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REACTION-DIFFUSION MODEL

To explain the stripe pattern of β-RuCl3, we consider a reaction-diffusion model describ-

ing the activator-substrate system illustrated in Fig. 4a. Let a and s be the concentration

fields of activator (crystalline β-RuCl3) and substrate (amorphous a-Ru-Cl), respectively.

The important reaction is that a unit constituting the amorphous becomes a part of the

crystal at the rate proportional to the concentration of the crystal. This auto-catalytic

reaction is suppressed by the depletion of the substrate when its diffusion constant Ds is

much larger than activator’s diffusion Da. The mechanism leads to the Turing instability of

a spatially homogeneous state. As one example, the equations for a and s are written as

∂ta = sa− a− 1 +Da(∂
2
x + ∂2y)a, (S1)

∂ts = −sa+ 2 +Ds(∂
2
x + ∂2y)s, (S2)

where we set Da = 1 and Ds = 20 to satisfy the condition Ds � Da. The last condition

seems reasonable because the particle hopping rate in the crystalline β-RuCl3 is much smaller

than that in amorphous a-Ru-Cl. Here, the isotropic diffusion is assumed, for simplicity. It

should be noted that the form of Eqs. (S1) and (S2) was introduced by Turing.

By a standard method, it is easily confirmed that the spatially homogeneous state (a, s) =

(1, 2) is unstable against periodic perturbations. We then numerically solve Eqs. (S1)

and (S2) with the boundary conditions n∇a = n∇s = 0, where n is the unit vector

perpendicular to boundaries. We choose an initial condition randomly near the homogeneous

state. Furthermore, in solving the equations, we impose the following additional rule: if the

concentration a is zero and the increasing rate of a is negative, a remains zero. This special

rule was also mentioned in the paper by Turing.

An example of the resulting stationary pattern is shown in Extended Data Fig 6, which

shows an irregular stripe pattern. Also, in Supplementary Movie 2, we show the simulated

nucleation and propagation of wires. Since thin film growth usually occurs from singularities

such as clusters of impurities or steps, the graphite substrate steps are considered to be the

nucleus. Considering this, in this simulation, we use Eqs. (S1) and (S2) as well, but assume

that the initial concentration of a is dense along the left edge of the figure (indicated by

warm color). The movie shows that the ordered wire pattern is spontaneously formed.

Although this simulation based on simple assumptions should be scrutinized more closely,



it captures an essential feature of the observed patterns.

SPIRAL FORMATION OF STRIPES

Figure 3d shows a spiral of stripes, which is quite unique even in reaction-diffusion sys-

tems. Let us consider a model equation that exhibits such a pattern. First, when the Turing

instability occurs, a plane-wave perturbation with wavenumber vector k grows at the rate

λ(k). The simplest example of λ(k) is given by

λ(k) = r − (|k|2 − k2c )2, (S3)

where r = 0 corresponds to the onset of instability and kc is the critical wavenumber at

r = 0. The exponential growth due to the instability is saturated by a non-linear effect,

while its detailed mechanism depends on the system under study. Here, we assume that the

activator is described by a two-component field associated with a crystal structure. Let W

be the complex field corresponding to the two-component field. The equation for W is then

written as

∂tW = (1− (∂2x + ∂2y + 1)2)W − (1 + ic)|W |2W, (S4)

where we have set (r, kc) = (1, 1) in Eq. (S3), and the last term represents non-linear

saturation. Equation (S4) with c = 0 is called the Swift-Hohenberg equation, which describes

periodic pattern formations in many systems including the Rayleigh-Bénard convection. The

important property of the Swift-Hohenberg equation is that W evolves with decreasing a

free energy (or a potential function). It has been known that spirals are never observed in

such potential systems. Now, for the case c 6= 0, the system does not possess a potential,

and thus spirals may be formed. Supplementary Movie 1 displays an example of the time

evolution of the real part of W for c = 1.

Supplementary Movie 1 An example of the time evolution of the real part of W for

c = 1. See section Spiral formation of stripes for details.

Supplementary Movie 2 An example of the time evolution of a in Eqs. (S1) and (S2).

See section Reaction-diffusion model for details.
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FIG. S1. Topographic images of amorphous and HOPG. A, Typical atomic-scale image

of a-Ru-Cl, which fills the areas between the wires (dark blue areas in Fig. 1A and Fig. 1B taken

at 3 V and 20 pA. No periodic structure is seen. B, Atomic-scale image of HOPG surface. The

orange hexagon and arrow indicate the carbon honeycomb lattice and the chain direction of β-

RuCl3. . The setpoint conditions are 1 V and 100 pA.
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FIG. S2. The raw topographic image of the spiral pattern shown in Fig. 6D.
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FIG. S3. Atomic wires with different widths. (left) Topographic images of atomic wires with

two- (top) and four- (bottom) unit-cell widths, which are grown at 380 °C and 400 °C, respectively.

(right) The height profiles along the lines shown in the left panels. The base line is set to the

HOPG surface.

1 0 1 5 2 0 2 5 3 0 3 5 4 00

1 0 0

2 0 0

Int
en

sity
(a.

u.)

2 θ ( d e g r e e )

β - R u C l 3 ( 1 0 0 )

H O P G

FIG. S4. X-ray diffraction pattern of a β-RuCl3 thin film. A peak at 2θ=16.7° corresponds

to the (100) plane of β-RuCl3. The thickness of the film is less than 100 nm.
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FIG. S5. Simulated Turing pattern. See SI for details. The simulated spiral pattern is also

shown in Supplementary Movie 1.
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FIG. S6. A spiral pattern with multiple windings. A, The same image as shown in Fig. 6C.

B, The same image as A with a different color for each lap of the spiral to make the spiral pattern

easier to see.
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