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Supplementary Note 1: Definition of jeff states

In general, the relativistic basis of d block electrons consists
of j = {5/2, 3/2} states. However, in an octahedral envi-
ronment, due to crystal field splitting, the eg = {x2-y2, z2}
orbitals may be high enough in energy, such that a descrip-
tion in terms of jeff = {3/2, 1/2} states is more appropri-
ate [1, 2]. These states are defined by the following combi-
nation of t2g = {xy , xz, yz} orbitals

|1/2, 1/2⟩eff =
1√
3
(−|xy , ↑⟩ − i |xz, ↓⟩ − |yz, ↓⟩), (1)

|1/2,−1/2⟩eff =
1√
3
(|xy , ↓⟩+ i |xz, ↑⟩ − |yz, ↑⟩), (2)

|3/2, 3/2⟩eff =
1√
2
(−i |xz, ↑⟩ − |yz, ↑⟩), (3)

|3/2, 1/2⟩eff =
1√
6
(−i |xz, ↓⟩ − |yz, ↓⟩+ 2|xy , ↑⟩), (4)

|3/2,−1/2⟩eff =
1√
6
(−i |xz, ↑⟩+ |yz, ↑⟩+ 2|xy , ↓⟩), (5)

|3/2,−3/2⟩eff =
1√
2
(−i |xz, ↓⟩+ |yz, ↓⟩). (6)

Supplementary Note 2: Bilinear Hamiltonian in the
crystallographic reference frame

In the main text the bilinear Hamiltonian is given in cubic co-
ordinates (shown in Fig. 1b of the main text). Another pos-
sible spin coordinate frame, dubbed crystallographic frame,
is the one in which spin coordinates (S̃x , S̃y , S̃z) co-align
with crystallographic (a, b∗, c) directions, as used e.g. in
Ref. [3] (and labelled as “cryst” in the following). In the
latter framework, focusing on nearest-neighbor bonds, for
which anisotropic interactions are relevant, the Hamiltonian
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Supplementary Figure 1. Finite-size clusters used in exact
diagonalization calculations. Dotted lines represent periodic
boundaries. Respective number of sites is denoted within each
cluster.

reads

Hcryst2 =
∑
⟨i ,j⟩

{Jcryst(S̃xi S̃xj + S̃
y
i S̃
y
j + ∆

crystS̃zi S̃
z
j )

+ 2Jcryst±,± [(S̃
x
i S̃
x
j − S̃

y
i S̃
y
j )cα − (S̃

x
i S̃
y
j + S̃

y
i S̃
x
j )sα]

+ Jcrystz,± [(S̃
y
i S̃
z
j + S̃

z
i S̃
y
j )cα − (S̃

x
i S̃
z
j + S̃

z
i S̃
x
j )sα]},

(7)

where cα = cos(ϕα), sα = sin(ϕα) and ϕα = (0,
2π
3 ,−

2π
3 )

for X1-, Y1- and Z1-bonds, respectively [3]. In the
crystallographic reference frame, the nearest-neighbor
couplings of NaRuO2 are (Jcryst,∆cryst, Jcryst±,± , J

cryst
z,± ) =

(−5.97,−0.39,−2.59,−1.65) meV, where we note the un-
usual negative sign of the XXZ anisotropy parameter ∆cryst.
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Supplementary Figure 2. Phases of the magnetic bilinear
Hamiltonian around the ab-initio estimate for NaRuO2 Phase
diagram of the (in-plane) bilinear Hamiltonian H2 when tuning
a the nearest-neighbors interactions J1 and K1, b the longer-
range couplings J2 and J3. The remaining parameters are fixed
and equal to the ones given in Fig. 1d of the main text. The grey
cross indicates the ab-initio derived Hamiltonian for NaRuO2.
The colored circles show the ground state order obtained by ED
calculations (on a coarse finite grid of values, cluster 24A) ac-
cording to the legend on the right, while the dashed lines mark
the classical phase boundaries. The D-Stripe (Double-Stripe)
order is depicted on the bottom right of the figure (the magnetic
unit cell is marked with dashed lines).

Supplementary Note 3: Details of Exact Diagonaliza-
tion calculations
In Supplementary Figure 1 we show the various clusters em-
ployed in exact diagonalization (ED) calculations. The neu-
tron scattering intensity shown in Fig. 3b of the main text
combines results from different momenta allowed on differ-
ent clusters. For momenta that exist on multiple clusters,
the averaged intensity from all such clusters is shown.

Supplementary Note 4: Perturbations to magnetic
Hamiltonian
As discussed in the main text, the magnetic Hamiltonian
derived in this study yields a ferromagnetic (FM) ordered
ground state. However, different experimental samples
might have certain variations in their lattice structure [4],
changing their magnetic couplings. Furthermore, the ab-
initio calculation of the magnetic Hamiltonian depends on
input parameters and approximations to some degree. It is
therefore interesting to consider how stable the FM ground
state of the model is against modest perturbations. We here
consider for simplicity only our bilinear modelH2 with intra-
plane interactions. This precise model is not captured by
existing phase diagrams [3, 5] due to the presence of finite
Γ′, negative ∆cryst (see Supplementary Note 2), and finite
further-neighbor J2, J3 interactions. We therefore perform
various classical energy minimization and ED calculations
perturbing around the ab-initio derived Hamiltonian. Two
phase diagrams are shown in Supplementary Figure 2, in
which either K1 and J1, or J2 and J3, are tuned around the
NaRuO2 in-plane bilinear model (marked by the white cir-

cle). In all cases, changes of multiple meV to the parameters
in the Hamiltonian are needed to destabilize the ferromag-
netic state. This amount of variation exceeds the typical
degree of uncertainty expected in the ab-initio calculations,
supporting the assessment of a pristine NaRuO2 compound
to be ferromagnetic. Interestingly, we note that a “double-
stripe” (“D-Stripe” in Supplementary Figure 2) magnetic
order is relatively proximate to the NaRuO2 model. The
“double-stripe” order resembles the “stripe” phase, but with
a doubled unit cell size, as shown at the bottom right of
Supplementary Figure 2.
We also consider slight variations in the U and JH (Hund’s
coupling) parameters away from the cRPA-computed val-
ues, which are used in the projED derivation for the mag-
netic Hamiltonians. However, modest variations of these
parameters (e.g., ±0.1 eV for JH and ±1 eV for U) still lead
to magnetic Hamiltonians with a FM ground state. With
decreasing U, the (anisotropic) ring exchange interaction
tends to increase, however not enough to destabilize the
FM order for realistic U and JH values.

Supplementary Note 5: Quality of total energy map-
ping analysis
To quantify the quality of the total energy mapping analysis
we consider the difference between the energy of the DFT
(GGA+U) calculation and the one provided by the fitting
magnetic model. The result is shown in Supplementary Fig-
ure 3 for each configuration (labelled by a number). Small
deviations between the model calculations and DFT calcu-
lations are expected to be accounted for by longer range
interactions which are not considered in the model. The
small total energy difference (0.049meV/Ru per configu-
ration) suggests that all relevant exchange couplings are
included in the magnetic model.
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Supplementary Figure 3. Quality of the total energy mapping
analysis. The difference between the total DFT (GGA+U) en-
ergy and the one from the magnetic model is shown as a function
of the different magnetic configurations, labelled by an integer
number.
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