Ein stark nichtlineares Selbstwechselwirkungspotenzial in der Form V (ϕ) =
w sinh

(
κϕ2n

)
.

(c) Wir erzeugen auch eine Familie exakter Lösungen mit speziell ausgewählten
nichtmonotonen Potenzialen (einschließlich des sogenannten ”Mexikanerhut”-
Potenzials).

(d) Als konkretes Beispiel für Fall (a) verwenden wir V (ϕ) = wϕ2n mit n > 2.

Anschließend untersuchen wir in Kapitel 1 globale und asymptotische
Eigenschaften von Konfigurationen mit N minimal gekoppelten statischen,
selbstwechselwirkenden skalaren Feldern unter spezifischen Anforderungen an
das Selbstwechselwirkungspotenzial V (Φ), das dem Fall (a) entspricht.

Wir zeigen, dass die entsprechenden Lösungen der Einstein-Skalare-Feld-
Gleichungen im Bereich r ∈ (0,∞) existieren, wobei r den radialen
Krümmungskoordinaten (Schwarzschild-ähnliche Koordinaten) darstellt. Wir
zeigen, dass es keine sphärischen Singularitäten bei r > 0 gibt und dass im-
mer eine nackte Singularität im Zentrum vorliegt. Wir bestimmen rigoros
das asymptotische Verhalten der metrischen Funktionen und des skalaren
Feldes in der Nähe der Singularität bei r = 0 für das allgemeine Selbstwech-
selwirkungspotenzial (Fall (a)), wenn κ < 32π/N gilt.

Als Beispiel betrachten wir eine spezifische Wahl von V (ϕ) = wϕ2n mit
n > 2 (Fall (d)) und untersuchen sie im Detail. Für diesen Fall bestim-
men wir die Terme höherer Ordnung in den asymptotischen Erweiterungen
in der Nähe der Singularität. Wir analysieren das mögliche asymptotische
Verhalten des skalaren Feldes am räumlichen Unendlichen in Abhängigkeit
vom Wert von n. Um die numerischen Lösungen zu konstruieren, verwen-
den wir asymptotische Lösungen am räumlichen Unendlichen als Anfangs-
bedingungen und führen eine Rückwärtsintegration bis zur Singularität bei
r = 0 durch. Um unsere Vorgehensweise zu rechtfertigen, schreiben wir die
Einstein-Skalare-Feld-Gleichungen in einer Integralform um und zeigen, dass
das iterative Verfahren mit der 0. Iteration in Form der asymptotischen
Lösungen am räumlichen Unendlichen konvergiert und zu einer eindeutigen
Lösung führt. Als Ergebnis erhalten wir eine dreiparametrige Lösungsfami-
lie, die eindeutig durch die Masse der Konfiguration M , die ’skalare Ladung’
Q = lim

r→∞
rϕ(r) und die Potenz n bestimmt ist. Das qualitative Verhalten der

Lösungen ähnelt dem Fall der Fisher-Janis-Newman-Winicour-Lösung.
In Kapitel 2 präsentieren wir ein Beispiel, das die Konsequenzen einer
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Verletzung der Bedingung der exponentiellen Begrenztheit (Fall (b)) veran-
schaulicht.

Zunächst zeigen wir, dass es in der flachen Raumzeit sphärische Singu-
laritäten bei r = rs > 0 gibt, auch wenn die Anforderungen für Fall (a) erfüllt
sind. Anschließend betrachten wir ein skalares Feld mit einem exponentiell
unbegrenzten Selbstwechselwirkungspotenzial der Form V (ϕ) = w sinh

(
κϕ2n

)
für n > 2 und zeigen das Auftreten von sphärischen Singularitäten in der
gekrümmten Raumzeit bei r = rs > 0. Wir bestimmen die genaue Form
der asymptotischen Lösungen in der Nähe der Singularität bei r = rs. In
diesem Fall ist das asymptotische Verhalten qualitativ anders im Vergleich
zum regulären Fall. Wir überprüfen unsere Ergebnisse durch numerische
Lösungen. Wir bestimmen auch die Abhängigkeiten von rs als Funktionen
der Konfigurationsparameter M,Q, n.

In Kapitel 3 finden wir zwei exakte Lösungen der Einstein-Skalarfeld-
Gleichungen. Die erste Lösung ist eine Verallgemeinerung der Fisher-Janis-
Newmann-Winicour-Lösung in Anwesenheit von N skalaren Feldern ohne
Selbstwechselwirkung. Die Form der erhaltenen Lösung ist genau die gle-
iche wie im Fall eines einzelnen skalaren Feldes.

Die zweite Lösung ist eine zweiparametrige Lösungsfamilie (Fall (c)) mit
einem masselosen nichtlinearen skalaren Feld. Für verschiedene Parame-
terkombinationen können die Lösungen Raumzeiten mit nackten Singularitäten
oder Schwarzen Löchern beschreiben. Die Form der Selbstwechselwirkung
ähnelt dem sogenannten ”Mexikanischen Hut”-Potential.

In Kapitel 4 untersuchen wir die lineare Stabilität gegenüber ungeradzahli-
gen Störungen und die damit verbundene Frage der ungeradzahligen
Quasinormalmoden-Spektren. Wir leiten die Master-Gleichung für lineare
ungeradzahlige Störungen her und zeigen, dass die Konfigurationen in den
Fällen (a, b, d) aufgrund des positiv definierten effektiven Potentials Veff in
der Wellengleichung linear stabil sind.

Im Fall der speziellen Lösungsfamilie (Fall (c)) kann es für bestimmte
Parameterwerte im Schwarzen-Loch-Fall zu Veff < 0 in der Nähe des Horizonts
kommen, was auf Instabilität hindeuten kann. Wir zeigen jedoch, dass solche
Konfigurationen (im Allgemeinen) stabil sind, indem wir die Methode der
S-Deformation verwenden. Im Fall einer nackten Singularität gilt Veff > 0
und die Konfigurationen sind ebenfalls stabil.

In Anwesenheit einer nackten Singularität ist die Raumzeit nicht mehr
global hyperbolisch, was bedeutet, dass die Zeitevolution nicht eindeutig ist.
Gemäß Wald [1] können wir eine eindeutige Zeitevolution sicherstellen, wenn
es eine eindeutige selbstadjungierte Erweiterung H gibt. Dabei steht H für
den räumlichen Teil des Wellenoperators. Wenn H nicht wesentlich selb-
stadjungiert ist, hängt die Dynamik von der spezifischen Wahl der selbstad-
jungierten Erweiterung ab, d.h. von der Wahl einer speziellen Randbedingung
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an der Singularität.
Für die Fälle (a, d) mit κ < 32π zeigen wir die wesentliche Selbstad-

jungiertheit von H. Im Fall (b) ist H nicht wesentlich selbstadjungiert. Im
Fall (c) ist H ebenfalls ein wesentlich selbstadjungierter Operator.

Für alle Fälle mit nackten Singularitäten legen wir die Null-Dirichlet-
Randbedingungen an der Singularität fest und verwenden eine Gauss’sche
Anfangsstörung, um die Master-Wellengleichung numerisch zu lösen. Mit
Hilfe der Prony-Methode extrahieren wir die Werte der fundamentalen QNM-
Frequenzen.

Im Fall des Potentials mit Potenzgesetz (Fall d) gibt es signifikante nu-
merische Unterschiede in ω im Vergleich zu den Schwarzschild- und FJNW-
Fällen. Es ist wichtig zu beachten, dass ω(M,Q, n) auch für sehr kleine
Skalarfelder vom Schwarzschild-Fall abweicht. Bei ausreichend großen Werten
von n nähert sich ω den FJNW-Frequenzen an, aber aufgrund der nichtlin-
earen Selbstwechselwirkung bleibt eine geringe Abweichung bestehen.

Im Fall (b) ist die Situation analog zum vorherigen Fall. Die Werte von
ω für κ = 1 ähneln denen im Fall (d).

Im Fall (c) zeigen sich diskontinuierliche Trajektorien der fundamentalen
QNM-Frequenzen aufgrund des Auftretens von Eroberer-Moden in den Lösun-
gen der Master-Wellengleichung. Darüber hinaus bleiben die Werte von ω
während des Übergangs von einem Schwarzen Loch zu einer nackten Singu-
larität kontinuierlich.

Im letzten Abschnitt von Kapitel 4 untersuchen wir die Stabilität von
skalaren, vektoriellen und Dirac-Feldern auf dem Hintergrund der Kehagias-
Sfetsos-nackten Singularität. Vorherige Überlegungen in [2] lieferten fehler-
hafte Ergebnisse bezüglich der Instabilität von Testfeldern mit l > 1. Daher
zeigen wir die Stabilität von Testfeldern mit l > 1 und ermitteln die korrekten
Werte der QNM-Frequenzen.

In Kapitel 5 untersuchen wir detailliert die kreisförmige Bewegung von
Testpartikeln für alle zuvor betrachteten Lösungen. Wir bestimmen und
kategorisieren die möglichen Verteilungen stabiler Kreisbahnen um die Kon-
figurationen. Die Klassifizierung umfasst die Schwarzschild-ähnlichen Kon-
figurationen, bei denen die Kreisbahnen den gesamten Raum ausfüllen, sowie
Konfigurationen, die zwei oder mehr getrennte Ringe um das Zentrum en-
thalten. Für alle diese Fälle bestimmen wir die Parameterbereiche, in denen
solche Konfigurationen auftreten.

Im Fall (d) bestehen die Hauptunterschiede zur FJNW-Lösung darin, dass
es Kreisbahnen mit Radien rb/M > 6 gibt und eine Verteilung stabiler Kreis-
bahnen mit drei Bereichen.

Im Fall (b) gibt es immer einen Ring instabiler Kreisbahnen in der Nähe
der Singularität. Ähnlich wie im Fall (d) beobachten wir eine Verteilung
stabiler Kreisbahnen mit drei Bereichen.
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Im Fall (c) treten getrennte Verteilungen stabiler Kreisbahnen sowohl für
Schwarze Löcher als auch für nackte Singularitäten auf. Der Hauptunter-
schied besteht darin, dass im Fall einer nackten Singularität eine abstoßende
Kugel vorhanden ist, auf der ein Teilchen in Ruhe verweilen kann, ohne
Drehimpuls zu haben.

Für verschiedene Arten von Verteilungen stabiler Kreisbahnen erstellen
wir Abbildungen von dünnen Akkretionsscheiben, die aus flachen Verteilun-
gen von Kreisbahnen bestehen und für einen entfernten Beobachter mit ver-
schiedenen Neigungen zur Sichtlinie sichtbar sind. Alle diese Abbildungen en-
thalten den dunklen Fleck in der Mitte, wie bei einem gewöhnlichen Schwarzen
Loch. Die Ursache für diesen dunklen Fleck in Abwesenheit einer Photonen-
sphäre liegt in der abstoßenden Natur der Singularität.
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Chapter 1

Introduction

For over a century, Einstein’s General Relativity (GR) remains to be the
main theory for describing gravitational phenomena. She has successfully
passed numerous tests, both in the weak-field regime [3,4] and new appeared
test in the strong-field regime [5–7], including the direct observation of grav-
itational waves by the LIGO collaboration [8] and the first images of black
holes obtained by the Event Horizon Telescope (EHT) collaboration [9–11].
Even satisfied all possible observations, GR has several problems [12,13], pre-
venting her from being the ultimate theory of gravity. Such circumstances
requires from us to search models beyond standard GR and find more precise
boundaries where GR is valid. As a result, a wide range of modified gravity
theories have been already proposed [14–16], like non-metric theories, theories
with additional fields or extra dimensions, and so on.

Compact objects can pretend on the role of valuable astrophysical lab-
oratories for searching of the smoking guns of modified gravity models and
seeking potential signatures of “new physics”. Typically, black holes have
served this role, and recent observations from the EHT and LIGO collabo-
rations are largely in line with expectations for the standard Kerr black hole
model. However, a wide variety of exotic compact objects (ECOs) exist, in-
cluding naked singularities [17,18], wormholes [19], boson stars [20,21], Dirac
stars [22, 23], gravastars [24] and so on [25].

Interest in studying ECOs has grown substantially after the publication
of images of the accretion disk in the core of M87 and Sgr A* by EHT [9–11].
Also it has been discovered that ECOs can closely resemble black holes [25–35]
and play role of their mimickers.

Testing of the observational properties of the corresponding objects can
answer us about presence and properties of such solutions in our world.

One of the primary sources of observational data for compact objects
comes from the radiative properties of the surrounding matter, such as ac-
cretion disks and jets, as well as their resulting images from the perspective
of distant observer. A key aspect of this consideration is the structure of test
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particles stable circular orbits distributions, especially if it contains distribu-
tions in a form of of multiple non-connected rings of SCOs. As well as form
and geometrical properties of ECOs shadows visible for a distant observer.
A number of authors have studied various properties, including the circular
motion of test particles [36–49], images of accretion disk [50–59], radiation
fluxes and luminosity [59–68], profiles of Fe-Kα lines [69–75], gravitational
lensing [76–84] and many more.

The second source of observational data is due to gravitational wave as-
tronomy. In particular, perturbed astrophysical objects exhibit relaxation
through the emission of exponentially damped oscillating modes during the
ringdown phase. These oscillations, known as quasi-normal modes [85–87],
their values and their damping times can be used to explore the non-GR solu-
tions and detect deviations from standard GR scenarios [88–91], particularly
in light of forthcoming measurements by LIGO and LISA [92].

One of the natural approaches to modify GR with preserving her main
properties is the introduction of new interacting fields. Among these, scalar-
tensor theories [93–95] are the simplest and most popular, where scalar fields
play role of an additional degree of freedom. At present, the sole fundamental
scalar field detected in the natural world is the Higgs field. However, the
existence of other fundamental scalar fields, for example, active in the Early
Universe during the inflation or as models of the dark matter and dark energy
[96–99] cannot be rule out. Considering Occam’s razor principle, in this
thesis, we focus on the simplest model with a minimally coupled scalar field.

The typical type of static solutions with scalar field is the naked singu-
larity. Naked singularity can be roughly defined as singularities visible to a
distant observer. According to the Cosmic Censorship hypothesis [100, 101],
this type of solutions is considered as pathological and be forbidden in the
real Universe. However, this remains an open question, as this hypothesis
has not proven yet. Such configurations can emerge as a result of the grav-
itational collapse [102–105] of non-homogeneous matter with some specific
initial conditions. They also appear as exact solutions of the Einstein equa-
tions.

The first exact solution of the Einstein equations involving a static linear
massless scalar field was obtained by Fisher [17]. Subsequently, alternative
formulations of the solution were found by Janis, Newman, and Winicour
[106], as well as Wyman [107]. Virbhadra [108] shown the equivalence of these
solutions. Fisher solution has been extensively studied from various points of
view [32,51,52,109–114]. Currently, there are exact solutions with non-linear
scalar fields (not limited to naked singularities) but with complicated and
exotic forms of self-interaction potentials [115–119]

In this thesis, we provide a comprehensive analysis of static spherically
symmetric asymptotically flat configurations with non-linear scalar fields,
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including those described by the most commonly used self-interaction poten-
tials.

Structure of the thesis
In Chapter 2, we formulate the basic properties for N minimally cou-

pled static self-interacting scalar fields with specific requirements on the self-
interaction potential V (Φ). We provide a proof that spherically symmetric
asymptotically flat solutions of the joint system of the Einstein-scalar field
equations are regular for all values of r > 0 in the curvature coordinates. We
rigorously establish the asymptotic behavior of the metric and the scalar field
near r = 0. To validate our results, we carry out a detailed numerical study
of a case with a power-law self-interaction potential V (ϕ) = wϕ2n.

In Chapter 3, we demonstrate the possibility of “spherical singularities”
in the case of flat space-time and for exponentially unbounded self-interaction
potentials. We find the asymptotic behavior of the metric functions and the
scalar field near the singularity for the specific case of V (ϕ) = w sinh

(
κϕ2n

)
.

Additionally, we perform numerical simulations to study the corresponding
full solutions.

In Chapter 4, we present two exact solutions of the Einstein-scalar field
equations. The first solution is the generalization of the Fisher-Janis-Newman-
Winicour (FJNW) solution in the presence of N identical scalar fields. The
second solution represents a two-parametric “toy-model” family of solutions
that contains both naked singularities and black holes.

In Chapter 5, we consider the linear stability against odd-parity gravita-
tional perturbations. We demonstrate that all previously considered solutions
are stable under odd-parity perturbations. Furthermore, we determine the
values of the corresponding fundamental quasinormal mode frequencies. In
the final section, we revisit the question of the stability of the Kehagias-
Sfetsos naked singularity.

In Chapter 6, we provide a detailed analysis of circular test particle motion
for all previously considered solutions. We demonstrate the possible images
of Keplerian accretion disks as seen by a distant observer.

The conclusions of the thesis are presented in Chapter 7, where we sum-
marize the main results.

This thesis is based on the following papers
1. O. Stashko, O. Savchuk, V. Zhdanov, Quasi-normal modes of naked

singularities in presence of non-linear scalar fields. Physical Review D, 109,
024012, 2023.

2. O. Stashko, V. Zhdanov, Singularities in static spherically symmet-
ric configurations of general relativity with strongly nonlinear scalar fields,
Galaxies, 9(4):72, 2021.

3. O. Stashko, V. Zhdanov, N. Alexandrov, Thin accretion discs around
spherically symmetric configurations with nonlinear scalar fields. Physical
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Review D. 104, 2021.
4. V. Zhdanov, O. Stashko, Static spherically symmetric configurations

with N nonlinear scalar fields: Global and asymptotic properties. Physical
Review D, 101, 2020.

5. O. Stashko, V. Zhdanov, Black Hole Mimickers in Astrophysical
Configurations with Scalar Fields. Ukrainian Journal of Physics, 64(11),
1078, 2019.

6. O. Stashko, V. Zhdanov, Spherically symmetric configurations of
General Relativity in presence of scalar fields: separation of circular orbits.
General Relativity And Gravitation. 50, 2018.
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Chapter 2

Self-interaction scalar
fields with exponentially
bounded potentials

2.1 Basic relations

In this chapter, we consider the general properties of solutions of the Einstein
equations with N minimally-coupled real scalar fields Φ = {ϕ1, ..., ϕN} in
space-time of four dimensions. Namely, we consider the action

S =

∫ √
|g|
(
− R

16πG
+ Ls

)
, (2.1)

where Ls is the Lagrangian density of scalar fields

Ls =
1

2

N∑
i=1

∂µϕi∂
µϕi − V (Φ), (2.2)

and V (Φ) is the self-interaction potential of scalar fields.
Properties of the V (Φ) are strongly affect on possible types of solution.

In particular, for the static scalar fields with positive-defined potential V (Φ),
black hole solutions are excluded according to no-hair theorems [120–122].
Likewise, regular solutions are also not possible [115, 123]. The most typical
solutions which occur in such cases are naked singularities. Hence, we restrict
ourselves with this case, i.e. we assume that V (Φ) ∈ C2 and

V (Φ) ≥ 0, (2.3)

and

ϕi
∂V

∂ϕi
≥ 0, i = 1, ..., N, (2.4)

14
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We assume that there are positive constants C0, C
′
0, κ, and κ′, such that

|V (Φ)| < C0 exp(κ∥Φ∥), (2.5)

and for all i = 1, 2, ..., N ∣∣∣∣∂V∂ϕi
∣∣∣∣ < C ′

0 exp(κ′∥Φ∥), (2.6)

where ∥Φ∥ =
√∑

i ϕ
2
i is the Euclidean norm of the N -component vector Φ.

In fact, (2.5, 2.6) are not independent estimates, if (2.6) is valid, then

V =

ϕi∫
0

∂V

∂ϕi
dϕi <

ϕi∫
0

C ′
0e

κ′∥Φ∥dϕi <

ϕi∫
0

C ′
0e

κ′∑
i

|ϕi|
dϕi < C ′′

0 e
κ′∑

i

|ϕi|
. (2.7)

Therefore, only one (2.6) estimate is necessary.
The Einstein equations

Rν
µ −

1

2
δνµR = 8πT ν

µ . (2.8)

The Klein-Gordon equations for scalar fields follow from (2.2)

gµν∇µ∇νϕi = −V ′
i (Φ), i = 1, ..., N ; (2.9)

The energy-momentum tensor for the scalar field is defined in the standard
way

Tµν =
N∑
i=1

∂µϕi∂νϕi − gµνLs . (2.10)

We assume that the space-time is a static, spherically-symmetric and asymptotically-
flat with the metric gµν, which has the following form in curvature coordinates

ds2 = eα(r)dt2 − eβ(r)dr2 − r2(dθ2 + (sin θ)2dφ2), (2.11)

For metric (2.11), we can write down Einstein equations in the explicit
form

d

dr

[
r
(
e−β − 1

)]
= −8πr2T 0

0 , (2.12)

where T 0
0 = e−β

N∑
i=1

ϕ′2i /2 + V (Φ) , ϕ′i = dϕi/dr,

re−β dα

dr
+ e−β − 1 = −8πr2T 1

1 , (2.13)

15
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where T 1
1 = −e−β

N∑
i=1

ϕ′2i /2 + V (Φ).

The explicit form of the Klein-Gordon equation (2.9)

d

dr

[
r2e

α−β
2
dϕi
dr

]
= r2e

α+β
2 V ′

i (Φ) i = 1, ..., N, (2.14)

We assume that the corresponding space-time is asymptotically-flat, i.e.

lim
r→∞

[r(eα − 1)] = lim
r→∞

[
r(e−β − 1)

]
= −rg, (2.15)

where rg = 2M and M > 0 is the mass of configuration.
We assume that components ϕi of the SF Φ are independent and at spatial

infinity they can be treated as scalar fields in the flat space, Φ(r) → 0 for
r → ∞ and

∃K : r2∥Φ′(r)∥ < C <∞, (2.16)

from where, we have
r∥Φ(r)∥ < C . (2.17)

We define the solutions of Einstein’s equations in the following way.
Definition. The set of functions {α(r), β(r) ∈ C1,Φ(r) ∈ C2} is called a

solution of the Einstein-scalar field equations (2.12 – 2.14) on (r0,∞), r0 ≥ 0,
if they satisfy equations (2.12 – 2.14) on (r0,∞) and conditions (2.15-2.16).

We need to note that at this stage we confine ourselves by condition (2.16),
but we do not impose a more stringent condition on ϕi(r) for r → ∞ that
ensures the uniqueness of the solution, because it is different for different
kinds of potentials.

The equations (2.12 – 2.13) can be rewritten in more convenient form

α′ + β′ = 8πr
N∑
i=1

ϕ′2i , (2.18)

β′ − α′ =
2

r
+ eβ

[
16πrV (Φ) − 2

r

]
, (2.19)

Now we introduce new functions

X = e(α+β)/2, Y = re(α−β)/2 , (2.20)

and
Zi = −rY ϕ′i, i = 1, ..., N. (2.21)

for which we obtain an equivalent system of equations

dX

dr
= 4π

X

rY 2

N∑
i=1

Z2
i , (2.22)

16
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dY

dr
= X

[
1 − 8πr2V (Φ)

]
. (2.23)

The Klein-Gordon equation (2.14) can be rewritten in the form of two first-
order differential equations

dZi

dr
= −r2XV ′

i , (2.24)

dϕi
dr

= − Zi

rY
. (2.25)

for i = 1, ..., N .
Then, the conditions (2.15) in terms of functions X, Y , and Z are

lim
r→∞

[r(X − 1)] = 0, lim
r→∞

(Y − r) = −rg . (2.26)

and for the conditions (2.16, 2.17), we have

|Zi(r)| < K, lim
r→∞

[ϕi(r)Zi(r)] = 0. (2.27)

2.2 Regularity of solutions for r > 0

We are interested in the regularity properties of the solutions of the Einstein-
SFs equations on the interval r ∈ (0,∞) in the presence of the some general
self-interaction potential V (Φ). This self-interaction potential is assumed to
fulfill certain conditions (2.5, 2.6). To prove regularity, we need to exclude
the possibility of certain special cases:

X(r) → 0, Y (r) → 0, |Zi(r)| → ∞, |ϕi(r)| → ∞,

for r → r0 + 0 for some r0 > 0.
Throughout this Chapter, we consistently assume that there is at least

one nontrivial component of Φ, i.e., ϕi(r) ̸= 0 for some i.
We will start our consideration by establishing the monotonicity proper-

ties of the corresponding solutions.

Lemma 1. Let condition (2.4) is valid for all Φ, and α(r), β(r) are contin-
uously differentiable on (r0,∞), r0 ≥ 0, and satisfy (2.15). Let, for some i,
ϕi(r) ∈ C2 is a non-trivial solution of (2.14) on this interval with conditions
(2.16, 2.17). Then functions ϕi(r), Zi(r) and dϕi/dr do not change their
signs, ϕi(r)Zi(r) > 0 and ϕi(r)dϕi/dr < 0 on (r0,∞).

Proof. We begin the proof by multiplying both sides of the equation (2.24)
by ϕi and using the equation (2.25). This gives us the equation

17
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− d

dr
(ϕiZi) =

Z2
i

rY
+ r2XϕiV

′
i . (2.28)

The right-hand side of this equation is non-negative due to the condition
(2.4) and positivity of X and Y functions. Therefore, the product ϕiZi is a
non-increasing function.

Now, suppose for a contradiction that there exists an arbitrary point r1
such that ϕi(r1)Zi(r1) < 0 for r1 > r0. This inequality holds for all r > r1,
but this is in contradiction to the assumption that ϕi(∞)Zi(∞) = 0. Hence,
we have that ϕi(r)Zi(r) ≥ 0 for r > r0.

Next, we need to show that ϕi(r1)Zi(r1) ̸= 0. Suppose, on the contrary,
that ϕi(r1)Zi(r1) = 0. Then, we have that ϕi(r)Zi(r) ≡ 0 for r > r1, which
leads to ϕi(r)ϕ

′
i(r) ≡ 0 or ϕi(r) = const. However, since ϕi(∞) = 0 and ϕi(r)

is non-trivial, this also leads to a contradiction. Hence, we have ϕi(r1)Zi(r1) ̸=
0.

Finally, we can see that ϕi(r)Zi(r) > 0, which implies that both ϕi(r) and
Zi(r) cannot change their signs on the interval (r0,∞). ■

Throughout this Chapter, without loss of generality, we can suppose that
ϕi(r) is a positive and monotonically strictly decreasing function., i.e. ϕi(r) >
0, Zi(r) > 0, ϕ′i(r) < 0.

Lemma 2. Let conditions (2.3, 2.4) be satisfied, and let functions α(r), β(r),
Φ(r) ∈ C1 satisfy equations (2.14, 2.18, 2.19) and ϕi(r) ̸= 0 for i = 1, ..., N in
(r0, r1], where 0 < r0 < r1 <∞. Then there exists η0 > 0, such that Y (r) > η0
and, for each i, we have SiZi(r) > SiZi(r1) > 0, where Si = signϕi.

Proof. One can see that the right-hand side of equation (2.24) is negative,
then Zi(r) > 0 is a decreasing function, such that Zi(r) > Zi(r1) for r < r1.

In view of (2.22), we know that X(r) is a monotonically increasing func-
tion. Then, for r < r1, we can use equations (2.22) and (2.23) and obtain the
following series of estimations

1

Y 2

dY

dX
=

r

4π
N∑
i=1

Z2
i

[
1 − 8πr2V (Φ)

]
≤ r1

4π
N∑
i=1

Z2
i (r)

≤ r1

4π
N∑
i=1

Z2
i (r1)

, (2.29)

where we have used the positivity of V (Φ) and X ′(r), and the monotonicity
of SiZi. After integration of (2.29), we find

1

Y (r)
≤ 1

Y1
+

r1X1

4π
N∑
i=1

Z2
i (r1)

<
1

η0
.

18
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Hence, 1/Y (r) is a positive bounded function, which means that there is a
positive constant η0 such that Y (r) > η0. ■

Lemma 3. Let the conditions (2.5, 2.6) are fulfilled and functions α(r), β(r) ∈
C1, Φ(r) ∈ C2, ϕi ̸= 0 satisfy equations (2.18, 2.19) and (2.14) on (r0, r1],
where 0 < r0 < r1 <∞. Then there exist finite limits

Ȳ (r0) = lim
r→r0+0

Y (r) > 0, Z̄i(r0) = lim
r→r0+0

Zi(r) > 0, (2.30)

X̄(r0) = lim
r→r0+0

X(r) > 0, ϕ̄i(r0) = lim
r→r0+0

ϕi(r) ̸= 0. (2.31)

Proof. By assumption X(r1) is finite. For r ∈ (r0r1] from (2.18), we have

X(r) = X(r1) exp

−4π

r1∫
r

x
N∑
i=1

ϕ′2i (x)dx

. (2.32)

After applying the integral Cauchy–Schwarz inequality, we obtain for r < r1

|ϕi(r) − ϕi(r1)| =

∣∣∣∣∣∣
r1∫
r

(ϕ′i(x)
√
x ) · 1√

x
· dx

∣∣∣∣∣∣ ≤

≤
r1∫
r

|ϕ′i(x)|
√
x · 1√

x
· dx ≤

√√√√√ r1∫
r

x[ϕ′i(x)]2dx ln(r1/r) .

Thus, we obtain
r1∫
r

x[ϕ′i(x)]2dx ≥ [ϕi(r) − ϕi(r1)]
2

ln(r1/r)
. (2.33)

And using (2.32), we obtain

X(r) ≤ X(r1) exp

{
−4π

N∑
i=1

[ϕi(r) − ϕi(r1)]
2

ln(r1/r)

}
. (2.34)

Finally, this inequality can be strengthened by replacing ln(r1/r) by ln(r1/r0)

X(r) ≤ X(r1) exp

{
−4π

N∑
i=1

[ϕi(r) − ϕi(r1)]
2

ln(r1/r0)

}
. (2.35)
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Let us define B(r) and B̃i(r) as follows:

B(r) = X(r)|V (Φ(r))| , B̃i(r) = X(r)|V ′
i (Φ(r))|. (2.36)

Then, from the inequalities (2.35) and (2.5), we have

B(r) ≤ C1 exp

{
N∑
i=1

[
−4π

[ϕi(r) − ϕi(r1)]
2

ln(r1/r0)
+ κ|ϕi(r)|

]}
, (2.37)

where we denoted C1 = X(r1)C0 > 0. The expression in the exponent
remains bounded as a function of ϕ even if ϕ→ ∞. It has a maximum at

ϕmax = ϕi(r1) +
κ

8π
ln(r1/r0), B(r) ≤ C1 exp

{
N∑
i=1

[
κ2 ln(r1/r0)

16π
+ κϕi(r1)

]}
.

(2.38)

Therefore, we can conclude that B(r) is a finite uniformly bounded function
for r → r0 + 0.

After repeating the similar consideration for B̃i(r), we obtain

B̃i(r) ≤ κ′C2 exp

{
N∑
i=1

[
−4π

[ϕi(r) − ϕi(r1)]
2

ln(r1/r0)
+ κ′|ϕi(r)|

]}
ϕi
∥Φ∥

. (2.39)

Then, taking into account that ϕi/∥Φ∥ ≤ 1, we conclude that it is also a
bounded function.

Thus, the expressions (2.36) and the right-hand sides of (2.23, 2.24) are
bounded, which lead to the existence of the finite limits Ȳ (r0), Z̄i(r0). From
the Lemmas 1, 2 follow that Ȳ (r0) > 0, SiZ̄i(r0) > 0.

Hence, the functions ϕi(r) and |ϕ′i(r)| are bounded and we have a finite
limits for r → r0. From (2.22), we obtain existence of X̄(r0) > 0.

■

Now, we can summarize our results as

Theorem 1. Let the SF potential satisfies conditions (2.3, 2.4) and (2.5, 2.6)
for all Φ. Let α(r), β(r),∈ C1, Φ(r) ∈ C2 represent a non-trivial (ϕi(r) ̸≡
0, i = 1, ..., N) solution of equations (2.14, 2.18, 2.19) on open interval
(r0,∞), r0 > 0 with conditions (2.15, 2.16, 2.17).
Then
(i) there exist finite limits of functions α(r), β(r), ϕi(r) and ϕ′i(r) for r →

r0;
(ii) solution can be regularly continued onto a left neighbourhood of r0;
(iii) solution can be regularly continued for all r > 0 up to the center.
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Proof. (i) This statement is the result of Lemma 3.
(ii) This statement directly follows from the existence-uniqueness theorem

for ODEs and analyticity of the right-hand sides of the (2.22 – 2.25) in the
neighbourhood of X̄(r0) > 0, Ȳ (r0) > 0, SiZ̄i(r0) > 0, Siϕ̄i(r0) > 0.

(iii) We immediately obtain this result from statements (i), (ii) and appli-
cation of the real induction to continue this solutions for all r > 0. ■

We should point out that the regularity for r > 0 doesn’t rule out a singu-
larity at the origin r = 0.

2.3 Asymptotic behaviour near the singular-
ity at r = 0

Another crucial aspect is to consider the behavior of the asymptotic solutions
near the singularity, which is necessary to gain a comprehensive understand-
ing of the space-time geometry and properties of the singularity. This can
be carried out in a similar way as we used in the proof of Lemma 3. We can
prove the following Lemma.

Lemma 4. Let conditions (2.3, 2.4) and (2.5, 2.6) are fulfilled with
max (κ2, κ′2) < 32π/N . Let α(r), β(r), ϕi(r) ̸≡ 0 (i = 1, ..., N) represent a
solution of (2.12, 2.13, 2.14) on (0,∞) with conditions (2.15– 2.17). Then
there exist finite nonzero limits

Zi,0 = lim
r→0+0

Zi(r), Y0 = lim
r→0+0

Y (r), (2.40)

such that SiZi,0 > 0, Y0 > 0.

Proof. Let r1 is an arbitrary point, such that 0 < r < r1 <∞. After repeating
consideration of the proof of Lemma 3 for D(r) = r2B(r) in the right-hand
side of (2.23) we obtain

D(r) = r21(r/r1)
2B(r) =r21e

−2LB(r) ≤ (2.41)

C2e
−2L · exp

{
−

N∑
i=1

[
4π

L
[ϕi(r) − ϕi,1]

2 − κ|ϕi(r)|
]}

,

(2.42)

where we denoted C2 = r21X(r1)C0 > 0, ϕi,1 = ϕi(r1) and L = ln(r1/r).
Throwing off some negative terms, we obtain

D(r) ≤ C2 exp

{
−2L+

κ2N

16π
L

}
exp

{
N∑
i=1

[
4π

L
|ϕi,1|2 + κ|ϕi,1|

]}
. (2.43)
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One can see that L→ ∞ for r → 0, but meantime D(r) remains bounded if
κ2 < 32π/N . Then the right-hand side of (2.23) is integrable and the finite
limit Y0 ≥ 0 exists.

After repeating the similar consideration for r2XV ′
i we obtain that the

right-hand side of (2.24) is also bounded, integrable and the corresponding
finite limits Zi,0 exist.

■

Using results of Lemma 4, we can determine the asymptotic behavior of
the metric functions and scalar field for r → 0. From (2.25) and (2.40), we
obtain for scalar field

dϕi
dr

∼ −ζi,0
r
, ϕi(r) ∼ −ζi,0ln r , (2.44)

where we denoted ζi,0 = Zi,0/Y0. Then, from (2.18, 2.19) we obtain the
leading terms for the metric functions

α(r) ∼ (η − 1)ln r, β ∼ (η + 1)ln r, (2.45)

where η = 4π
N∑
i=1

ζ2i,0.

The scalar curvature and Kretschmann scalar both diverge for r → 0 as

R ∼ −D1/r
η+3, RαβγδR

αβγδ ∼ D2/r
2η+6, (2.46)

Where D1 and D2 depend on the explicit form of V (Φ).
We need to note that the main asymptotic terms have the same form as in

the case of V (Φ) = 0.
In order to determine the next order terms of the expansion near the sin-

gularity, we can use the following iteration procedure.
Let us take into account that the leading order terms are

X(r) ∼ χ0r
η, Y (r) ∼ Y0, Z(r) ∼ Z0, ϕ(r) ∼ −ζ0 ln(r) ≡ ϕ0, r → 0. (2.47)

Then, we can seek solutions in the form

X(r) = rηχ(r), Y (r) = Y0 + γ(r), Z(r) = Z0 + ψ(r), ϕ(r) = ϕ0 + φ(r),
(2.48)

where

χ(0) = χ0, ψ(0) = 0, γ(0) = 0, φ(0) = φ0. (2.49)
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The Einstein-SF equations can be rewritten in terms of the new unknown
functions χ(r), γ(r), ψ(r), φ(r) and then reduced to a system of integral
equations

χ(r) = χ0 + 4π

r∫
0

χ(x)

x

[
(2Z0 + ψ(x))ψ(x) − ζ20(2Y0 + γ(x))γ(x)

(Y0 + γ(x))2

]
dx,

(2.50)

γ(r) =

r∫
0

xηχ(x)
[
1 − 8πx2V (ϕ)

]
dx, (2.51)

ψ(r) = −
r∫

0

xη+2χ(x)
dV

dϕ
dx, (2.52)

φ(r) = φ0 +

r∫
0

ζ0γ(x) − ψ(x)

x(Y0 + γ(x))
dx, (2.53)

Thus, the next order terms of the asymptotic solution near the singularity can
be obtained using the fixed-point iteration procedure with the 0-th iteration
in the form of (2.49).

2.4 Asymptotic behaviour at spatial infinity

For our future purposes we need to know how the scalar field behaves at
spatial infinity. Assuming that components ϕi of SF Φ are asymptotically
independent and behave like SFs in the flat space, we can limit ourselves to
the case of single scalar field ϕ.

We suppose that self-interaction potential has asymptotically the power-
law form for ϕ→ 0 as r → ∞.

V (ϕ) ≃ w|ϕ|p, w > 0, p ≥ 2. (2.54)

The scalar field equation in the flat space-time has form

d

dr

[
r2
dϕ

dr

]
= pwr2ϕ|ϕ|p−2. (2.55)
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Depending on the value of p there are four qualitatively different cases.
(i) Massive scalar field case: p = 2, w = µ2/2. There is an exact solution

for r → ∞
ϕ(r) =

Q

r
e−µr, (2.56)

or in the more precise form in the general case

ϕ(r) ∼ Q

r1+µM
e−µr, (2.57)

where Q is an arbitrary constant and M is the mass of the configuration.
For p > 2, we can make the following substitution

ϕ = e−qtψ, t = ln r, q =
2

p− 2
, (2.58)

that gives us the autonomous differential equation

d2ψ

dt2
+ (1 − 2q)

dψ

dt
+ q(q − 1)ψ = pwψp−1, (2.59)

which can be rewritten as the two-dimensional dynamical system

du

dt
= (2q − 1)u− q(q − 1)ψ + pwψp−1,

dψ

dt
= u. (2.60)

We can analyze the phase portrait of the system and qualitatively analyze the
properties of the corresponding solutions by determining the critical points
and their stability. Some examples of the phase portraits of the corresponding
dynamical system are shown in Fig. 2.1.

The corresponding dynamical system has two critical points: The first-one
at P1 = (ψ = 0, u = 0) with the eigenvalues

λ∗1 = q =
2

p− 2
, λ∗2 = q − 1 =

4 − p

p− 2
, p > 2. (2.61)

And the second-one critical point is P2 = (ψ = Q0, u = 0), where

Q0 =

[
q(q − 1)

pw

]q/2
, (2.62)

with eigenvalues

λ± =
6 − p

2(p− 2)

[
1 ±

√
1 +

8(4 − p)(p− 2)

(6 − p)2

]
, (2.63)

for 2 < p < 4.
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(ii) If 2 < p < 4, then q(q − 1) = 2(4 − p)(p− 2)−2 > 0.
In this case the eigenvalues of the linearized system are real and at P1 they

are positive (λ∗1,2 > 0), and at P2 have opposite signs (λ+ > 0, λ− < 0). Thus,
P1 is an unstable node, and P2 is a saddle. The phase portrait is shown in
Fig. 2.1(a).

The asymptotic solutions of (3.1) for r → ∞ correspond to the separatrix
branches that enter the saddle. For them, we have

ψ(t) ≈ Q0[1 + C exp(−λt)], t→ ∞,

where C is an arbitrary constant and λ = −λ− > 0. After returning to the
old variables, we have

ϕ(r) ≈ ϕ(r) =
Q0

rq

(
1 +

C

rλ

)
, (2.64)

The rest of the solutions around the saddle point do not fulfill the condition
ϕ(∞) = 0.

(iii) If p > 4, then q(q − 1) < 0.
The eigenvalues of the linearized system at P1 are real and have opposite

signs (λ∗1 > 0, λ∗2 < 0), which means that P1 is a saddle. The eigenvalues at
P2 are complex conjugate with negative real part, which means that P2 is a
stable focus.

The saddle separatrix defines by condition ϕ(∞) = 0, we have

ψ(t) ≈ Qe−|λ∗
2|t, t→ ∞, (2.65)

or

ϕ(r) ≈ Q

r
, r → ∞, (2.66)

where Q is an arbitrary constant.

(iv) If p = 4, then q = 1, P1 = P2 and situation becomes more complicated.
One of the eigenvalues at P1 is equal to zero (λ∗2 = 0). Similarly to (iii), we
have solutions that tend to P1 for r → ∞ as

ϕ(r) =
Q

r
√
| ln r|

(
1 +

3 ln | ln r|
4 ln r

+ ...

)
, (2.67)

where Q is an arbitrary constant. The phase portrait is shown in Fig. 2.1(b).
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Figure 2.1: The phase portraits for p = 3 (left panel) and p = 4 (right panel).

2.5 Iteration method for solutions at large
distances

In order to get a numerical solutions of the Einstein-SF equations, we take
the approximate solutions at spatial infinity as initial conditions at some fixed
point r = r∞ and then continue these solutions to lower values of r. However,
to justify this approach, we need to demonstrate that the iterative procedure
that starts from a large distance from the singularity will convergence and
will lead to a unique solution. We focus on self-interaction potentials, which
have the asymptotic form V (ϕ) ∼ |ϕ|2n and for simplicity, we restrict our
consideration only to cases with n > 2. The other cases can be treated in
similar way.

Let us introduce new functions

X(r) = r
(
e−β − 1

)
, Y (r) = r2e

α−β
2
dϕ

dr
. (2.68)

Then, we can rewrite the Einstein equations (2.12, 2.13) and the Klein-
Gordon equation (2.14) in the form of a first order system

dX

dr
= −8π

[
e−α Y

2

2r2
+ r2|ϕ|2n

]
, (2.69)

dY

dr
= 2nr2eα/2

ϕ|ϕ|2n−2√
1 +X/r

, (2.70)

dα

dr
=

1

1 +X/r

{
−X(r)

r2
+ 8πr

[
e−α Y

2

2r4
− |ϕ|2n

]}
, (2.71)
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dϕ

dr
= e−α/2 Y

r2
√

1 +X/r
. (2.72)

The asymptotic flatness conditions transform to

lim
r→∞

X(r) = −rg, lim
r→∞

Y (r) = −Q, lim
r→∞

[rα(r)] = −rg, rg = 2M.

(2.73)
And (2.16) also transforms as

lim
r→∞

[rϕ(r) −Q] = − lim
r→∞

r

∞∫
r

x2dϕ/dx+Q

x2
= 0,

or, we have
lim
r→∞

[rϕ(r)] = Q. (2.74)

For our purposes, it is convenient to single out the dominating terms for
r → ∞ in (2.71, 2.72). We have

dα

dr
=

rg
r2(1 − rg/r)

+D(Z, r) , (2.75)

dϕ

dr
= − Q

r2
√

1 − rg/r
+ E(Z, r) , (2.76)

where we denoted

D(Z, r) =
1

1 +X/r

{
− X + rg
r2(1 − rg/r)

+ 8πr

[
e−α Y

2

2r4
− |ϕ|2n

]}
. (2.77)

and

E(Z, r) = e−α/2 Y

r2
√

1 +X/r
+

Q

r2
√

1 − rg/r
=
Y
(
e−α/2 − 1

)
r2
√

1 +X/r
+ (2.78)

+
Q(X + rg)

r3(
√

1 − rg/r +
√

1 +X/r)
√

1 − rg/r
√

1 +X/r
+

Y +Q

r2
√

1 +X/r
. (2.79)

Let us consider the set S of continuously–differentiable bounded vector-
functions Z(r) = {X(r), Y (r), α(r), ϕ(r)} defined on [rin,∞) and equipped
with the norm given by

∥Z∥ ≡ sup
r∈[rin,∞)

(|X(r)| + r|α(r)| + |Y (r)| + r|ϕ(r)|) , (2.80)

where rin is a sufficiently large value of r.
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Let the components of Z(r) satisfy the following estimates for r ∈ [rin,∞)

|X(r)| ≤ 2rg, |α(r)| ≤ 2rg/r, |Y (r)| ≤ 2|Q|, |ϕ(r)| ≤ 2|Q|/r, (2.81)

Thus, we can replace then the system (2.69, 2.70, 2.75, 2.76) with the con-
ditions (2.73) by the equivalent system of integral equations for the solutions
from S.

Equations (2.69, 2.70) give us

X(r) = −rg + A1(Z, r), (2.82)

A1(Z, r) ≡ 8π

∞∫
r

ds

[
Y 2(s)

2s2
e−α(s) + s2|ϕ(s)|2n

]
, (2.83)

Y (r) = −Q+ A2(Z, r), (2.84)

A2(Z, r) ≡ −2n

∞∫
r

ds exp [α(s)/2]
s2ϕ(s)|ϕ(s)|2n−2√

1 +X(s)/s
. (2.85)

And from (2.75, 2.76), we have

α(r) = α0(r) + A3(Z, r) , α0(r) = ln(1 − rg/r), (2.86)

A3(Z, r) ≡ −
∞∫
r

D(Z, s)ds, (2.87)

ϕ(r) = ϕ0(r) + A4(Z, r) , ϕ0(r) =
2Q

rg

[
1 −

√
1 − rg/r

]
. (2.88)

A4(Z, r) ≡ −
∞∫
r

E(Z, s)ds, (2.89)

where we specified our integral operators Ai on S.
Let us introduce mapping R : S → S, which transforms vector-function Z

in the following way

Z → Z ′ → Z̃ = {X̃(r), Ỹ (r), α̃(r), ϕ̃(r)},

where
X̃(r) = −rg + A1(Z, r), Ỹ (r) = −Q+ A2(Z, r), (2.90)

and
α̃(r) = α0(r) + A3(Z

′, r) , ϕ̃(r) = ϕ0(r) + A4(Z
′, r). (2.91)

where Z ′ ≡ {X̃(r), α(r), Ỹ (r), ϕ(r)}.
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Proposition 1. R : S → S that is if Z ∈ S then Z̃ = R(Z) ∈ S.

Proof. For sufficiently large r the following estimations take place

|X̃(r) + rg| = |A1(Z, r)| ≤
C1

r
, |Ỹ (r) +Q| = |A2(Z, r)| ≤

C3

r2n−4
, (2.92)

where Ci > 0 are some constants. We can observe that for sufficiently large
r, we have

|X̃(r)| ≤ 2rg, |Ỹ (r)| ≤ 2|Q|,

which means that Z ′ ≡ {X̃(r), α(r), Ỹ (r), ϕ(r)} ∈ S.
From (2.81, 2.92), we have

|rα̃(r) + rg| = |rA3(Z
′, r)| ≤ C4

r
. (2.93)

and
|rϕ̃(r) +Q| = |rA4(Z

′, r)| ≤ C5µ(r), (2.94)

where

µ(r) =

{
1/r, if n ≥ 3
1/r2n−4, if 2 < n < 3

}
. (2.95)

Thus, for sufficiently large r,

|α̃(r)| < 2rg/r, |ϕ(r)| < 2|Q|/r, (2.96)

which means that Z̃ ≡ {X̃(r), Ỹ (r), α̃(r), ϕ̃(r)} ∈ S.
Hence, Z̃ ≡ R(Z) = {X̃(r), Ỹ (r), α̃(r), ϕ̃(r)} ∈ S ■

Proposition 2. Let R : S → S be an operator defined above. Then R has a
contraction mapping property.

Proof. Let Z1 = {X1, Y1, α1, ϕ1} ∈ S, Z2 = {X2, Y2, α2, ϕ2} ∈ S; Z̃1 = R(Z1),
Z̃2 = R(Z2); δZ ≡ Z1 − Z2.

Using (2.90) and (2.81), we obtain

|δX̃(r)| = |A1(Z1, r) − A1(Z2, r)| ≤
C7

r
∥δZ∥, (2.97)

|δỸ (r)| = |A2(Z1, r) − A2(Z2, r)| ≤
C8

r2n−4
∥δZ∥. (2.98)

For D(X, r), we have

|D(Z1, s) −D(Z2, s)| ≤

≤ C9

s2
|δX(s)| +

C10

s3
|δY (s)| +

C11

s4
(s|δα(s)|) +

C12

s2n−1
(s|δϕ(s)|) .
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After substitution Zi → Z̃i, i = 1, 2 and taking into account (2.97, 2.98), we
have

|D(Z ′
1, s) −D(Z ′

2, s)| ≤
{
C9C7

s3
+
C11

s4
+
C10C8 + C12

s2n−1

}
∥δZ∥, (2.99)

whence

|δα̃(r)| = |A3(Z
′
1, r) − A3(Z

′
2, r)| ≤

C13

r2
∥δZ∥ . (2.100)

Similarly,

|E(Z1, s) − E(Z2, s)| ≤
C14

s2
|δY (s)|

[
1 +O

(
1

s

)]
+
C15

s4
|δX(s)| +

C16

s2
|δα(s)|,

(2.101)
then

|E(Z ′
1, s)−E(Z ′

2, s)| ≤
C14C8

s2n−2
∥δZ∥

[
1 +O

(
1

s

)]
+
C15

s4
|δX(s)|+C16

s3
|sδα(s)|),

(2.102)

|δϕ̃(r)| = |A4(Z
′
1, r) − A4(Z

′
2, r)| ≤

C17

r
µ(r)∥δZ∥. (2.103)

Thus,

∥R(Z1) −R(Z2)∥ ≤ max

[
C16

rin
,
C17

r2n−4
in

]
∥δZ∥. (2.104)

Therefore, choosing a sufficiently large rin we obtain that operator R is con-
traction mapping. ■

Therefore, the equation Z = R(Z) has a unique solution.
In order to obtain an asymptotic solutions at spatial infinity, we can use

an iteration method with 0-th iteration

Z(0) = {−rg,−Q,α0, ϕ0}.

Keeping only main terms, for sufficiently large r, in the first iteration, we get

X(1)(r) = −rg +
4πQ2

r
{1 +O[µ(r)]} , (2.105)

Y (1)(r) = −Q− nQ|Q|2n−2

(n− 2)r2n−4
{1 +O[µ(r)]} , (2.106)

α(1)(r) = α0 +O

[
µ(r)

r2

]
, (2.107)

ϕ(1)(r) =
Q

r

{
1 +

rg
2r

+
n|Q|2n−2

(n− 2)(2n− 3)r2n−4

}
+O

[
µ(r)

r2

]
, (2.108)

where µ(r) is defined earlier (2.95).
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2.6 Numerical solutions with V (ϕ) = wϕ2n

As an example, we consider a single scalar field (Φ = ϕ) with monomial
self-interaction potential in the form

V (ϕ) = wϕ2n, n > 2. (2.109)

This self-interaction potential fulfills the conditions (2.3–2.6) so Lemmas 1–4
and Theorem 1 can be applied.

First of all we start with considering of the asymptotic properties of the
solutions.

Using the results from section 2.3 for the corresponding explicit form of the
self-interaction potential, we can find the next order terms of the asymptotic
expansion near singularity r = 0.

The scheme of the iteration procedure (2.50–2.53) is the following.

{χ(i−1), ϕ(i−1)} → {ψ(i), γ(i)} → {χ(i), ϕ(i)}, i ≥ 1.

As 0-th iteration for χ(r) and φ(r) we take χ(0) = χ0, φ
(0) = ϕ0 = −ζ ln r.

Then the 1-st iteration has the following form

γ(1)(r) ≃ χ0

η + 1
rη+1 +

8πwχ0

(3 + η)
rη+3[ϕ0]2n

[
1 +O

(
1

ln r

)]
, (2.110)

ψ(1)(r) ≃ −2nwχ0

η + 3
rη+3[ϕ0]2n−1

[
1 +O

(
1

ln r

)]
, (2.111)

φ(1)(r) ≃ φ0 +
ζ0χ0

Y0(η + 3)2
rη+1 −


8πwζ0χ0

(η + 3)2
rη+3[ϕ(0)(r)]2n, if η ≥ 1,

ζ0χ
2
0

2Y 2
0 (η + 1)3

r2η+2, if 0 < η < 1,

(2.112)

χ(1)(r) ≃ χ0 −
8πχ2

0ζ
2
0

Y0(η + 1)2
rη+1 +


w

Y0

(
8πχ0ζ0
η + 3

)2

rη+3[ϕ(0)(r)]2n, if η ≥ 1,

−2π

(
ζ0
Y0

)2(
χ0

η + 3

)3

r2η+2, if 0 < η < 1,

(2.113)

where we have used the asymptotic expansion of the integral

r∫
0

xa[ϕ(0)(x)]b =
ra+1

a+ 1
[ϕ(0)(r)]b

[
1 − b

a+ 1

1

ln r
+O

(
1

ln2 r

)]
,
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for r → 0, and keep only first two main terms.
The asymptotic solutions for n > 2 at spatial infinity can be found in the

form of inverse power series and the results from section 2.5 are applicable.
Here, we write down only the first few terms of the asymptotic solution.

ϕ(r) =
Q

r

[
1 +

rg
2r

+
n|Q|2n−2

(n− 2)(2n− 3)r2n−4

]
+O

[
µ(r)

r2

]
, (2.114)

eα =
(

1 − rg
r

)[
1 +O

(
µ(r)

r2

)]
, e−β =

(
1 − rg

r

)[
1 +

4πQ2

r2
+O

(
µ(r)

r2

)]
,

(2.115)
where µ(r) is defined earlier (2.95), Q is a scalar “charge” and M is the mass
of the configuration. They define the corresponding solution uniquely.

The asymptotic solutions near r = 0 in general are defined by four arbi-
trary constants (χ0, ζ0, Y0, ϕ0), while in the expansion at spatial infinity we
have only two arbitrary constants (M , Q). Also, our equations contain two
additional parameters, n and w, from the self-interaction potential.

To numerically integrate the Einstein-SF equations (2.12-2.14), we can use
asymptotic expansions at either r → 0 or r → ∞ as initial conditions and
integrate forward or backward in r, respectively. The second option is more
preferable due to the lower number of free parameters (2 vs 4), and rule out
necessary to fine-tune parameters in order to achieve the correct asymptotic
behavior at spatial infinity. Also in this case we have already shown that
corresponding solution convergence and unique.

To obtain the solutions, we start at a sufficiently large initial radius r∞.
Specifically, for n > 2 we use r∞ = 105, which provides a perfect match
between the exact and numeric FJNW solution. We set initial conditions in
accordance with the asymptotic relations (2.114, 2.115). We can lower the
number of parameters, by re-scaling to eliminate w1. Then, we fix (Q,M, n)
and integrate backwards from r∞ to lower values of r ∈ (0, r∞] up to the
singularity at r = 0. As a result, we obtain a 3-parametric family of solutions
described by M , Q, and n.

The typical examples of solutions are shown in Figs. 2.2-2.4 for different
values of (M,Q, n). The qualitative properties of the metric functions and
scalar field are rather similar for different values of parameters (M,Q, n):
eα(r) is a monotonically increasing function bounded from above (eα(r) ≤ 1)
and eβ(r) has a maximum at some point r = rmax(M,Q, n). Also, one can see
that eα ≫ eβ for r → 0 which is in accordance with (2.45).

The SF is always a monotonically decreasing function and ϕ → 0 for r →
∞. For large n and fixed M,Q, the solutions approach the FJNW solution,
except for a small region near the singularity, where |ϕ(r)| > 1.

1r = r/
√
w
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One of interesting question pertains to the relationship between the pa-
rameters (χ0, ζ0, Y0, ϕ0) and (M,Q). To illustrate this relationship, we have
plotted the typical dependencies of these parameters against (M,Q) for differ-
ent values of n,Q, and M in Figs. 2.5-2.9. They reveal that the dependencies
of (χ0, ζ0, Y0, ϕ0) on (M,Q) exhibit non-monotonic and non-unique behavior.

Figure 2.2: The typical behaviour of the metric functions and scalar field for
Q = 1, n = 3 and different values of M .

Figure 2.3: The typical behaviour of the metric functions and scalar field for
M = 1, n = 3 and different values of Q.
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Figure 2.4: The typical behaviour of the metric functions and scalar field
for M = 1, Q = 1 and different values of n. The small pictures illustrate
behavior of the corresponding functions in the domain of small values of r.

Figure 2.5: The contour plot of η(M,Q) for n = 3 (left panel) and n = 12
(right panel). It can be observed that as Q approaches zero, η tends to
infinity. For all values of (M,Q, n) that were studied, it was found that
η > 1. The case where η = 3 is critical. The corresponding dependencies are
non-monotonic for η < 3, and monotonic for η > 3. Increasing the value of
n leads to η being closer to 3.
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Figure 2.6: The contour plot of Y0(M,Q) for n = 3 (left panel) and n = 12
(right panel) is shown in the figure. It can be observed that as Q approaches
zero, Y0 tends to zero. Increasing the value of n leads to non-monotonic
behavior of Y0(M,Q).

Figure 2.7: The contour plot of Z0(M,Q) for n = 3 (left panel) and n = 12
(right panel) is shown in the figure. It can be observed that as Q approaches
zero, Z0 tends to zero. Increasing the value of n leads to non-monotonic
behavior of Z0(M,Q).
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Figure 2.8: The contour plot of lg(χ0(M,Q)) for n = 3 (left panel) and
n = 12 (right panel) is shown in the figure. It can be observed that in a
small domain near zero, χ0 becomes large as Q→ 0. On the other hand, for
M > Mcr, χ0 tends to zero as Q→ 0.

Figure 2.9: The contour plot of ϕ0(M,Q) for n = 3 (left panel) and n = 12
(right panel) is shown in the figure. It can be observed that in a small domain
near zero, ϕ0 < 0. On the other hand, for M > Mcr, ϕ0 → ∞ as Q→ 0.
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Spherical singularities

One typical phenomenon in the theory of nonlinear equations is the emergence
of singularities in solutions of differential equations. It’s evident that the
Einstein-SF equations are nonlinear. In Chapter 2, we proved that, under
certain conditions on the self-interaction potential V (ϕ), the corresponding
solutions will be regular up to r = 0.

It is interesting to investigate what might occur if we violate some of the
conditions of Theorem 1.

3.1 Spherical singularities in Minkowski space-
time

First of all, let us consider the appearance of spherical singularities at a
finite value of r in the case of flat space for the self-interaction potential
V (ϕ) = wϕp.

The Klein-Gordon equation in the flat space has the following form

d

dr

[
r2
dϕ

dr

]
= pwr2ϕ|ϕ|p−2, (3.1)

One can see, that for p > 2, equation (3.1) admits a singular solution at
some point r = rs > 0, which has the following asymptotic behaviour near
r = rs

ϕ(r) ≈
[

q(q + 1)

pw(r − rs)2

]q/2
, q = 2/(p− 2), rs > 0. (3.2)

We don’t know anything about the asymptotic behavior of such solutions at
spatial infinity. Now we will consider an example with p = 2n, where n > 2.

We can transform (3.1) as

dE

dr
= −2

r
[ϕ′(r)]2 ≤ 0, E(r) = [ϕ′(r)]2/2 − wϕ2n. (3.3)
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Let r0 is a sufficiently large value r such that

ϕ(r0) ≈ Q/r0 ≪ 1, ϕ′(r) ≈ −Q/r20. (3.4)

Then, for r < r0, one can see that E(r) ≥ E(r0). And for r = r0, we obtain
E(r0) > 0 or

[ϕ′(r)]2 > 2wϕ2n(r). (3.5)

Hence,
ϕ′(r) < −

√
2wϕn, (3.6)

d

dr

(
1

ϕn−1

)
>

√
2w(n− 1), (3.7)

where we assumed that ϕ is a positive and monotonically decreasing function.
For r ∈ [r, r0], from the inequality (3.7), we have

ϕ(r) >
[
ϕ
−(n−1)
0 −

√
2w(n− 1)(r0 − r)

]1/(n−1)

, ϕ(r0) = ϕ0. (3.8)

If
ϕ
−(n−1)
0 −

√
2w(n− 1)r0 = 0, (3.9)

then it implies that ϕ→ ∞ for r → rs.
For sufficiently large r0, both estimations will hold if

Q > r
(n−2)/(n−1)
0 [

√
2w(n− 1)]−1/(n−1). (3.10)

This guarantees the presence of a singularity for some certain r = rs.
To illustrate this, we perform numerical integration of equation (3.1) for

p = 2n, n > 2 and w = 1 with initial conditions given by (3.4) for a different
values of Q and n, with r0 = 105. The results are shown in Fig. 3.1. We can
see that the singularity occurs for lower values of Q then predicted by (3.10).
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Figure 3.1: The radii rs of the singularities for different p = 2n as a functions
of Q.

3.2 Example of SS in general case for expo-
nentially unbounded potentials

In Chapter 2, we proved that if the self-interaction potential V (ϕ) satisfies
the following conditions:

V (ϕ) ≥ 0, ϕiV
′
i (ϕ) ≥ 0, |V (ϕ)| < C0 exp(κϕ),

then the corresponding solutions of the Einstein-SF equations are regular on
the interval r ∈ (0,∞).

It is interesting to consider what happens if we violate the exponential
boundedness assumption. For example, let us consider the following self-
interaction potential

V (ϕ) = w sinh
(
κϕ2n

)
. (3.11)

It is evident, that the condition |V (ϕ)| < C0 exp(κϕ) is not satisfied, so for
n ≥ 1, it can be expected that the solutions may demonstrate the singular
behavior at some finite r = rs > 0.

As in the previous considerations, we are interested in asymptotically static
asymptotically flat spherically symmetric configurations with the asymptotic
conditions given by (2.15). From Lemma 1, we already know that the func-
tions ϕ(r) and ϕ′(r) do not change their signs. Then, without loss of gener-
ality, we fix them as ϕ(r) > 0 and ϕ′(r) < 0 on r ∈ (0,∞).

In this subsection, we focus on the singularities that can occur at some
non-zero r = rs for the potential given by (3.11), i.e. we seek solutions on
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the interval (rs,∞), such that

ϕ′(r) → −∞ as r → rs + 0. (3.12)

We don’t know how to find the full exact solution but at least we can estimate
his asymptotic behavior near the singularity.

Starting from the Einstein-SF equations (2.12) and (2.13), we obtain the
following expression for β′(r)

β′(r) = 4πrϕ′(r)2 +
1

r

(
1 − eβ(r)

)
+ 8πreβ(r)V (ϕ(r)). (3.13)

For simplicity, we fix κ = w = 1. Our numerical estimations near r = rs
show that α(r) is asymptotically less than β(r) and ϕ(r). Hence, in the first
approximation, we can neglect terms with α(r). Next, here and after we
consider the leading terms of (2.14) in the small enough vicinity of r = rs.

The Klein-Gordon equation has the following form in the vicinity of the
singularity

e−β/2 d

dr

[
e−β/2ϕ′

]
≃ V ′(ϕ). (3.14)

It can be rewritten as e−βϕ′2 ≃ 2V (ϕ) + const ≃ 2V (ϕ). Thus, we have

e−βϕ′2 ≃ 2V (ϕ). (3.15)

Hence, eβV (ϕ) ≃ ϕ′2 → ∞, which means that both sides tend to infinity for
r → rs + 0. After substitution (3.15) into (3.13) and saving only the main
terms, we obtain

β′ ≃ 16πreβV (ϕ), (3.16)

For r ∈ (rs, r1], where r1 is sufficiently small, we can observe that β(r) is
monotonically increasing function. For r → rs + 0, from (3.16) we obtain

d

dr

[
e−β/2

]
≈ −8πrse

β/2V (ϕ). (3.17)

From (3.15), we have

ϕ′ ≈ −
√

2eβ/2
√
V (ϕ), (3.18)

where we took into account that ϕ(r) is a positive monotonically decreasing
function. After combining equations (3.17, 3.18), we get

d

dϕ

[
e−β/2

]
=

8πrs√
2

√
V (ϕ), (3.19)

which can be easily integrated near rs. The leading terms for r → rs + 0

e−β(r)/2 ≃ 8πrs√
2

Φ(ϕ) + e−β(r1)/2 ≃ 8πrs√
2

Φ(ϕ), (3.20)
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where we denoted

Φ(ϕ) =

∫ ϕ

ϕ(r1)

√
V (x)dx =

1√
2

∫ ϕ

ϕ(r1)

exp

(
1

2
x2n
)
dx.

The corresponding integral can be represented as the difference of two
incomplete gamma functions.

Φ(ϕ) =
(−1)

1
2n

2
3n−1
2n n

(
Γ

[
1

2n
,−1

2
ϕ2n
]
− Γ

[
1

2n
,−1

2
ϕ2n1

])
.

Near singularity r → rs + 0 it can be expressed as

Φ(ϕ) =

√
2V (ϕ)

nϕ2n−1

[
1 +

∞∑
j=1

j∏
k=1

(−1)k+j2j−k

nk
(2nk − 1)

ϕ2nj

]
, (3.21)

Then taking into account only the leading term in (3.21) and using (3.18,
3.20), we have the following equation

dϕ

dr
= −

√
V (ϕ)

4πrsΦ(ϕ)
≃ − n

4πrs
ϕ2n−1. (3.22)

which has the following solution

ϕ(r) =

{
n(n− 1)

2π

r − r1
rs

+
1

ϕ
2(n−1)
1

}− 1
2(n−1)

.

where ϕ1 = ϕ(r1) is some constant. One can see that the condition (3.12)
can be satisfied if

n(n− 1)

2π
· r1 − rs

rs
=

1

ϕ
2(n−1)
1

. (3.23)

Thus

ϕ(r) ∼ A∆

(r − rs)∆
, A =

2πrs
n(n− 1)

, ∆ =
1

2(n− 1)
. (3.24)

Using (3.20), we obtain the corresponding asymptotic behaviour for β(r)

β(r) ∼ −2 ln Φ(ϕ) ∼ − A1+2∆

(r − rs)1+2∆
. (3.25)

We can also estimate the asymptotic behaviour of the Kretschmann invari-
ant near such singularity at rs. We have

RαβγδR
αβγδ ∼ e−2β(r)

(r − rs)
4(1+∆)

. (3.26)
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Also, the photons from a distant observer at some r = r0 <∞ can reach the
singularity at rs in a finite time, and vice versa For the radial photons, one
can see that time

T =

r0∫
rs

e
1
2 (β−α)dr <∞,

is finite, because e(β−α)/2 is a bounded function and tends to 0 for r → rs.
Hence, the integral converges at rs.

Therefore, this is a naked singularity.

3.3 Numerical solutions with V (ϕ) = w sinh
(
κϕ2n

)
In this section, we numerically check the analytical approximation presented
in the previous section.

At spatial infinity, the self-interaction potential V (ϕ) ∼ wκϕ2n. Which
means that we have the same asymptotic solutions (2.114, 2.115), and the
results of Chapter 2.5 remain valid.

To reduce the number of free parameters, we can rescale the variables in the
following way r → r/

√
Gw, ϕ → ϕ/

√
G, κ → Gnκ. Then we can fix w = 1,

and our configuration is now describes only by four arbitrary constants: Q,
M , n, and κ.

We can use (2.114, 2.115) as initial conditions and integrate backward in
r towards to singularity. To get more numerical stable results, we assume
that the spherical singularity is located at a point, where the value of the
Kretschmann invariant is RµνσδR

µνσδ = 1035.
The typical behavior of the solutions and the Kretschmann invariant is

shown in Figs. 3.2. As predicted, the Kretschmann invariant tends to infinity
and eβ → 0, eα → eα0 for r → rs+0. Far away from the singularity, the behav-
ior of the solutions is qualitatively similar to the behaviour of solutions from
Chapter 2.6. eα is a monotonically increasing and bounded function, with
eα(r) ≤ 1, while eβ(r) reaches a maximum at some point r = rmax(M,Q, n, κ)
and then decreases to 1 for r → ∞.

The dependencies of the singularity radii values rs are non-trivial, and
some examples are shown in Figs. 3.3-3.5.
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Figure 3.2: The typical behavior of the metric functions eα, eβ, ϕ, and the
Kretschmann invariant for different parameter configurations

Figure 3.3: The typical dependencies of the radii of the spherical singularities
for different M,Q, and κ = 1.
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Figure 3.4: The typical dependencies of the radii of the spherical singularities
for different n,M , κ = 1.

Figure 3.5: The typical dependencies of the radii of the spherical singularities
for different n,Q, κ = 1.
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Some exact solutions of
Einstein-scalar field
equations

4.1 Generalized Fisher/JNW solution with N
free scalar fields

In this section, we obtain generalization of the FJNW solution in the case of
N scalar fields with V (Φ) = 0. Solution with N = 1 was previously obtained
by Fisher [17] in curvature coordinates and by Janis, Newman, Winicour [106]
in quasi-global coordinates.

From (2.24), one can see that Zi is constant, and then using equations
(2.22) and (2.23), we can separate the variables and obtain the following
equation

d2Y

dr2
=

Ξ

rY 2

dY

dr
, (4.1)

where constant Ξ is defined as

Ξ = 4π
N∑
i=1

Z2
i = const. (4.2)

We can transform equation (4.1) into an autonomous equation by substi-
tution r = exp(t) and then integrate it. As result, we obtain

dY

dt
= Y − Ξ

Y
+ A , (4.3)

where A = rg = 2M is an integration constant.
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Finally,

[g−(Y )](1−ν)/2 [g+(Y )](1+ν)/2 = r , (4.4)

where g±(Y ) = Y + M ±
√
M 2 + Ξ, ν = M/

√
M 2 + Ξ. One can see that

Y (r) ∈ [
√
M 2 + Ξ −M,∞) for r ∈ (0,∞).

The metric components have the following form in terms of g±(Y )

eα = (g−/g+)ν, eβ = g+g−/Y
2, (4.5)

and for the scalar field ϕi(Y ), we have

ϕi(Y ) =
Zi

2
√
M 2 + Ξ

ln

(
g+(Y )

g−(Y )

)
. (4.6)

One can see that we re-obtain the well-know Fisher solution [17], but with a
small difference, we have N scalar fields in (4.2) and (4.6).

If we change to a new radial variable Y , we re-obtain the Janis-Newman-
Winicour representation of the Fisher solution in quasi-global coordinates
[106,108].

ds2 =

(
g−
g+

)ν

dt2 −
(
g+
g−

)ν

dY 2 − (g+)1+ν(g−)1−νdO2. (4.7)

4.2 Special exact solutions with non-monotonic
self-interaction

In this Section we generate a “toy model” family of exact solutions that com-
prise black holes and naked singularities. To do this we use the “inverse”
approach [119,122,124]. We can postulate a form for one of the metric func-
tions and then find all other components of the metric and energy-momentum
tensor.

4.2.1 Basic relations

The metric for a static spherically symmetric space-time in quasi-global co-
ordinates has the following form

ds2 = A(x)dt2 −B(x)dx2 −R2(x)
[
dθ2 + sin2(θ)dφ2

]
, (4.8)

Due to spherical symmetry we can fix one of metric function in arbitrary way.
For our purposes, it is convenient to put B = 1/A, then

ds2 = A(x)dt2 − dx2

A(x)
−R2(x)

[
dθ2 + sin2(θ)dφ2

]
. (4.9)
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We say that x0 is the point of center, if R(x0) = 0 (i.e. point, where the radii
of the 2D spheres approaches 0). Also, we suggest that R(x) > 0 for x > x0.

We assume that A(x), R(x) ∈ C(2), ϕ ∈ C(1) with the following asymptotic
behavior

R(x) = x+ o(1/x), R′(x) = 1 + o(1/x), (4.10)

and
A(x) = 1 − 2M/x+ o(1/x), M > 0, ϕ→ 0. (4.11)

as x→ ∞.
The Einstein equations have the following form [122,124]

d

dx

(
dA

dx
R2

)
= −2R2V (ϕ), (4.12)

d2R

dx2
+

1

2
R

(
dϕ

dx

)2

= 0, (4.13)

A
d2R2

dx2
−R2d

2A

dx2
= 2. (4.14)

We do not consider Klein-Gordon equation for the scalar field, because it is
not independent from the equations (4.12—4.14). Equation (4.14) can be
written as

d

dx

[
R4 d

dx

(
A

R2

)]
= −2.

Using (4.10,4.12, 4.13), we obtain

A(x) = R2(x)

∞∫
x

2x′ − C

R4(x′)
dx′, ϕ(x) = ±

∞∫
x

√
− 2

R(y)

d2R(y)

dy2
dy. (4.15)

where C = 6M is an integration constant.
Then, using (4.12), we can represent the potential V (x) as V (ϕ(x)) in terms

of R(x).

V (x) =
1

R2
− A

R2

(
3 (R′)

2
+RR′′

)
+ 2

x− 3M

R3

dR

dx
. (4.16)

Equations (4.15-4.16) provide a general solution in an implicit form for any
arbitrary R(x) that satisfies (4.10, 4.11).

Further, we will use results of [124] for the asymptotical behaviour of so-
lutions near the center. Let R(x) is sufficiently-differentiable function and
the conditions (4.10, 4.11) are fulfilled. Then we can employ the Taylor ex-
pansion in the vicinity of x0 and obtain the asymptotic relations in a general
case. We have [124]

A(x) ∼ 2(x0 − 3M)

3R′(x0)R(x)
, V (x) ∼ (x0 − 3M)R′′(x0)

3R′(x0)R2(x)
; (4.17)
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One can observe that there are two basic variants in dependence on the sign
x0 − 3M [124].

(a) Let x0 ≥ 3M , then A(x) > 0 for x > x0 and A(x) → ∞ for x→ x0 + 0.
The Kretschmann invariant near x0 for x0 ̸= 3M has the following behaviour

RαβγδR
αβγδ ∼ 16(x0 − 3M)2

3[R′(x0)]4(x− x0)6
, (4.18)

and for x0 = 3M and R′′(x0) ̸= 0, we have

RαβγδR
αβγδ ∼ 24[R′′(x0)]

2

[R′(x0)]6(x− x0)2
. (4.19)

For the radial photons, the time T needed for signal emitted from the
center x0 to reach an distant observer at some x1 ∈ (x0,∞) and vice versa is

T =

x1∫
x0

dx

A(x)
<

x1∫
x0

dx

K
=

1

K
(x1 − x0) <∞, (4.20)

where we took into account that A(x) → ∞ for x → x0, A(x) → 1 as
x→ ∞, and A(x) > 0 for all x, then there exists a constant K > 0 such that
A(x) ≥ K for all x.

Hence, we deal with a naked singularity.
(b) Let x0 < 3M , then A(x) → −∞ for x → x0 + 0 and A(x) → 1

for x → ∞ then there exist a point xh > x0 such that A(xh) = 0 and
A(x) > 0, r(x) > 0 for all x > xh. We don’t have any singularities of the
metric functions, scalar field and curvature invariants at x = xh. We have a
usual the Schwarzschild-like singularity at x = xh that can be removed by a
coordinate transformation, e.g.,

(t, x) → (T,X) : T = t+

∫
dxA−1(1 − A)1/2, X = t+

∫
dxA−1(1 − A)−1/2.

In these new coordinates the 2-dimensional surface x = xh is light-like. There-
fore, this is the regular horizon and in this case we deal with a black hole.

4.2.2 Family of special solutions

Let us take the R(x) in the following form

R(x) = x+ ρ(x), ρ(x) → 0 forx→ ∞. (4.21)

We can assume that SF can be represented as expansion in powers of 1/x,
given by

ϕ(x) =
A0

xp

[
1 +

∞∑
n=1

Anx
−n

]
, p > 1. (4.22)
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This leads to a series expansion for ρ(x) in the following form

ρ(x) =
1

x2p−1

∞∑
m=0

Bn,m

xm
. (4.23)

Then, the leading term of ρ(x) is

ρ(x) = x− A2
0p

4(2p− 1)x2p−1
. (4.24)

If we denote 2p = N and x0 =
[

A2
0p

4(2p−1)

]1/N
, then R(x) can be written as

R(x) = x

[
1 −

(x0
x

)N]
, N > 2, (4.25)

where N, x0 are some positive constants.
One can see that, for x > x0 we have R(x) > 0, R′′(x) < 0 and the

conditions (4.10, 4.11) are fulfilled. Integral in (4.15) for x > x0 gives us the
explicit form of A(x)

A(x) =

[
1 −

(x0
x

)N]2
G(x, x0, N), (4.26)

where we denoted

G(x, x0, N) ≡ 2F1

[
4,

2

N
, 1 +

2

N
,
(x0
x

)N]
− 2M

x
2F1

[
4,

3

N
, 1 +

3

N
,
(x0
x

)N]
.

From (4.15), we have

ϕ(x) = ±
√

8(N − 1)

N
arcsin

[(x0
x

)N/2
]
. (4.27)

Thus, the formulas (4.16, 4.26, 4.27) define the self-interaction potential V (ϕ)
for the scalar field. It can be seen that the scalar field is bounded from above
and can only take values in the range |ϕ| ∈ (0, π

√
2], the self-interaction

potential is defined for |ϕ| < (π/2)
√

8(N − 1)/N .
Using the statements (a) and (b) from Section 4.2.1, we immidiately obtain

that for x0 ≥ 3M we have a naked singularity and for x0 < 3M , a black hole
with a horizon located at some xh > x0, respectively.

The asymptotic behaviour near singularity is

A(x) ∼ 2(x0 − 3M)

3N 2(x− x0)
, V (x) ∼ −(N − 1)(x0 − 3M)

3N 2x0(x− x0)2
, (4.28)
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for x0 > 3M and

A(x) ∼ 1

N 2
, V (x) ∼ − 6(N − 1)

N 2x0 (x− x0)
. (4.29)

for x0 = 3M .
Asymptotic behaviour at spatial infinity can be obtained by expanding in
powers of 1/x

A(x) = 1 − 2m

x
+

2(2 −N)

N + 2

(x0
x

)N [
1 +O

(
1

x

)]
, (4.30)

V (x) =
N(N − 1)(N − 2)

N + 2

xN0
xN+2

[
1 +O

(
1

x

)]
. (4.31)

The asymptotic behavior of V (ϕ) near ϕ = 0 is

V (ϕ) ∼ (N − 2)N 2(1+1/N)

(N − 1)2/N(N + 2)x20

(
|ϕ|

2
√

2

)2(1+2/N)

, (4.32)

which is similar in the both considering cases.
One can see that d2V/dϕ2 = 0, which means that we are dealing with the

nonlinear massless scalar field.
The typical form of the corresponding solutions (4.25–4.27) are presented

in Figs. 4.1–4.4 for various values of (x0, N). For this figures we have used
the curvature coordinates in order to compare behaviour of the obtained
solutions with the results of Chapters 2.6, 3.3. Specifically, we put eα = A(x),
e−β = (R′)2A(x), R(x) = y, the point of center at x0 is shifted to y = 0.

The solutions exhibit different behavior in both the BH and NS cases, as
illustrated in Figs. 4.1, 4.2. In the BH case, eα is a monotonically increasing
function, with eα ∈ [0, 1) for x ∈ [xh,∞). In contrast, the eβ function
shows a non-monotonic behaviour, with presence of additional local maxima
and minima depending on the values of (x0, N). In the NS case, we have
that eα → +∞ as y → 0 (x → x0) and it is bounded from below by its
local minimum K = Amin. The function eβ is always positive and has a
single maximum, with the possible appearance of additional local maxima
and minima depending on the values of (x0, N).

The scalar field behavior in the NS and BH cases is qualitatively similar,
but the self-interaction potentials exhibit distinct behavior, as illustrated in
Figs. 4.3 and 4.4. Specifically, as |ϕ| → π

√
2(1 − 1/N) for the NS case, we

have V (ϕ) → −∞, while for the BH case, we have V (ϕ) → ∞, respectively.
Also, one can see that V (ϕ) resembles a “Mexican hat” potential with infinity
edges, as shown in Figs. 4.3 (b), 4.4 (b).
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Figure 4.1: The typical behaviour of metric functions eα (a) and eβ (b) for
N = 5, M = 1/6 for different values of x0.

Figure 4.2: The typical behaviour of metric functions eα (a) and eβ (b) for
M = 1/6, x0 = 0.35 (BH case) and x0 = 0.65 (NS case) for different values
of N .
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Figure 4.3: The typical behaviour of scalar field ϕ (a) and self-interaction
potentials V (ϕ) (b) for N = 5, M = 1/6 and different values of x0. The
smaller panel in Fig. (b) illustrates the behavior of V (ϕ) near the origin.

Figure 4.4: The typical behaviour of scalar field ϕ (a) and self-interaction
potentials V (ϕ) (b) for M = 1/6, x0 = 0.35 (BH case) and x0 = 0.65 (NS
case) and different values of N .
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Stability and quasi-normal
modes

5.1 Basic relations

The perturbed space-time metric can be written in the following form

gµν = g(0)µν + hµν, (5.1)

where g
(0)
µν represents our static background metric and hµν is a small pertur-

bation, |hµν/g(0)µν | ≪ 1. The inverse metric for linear order perturbations is

gµν = g(0)µν − hµν, where we use the background metric g
(0)
µν to rise or lower

indexes of hµν. The first-order perturbations of Einstein’s equations can be
written as

δGµν = 8πδTµν, (5.2)

where the perturbed functions are defined as

δΓσ
µν =

1

2
g(0)σδ (∇νhµδ + ∇µhνδ −∇δhµν) , (5.3)

δRµν = ∇σδΓ
σ
µν −∇νδΓ

σ
µσ. (5.4)

And finally

δGµν =∇(µ∇σhν)σ −
1

2

[
∇µ∇νh

σ
σ + ∇2hµν + 2Rµ

α
ν
βhαβ + g(0)µν

(
∇α∇βhαβ −∇2hσσ

)
−2Rσ

(µhν)σ +Rhµν − g(0)µνR
αβhαβ

]
.

(5.5)
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The perturbations hµν can be considered as expansion in tensor spherical
harmonics. It is well known [125], that hµν can be split into two orthogo-
nal independent classes, even (polar) hevenµν and hoddµν odd (axial), based on
their behavior under the parity transformations. The spherical harmonic in-
dex transforms as (−1)l for the even and (−1)l+1 for the odd perturbations,
respectively. In this thesis, we focus only on the odd-parity (axial) perturba-
tions. In general case [125–127], we have

hta =
∑
l,m

h0,(lm)(t, r)Eab∂
bY m

l (ϕ, θ), hra =
∑
l,m

h1,(lm)(t, r)Eab∂
bY m

l (ϕ, θ),

(5.6)

hab =
1

2

∑
l,m

h2,(lm)(t, r) [Ec
a∇cbY

m
l (ϕ, θ) + Ec

b∇caY
m
l (ϕ, θ)] ,

where Y m
l (ϕ, θ) is spherical function, Eab =

√
det γϵab, (a, b) = (θ, ϕ), γab

is a metric on a two-dimensional sphere, and ϵab is a totally anti-symmetric
tensor, respectively.

The perturbed part of the Einstein equations is also gauge invariant under
infinitesimal transformations xµ = xµ + ξµ. Then hµν transforms as

hµν = hµν − 2∇(νξµ). (5.7)

In general case arbitrary vector ξµ can be also decomposed as

ξt =
∑
l,m

Alm(t, r)Y m
l (ϕ, θ), ξr =

∑
l,m

Blm(t, r)Y m
l (ϕ, θ), (5.8)

ξa =
∑
l,m

[
Clm(t, r)∂aY

m
l (θ, ϕ) +Dlm(t, r)Eb

a∂bY
m
l (θ, ϕ)

]
.

Where Alm, Blm, Clm, Dlm some arbitrary functions, which can be used to
fix some components of hµν.

For odd-parity perturbations, we have

ξt = 0, ξr = 0, ξa =
∑
l,m

Dlm(t, r)E b
a ∂bY

m
l (θ, ϕ), (5.9)

Then for hµν, we have

h0 = h0 +
d

dt
Dlm(t, r), h1 = h1 + r2

d

dr

(Dlm(t, r)

r2

)
(5.10)

h2 = h2 + 2Dlm(t, r). (5.11)
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By fixing h2 = 0, we can obtain the Regge-Wheeler gauge [125]. One of the
main advantages of this gauge is independence from the m.

The explicit form of hoddµν in the the Regge-Wheeler gauge is

hoddµν =


0 0 0 h0(t, r)
0 0 0 h1(t, r)
0 0 0 0

h0(t, r) h1(t, r) 0 0

(sin θ
∂

∂θ

)
Pl(cos θ) , (5.12)

where h0(t, r) and h1(t, r) are unknow functions and Pl(cos θ) is the Legendre
polynomial with l ≥ 2.

We are interested in static spherically symmetric solutions and therefore

the general ansatz for the metric g
(0)
µν can be taken in the form

ds2 = A(r)dt2 −B(r)dr2 −R2(r)(dθ2 + sin2 θdφ2). (5.13)

By substituting gµν = g
(0)
µν +hoddµν and ϕ(xµ) = ϕ0(r)+δϕ(xµ) into the Einstein-

SF equations and saving only linear terms, we obtain

δϕ(xµ) = 0, (5.14)

which is in accordance with [128] and the following equations for the pertur-
bations

ḧ1 − ḣ′0 +
2R′

R
ḣ0 + A

(l − 1)(l + 2)

R2
h1 = 0, ḣ0 −

A

B
h′1 −

1

2

(
A

B

)′
h1 = 0.

(5.15)

After simple transformations, these equations can be reduced to the master
wave equation. (

∂2

∂t2
− ∂2

∂r∗2

)
Ψ(t, r∗) + Veff(r, l)Ψ(t, r∗) = 0, (5.16)

where r∗(r) is a “tortoise” coordinate and Ψ is a new function, defined by

dr∗

dr
=

√
B

A
, Ψ(t, r∗) =

√
A

B

h1(t, r
∗)

R
. (5.17)

The effective potential Veff(r, l) for odd-parity perturbations has form

Veff(r, l) =
3A

2B

(
R′

R

)2

− A

2B

R′′

R
− d

dr

(
A

2B

R′

R

)
+ A

(l − 1)(l + 2)

R2
, (5.18)

where r = r(r∗).
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The analytical solution with Veff are not known, so we have to solve it
numerically. To do this, we use a finite difference method. In the first option,
we can replace derivatives with their central differences, and the resulting
numerical scheme is following

ΨN = −ΨS +

(
∆t

∆r∗

)2

[ΨW − 2ΨC + ΨE] +
[
2 − (∆t)2V(C)

]
ΨC , (5.19)

where the indices (N,W,C,E, S) denote the points on the space-time square
grid, defined as N = (t + ∆t, r∗), W = (t, r∗ − ∆r∗), C = (t, r∗), E =
(t, r∗ + ∆r∗), S = (t − ∆t, r∗), and ∆t, ∆r∗ are the corresponding time
and space grid steps. The von Neumann stability condition requires that

k = ∆t
∆r∗ <

(
1 + ∆r∗2Veff,max/4

)−1/2
. An illustration of the grid is shown in

Fig. 5.1 (a).
Alternatively, we can rewrite the corresponding wave equation (5.16) in

terms of the light-cone variables u = t− r∗, v = t+ r∗ as

4
∂2

∂u∂v
Ψ(u, v) + Veff(u, v, l) = 0, (5.20)

and use the Gundlach, Price, and Pullin numerical scheme [87,129]

ΨN = ΨW + ΨE − ΨS − ∆2

8
Veff(S)(ΨW + ΨE) +O(∆4), (5.21)

or the numerical scheme proposed by Chirenti and Rezzolla in [130]

ΨN = (ΨW + ΨE)
16 − ∆2Veff(S)

16 + ∆2Veff(S)
− ΨS +O(∆4). (5.22)

In both cases the indices (N,W,E, S) correspond to the grid points of the
space-time triangular grid, defined as N = (u + ∆, v + ∆), W = (u + ∆, v),
E = (u, v + ∆), S = (u, v), and ∆ is the grid step size. We assume that the
grid is equidistant and it is schematically shown in Fig. 5.1 (b).

The both schemes give the very close results.
As the initial condition, for the black hole case, we can take a Gaussian

packet of width σ centered at r∗ = r∗c , i. e.

Ψ(r∗, t < 0) = 0, Ψ(r∗, t = 0) = e−
(r∗−r∗c )

2

2σ2 . (5.23)

In black hole cases, singularities are hidden beneath the horizon, yield-
ing globally hyperbolic space-times characterized by well-defined dynamics.
However, in presence of the naked singularity the space-time isn’t globally
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N

r  * = 0

∆

Figure 5.1: Typical example of the numerical grid. White diamonds and blue
points correspond to known and unknown values, respectively.

hyperbolic anymore and the corresponding time evolution governed by (5.16)
may not be unique [131], even for reasonable initial data. Despite this, it
is still possible to have sensible dynamics in such space-times [1, 131–133]
by suggesting specific boundary conditions at the singularity and restricted
class of functions. In practice, this means, that we replacing the spatial part
H = − d2

dr∗2 + Veff of our wave operator (5.16) with its self-adjoint extension
HE [134]. If there is a unique self-adjoint extension, then the form of the ini-
tial conditions uniquely determine the time evolution, without any ambiguity
in the boundary conditions at the singularity. If the self-adjoint extension is
non-unique, we have to choose one of them by imposing some specific bound-
ary condition. The number of self-adjoint extensions can be tested by using
the von Neumann deficiency indices method or by the Weyl’s limit point -
limit circle criterion [135].

In the following, we consider only finite perturbations and use the Dirichlet
boundary condition at the singularity r∗ = 0

Ψ(t, r∗ = 0) = Ψ(u = v, v) = 0. (5.24)

Similarly to the BH case we can also use initial perturbation in the form of
a Gaussian wave packet, i.e.

Ψ(u = 0, v) = A exp

[
−(v − vc)

2

2σ2

]
or Ψ(r∗, t = 0) = e−

(r∗−r∗c )
2

2σ2 . (5.25)

The resulting time-domain profiles during the ringdown phase can be rep-

resented as sum of complex exponentials Ψ(t) ≃
p∑

j=1

Aje
−iωjt. In order to

extract the fundamental frequency ω = ωR + iωI from Ψ(r∗ = r∗1, t) at some
point r∗1 we use the well-known Prony method [136] with 250 − 800 terms.
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5.2 V (ϕ) = wϕ2n

5.2.1 Properties of the Veff

In curvature coordinates, defined as

A(r) = eα(r), B(r) = eβ(r), R(r) = r,

the effective potential Veff(r, l) takes the following form

Veff(r, l) = eα−β

(
β′ − α′

2r
+ eβ

(l − 1)(l + 2)

r2
+

2

r2

)
, (5.26)

using (2.18, 2.19), we can rewrite it as

Veff(r, l) = eα−β

(
eβ

(l − 1)(l + 2) − 1

r2
+

3

r2
+ 8πeβV (ϕ)

)
> 0. (5.27)

Near spatial infinity r → ∞, the behaviour of the effective potential and the
“tortoise” are as follows

r∗ = r + rg ln r +O

(
1

r

)
, V (r) =

l(l + 1)

r2
+O

(
1

r3

)
, V (r∗) ∼ l(l + 1)

r∗2

(5.28)

and near the singularity, we have

r∗ =
r2

2Y0
+ o(rη+3), Veff(r) =

3Y 2
0

r4
+ o

(
rη−3

)
, Veff(r∗) =

3

4r∗2
+ o

(
r∗(η−3)/2

)
.

(5.29)

Equation (5.16) admits solutions in the form Ψ = e±iωtψ(r∗), which leads to
a Schrödinger-like equation for the spatial part of the wave operator

Hψ = ω2ψ, H = − d2

dr∗2
+ Veff(r∗, l), (5.30)

where ω plays role of the eigenvalue. Near the singularity it takes the form

ψ′′(r∗) +

(
ω2 − 3

4r∗2

)
ψ(r∗) = 0, (5.31)

and the corresponding solution is

ψ(r∗) =
√
r∗ [C1J1(ωr

∗) + C2Y1(ωr
∗)] ∼ C̃1(r

∗)3/2 + C̃2(r
∗)−1/2. (5.32)
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The second solution isn’t square-integrable near the singularity. Thus, the
operator H is essentially self-adjoint which means that he has a unique self-
adjoint extension HE. This extension is defined on the class of functions,
that satisfy

√
r∗ψ(r∗)|r∗=0 = 0.

We also need to note that this holds true for any self-interaction potential
that satisfies the assumptions from Chapter 2.

From (5.27), one can observe that the potential Veff is always positive for
all V (ϕ) ≥ 0, and from (5.28) that it decays at spatial infinity. Hence, all so-
lutions of the master equation will be bounded in time and the exponentially
growing modes are ruled out. This implies that the corresponding space-times
with naked singularities are stable under odd-parity perturbations.

The examples of the typical behavior of the effective potential are shown
in Fig. 5.2 for different values of Q(a), M(b) and n(c), respectively. One can
see that for some set-up of parameters the local maximum of Veff can appear.

Figure 5.2: The typical behaviour of the effective potential Veff(r, l = 2): (a)
M = 1, n = 3 for different Q (b) Q = 0.25, M = 1 for different n (c) Q = 1,
n = 3 M for different M .

5.2.2 Quasi-normal modes

The typical examples of time-domain profiles are shown in Fig. 5.3. The
left panel (a) of this figure shows the series of echoes within the interval
(0, Q1). However, it can observed that echoes in the time-domain profiles
align at late times, allowing us to observe a standard ringdown profile with
very small value of Im(ω). For larger values of Q, the local maximum of
the effective potential disappears, and the time-domain profiles Ψ consist
only few oscillations and look like a “single wave” with a power-law tail (see
(c)). In such cases, it becomes hard or impossible to extract frequencies with
adequate accuracy.

59



Chapter 5

Figure 5.3: The typical examples of time-domain profiles |Ψ(t, r∗ = 200)| for
l = 2, n = 3, M = 1. The left panel demonstrates solutions of wave equation
where echoes are presence. One can see that on blue curve echoes align and
ringdown profile appears. For Q = 0.15 (blue curve) the echoes align for
t > 600.

The typical dependencies of the fundamental QNM as functions of Q, M
and n are presented in Figs. 5.4–5.8 and examples of the exact values of ω
are provided in Tabs. 5.1–5.4.

In Figs. 5.4–5.7, we can observe that ω(Q) and ω(M) curves, with fixed n
and l, approach to the FJNW case for high values of n. In all cases, the curves
demonstrate non-monotonic behavior and remain bounded. The ωR(ωI) de-
pendencies always consist a local maxima (minima). Beyond certain values
of Q or M , the number of oscillations decreases, and Ψ takes on the form
of a “single wave” profile (as illustrated in Fig. 5.3 (c)) with ω → 0. How-
ever, increasing the value of l or selecting lower values of n may lead to an
increased number of oscillations in the ringdown.

In Fig. 5.8 are shown dependencies of ω on n with fixed Q, M , and
l = 2. It can be observed that ω does not tend towards the value of ωFJNW as
n→ ∞. This can be explained as the influence of the region where |ϕ(r)| > 1.
Increasing the value of l leads to the disappearance of this effect. We found
that in the eikonal approximation, this effect is absent.
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Table 5.1: The values of fundamental QNM frequencies Mω for M = 1, l = 2
and different values of Q.

n = 2.1 n = 3 FJNW

Q Mω

Schwarzschild 0.3730 − 0.0891i 0.3730 − 0.0891i 0.3730 − 0.0891i

0.2 0.4304 − 0.2426i 0.3815 − 0.0077i 0.3683 − 0.0052i

0.25 0.2172 − 0.2558i 0.4639 − 0.04798i 0.45481 − 0.0381i

0.3 0.0874 − 0.1371i 0.5051 − 0.112i 0.5042 − 0.0974i

0.35 0.0346 − 0.0573i 0.5131 − 0.1799i 0.5213(5) − 0.166i

0.45 0.0066 − 0.0112i 0.4682 − 0.2874i 0.4888 − 0.2839i

0.55 0.00194 − 0.0034i 0.3933 − 0.3449i 0.4161 − 0.3558i

0.65 0.00081 − 0.0014i 0.3203 − 0.3653i 0.3388 − 0.388i

Table 5.2: The values of fundamental QNM frequencies Mω for M = 1, l = 3
and different values of Q.

n = 2.1 n = 3 FJNW

Q Mω

Schwarzschild 0.5993 − 0.0927i 0.5993 − 0.0927i 0.5993 − 0.0927i

0.2 0.6917 − 0.2536i 0.489 − 0.0002i 0.4643 − 9 · 10−5i

0.25 0.4005 − 0.322i 0.6413 − 0.0145i 0.6196 − 0.0084i

0.3 0.1731 − 0.1748i 0.7293 − 0.0701i 0.7179 − 0.0534i

0.35 0.0692 − 0.0712i 0.7703 − 0.1484i 0.7723 − 0.1268i

0.45 0.0132 − 0.0137i 0.7567 − 0.2992i 0.7824 − 0.286i

0.55 0.0039 − 0.0041i 0.6803 − 0.3998i 0.7172 − 0.4067i

0.65 0.0016 − 0.0017i 0.5898 − 0.4512i 0.6269 − 0.4791i
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Table 5.3: The values of fundamental QNM frequencies Mω for M = 1, l = 2
and different values of n.

Q = 0.15 Q = 0.3 Q = 0.45

n Mω

Schwarzschild 0.3730 − 0.0891i 0.3730 − 0.0891i 0.3730 − 0.0891i

FJNW 0.2436 − 0.00006i 0.5042 − 0.0974i 0.4888 − 0.2839i

2.05 0.467 − 0.1918i 0.0073 − 0.0123i 0.0006 − 0.001i

2.1 0.4517 − 0.0484i 0.0876 − 0.1369i 0.0066 − 0.0112i

2.3 0.3178 − 0.0012i 0.4698 − 0.2222i 0.2654 − 0.2943i

2.5 0.2802 − 0.00029i 0.5016 − 0.1558i 0.3952 − 0.306i

3 0.2532 − 0.00009i 0.5052 − 0.112i 0.4682 − 0.2874i

4 0.245 − 0.00007i 0.5043 − 0.0995i 0.4867 − 0.2837i

5 0.2439 − 0.0000633i 0.5042 − 0.0979i 0.4885 − 0.2839i

7 0.2436 − 0.0000625i 0.5042 − 0.0976i 0.48882 − 0.28394i

10 0.2436 − 0.0000624i 0.5042 − 0.0975i 0.48886 − 0.28395i

Table 5.4: The values of fundamental QNM frequencies Mω for M = 1, l = 3
and different values of n. The hyphen (−) in a cell indicates a situation where
we cannot extract the value of ω due to the presence of echoes.

Q = 0.15 Q = 0.3 Q = 0.45

n Mω

Schwarzschild 0.5993 − 0.0927i 0.5993 − 0.0927i 0.5993 − 0.0927i

FJNW 0.2796 − 6 · 10−8i 0.7183 − 0.0535i 0.7824 − 0.286i

2.05 0.721 − 0.1773i 0.0146 − 0.0151i 0.0012 − 0.0013i

2.1 0.6305 − 0.0158i 0.173 − 0.1748i 0.0132 − 0.0137i

2.3 0.3861 − 6 · 10−6i 0.7352 − 0.2153i 0.4839 − 0.3661i

2.5 0.33 − 6 · 10−7i 0.7475 − 0.1226i 0.6675 − 0.3476i

3 − 0.7293 − 0.0701i 0.7567 − 0.2992i

4 − 0.7201 − 0.056i 0.7792 − 0.2868i

5 − 0.7188 − 0.0541i 0.7817 − 0.2861i

7 − 0.7184 − 0.0536i 0.7823 − 0.286i

10 − 0.7184 − 0.0535i 0.78235 − 0.286i
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Figure 5.5: The same as in Fig. 5.5 but for M = 1, l = 3.
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5.3 V (ϕ) = w sinh
(
κϕ2n

)
5.3.1 Properties of the Veff

Now, we proceed to the strongly nonlinear case, when the spherical singu-
larities are present. Asymptotic properties of solutions near the spherical
singularity r = rs are drastically different from the previously considered
case. So we expect some modification in the Veff behaviour.

The behavior of Veff at spatial infinity is defined in the same way as for
(5.28). Furthermore, in the domain (r1,∞), where |ϕ(r)| < 1, the correspond-
ing self-interacting potential can be approximated as V (ϕ) = w sinh

(
κϕ2n

)
≈

wκϕ2n.
By introducing the tortoise coordinate, we map r∗ : (rs,∞) → (0,∞).

Then, taking into account the asymptotic behaviour of α and β near r = rs

α ∼ α0, β ∼ −
(

2πrs
n(n− 1)(r − rs)

) n
n−1

−
(

2n− 1

n− 1

)
ln

[
rs

(r − rs)

]
, (5.33)

Then, we have

r∗ ∼ 2

1 + 2∆

(r − rs)
1+∆

A1+2∆
e−

1
2{α0+β0(r)}, Veff(r∗) ∼ 2

1
nπ

n2(r∗)2| ln r∗|2−1/n
. (5.34)

Unfortunately, we are unable to derive analytical solutions of (5.30) in this
case. But we can use the Weyl’s limit point-limit circle criterion.

The difference from the previous case is in presence of | ln r∗|2−1/n in the
denominator, that lead to less repulsion near the singularity. It is evident,
that Veff(r∗) < 3

4r∗2 as r∗ → 0. Thus H (5.30) is in the limit circle near zero
and H is not essentially self-adjoint operator ( [135], theorem X.10).

In general, there are no specific preferences in choosing a particular self-
adjoint extension. Therefore, we can use the Dirichlet boundary condition at
the singularity, as in the previous case.

Consequently, our problem can be partially reduced to the previously con-
sidered case, and as we found, the values of QNM are very close in the both
cases for the same values of parameters κ = 1, Q, M , and n. This is demon-
strated in Fig. 5.9, where we show the relative difference between ω for these
two cases.

We need to note that in both cases, we fix w = 1, but in the present case,
we have an additional free parameter κ, which we can also vary. The behavior
of the time-domain profiles and effective potential are qualitatively similar,
and in the case of κ = 1, they are quantitatively similar as well, so we do not
show them.
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5.3.2 Quasi-normal modes

The typical dependencies of the fundamental QNM as functions of Q, n, and
κ are shown in Figs. 5.10–5.11. Tables 5.5–5.6 list examples of the numerical
values of ω.

The behavior of the ω curves as functions of Q, M , and n is qualitatively
similar to the previous case, as observed in Figs. 5.10–5.11 (left panel). We
can see, that κ > 1 leads to a shift of the corresponding ω curves towards
higher values, while 0 < κ < 1 leads to a shift towards lower values.

The dependencies of ω as functions of κ also exhibit non-monotonic behav-
ior, as illustrated in Fig. 5.11 (right panel).
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Figure 5.10: The trajectories of the QNM fundamental frequencies in the
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as functions of Q for different κ values. Black arrows show the direction of
increasing Q. The blue star and colored dots correspond to the Schwarzschild
BH case and different values of Q, respectively.
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Table 5.5: The values of the fundamental QNM frequencies Mω for M = 1,
n = 6, l = 2 and different values of κ.

Q = 0.15 Q = 0.3 Q = 0.4

κ Mω

Schwarzschild 0.3737 − 0.08901i

ϕ2n 0.2532 − 9.5 · 10−5i 0.5053 − 0.11204i 0.4978 − 0.24i

0.001 0.251 − 9 · 10−5i 0.5051 − 0.1056i 0.507 − 0.2388i

0.01 0.2511 − 9.1 · 10−5i 0.5051 − 0.10575i 0.5069 − 0.2389i

0.1 0.2521 − 9.5 · 10−5i 0.5052 − 0.1072i 0.5052 − 0.2399i

1 0.2633 − 0.00015i 0.5048 − 0.1206i 0.4902 − 0.24787i

2 0.2752 − 0.00025i 0.503 − 0.1328i 0.4762 − 0.2539i

10 0.3423 − 0.0031i 0.4783 − 0.1843i 0.4091 − 0.2696i

50 0.433 − 0.041i 0.3973 − 0.2368i 0.2973 − 0.258i

Table 5.6: The values of the fundamental QNM frequencies for M = 1, n = 6,
l = 3 and various values of κ. The hyphen (−) in a cell indicates a situation
where we cannot extract the value of ω due to the presence of echoes.

Q = 0.15 Q = 0.3 Q = 0.4

κ Mω

Schwarzschild 0.5993 − 0.0927i

ϕ2n − 0.7294 − 0.07i 0.7761 − 0.2286i

0.001 − 0.7234 − 0.0616i 0.7864 − 0.2215i

0.01 − 0.7236 − 0.0618i 0.7863 − 0.2218i

0.1 − 0.7246 − 0.0635i 0.7847 − 0.2238i

1 0.508 − 0.0004i 0.7329 − 0.0795 0.7692 − 0.241i

2 0.5308 − 0.0009i 0.7378 − 0.095i 0.7536 − 0.254i

10 0.4338 − 0.00004i 0.7311 − 0.1686 0.6687 − 0.2957i

50 0.6142 − 0.0147i 0.6398 − 0.2573i 0.5081 − 0.3027i
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5.4 Special family of solutions

5.4.1 Properties of Veff

Now, we proceed to the our special family of solutions. In quasi-global coor-
dinates (B(x) = A−1(x)) the effective potential Veff(x, l) takes the following
form

Veff(x, l) =
3A2

2

(
R′

R

)2

− A2

2

R′′

R
− d

dr

(
A2

2

R′

R

)
+ A

(l − 1)(l + 2)

R2
, (5.35)

Near spatial infinity, the behavior of Veff is the same in the NS and BH
cases

x∗ = x+ 2M lnx+O

(
1

x

)
, V (x) =

l(l + 1)

x2
+O

(
1

x3

)
, V (x∗) ∼ l(l + 1)

x∗2
.

(5.36)

However, the asymptotic behavior near the horizon x = xh in the BH case
and near the center x = x0 in the NS case is drastically different.
The BH case.

In the BH case (x0 < 3M), near the horizon x = xh, we have

x∗ ∼ 1

A′(xh)
ln(x− xh), Veff(x) ∼ q(xh, l)(x− xh), (5.37)

where we denoted q(xh, l) =
[
(l2 − l − 2) − A′(xh)R′(xh)R(xh)

]
. If q(xh, l) <

0, there exists a domain (xh, x1) where Veff(x, l) < 0. On the other hand, Veff
is increasing function near xh (q(xh, l) > 0) or x1 (q(xh, l) < 0) and decreases
as x→ ∞. Therefore, there always exists at least one maximum of Veff .

We have found that Veff , for different values of (x0, N), can have one or two
maxima with or without a negative domain near the horizon. Some typical
examples are shown in Fig. 5.12. From Fig. 5.12 (b), it can be observed that
the value of the left maximum tends to infinity as x0 → 3M − 0.

When the effective potential Veff > 0 for r∗ ∈ (−∞,∞), the corresponding
solutions are stable under odd-parity perturbations.

In certain cases, the effective potential Veff becomes negative within a small
domain near the horizon, which can signal about the presence of instability.
To analyze this cases, it is convenient to use the S–deformation method [131,
137,138]

As in section 5.1, we denote the operator H on L2(x∗, dx∗) as

H = − d2

dx∗2
+ Veff(x∗, l), Hψ = ω2ψ, (5.38)
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Figure 5.12: The typical behaviour of the effective potentials Veff in the BH
case: (a) x0 = 0.35, l = 2 for different N (b) N = 12, l = 2 for different x0.

where ω is an eigenvalue and ψ is an eigenfunction, respectively.
To prove the stability of our solutions, we need to show that there are no

ω2 < 0 eigenvalues, i.e.,

(ψ,Hψ) =

∞∫
−∞

[∣∣∣∣ dψdx∗
∣∣∣∣2 + Veff(x∗)|ψ|2

]
dx∗ > 0 (5.39)

Then the lowest eigenvalue is ω0 > 0, implies that solution is stable.
According to the S-deformation method, we can introduce some new smooth

function S and deform the derivative and the effective potential terms in the
following way

(ψ,Hψ) =

∞∫
−∞

[
|Dψ|2 + Ṽeff(x∗)|ψ|2

]
dx∗, (5.40)

where we denoted

D =
d

dx∗
+ S, Ṽeff = Veff + A

dS

dx
− S2, (5.41)

For convenience, we can regroup terms in (5.35) as

Veff = A2

[(
d

dx
ln(R)

)2

− d2

dx2
ln(R)

]
− A′A

(
d

dx
ln(R)

)
+ A

(l − 1)(l + 2)

R2
.

(5.42)
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Then, if we select

S = A
d

dx
ln(R), (5.43)

we obtain that

Ṽeff(x) = A(x)
(l − 1)(l + 2)

R2(x)
> 0, (5.44)

and

(ψ,Hψ) =

∞∫
−∞

|Dψ|2dx∗ +

∞∫
xh

(l − 1)(l + 2)

R2(x)
|ψ|2dx > 0. (5.45)

It is evident, that both terms are positive, so ω2
0 > 0, which implies that our

solutions are stable under odd-parity perturbations.
Furthermore, we didn’t find any exponentially growing modes in the time-

domain profiles Ψ(t, r∗) (see Fig. 5.14).
The NS case. In case of NS (x0 ≥ 3M) near the center x = x0, we have

that

x∗ ∼ 3R′2(x− x0)
2

4(x0 − 3M)
, Veff(x) ∼ 4(x0 − 3M)2

3R′4(x− x0)4
, Veff(x∗) ∼ 3

4x∗2
. (5.46)

and for x0 = 3M

x∗ ∼ R′2(x0)(x− x0), Veff(x) ∼ l(l + 1)

R′4(x0)(x− x0)2
, Veff(x∗) ∼ l(l + 1)

x∗2
.

(5.47)

The solution of the (5.30) near the singularity is given by (5.32) for x0 >
3M . However, for x0 = 3M we have

ψ(x∗) =
√
x∗
[
C1Jl+ 1

2
(ωx∗) + C2Yl+ 1

2
(ωx∗)

]
∼ C̃1(x

∗)l+1 + C̃2(x
∗)−l. (5.48)

The second solution isn’t square-integrable near the singularity in the both
cases and in order to get a normalized solution we need to require C̃2 = 0.
The operator H is essentially self-adjoint and there is a unique self-adjoint
extension HE. This extension is defined on the class of functions, that satisfy√
x∗ψ|x∗=0 = 0 for x0 > 3M and (x∗)lψ|x∗=0 = 0 for x0 = 3M .
The typical examples of the effective potentials are shown in Fig. 5.13.

One can observed that these potentials are always positive, and for values of
x0 closer to x0 = 3M , they exhibit the presence of a local maximum. As x0
increases, this local maximum diminishes, and the profile of the effective po-
tential transforms into a potential wall, which monotonically rises to infinity
at the singularity.
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Figure 5.13: The typical behaviour of the effective potentials Veff in the NS
case: (a) x0 = 0.55, l = 2 for different N (b) N = 12, l = 2 for different x0.

5.4.2 Quasi-normal modes

We solve the master wave equation (5.16) for the different sets of parame-
ters, and extract the fundamental quasi-normal frequencies from the obtained
time-domain profiles. The typical examples of the time-domain profiles are
shown in Figs. 5.14–5.15. The exact values of fundamental QNM frequencies
are given in Tabs 5.7–5.10 and in Figs. 5.16–5.17.

One intriguing feature that can be observed in the time-domain profiles in
the black hole case is the presence of echoes (see Fig. 5.14 (c)). In [139], it was
demonstrated that such echoes appear due to the presence of additional local
maxima of the effective potential Veff . In the NS case we also can observe
echoes (see Fig. 5.15 (c)), but their nature is related to the absence of a
horizon.

From 5.14–5.15 we can observe that ω(x0) curves in the (ωR, ωI) planes
exhibit discontinuities as functions of x0 and can be represented by multiple
disjointed branches. Their behavior can be described as follows.

For x0 < x
(1)
0 , there exists a single branch (labeled as A, Fig. 5.16) in the

(ωR, ωI) plane, starting from the QNM value of the Schwarzschild BH.

At x0 = x
(1)
0 , a jump occurs to another branch (labeled as B) with ωI(x

(1)
0 −

0) = ωI(x
(1)
0 +0) and ωR(x

(1)
0 −0) ̸= ωR(x

(1)
0 +0). This new branch (B) remains

continuous for x0 in the range (x
(1)
0 , x

(2)
0 ) until x0 = x

(2)
0 , where a similar jump

occurs to a new branch (labeled as C).
A similar situation also occurs for the ω(N) curves, as shown in Fig. 5.17.

The presence of these discontinuities is related to the emergence of concurrent
frequencies with very close values of Im(ω) for the fundamental and first
overtones modes, respectively.
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Figure 5.14: The time-domain profiles in the BH case for different values of
parameters. In panel (c), we can observe the presence of echoes, which align
at later times near critical case x0 = 3M − 0.
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Figure 5.15: The time-domain profiles in the NS case for different values of
parameters. In panel (c), we can observe the presence of echoes from the NS
near critical value x0 = 3M + 0.

The QNM frequencies remain continuous during the transition from the BH
case to NS case in case of the our specific family of solutions. For instance,
in the Reissner-Nordström space-time, they are discontinued [140].
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Table 5.7: The values of the fundamental QNM frequencies in the BH case
with l = 2.

N/x0 0.2 0.35 0.45 0.495

Schwarzschild 0.3737 − 0.08901i

2 0.4198 − 0.1009i 0.586 − 0.1382i 1.222 − 0.2849i −
3 0.3883 − 0.0943i 0.4655 − 0.1137i 0.7389 − 0.1636i −
6 0.3757 − 0.0901i 0.4052 − 0.1126i 0.5025 − 0.1322i 0.7384 − 0.209i

10 0.374 − 0.08902i 0.4001 − 0.1105i 0.4595 − 0.2037i 0.6657 − 0.06111i

15 0.3737 − 0.08897i 0.4037 − 0.105i 0.3988 − 0.1978i 0.6099 − 0.1381i

20 0.3737 − 0.08898i 0.4072 − 0.09978i 0.3946 − 0.1938i 0.3582 − 0.2219i

30 0.3737 − 0.08898i 0.4119 − 0.09162i 0.3937 − 0.1932i 0.3622 − 0.216i

40 0.3737 − 0.08898i 0.415 − 0.08574i 0.3941 − 0.1937i 0.3626 − 0.2143i

Table 5.8: The values of the fundamental QNM frequencies in the NS case
with l = 2.

N/x0 0.5 0.505 0.51 0.6

Schwarzschild 0.3737 − 0.08901i

2 − − − −
3 − − − −
6 0.7362 − 0.2425i 0.7424 − 0.2601i 0.269 − 0.2852i −
10 0.7593 − 0.1028i 0.7944 − 0.1432i 0.8188 − 0.1756i 0.2612 − 0.2342i

15 0.7647 − 0.04536i 0.8565 − 0.0918i 0.9124 − 0.128i 0.2796 − 0.2272i

20 0.7677 − 0.0233i 0.9247 − 0.0702i 1.01 − 0.1076i 0.2866 − 0.2254i

30 0.7704 − 0.0085i 1.071 − 0.0521i 1.21 − 0.0896i 0.2918 − 0.2242i

40 0.7711 − 0.0041i 1.219 − 0.0444i 1.407 − 0.0813i 0.2937 − 0.2239i
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Table 5.9: The values of the fundamental QNM frequencies in the BH case
with l = 3.

N/x0 0.2 0.35 0.45 0.495

Schwarzschild 0.5995 − 0.09274i

2 0.6696 − 0.1039i 0.9287 − 0.1425i 1.948 − 0.2986i −
3 0.6191 − 0.0966i 0.7289 − 0.113i 1.162 − 0.1742i −
6 0.6012 − 0.0933i 0.6325 − 0.1075i 0.7422 − 0.1128i 0.9348 − 0.2797i

10 0.5997 − 0.0927i 0.6232 − 0.106i 0.6917 − 0.1533i 0.9169 − 0.0769i

15 0.5995 − 0.0927i 0.6245 − 0.0995i 0.6587 − 0.2049i 0.8201 − 0.08333i

20 0.5995 − 0.0927i 0.6262 − 0.0929i 0.6338 − 0.2061i 0.8026 − 0.1676i

30 0.5995 − 0.0927i 0.6276 − 0.0822i 0.626 − 0.2049i 0.5826 − 0.2422i

40 0.5995 − 0.0927i 0.6279 − 0.0742i 0.625 − 0.2052i 0.5836 − 0.2377i

Table 5.10: The values of the fundamental QNM frequencies in the NS case
with l = 3.

N/x0 0.5 0.505 0.51 0.6

Schwarzschild 0.5995 − 0.09274i

2 − − − −
3 0.1459 − 0.2998i 0.1418 − 0.4282i 0.2364 − 0.6414i −
6 0.9237 − 0.3023i 0.9223 − 0.3226i 0.9154 − 0.3415i 0.372 − 0.3471i

10 0.9538 − 0.1316i 0.974 − 0.1667i 0.989 − 0.1961i 0.4387 − 0.2904i

15 0.9578 − 0.06i 1.022 − 0.1027i 1.065 − 0.137i 0.4662 − 0.27i

20 0.96 − 0.0316i 1.077 − 0.0763i 1.148 − 0.1125i 0.477 − 0.2634i

30 0.963 − 0.0117i 1.202 − 0.0547i 1.325 − 0.0916i 0.4852 − 0.2593i

40 0.9638 − 0.0057i 1.335 − 0.0457i 1.507 − 0.0824i 0.4883 − 0.2581i
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5.5 Stability and quasi-normal modes of Kehagias-
Sfetsos naked singularity

In this section, we study the evolution of scalar, electromagnetic, and Dirac
test fields in the background of a naked singularity described by the following
metric

ds2 = f(r)dt2 − 1

f(r)
dr2 − r2dΩ2, (5.49)

with

f(r) = 1 +
r2

2α

(
1 −

√
1 +

8αM

r3

)
, (5.50)

where α is a positive constant and M is a mass of the configuration, re-
spectively. This space-time metric naturally appears in 4D Einstein-Gauss-
Bonnet novel gravity [141, 142] and Horava gravity [143] (known as the
Kehagias-Sfetsos solution).

We can perform a rescaling r → r/M and introduce a dimensionless con-
stant γ = α/M 2. In dependence of value on the value of γ, we have different
configuration types. For γ ∈ (0, 1], we have a black hole with horizon radii
given by

rh,± = 1 ±
√

1 − γ, (5.51)

On the other hand, for γ ∈ (1,∞), we obtain a naked singularity.
The (in)stability and QNM spectrum of the black hole solution have been

investigated in [144–147].
As for the naked singularity solution, an earlier analysis was conducted

in [148] examining perturbations by scalar, electromagnetic, and Dirac test
fields in the linear regime. The authors reported instability of this space-time
for multipole numbers l greater than 1. However, we find their results to be
erroneous. Therefore, we need to revisit their results and demonstrate that
the test fields are stable in all cases.

5.5.1 Equations for test fields

In the general case, the covariant equations of motion for the test fields have
the following forms

(a) For a massless scalar field, the equation of motion is given by

1√
−g

∂µ
(√

−ggµν∂νΨ
)

= 0, (5.52)
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(b) For an electromagnetic field, the equation of motion is given by

1√
−g

∂µ
(
Fρσg

ρνgσµ
√
−g
)

= 0 , (5.53)

where Fρσ = ∂ρAσ − ∂σAρ is the electromagnetic tensor and Aµ is the vector
potential.

(c) For the Dirac field, we have massless Dirac equation [149]

[γµ(∂µ − Γµ)]Ψ = 0, (5.54)

where γa are noncommutative γ matrices and Γµ represent the spin connec-
tion in the tetrad formalism.

After separating the angular variables, we can rewrite (5.52, 5.53, 5.54) in
the form of the single master wave equation(

∂2

∂t2
− ∂2

∂r∗2

)
Ψi(t, r

∗) + V
(i)
eff (r, l)Ψi(t, r

∗) = 0, (5.55)

where the index i = (S, V,D) corresponds to scalar, vector, and Dirac fields,
respectively. The “tortoise” coordinate r∗ is defined as dr∗ = dr/f(r), and

the effective potentials V
(i)
eff are

V
(S)
eff (r) = f(r)

(
ℓ(ℓ+ 1)

r2
+

1

r

df(r)

dr

)
, (5.56)

V
(V )
eff (r) = f(r)

ℓ(ℓ+ 1)

r2
, (5.57)

V
(D)
eff (r) = f(r)

l + 1

r

(l + 1

r
∓
√
f(r) ± d

dr

√
f(r)

)
, (5.58)

where l = 0, 1, 2, ... is the angular momentum number. For the scalar and
Dirac fields, we have l ≥ 0, and for the vector field, we have l ≥ 1.

In the case of the Dirac field, the effective potentials with opposite signs
are iso-spectral and can be transformed into each other using the Darboux
transformation.

The asymptotics of the corresponding functions near the singularity r = 0
have the following form

r∗ = r +
2

3

√
2

γ
r3/2 +O(r2), V

(i)
eff (r) =

l(l + 1)

r2
+O

(
1

r3/2

)
, l > 0. (5.59)

and for l = 0 we have

V
(S)
eff (r) = − 1√

2γr3/2
+O

(
1

r

)
, V

(D)
eff (r) =

1

2
√

2γr3/2
+O

(
1

r

)
. (5.60)
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Figure 5.18: The typical behaviour of the effective potentials V
(S)
eff of the

scalar field with l = 0 (left panel) and l = 1 (right panel) for different values
of γ.

Figure 5.19: The typical behaviour of the effective potentials V
(V )
eff with l = 1

(left panel) and V
(D)
eff with l = 0 of the vector and Dirac fields, respectively.

For arbitrary l, the effective potentials V
(i)
eff → +∞ as r → 0, except the

case of the scalar field with l = 0, where V
(S)
eff → −∞. Their behaviour is

illustrated in Figs. 5.18, 5.19.

In general, the effective potentials V
(i)
eff are positive for all cases, except for

the scalar field with l = 0, where we have a negative gap near the singularity.
Additionally, all the effective potentials exhibit a peak that shifts to the left
as γ increases, eventually disappearing. In the special case of the scalar field

with l = 0, the peak is always exists for all values of γ. For V
(V )
eff the peak

exists when γ < 3
√

3/4. Unfortunately, the explicit formulas are unattainable
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in all other cases.
After substituting Ψ(t, r∗) = ψ(r∗)e−iωt into equation (5.55), we obtain

(5.30) near the singularity for l ≥ 1

ψ′′
i (r∗) +

(
ω2 − V

(i)
eff (r, l)

)
ψi(r

∗) = 0, (5.61)

and the corresponding solution is

ψi(r
∗) ∼ C̃1(r

∗)l+1 + C̃2(r
∗)−l. (5.62)

The second solution isn’t square-integrable near the singularity for both cases,
The operator H is essentially self-adjoint and there is a unique self-adjoint
extension HE. This extension is defined on the class of functions, that satisfy
(x∗)lψ|x∗=0 = 0 for l > 0.

In special case with l = 0 for the Dirac and scalar fields, we have

ψi(r
∗) ∼ C̃1r

∗ + C̃2, (5.63)

which means that both modes are regular and square integrable near the
singularity. Then due to the Weyl’s limit point-limit circle criterion and H
is not essentially self-adjoint.

As previously discussed, the positivity of the effective potentials leads to
the stability of the corresponding space-time. However, the scalar field case
with l = 0 indeed requires some additional investigation.

To study the stability in the case of the scalar field with l = 0, we can again
apply the S–deformation method that we utilized in the previous section. To
rewrite (ψ,Hψ) in the deformed form, we need to ensure C̃2 = 0 in (5.63),
i.e., ψS ∼ r∗ near the singularity. Then, the deformed effective potential Ṽeff
(5.41) has the form

Ṽeff =
ff ′

r
+ f

dS

dr
− S2. (5.64)

If we choose

S = −f
r
, (5.65)

then, we have

(ψ,Hψ) =

∫
|Dψ|2dr∗. (5.66)

Thus, ω2
0 > 0. We also didn’t observe the exponentially-growing modes in

the time-domain profiles.

81



Chapter 5

5.5.2 Quasi-normal modes

The typical examples of numerical solutions of the (5.55) are shown in Figs.
5.20, 5.22, 5.24. In each case, we observe the emergence of a series of echoes,
when γ is closer to 1. Increasing γ leads to a decrease in the time interval
between distinct echoes and the time when the typical ringdown appears.
Starting from a specific γ value, the echoes finally disappear from the time-
domain profiles. It is difficult find QNM for small values of γ due to very
long echoes time, which requires enormous lengthy time interval.

For sufficiently large values of γ, the local peak of the effective potential
vanishes, and the number of Ψ oscillations diminishes, transforming the ring-
down into a “single-wave” profile with a power-law tail. In such cases, it is
difficult, if not impossible, to extract frequencies with adequate accuracy.

The typical dependencies of the fundamental QNM as functions of γ for
different values of l are shown in Figs. 5.21, 5.23, 5.25 and the exact values
of ω are given in Tabs. 5.11–5.13.

As we can see in Figs. 5.21– 5.25, the ω curves have a crescent-like shape,
similar to the curves in sections 5.2, 5.3. The ωR(γ) and ωI(γ) dependencies
are non-monotonic, consisting of a maximum for the real part and a min-
imum for the imaginary part of the frequency ω. It should be noted that
the maximal value of ωR in the scalar field case shifts left with increasing l
and shifts right in other cases. In all cases, the values of ω differ from the
corresponding values in the Schwarzschild black hole case. However, we can
also observe an interesting situation, when the ωschw values are close to the
ωNS values for different l values. For instance, in the case of the scalar field,
we have Mωschw = 0.675− 0.0965i for l = 3 and MωNS = 0.669− 0.0963i for
l = 2.
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Figure 5.20: The typical examples of the time-domain profiles in the case of
the scalar field for different values of l and γ.
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Figure 5.21: The dependencies of the values of the fundamental QNM in
the case for the scalar field for different values of l and γ. For l = 0, we
can observe that ωI < 0, which corresponds to stability. The colored stars
represent the values of ω in the case of a Schwarzschild black hole.

83



Chapter 5

Figure 5.22: The typical examples of the time-domain profiles in the case of
the vector field for different values of l and γ.
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Figure 5.23: The dependencies of the values of the fundamental QNM in the
case for the vector field for different values of l and γ. The colored stars
represent the values of ω in the case of a Schwarzschild black hole.
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Figure 5.24: The typical examples of the time-domain profiles in the case of
the Dirac field for different values of l and γ.
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Figure 5.25: The dependencies of the values of the fundamental QNM in
the case for the Dirac field for different values of l and γ. The colored stars
represent the values of ω in the case of a Schwarzschild black hole.
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Table 5.11: The fundamental QNM frequencies in case of the scalar field for
different values of γ.

Scalar field

γ l = 0 l = 1 l = 2 l = 3

Schwarzschild 0.1105 − 0.1049i 0.2929 − 0.0977i 0.4836 − 0.0968i 0.6754 − 0.0965i

1.05 0.059 − 0.0003i 0.2107 − 0.00001i − −
1.1 0.0846 − 0.0014i 0.28 − 0.0005i 0.4462 − 0.00004i −
1.15 0.1022 − 0.0033i 0.3217 − 0.0032i 0.5136 − 0.0009i 0.7045 − 0.0002i

1.2 0.1164 − 0.0058i 0.3496 − 0.0088i 0.55683 − 0.0054i 0.7646 − 0.003i

1.25 0.1269 − 0.0087i 0.3699 − 0.0164i 0.5867 − 0.0138i 0.8045 − 0.0114i

1.35 0.1443 − 0.0154i 0.3977 − 0.034i 0.6257 − 0.0368i 0.8549 − 0.0389i

1.5 0.1623 − 0.0265i 0.4219 − 0.0609i 0.658 − 0.0744i 0.8955 − 0.0865i

1.65 0.1741 − 0.0375i 0.4349 − 0.0857i 0.6742 − 0.1094i 0.915 − 0.1316i

1.8 0.1821 − 0.0478i 0.4416 − 0.1078i 0.6815 − 0.1406i 0.923 − 0.1717i

2 0.1889 − 0.0603i 0.4449 − 0.1331i 0.6834 − 0.1763i 0.9238 − 0.2177i

2.5 0.1957 − 0.0858i 0.4395 − 0.1809i 0.6704 − 0.243i 0.9033 − 0.303i

3 0.1956 − 0.1046i 0.4269 − 0.2138i 0.6486 − 0.2881i 0.8726 − 0.3601i

Table 5.12: The fundamental QNM frequencies in case of the vector field for
different values of γ.

Vector field

γ l = 1 l = 2 l = 3 l = 4

Schwarzschild 0.2483 − 0.0925i 0.4576 − 0.095i 0.6569 − 0.0956i 0.8531 − 0.0959i

1.05 0.2084 − 0.00004i − − −
1.1 0.273 − 0.0015i 0.443 − 0.00008i − −
1.15 0.3102 − 0.0072i 0.5074 − 0.0017i 0.7006 − 0.0003i 0.892 − 0.000065i

1.2 0.3349 − 0.0161i 0.5485 − 0.008i 0.7585 − 0.0041i 0.968 − 0.0021i

1.25 0.3528 − 0.0266i 0.576 − 0.0184i 0.7968 − 0.014i 1.017 − 0.0111i

1.35 0.3766 − 0.0487i 0.6126 − 0.0443i 0.8454 − 0.0438i 1.0774 − 0.0444i

1.5 0.3959 − 0.0801i 0.6421 − 0.0847i 0.8839 − 0.094i 1.1247 − 0.1037i

1.65 0.4047 − 0.1077i 0.6558 − 0.1216i 0.9017 − 0.1399i 1.1463 − 0.1598i

1.8 0.4078 − 0.1316i 0.661 − 0.1538i 0.9083 − 0.1809i 1.154 − 0.2096I

2 0.4068 − 0.1584i 0.6604 − 0.1904i 0.9073 − 0.2275i 1.1522 − 0.2663i

2.5 0.3933 − 0.2071i 0.6425 − 0.258i 0.8834 − 0.3131i 1.1217 − 0.3705i

3 0.3749 − 0.2391i 0.6173 − 0.302i 0.8502 − 0.369i 1.0802 − 0.4394i
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Table 5.13: The fundamental QNM frequencies in case of the Dirac field for
different values of γ.

Dirac field

γ l = 0 l = 1 l = 2 l = 3

Schwarzschild 0.183 − 0.097i 0.38 − 0.0964i 0.5741 − 0.0963i 0.7674 − 0.0963i

1.05 0.1543 − 0.0003i − − −
1.1 0.2016 − 0.0031i 0.3672 − 0.0002i 0.541 − 0.00002i 0.6946 − 0.0000005i

1.15 0.2297 − 0.0093i 0.42 − 0.0026i 0.6109 − 0.0006i 0.8012 − 0.0001i

1.2 0.249 − 0.0173i 0.4539 − 0.0091i 0.66114 − 0.005i 0.8691 − 0.0026i

1.25 0.2632 − 0.0261i 0.4778 − 0.0186i 0.695 − 0.0144i 0.9133 − 0.0115i

1.35 0.2825 − 0.0439i 0.5093 − 0.0411i 0.7383 − 0.0412i 0.9683 − 0.0422i

1.5 0.2986 − 0.0687i 0.5351 − 0.0754i 0.7731 − 0.0852i 1.0117 − 0.0959i

1.65 0.3065 − 0.0904i 0.5475 − 0.1065i 0.7894 − 0.126i 1.0317 − 0.1465i

1.8 0.3097 − 0.1092i 0.5526 − 0.1337i 0.7957 − 0.162i 1.0391 − 0.1914i

2 0.3099 − 0.1302i 0.553 − 0.1645i 0.7955 − 0.2029i 1.0381 − 0.2425i

2.5 − 0.5395 − 0.2212i 0.7758 − 0.2781i 1.0117 − 0.3364i

3 − 0.5195 − 0.2588i 0.7477 − 0.328i 0.9751 − 0.3985i
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Test particle motion and
observational properties

6.1 Basic relations

An important question dealing with observational properties of the naked
singularities is connected with the motion of particles in the vicinity of such
objects. One of the problems that arise here concerns the distribution of
stable circular orbits (SCOs) that form the thin accretion disk (Keplerian
AD). We will assume that the AD is described by the Novikov-Thorne model
[150, 151]. According to this model, the AD is a geometrically thin, but
optically thick disk composed of gas particles that move along circular orbits
without back-reaction on the background metric.

6.1.1 Circular geodesics

The equations of geodesic motion of a test particle can be derived from the
action

S =

∫
dτ
[
gµνẋµẋν

]
, (6.1)

where τ is a canonical parameter along geodesic and ẋµ are corresponding
tangent vectors.

We consider static spherically-symmetric space-times with line element,

ds2 = A(r)dt2 −B(r)dr2 −R2(r)(dθ2 + sin2 θdφ2). (6.2)

Due to the high symmetry of the space-time, we can restrict ourselves to
considering particle motion only in the equatorial plane. Therefore, we can fix
θ = π/2 and θ̇ = 0. The space-time described by (6.2) possesses two Killing
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vectors ξt and ξϕ, associated with time translation and rotation, respectively.
These vectors provide us two integrals of motion

A(r)

(
dt

dτ

)
= E, R2(r)

(
dφ

dτ

)
= L, (6.3)

where E and L are the energy and angular momentum, respectively. From
Eq. (6.1), we can also obtain an additional integral of motion

A(r)

(
dt

dτ

)2

−B(r)

(
dr

dτ

)2

−R2(r)

(
dφ

dτ

)2

= S , (6.4)

where S = 0 in case of photons and S = 1 for the massive particles.
From (6.3, 6.4) we obtain

AB

(
dr

dτ

)2

= E2 − Ueff(r, L, S), Ueff(r, L, S) = A

(
S +

L2

R2

)
. (6.5)

Therefore, we reduced our problem to problem of the one-dimensional par-
ticle motion in the field of some effective potential Ueff . As we noted be-
fore, our main interest lies in studying the stable circular orbit distribution
(SCOD) around the compact object. The circular orbit can be determined
by the conditions

dr

dτ
=
d2r

dτ 2
= 0, Ueff = E2,

d

dr
Ueff = 0,

The circular orbit at r = rc is called stable if d2Ueff/dr
2 > 0 and unstable if

d2Ueff/dr
2 < 0, respectively.

Using these conditions, we can obtain the dependencies of the specific
energy Ẽ(r), angular momentum L̃(r), and angular velocity Ω = dφ/dt as
functions of the radius r in the following form

Ẽ2(r) =
2A2R′

2AR′ − A′R
, L̃2(r) =

R3A′

2AR′ − A′R
, Ω2(r) =

A′

2R′R
. (6.6)

In dependence on the properties of Ueff , the SCOs can form several disjoint
domains, as it shown in Fig. 6.1. This is governed by appearance/disappearance
of the local minimums of Ueff . To analyze this, it is convenient to use the
functions

L̃2(r) = −A
′(r)

D(r)
, F (r) ≡ d

dr
L̃2(r), D(r) =

(
A(r)

R2(r)

)′
, (6.7)
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Figure 6.1: The possible schematic example of circular orbits distribution.
Where white domains represent SCOs, while grey domains correspond to
regions with UCOs or regions where they do not exist.

which is equal to the corresponding angular momentum L2
b = L̃2(rb) at the

points of bifurcation r = rb. Then, joint conditions for the bifurcation (in-
flection) point ( U ′

eff = 0 and U ′′
eff = 0), lead to the necessary condition

F (rb) = R4A′′ + L̃2
(
R2A′′ − 4RR′A′ − 2RR′′A+ 6R′2A

)
≡ 0. (6.8)

Where the roots rb of this equation correspond to the radii of bifurcations,
which in turn define the boundaries of the SCODs.

The stability of the circular orbit at r = rc is determined by the next
following conditions

L̃2(rc) ≥ 0, −D(rc)F (rc) < 0. (6.9)

The opposite signs of the first and second inequality correspond to the do-
main of non-existence of circular orbits (NECO) and unstable circular orbits
(UCO), respectively.

For photon geodesics (S = 0), the effective potential is given by Ueff =
A/R2 and the radii of circular photon orbits are determined by solving the
equation

A′R− 2AR′ = 0. (6.10)

The maximum and minimum values of Ueff correspond to unstable and stable
photon orbits, respectively.

6.1.2 Ray-tracing

The procedure for obtaining images of the accretion disk is well-known [152–
154] and involves the following steps: (1) We locate the observer plane at
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the distant point far away from the compact object, where the space-time
is already flat; (2) we shoot photons in the direction of the accretion disk
and follow their paths until they hit the plane of the accretion disk; (3) we
calculate specific values such as frequency shift etc.

The equation of motion for photons can be obtained from the standard
variation of the particle action (6.1)

d2xµ

dτ 2
+ Γµ

νσ

dxµ

dτ

dxν

dτ
= 0,

For the metric (6.2), in the explicit form they are

ẗ+
A′

A
ṙṫ = 0, (6.11)

r̈ +
B′

2B
ṙ2 +

A′

2B
ṫ2 − RR′

B
(θ̇2 + sin2 θφ̇2) = 0, (6.12)

θ̈ +
2R′

R
ṙθ̇ − φ̇2 sin θ cos θ = 0, (6.13)

φ̈+
2R′

R
ṙφ̇+ 2θ̇ϕ̇ cot θ = 0, (6.14)

We place our distant observer at the sufficiently large distanceD from the cen-
ter of the compact object. Then, we fix the Cartesian coordinates (X, Y, Z)
at the observer plane and (x, y, z) at the center of the compact object, as
illustrated in Fig. 6.2.

It is evident from the Fig. 6.2 that the coordinate systems are related
by the combination of rotation and translation coordinate transformations,
which can be represented in the final form:

x = (D + Z) sin i− Y cos i, y = X, z = (D + Z) cos i+ Y sin i,

Our background metric is originally written in the spherical coordinates,
which means that we need to perform additional transformation from the
Cartesian to spherical coordinates

r =
√
x2 + y2 + z2, ϕ = arctan

(y
x

)
, θ = arccos

(z
r

)
,

After that, the initial position (X0, Y0, Z0 = 0) of the photon at the observer
plane will be defined in the compact object’s coordinate system as [152,154]

t0 = 0, r0 =
√
X2

0 + Y 2
0 +D2, (6.15)
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Figure 6.2: The schematic illustration of the system’s geometry. The Carte-
sian coordinates systems (x, y, z) and (X, Y, Z) are centered at the com-
pact object and at the observer plane, respectively. This picture was taken
from [155].

θ0 = arccos

(
Y0 sin i+D cos i

r0

)
, φ0 = arctan

(
X0

D sin i− Y0 cos i

)
,

and the initial photon 4-momentum k̃µ = (1, 0, 0,−1) (in the Cartesian co-
ordinates) can be rewritten as kµ = ∂xµ

∂xν k̃
ν (in the spherical coordinates)

kr0 = −D
r0
, kθ0 =

cos i− (Y0 sin i+D cos i)D/r20√
X2

0 + (D sin i− Y0 cos i)2,
(6.16)

kφ0 =
X0 sin i

X2
0 + (D sin i− Y0 cos i)2

, kt0 =
√

(kr0)
2 + r20(k

θ
0)

2 + r20 sin2 θ0(k
φ
0 )2,

We obtain the photon trajectories numerically by integrating (6.11-6.14)
with the initial conditions (6.15, 6.16) backward in time up to the moment
of intersection of the AD plane.

The frequency ratio g between the point (e) at the AD surface and the
static remote observer (o) for the metric (6.2) is

g =
kµu

µ|o
kµuµ|e

=

√
A(r) −R2(r)Ω2(r)

1 + λΩ(r)
, (6.17)

where λ is a conserved quantity along the photon geodesic, and can be de-
termined from the initial conditions as λ = −r20 sin2 θ0k

ϕ
0/k

t
0. The sign of

λΩ(r) is determined by the choice of whether the AD is rotating around the
compact object in a clockwise or counterclockwise direction. Further, we will
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use the normalized redshift factor in our color plots

g̃ =
g − gmin

gmax − gmin
, (6.18)

where gmin and gmax is the minimal and maximal frequency values on disk,
respectively.

6.2 V (ϕ) = ωϕ2n

6.2.1 Stable circular orbits distributions

The effective potential Ueff in curvature coordinates (2.11) has the form

Ueff(r, L, S) = eα
(
S + L2/r2

)
(6.19)

Taking into account the asymptotic behavior of the metric functions near
the singularity and at the spatial infinity, we can obtain the corresponding
asymptotic behavior for the effective potential, when L ̸= 0.

Specifically, we have

Ueff ∼ rη−3, r → 0, Ueff → S, r → ∞. (6.20)

If η < 3, then for r → 0, we have that Ueff → ∞, which indicates the existence
of an infinite potential barrier in vicinity of the singularity that reflects falling
particles. On the other hand, if η > 3, then for r → 0, Ueff → 0, which means
that particles can approach the singularity.

The equation (6.8) for the metric (2.11) takes the form

F (r) = L̃2(r)[r2α′′(r) − 2rα′(r) + 6] + r4α′′(r). (6.21)

Solving this equation, we obtain a set of bifurcation values rb that define radii
of circular orbit domains, and related to them values of the specific angular
momentum and energy L2

b = L̃2(rb) and E2
b = Ẽ2(rb), respectively. Also, we

check their signs to make sure that they are positive.
We have carried out numerical investigations for different sets of parameters

(M,Q, n) and found at least four possible types of SCOD, which presented
in Table 6.1. The U1, S1, S2 types exist in the FJNW case, while S3 is new
one. Here and after, we denote bifurcation radii rb as rb ≡ ri(T ), where the
index i corresponds to the number of the root, and the index T corresponds
to the SCOD type.

Now let us briefly describe them. We start with types that correspond to
the case with η < 3.
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Stable Unstable sgn(η − 3) Photon sphere
S1 (0,∞) no − no
S2 (0, r1(2)) ∪ (r2(2),∞) (r1(2), r2(2)) − no
S3 (0, r1(3)) ∪ (r2(3), r3(3)) ∪ (r4(3),∞) (r1(3), r2(3)) ∪ (r3(3), r4(3)) − no
U1 (r1(U),∞) (rph, r1(U)) + yes

Table 6.1: Possible types of SCOD

• S1: L̃2(r) is a monotonically increasing function. There is only one do-
main of SCO which starts from the singularity and extend to the infinity
(r ∈ (0,∞)).

• S2: L̃2(r) is a non-monotonic function. The effective potentials Ueff have
a two minima, which correspond to two disjoint domains of SCOs. The
first one form inner disk with SCOs radii r ∈ (0, r1(2)) and second one
form outer disk with r ∈ (r2(2),∞). In domain between them we have
UCOs with radii r ∈ (r1(2), r2(2)).

• S3: It is a new type of the SCOD which cannot be realized in the
FJNW case. L̃2(r) is a non-monotonic function, the effective poten-
tial Ueff can have three minima and two maxima which relate to three
disjoint SCOs regions with radii r ∈ (0, r1(3)) ∪ (r2(3), r3(3)) ∪ (r4(3),∞).
They are separated by two domains of the unstable orbits with radii
r ∈ (r1(3), r2(3)) ∪ (r3(3), r4(3)).

In case of η > 3 there is only one possibility

• U1: L̃2(r) is negative at r ∈ (0, rph), which means that there are no

circular orbits. Also, L̃2(r) is a positive and bounded from below function
on the interval r ∈ (rph,∞). The effective potential Ueff is bounded from
above, Ueff → 0 for r → 0, and only one maximum exists. In this case,
we have one domain without circular orbits with radii r ∈ (0, rph), one
domain of UCOs with r ∈ (rph, r1(U)), and one domain of the SCOs with
r ∈ (r1(U),∞). This case is qualitatively similar to the SCO distribution
in the Schwarzshild BH case.

The typical behavior of Ueff(r, L) and L̃(r) is shown in Fig. 6.3. The right
panel demonstrates examples of Ueff(r, L) in the case when three minima ap-
pear for different values of the angular momentum L. It can be observed that
the third minimum emerges in the vicinity of the singularity. Also, we need
to note that this case corresponds to η < 3, but very close to the critical
value of η = 3, where the behavior of Ueff dramatically changes.
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Figure 6.3: Typical dependencies of L̃(r) and Ueff(r) in case of S3 type. The
left panel demonstrates that there can be several circular orbits with the same
L̃(r) = L. The right panel demonstrates the effective potential with three
minima, which is characteristic for the S3 type. For L ∼ 6.3, three different
SCOD can exist for fixed values of M , Q, and n.

We have studied in detail the behavior of rb as a function of M , Q, and
n. The results are presented in Figs. 6.4-6.6. Fig. 6.4 illustrates examples of
rb(Q) both in the presence and absence of the S3 case. A detailed description
is provided below. In Fig. 6.5, we show the dependence of rb(Q) for different
values of n. Fig. 6.6 depicts analogous dependencies, but for rb(M). These
figures highlight significant differences from the FJNW case: (1) There is a
disjoint second branch of rb, and (2) the values of rb can exceed rSchwb = 6M
in the case of a standard Schwarzschild black hole.

Also, we found the domains of parameters where different cases can be
realized. The results are shown in Figs. 6.7-6.12 for various values of M , Q,
and n. Unlike to the FJNW solution, the domain with the S1 case is finite
and bounded, and its size varies non-monotonically. It increases up to n ∼ 7
and then decreases up to 0. The S3 case typically occurs at high values of n,
but it can also be obtained for lower n by choosing sufficiently large values
of M and Q. We found that the S3 region appears roughly at n ≈ 4.32 (see
Fig. 6.7, right).

For any value of M , there exist two separate branches in the rb(Q) curve.
Additionally, there is a sequence of critical values of n, denoted as n∗1 < n∗2 <
n∗3 < n∗4 < n∗5, with the following characteristics.

For 2 < n < n∗1, both branches are unbounded (like two solid curves on the
left panel of Fig. 6.5). At some n = n∗1, they reconnect. For n ∈ (n∗1, n

∗
4), the

left branch approaches the FJNW case, while the right one is stay unbounded
(like dashed and dotted curves on the left panel of Fig. 6.5).

95



Chapter 6

Figure 6.4: Boundary radii of SCO regions as a function of Q for some fixed
M,n. Vertical dashed lines separate areas of different SCOD types. In the
left panel, we have the S1 area between two branches of the S2 type and
SCO radii lead in r ∈ (0,∞). The right panel shows an example with larger
values of M , Q, and n, where the S3 type is present. The corresponding
parameters relate to yellow region in Figs. 6.11 and 6.12.

For n∗1 < n < n∗2, the right branch moves away to the right and then returns
for n > n∗2.

At n = n∗3, an additional wedge-like feature in the left branch appears. It
is formed by sections r1(3) and r2(3) within the area of S3 type, which looks
like a “Pinocchio’s nose” in the right panel of Fig. 6.5 (solid curve) shown
for n = 13.75, as the example.

For n ∈ (n∗4, n
∗
5), the right branch returns closer to the left one, and a new

S3 area emerges. In the right panel of Fig. 6.4, an additional small S3 area
is present due to the wedge-like form for rb ∼ 10, Q ≳ 7.

At n = n∗5, the tips of the two wedges touch each other (as seen in the right
panel of Fig. 6.4). The bifurcation curve undergoes a new reshaping, after
which the branches reconnect, forming a structure represented by the solid
curve on the right panel of Fig. 6.5. For large enough n, the lower branch
tends to the abscissa axis.
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Figure 6.5: Boundary radii rb of SCO regions as a functions of Q for M =
1 and various fixed values of n. The solid blue curve corresponds to the
FJNW solution, while the orange horizontal line represents the case of a
Schwarzschild black hole with rb = 6M . Also, we found that n∗1 ≈ 2.38,
n∗2 ≈ 7.53, n∗3 ≈ 13.12, n∗4 ≈ 13.13 and n∗5 ≈ 13.15.

Figure 6.6: Boundary radii rb of SCO regions as a functions of M for Q = 1
and various fixed values of n. The left panel illustrates the behavior of the
two branches around the first reconnection, occurring at n ≈ 2.62. The right
panel demonstrates this branches around the second reconnection, which
takes place at approximately n ≈ 13.86.
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Figure 6.7: Domains of parameters in the (M,Q) plane for different values
of n. The regions labeled with white, yellow, light gray, and dark gray corre-
spond to S2, S3, U1, and S1 types, respectively. It should be noted that for
values of n around 7, the S1 area grows.

Figure 6.8: The same but for large values of n. For n ≳ 7 the black region
(S1) shrinks to the origin.
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Figure 6.9: Domains of parameters in the (n,M) plane for different values of
Q. As in the previous plots the regions labeled with white, yellow, light gray,
and dark gray correspond to S2, S3, U1, and S1 types, respectively. It can
be observed that as the value of Q increases, the required value of n for the
appearance of S3 decreases.

Figure 6.10: The same as in the previous figure, but for larger Q. It can be
observed that in the right panel, the S1 domain has already disappeared.
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Figure 6.11: Domains of parameters in the (n,Q) plane for different values
of M . As in the previous plots the regions labeled with white, yellow, light
gray, and dark gray correspond to S2, S3, U1, and S1 types, respectively. It
can be observed that as the value of M increases, the required value of n for
the appearance of S3 decreases.

Figure 6.12: The same as in the previous figure, but for larger values of
M . It can be observed that in the right panel, the S1 domain has already
disappeared.
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Photon orbits
In case of the photon geodesics, when S = 0, the effective potential has

very simple form
Ueff(r, L, 0) = eαL2/r2.

The asymptotic behaviour is the same as for the massive particles (6.20).
The radii of the photon orbits can be defined from equation

f(r) = rα′(r) − 2. (6.22)

We numerically checked that f(r) is a monotonically decreasing function.
Furthermore, f(r) → −2 for r → ∞, and as r → 0, f(r) is greater or less
than zero if η is greater or less than 3, respectively. Hence, there is a root of
f(r) only if η > 3. This root corresponds to the the point of maximum rph
of the effective potential Ueff and represents the radius of the photon sphere.

Typical examples of rph as a function of scalar charge Q (left panel) and
configuration mass M (right panel) for different values of n are presented
in Fig. 6.13. It can be observed that the values of rph are always less then
the corresponding values in the FJNW case and tend towards to them as n
increases. Furthermore, the rph radii are always less than rph = 3M in the
case of the standard Schwarzschild black hole.

Figure 6.13: The radii of photon orbits as a function of Q (left panel) and M
(right panel) are shown for various values of n. The blue and orange curves
represent the FJNW and Schwarzschild cases, respectively.

6.2.2 Keplerian AD images

We have generated direct Keplerian AD images for various inclination angles
for the U1, S1, S2, and S3 cases. These images are displayed in Figs. 6.15–
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Figure 6.14: Example of the photon geodesics for U1, S1 and S3 case. Exam-
ple of the photon geodesics for U1 (a), S1 (b) and S3 (c) case. In all cases the
red line corresponds the equatorial plane of AD. (a) Trajectories of photons
in vicinity of the attracting singularity. (b) The same but with the repulsing
singularity. In this case, we also have a dark spot around the center, that
imitate a black hole. (c) The intermediate case, when the repulsion is small
enough. In small vicinity singularity rays reflect from them and far enough
they have similar behaviour as in (a).

6.22, and the normalized frequency shift (6.18) is represented using colors.
One of significant feature common in all images is the presence of a dark

spot, which can resembles a shadow of an ordinary black hole. In the case
of U1, the dark spot is related to the presence of the photon sphere, while
in the S1, S2, and S3 cases, it is the result of the repulsive nature of the
singularity. As we demonstrated above it depends on the sign of η − 3 (see
Eq. 6.20).

For η > 3, we have a maximum of Ueff and photons with impact parameter
λ < [bmax]−1/2, bmax = exp{[α(rph)]}/r2ph, can reach the singularity ((a) in
Fig. 6.14).

For η < 3, photons with nonzero angular momentum will be reflected by the
effective potential, i.e. they cannot reach the region near the singularity ((b)
in Fig. 6.14). Due to the strong bending of the photon geodesics, a scattered
photon can hit a point on the AD plane far enough from the center, where
another photon with a different trajectory and angular momentum also hits,
which means that each such point has two images.
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Figure 6.15: Keplerian AD images for the U1 type (M = 1, Q = 0.3, n = 3):
in full face and for inclination i = 30o. White contour corresponds to the
image of photon orbit at rph ≈ 2.58. The ISCO placed at r1(U) ≈ 5.56.

Figure 6.16: The same as on Fig. 6.15 with inclinations 30o and 60o.
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Figure 6.17: AD images for the S1 type (M = 1, Q = 0.8, n = 3) for
inclinations i = 0o and i = 30o, respectively. There is a dark spot in the
center due to the repulsive character of the naked singularity.

Figure 6.18: The same as on Fig. 6.17 with inclinations 60o and 80o.
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Figure 6.19: AD images for the S2 type (M = 1, Q = 2.2, n = 3) in full
face and for inclinations i = 0o and i = 30o, respectively. The SCO radii
are divided into two regions: (i) the inner disk with r ∈ (0, 6.5) and (ii) the
outer disk with r ∈ (14.5,∞). In panel (a), the inner SCO region cannot be
observed due to the repulsive nature of the naked singularity. The thin ring
at the center represents the outer part of (ii).

Figure 6.20: The same as on Fig. 6.19 with inclinations 60o and 80o.
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Figure 6.21: The Keplarian AD images for the S3 type (M = 2, Q = 0.99,
n = 14), η ≈ 2.9998 for inclinations i = 0o and i = 30o, respectively. The
SCO radii intervals are divided into three regions: (i) r ∈ (0, 0.22) represent-
ing the inner SCO region, (ii) r ∈ (0.65, 2.14) representing the intermediate
SCO ring, and (iii) r ∈ (9,∞) representing the outer unbounded SCO ring.
The bright orange rings at the center represent the image of the outer part
of the outer disk, which has a high surface brightness due to strong lensing
effect. The intermediate SCO ring (ii) has two images shown as two blue
circles that almost merge together. Both panels do not show the inner SCO
region (i) as it is invisible.

Figure 6.22: The same as on Fig. 6.21 with inclinations 60o and 80o.
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6.3 V (ϕ) = w sinh
(
κϕ2n

)
6.3.1 SCO distributions

Now, we proceed to the strongly nonlinear case. The one of the main distinc-
tion from the previous case lies in the existence of the spherical singularity
at some specific value of r = rs > 0. Taking into account the asymptotic
behavior of α(r) near the SS and at spatial infinity, we obtain

Ueff ∼ eα0

r2s
, r → rs + 0, Ueff → S, r → ∞. (6.23)

Thus, we have a finite-height potential barrier near the singularity. After
repeating the consideration used in the previous section, we found at least
four qualitatively distinct types of SCOD, which are summarized in Tab. 6.2.

Type rstable runstable Photon sphere

U
(−)
1 (r1,∞) (rs, r1) −

U
(+)
1 (r1,∞) (rs, r1) +
U2 (r1, r2) ∪ (r3,∞) (rs, r1) ∪ (r2, r3) −
U3 (r1, r2) ∪ (r3, r4) ∪ (r5,∞) (rs, r1) ∪ (r2, r3) ∪ (r4, r5) −

Table 6.2: Possible types of SCOD

They can be briefly described in the following way.

• U (+)
1 : This case is qualitatively similar to the distribution of SCOs in

Schwarzschild BH case, as well as to the U1 case from the previous sec-
tion.

• U (−)
1 : This case is similar to U

(+)
1 case, but it lacks a photon sphere. We

have one domain of unstable circular orbits with r ∈ (rs, r1(1)), and one
domain of stable circular orbits with r ∈ (r1(1),∞).

• U2: L̃
2(r) is a non-monotonic function. The effective potential Ueff , has

two minima, which correspond to two disjoint domains of SCOs. The
first one forms the inner disk with SCOs radii r ∈ (r1(2), r2(2)) and second
one forms the outer disk with r ∈ (r3(2),∞). We have UCOs with radii
r ∈ (rs, r1(2)) ∪ (r2(2), r3(2)).

• U3: L̃
2(r) is a non-monotonic function and the effective potential Ueff can

have three minima and two maxima, which relate to three disjoint SCOs
regions with radii r ∈ (0, r1(3)), (r2(3), r3(3)),(r4(3),∞). These regions are
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separated by two domains of the unstable orbits with radii r ∈ (rs, r1) ∪
(r3(3), r4(3)). The typical example of L̃ is shown in Fig. 6.23 (a).

6 . 0 6 . 5 7 . 0 7 . 5
0

1

2

3

4

5

r 1 ( 1 )

r 1 ( 1 ) r 3 ( 2 )

r 2 ( 2 )

r 1 ( 2 )

r 5 ( 3 )

r 4 ( 3 )

r 3 ( 3 )r 2 ( 3 )

U 2

r 1 ( 3 )

U 2U 2

r b/M

r

U ( - )1U ( + )1

r s

U 3

Figure 6.23: Typical behaviour of L̃ for configuration with U3 SCOD type.

In Figs. 6.23 – 6.26 we present the typical dependencies of the bifurcation
radii rb. We also found the domains of parameters, where this cases can be
realized, they are shown in Fig. 6.27 for various values of M , Q, n and κ.

We can observe a few significant features in the SCODs and differences
between the current case, FJNW, and wϕ2n cases. The first one notable
feature is the constant presence of a ring of UCOs with radii (rs, r1(T )) near
the singularity. This UCO ring distinguishes the current situation from the
FJNW and wϕ2n cases. The second one feature is related to the bounded size
of the U2 domain, similar behavior observed in the FJNW case with the S2

domain. As the parameter κ increases, the size of the U2 domain decreases.
This dependence on κ has a significant impact on the sizes of the parameters
domains. Furthermore, the U3 case, similar to the S3 case. However, we did
not find examples with the U3 case for the parameter values approximately
around M ∼ 1 and Q ∼ 1.

Similarly to the previous consideration, we can briefly describe behaviour
of the biffurcation radii rb for the U3 case and underline additional difference
from S3 case.

For instance, if we fix M,κ, then we can define a sequence of critical values
of n, denoted as n∗1 < n∗2, n

∗
3 < n∗4 < n∗5, with the following characteristics.

For 2 < n < n∗1, there are two disjointed branches (represented by two solid
curves in Fig. 6.25 (a, n = 3). The first one is bounded from below and the
second represent a closed curve with a finite length. At some n = n∗1, this
branches connect at some Q = Q∗ and reshape into one continues curve of
complicated form (n = 4).

For n∗1 < n < n∗2, the curve starts deforming, and the point which cor-
responds to the maximal value of the right part of the curve starts moving
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away to the right until some n = n∗2 and then comes back.
At n = n∗3, similarly to S3, an additional wedge-like feature in the left

part of the curve (Q < Q∗) appears, which leads to the appearance of an
additional ring of SCOs with r ∈ (r2(3), r3(3)) (see Fig. 6.23 (b)).

At n = n∗5, a new reconnection occurs, and the curve transits back into
its previous form. Increasing n leads to the disappearance of the second
part(closed curve). This is represented in Fig. 6.27, where we can observe
the bounded U2 domain.
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Figure 6.24: Boundary radii rb/M of SCO regions as functions of Q for
several values of M . They corresponds situations after first reconnection (a)
and after the second one (b).

0 1 2 3 4 5 6 7
0

2

4

6

r b/M

 n = 3
 n = 4
 n = 4 . 6
 F J N W
 S c h w a r z c h i l d

0 1 2 3 4 5 6 7 8 9
Q

M = 3 ,  � = 6

 n = 4 . 8
 n = 5 . 5
 n = 7
 F J N W
 S c h w a r z c h i l d

Figure 6.25: Boundary radii rb/M of SCO regions as functions of Q for several
values of n.

109



Chapter 6

0 5 1 0 1 5 2 0 2 5 3 0
0 . 1

1

1 0

1 0 0

M = 1 ,  Q = 1

r b/M

�

 n = 2 . 5
 n = 3
 n = 4

0 1 2 3 4 5
0

1

2

3

4

M = 1 5 ,  n = 6

�

 Q = 8 . 2
 Q = 8 . 4 5
 Q = 8 . 4 7

Figure 6.26: Boundary radii rb/M of SCO regions as functions of κ for several
values of n.
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Photon circular orbits
The dependencies of the radii rph of the photon orbits are quite similar to

the case from the previous section. Some typical examples are shown in Fig.
6.28. In all cases, rph < 3M

Figure 6.28: Boundary radii of the photon orbits rph of SCO regions as
functions of Q and M for several values of M and Q, respectively.

6.4 Special exact solutions family

6.4.1 SCO distributions

The effective potential Ueff in quasi-global coordinates (4.9) is given by the
expression

Ueff(x, L, S) = A(r)

(
S +

L2

R2(x)

)
, (6.24)

The behavior of the effective potential near the center (x = x0) and the
horizon of the black hole (x = xh) is

Ueff ∼ 2(x0 − 3M)L2

3R′(x0)R3(x)
, x→ x0, Ueff → 0, x→ xh, Ueff → S, x→ ∞.

(6.25)

In the NS case, the Ueff → ∞ for x→ x0, which corresponds to presence of a
repulsive barrier at the singularity, which reflect falling particles. In the BH
case, particles can reach the horizon.

Similar to the previous cases, we consider the function L̃2.

L̃2(x) = R2(x)

[
R(x)R′(x)A(x)

x− 3M
− 1

]
,
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and its derivatives

F (x) =
d

dx
L̃2 =

f ′(x)A(x)

2R2(x)
− 4R(x)R′(x) , (6.26)

where f(x) ≡ 2R5(x)R′(x)/(x− 3M).
Near the center, for x→ x0 + 0, we have the following asymptotic relation

L̃2 ∼ −1

3
r2(x). (6.27)

For x→ ∞, using (4.10), we obtain

L̃2(x) ∼M x, F (x) ∼M. (6.28)

Then, if x0 ≥ 3M , then L̃2 changes sign at some point xm and L̃2 → +∞ for
x → ∞. Therefore, there exists at least one root of L̃2 = L2, where L is the
value of angular momentum.

If x0 < 3M , then the radius of the horizon xh is always xh < 3M and
L̃2(x) → ±∞ for x → 3M ± 0. For x ∈ (xh, xph = 3M), we have that

L̃2(x) < 0, which means that there are no circular orbits. On other hand, it
is evident that there exists at least one minimum of L̃2(x) for x ∈ (3M,∞).

Also, we need to distinguish two different types of bifurcation radii. Specif-
ically,

Type I: Bifurcation radii of SCOD are defined by the roots xb of F (x) = 0.
Type II: The bifurcation radius xm is defined by a root of L̃2(x) = 0.

This case corresponds to a minimum of Ueff (or A(x)) with L = 0 and can be
thought of as an “antigravity” sphere [39,41], which demonstrate the repulsive
character of gravity. In this case stationary particles can hang at rest over
the singularity at this sphere. Below x < xm, we have NECO domain.

For numerical consideration it is convenient to choose M = 1/6. Then we
have the BH for x0 < 0.5 and the NS for x0 ≥ 0.5, respectively. We found
four possible cases, which are presented in the Tab. 6.3 and discussed in
details below.

Type rstable runstable Photon sphere
U1 BH (x1,∞) (xph, x1) +
U2 BH (x1, x2) ∪ (x3,∞) (xph, x1) ∪ (x2, x3) +
S1 NS (xm,∞) no −
S2 NS (xm, x1) ∪ (r3,∞) (x2, r3) −

Table 6.3: Possible types of SCOD.

The results are shown in Fig. 6.29–6.32. Fig. 6.29 illustrates the effective
potentials for different values of L, Fig. 6.30 illustrates typical examples of L̃2
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Figure 6.29: The typical examples of Ueff in presence of two minima for
certain values of L (solid lines) in the BH case (left panel) and in the NS case
(right panel) respectively.

for various values of N . The dependence of the boundary radii rb = R(xb) on
N and x0 are shown in Figs. 6.31 and 6.32 (left panel). Additionally, in Fig.
6.32 demonstrated the parameter domains where disjoint SCODs exist. Also
we need to note that in the plots we transform our quasi-global coordinate
xb to rb (curvature coordinates).

Figure 6.30: The typical examples of L̃2 in the BH case (left panel) and in
the NS case (right panel) respectively. In the NS case, L̃2 < 0 in the small
domain near the center.

Let us first consider the BH case (x0 < 0.5). In this case, Ueff is equal to
zero at the horizon and increases in the vicinity of xh.

For the U1 case, which corresponds to sufficiently small x0, the correspond-
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Figure 6.31: Boundary radii of SCO regions as a functions of N . (a) The BH
case. In the the case of x0 = 0.45 (solid) critical values of N are N1 = 4.3,
N2 = 6.1. (b) The NS case, the lower curves corresponds to rm (type II) radii.
Two upper curves correspond to type I radii. For example, for x0 = 0.6, we
have N1 = 4.85.

ing dependence rb (below we use rb = R(xb)) is a single-valued. We have only
one SCO domain with radii r ∈ (r1,∞), similar to the case of the standard
Schwarzschild BH case

In the U2 case, which occurs for larger values of x0, the dependence of rb
becomes three-valued between some N1 and N2. For N1 < N < N2, there
are two SCO domains with radii rb ∈ (r1(N), r2(N)) ∪ (r3(N),∞) and two
domains of UCO with radii r ∈ (3M, r1(N)) ∪ (r2(N), r3(N)).

For N > N2, there is again only one root r3(N) of F (x) = 0. Also, it is
interesting to note that rb → 6M for N → ∞.

In the NS case (x0 ≥ 0.5), we also have two possibilities. From Fig. 6.32
(right panel), in the S1 case, one can see that there exists N1 such that for
N < N1, we have only one SCO domain with radii r ∈ (rm,∞). The rm
corresponds to the radius of the “antigravity” sphere.

In the S2 case, for N > N1, two additional curves r2 and r3 appear. We
have two disjoint SCO domains with r ∈ (rm, r1) ∪ (r2,∞) and one domain
of UCO with r ∈ (r1, r2).
Photon circular orbits
The effective potential Ueff in quasi-global coordinates (6.5) for photons (S =
0) has following form

Ueff(x, L, S) = A(r)
L2

R2(x)
,

From the condition U ′
eff = 0 and (4.15), it can be seen that the radius of the
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Figure 6.32: Left panel: Typical dependencies of boundary radii rb as func-
tions of x0 for different values of N . The curves reshape around the critical
value N(B) = 4.87 (see right panel). The lower parts of the curves correspond
to the radii rm (type II) for x0 ≥ 0.5, while the other parts correspond to type
I. Right panel: The gray region shows the parameters space in which disjoint
ring-like regions of SCO exist. The cusp-point A is located at N(A) = 3.77,
x0(A) = 0.40, while the maximum on the lower branch of the solid curve is
at N(B) = 4.87, x0(B) = 0.66. The vertical dashed line separates the BH
and NS cases.

photon sphere determined by

2x− 6M = 0, (6.29)

This leads to xph = 3M , and this expression doesn’t depend on any param-
eters or on the partial choice of R(x) in quasi-global coordinates. Also, it is
evident that the photon sphere only exists when x0 < 3M , i.e., in the BH
case.

However, the corresponding radius rph in curvature coordinates, rph =
R(xph), depends on N and x0. This is illustrated in Fig. 6.33.

6.4.2 Keplerian AD images

We obtained Keplerian AD images for various inclination angles for the U1,
U2, S1, and S2 cases. These images are shown in Figs. 6.34–6.41, where
colors correspond to the normalized frequency shift (6.18).

As in previous cases, the common feature of all of these images is the
presence of a dark spot in the center, which resembles the shadow of an
ordinary black hole in the NS case. In the U1 and U2 cases, the dark spot
corresponds to the the photon sphere, which is shown by the dashed white
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Figure 6.33: The photon orbits radii in Schwarzschild-like coordinates as a
functions of (a) N and (b) x0.

line. In the S1 and S2 cases, we also have a dark spot in the center, but it
results from the repulsive nature of the naked singularity.

We need to note that for small inclination angles, the S1 case can look
similar to the U2 case with the same inclination due to the existing of the
inner ring, which corresponds to the outer edge of the disk. For large enough
inclination, they can be recognized by the presence or absence of the crescent-
like dark spot.
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Figure 6.34: Direct Keplerian disk images for the U1 type (x0 = 0.48, N =
15) in full face and for inclination i = 30o. The dashed white line corresponds
to the image of the photon sphere at rph/M = 1.37. The ISCO located at
rb/M = 6.03

Figure 6.35: The same as in Fig. 6.34 but for 60◦ and 80◦ inclination angles.
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Figure 6.36: Direct Keplerian AD images for the U2 type (x0 = 0.48, N = 6)
in full face and for inclination i = 30◦. The dashed white line corresponds
to the image of the photon sphere at rph/M = 0.65. The SCOs form two
disjoint domain with radii of the inner part r/M ∈ (0.89, 3.54) and for the
outer part r ∈ (6.88,∞).

Figure 6.37: The same as in Fig. 6.36 but for 60◦ and 80◦ inclination angles.
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Figure 6.38: Direct Keplerian AD images for the S1 type (x0 = 0.6, N = 3)
in full face and for inclination i = 30o. The dark spot in the center appears
due to the repulsive character of the singularity.

Figure 6.39: The same as in Fig. 6.38 but for 60◦ and 80◦ inclination angles.
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Figure 6.40: Direct Keplerian AD images for the S2 type (x0 = 0.6, N = 8) in
full face and for inclination i = 30◦. The SCOs form two disjoint domain with
radii of the inner part r/M ∈ (0.84, 4.21) and for the outer part r ∈ (7.62,∞).

Figure 6.41: The same as in Fig. 6.40 but for 60◦ and 80◦ inclination angles.
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Conclusions

In this thesis we presented a detailed consideration of both qualitative and
quantitative properties of static spherically-symmetric solutions of the Ein-
stein equations with self-interacting scalar fields. Our focus was placed on
solutions with naked singularities.

In Chapter 2, we studied the qualitative properties of the solutions of
the Einstein equations with real static self-interacting N scalar fields. We
assumed that the self-interaction potential is positive-defined, monotonic,
and exponentially-bounded. Under these conditions, we provided a rigorous
proof that the corresponding solutions will be regular up to r = 0. Also we
found the rigorous form of asymptotic solutions near the singularity. Then
a specific case of a self-interaction potential in the form V (ϕ) = wϕ2n was
numerically studied to illustrate our results. Further, we demonstrated the
convergence to the unique solution of the iterative procedure of solving the
Einstein–SF equations with inital conditions in form of asymptotic solutions
at spatial infinity.

In Chapter 3 we provided some examples, where spherical singularities
arise at r = rs ̸= 0 in the curvature coordinates. First, we demonstrated the
possibility of such solutions for static spherically-symmetric scalar field with
a self-interaction potential V (ϕ) = wϕ2n on the Minkowski background. This
outcome does not contradict to the results of Chapter 2, where such singu-
larities were suppressed by gravity, but shows that these can be violated in
a more general case. In the section 3.2, we relinquished the assumption of
exponential boundedness for V (ϕ) and constructed an exact example where
the spherical singularities can arise in the solutions to the Einstein-SF equa-
tions. We derived the asymptotical solutions near the singularity and then
confirmed it numerically. Additionally, we explored the dependencies of the
singularity radii rs on different configuration parameters.

In Chapter 3, we considered some exact solutions of the Einstein-SF equa-
tions. We found a generalization of the Fisher-Janis-Newmann-Winicour so-
lution in the case of N scalar fields. The form of the metric is absolutely the
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same as in the case of a single scalar field, but now the scalar charge is equal
to the sum of scalar charges of the separate scalar fields. In Section 4.2, we
constructed an exact “toy-model” solution which represents a two-parameter
family, which includes naked singularities and hairy black holes.

In Chapter 5, we studied the stability of the previously considered solutions
against odd-parity gravitational perturbations and also found the fundamen-
tal quasi-normal modes frequencies. We demonstrated that these solutions
are stable. Our numerical study in case of the scalar field with the power-law
self-interaction potential shows that the fundamental QNMs frequencies dif-
fer from the standard Schwarzschild black hole case. The same situation is
in case of the exponentially unbounded self-interaction potentials. However,
they can be close to corresponding values in the linear massless SF case, but
without converging to them for lower values of l.

We studied special exact examples of the scalar field potential in a form
of Mexican hat, describing black holes that can be negative near the hori-
zon. However, we did not find any exponentially growing modes in the time-
domain profiles. For these examples, the the fundamental quasinormal mode
frequencies have an intriguing behaviour corresponding to the occurrence of
discontinuities in the ω-trajectories in the complex plane, both in the case of
a black hole and a naked singularity.

In Section 5.5, we revisited the stability of the test fields in the background
of a Kehagias-Sfetsos naked singularity. Previous studies by other authors
contained erroneous statements, and required a revision of their results. In
this regard, we demonstrated absence of exponentially growing modes in time-
domain profiles for l > 1 and found correct values for the fundamental QNM
frequencies for scalar, vector, and Dirac test fields.

Finally, in Chapter 6, we studied in details particles motion in vicinity
of previously considered solutions. Mainly we were interested in considering
properties of the distribution of stable circular orbits around the correspond-
ing configurations and images of the accretion disk for a distant observer.
For all cases we found possible types of stable circular orbit distributions and
domains of parameters where they are realized.

We also demonstrated that the presence of self-interaction can lead to a
new type of circular orbit distributions, which is absent in the linear massless
scalar field case. We built the Keplerian disk images in the plane of a distant
observer and demonstrated the possibility to mimic the black holes shadows.
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classical black holes. Physical Review D, 105(10), may 2022.

[140] Cecilia Chirenti, Alberto Saa, and Jozef Skákala. Quasinormal modes
for the scattering on a naked Reissner-Nordström singularity. Phys.
Rev. D, 86(12):124008, December 2012.
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