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Abstract

A newly developed observable for correlations between symmetry planes, which characterize the
direction of the anisotropic emission of produced particles, is measured in Pb–Pb collisions at√

sNN = 2.76 TeV with ALICE. This so-called Gaussian Estimator allows for the first time the
study of these quantities without the influence of correlations between different flow amplitudes.
The centrality dependence of various correlations between two, three and four symmetry planes
is presented. The ordering of magnitude between these symmetry plane correlations is discussed
and the results of the Gaussian Estimator are compared with measurements of previously used
estimators. The results utilizing the new estimator lead to significantly smaller correlations than
reported by studies using the Scalar Product method. Furthermore, the obtained symmetry plane
correlations are compared to state-of-the-art hydrodynamic model calculations for the evolution
of heavy-ion collisions. While the model predictions provide a qualitative description of the data,
quantitative agreement is not always observed, particularly for correlators with significant non-linear
response of the medium to initial state anisotropies of the collision system. As these results provide
unique and independent information, their usage in future Bayesian analysis can further constrain
our knowledge on the properties of the QCD matter produced in ultrarelativistic heavy-ion collisions.
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1 Introduction

One of the most important discoveries in the physics of heavy-ion collisions at ultrarelativistic energies is
the observation of a deconfined state of nuclear matter dubbed quark–gluon plasma (QGP). This extreme
state is produced during the heavy-ion collision evolution, and its properties resemble the properties
of a perfect liquid. Unprecedentedly large data sets collected at the LHC enable the most quantitative
description of the QGP to date. Given the complexity of the system produced in heavy-ion collisions,
an important program in the field is the development of observables that provide new and independent
information inaccessible with previous measurements [1–8].

The intersecting volume of two heavy ions is anisotropic in coordinate space, either due to collision ge-
ometry (particularly in non-central collisions with large values of impact parameter) or due to fluctuations
of positions of participating nucleons (most significant in central head-on collisions). Anisotropic pres-
sure gradients, which develop in this volume containing the strongly interacting nuclear matter, transfer
the initial-state spatial anisotropies into final-state anisotropies in momentum space. This phenomenon is
known as anisotropic flow and it is a sensitive probe of all stages in the heavy-ion collision evolution [9].
Anisotropic flow measurements are used to constrain the transport properties of the QGP, for instance
ratios of shear and bulk viscosities to entropy density [4, 7, 10–13]. The anisotropic emission of particles
in the plane transverse to the beam direction is quantified with amplitudes vn and symmetry planes Ψn by
using the Fourier series decomposition of the azimuthal angle (ϕ) distribution of produced particles [14]

f (ϕ) =
1

2π

[
1+2

∞

∑
n=1

vn cos[n(ϕ−Ψn)]

]
. (1)

A detailed discussion of properties of vn and Ψn can be found in Ref. [15]. The symmetry plane Ψn has
a simple geometrical interpretation when the anisotropic distribution can be parameterized only with one
harmonic n, since then it can be shown that f (Ψn+ϕ) = f (Ψn−ϕ), i.e. symmetry plane Ψn is the plane
for which it is equally probable for a particle to be emitted above or below it.

Historically, the emphasis was on studying the amplitudes vn, but the symmetry planes also carry a very
important information about different stages in heavy-ion collision evolution. Unlike the flow ampli-
tudes vn, a single symmetry plane Ψn cannot be estimated directly in an experiment using correlation
techniques — the simplest available observables are symmetry plane correlations (SPC), for instance
〈cos4(Ψ4−Ψ2)〉 [15, 16]. Such correlations are the subject of this study.

In the early anisotropic flow analyses, the goal was to measure vn with respect to the reaction plane (a
plane spanned by the beam axis and impact parameter vector), and it was assumed that all symmetry
planes are approximately the same and equal to the orientation of the reaction plane. Therefore, the first
flow measurements were exclusively of flow amplitudes vn. The first experimental results for SPC can
be traced back to the E877 experiment [17]. These initial measurements were performed by the standard
event plane method with the subevent technique [18]. The first measurements of SPC involving two sym-
metry planes in the RHIC era were obtained by PHENIX in Refs. [19, 20]. An alternative approach was
pursued by NA49 and STAR using 3-particle mixed-harmonic correlations, which by definition have
contributions from SPC [21, 22]. In the first flow studies at LHC energies, the ALICE Collaboration
demonstrated in Ref. [23] that the symmetry planes Ψ2 and Ψ3 fluctuate independently in all considered
centralities. Finally, the most detailed experimental results to date were published by the ATLAS Col-
laboration in Ref. [24], where also for the first time the strength of correlations among three symmetry
planes was presented. ATLAS systematically studied the centrality dependence of SPC both in the initial
and final state using the analysis technique from Refs. [16, 25]. It was concluded that SPC originate both
from correlated fluctuations in the initial geometry and from the non-linear mixing between different
flow harmonics in the final state. Subsequent experimental publications which used SPC to constrain the
details of the non-linear hydrodynamic response can be found in Refs. [26–30].
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In theoretical studies, SPC can be obtained directly both in coordinate and in momentum space [16, 24,
25, 31–38]. State-of-the-art modeling of heavy-ion collisions covers all stages of its evolution starting
from the initial conditions to the final free streaming of produced particles. The SPC in the initial state
can be obtained event-by-event directly from the underlying model of the collision geometry using for
instance energy density distribution or nucleon positions, while in the final state SPC are the event-by-
event output of the model used to describe all subsequent stages in the evolution. Therefore, in theoretical
studies it is not, in general, necessary to build an estimator for SPC from the azimuthal angles of final-
state particles, like it is done in an experiment. In order to ease the comparison between theoretical and
experimental results, azimuthal correlators were used to indirectly estimate SPC also in Refs. [10, 39–
44]. Other types of theoretical studies involving symmetry planes can be found in Refs. [45–50].

Several experimental difficulties associated with the SPC render their measurements particularly chal-
lenging. Even in the simplest realisation, it is necessary to construct non-trivial estimators for SPC to
resolve these issues. Unlike the flow amplitudes vn, each symmetry plane Ψn taken individually is not
invariant under rotations of the coordinate system in the laboratory frame in which azimuthal angles
are measured (see Eq. 1). Therefore, the simplest rotationally-invariant physical observable involving
symmetry planes is the difference of two symmetry planes. In an actual experiment such rotations are
unavoidable as a direct consequence of random event-by-event fluctuations of the direction of the impact
parameter vector. Only symmetry planes that are different, apart for trivial periodicity, carry independent
information, and therefore any dependence on periodicity must be removed from all SPC observables
by definition. The widely used technique to suppress systematic biases from short-range nonflow cor-
relations by introducing pseudorapidity gaps in the measured azimuthal correlators which are used to
estimate SPC is not applicable due to decorrelations of symmetry planes as a function of pseudorapid-
ity [50–56]. Moreover, it has been shown recently that the effect of flow magnitude correlations, which
have been either completely [24] or partially [27] neglected in the existing measurements, may over-
shadow the correlations of symmetry planes in the analysis with the Scalar Product (SP) method [15].
The new and improved estimator for SPC from Ref. [15], which overcomes these limitations, is intro-
duced next.

The starting point is the following relation between vn and Ψn, and multiparticle azimuthal correla-
tions [15, 39, 57]:

va1
n1
· · ·vak

nk
ei(a1n1Ψn1+···+aknkΨnk ) =

〈
ei(n1ϕ1+···+nlϕl)

〉
. (2)

In this equation, angular brackets indicate an average over the azimuthal angles of all distinct sets of l
particles measured in the same event.

The coefficients ai are positive integers which ensure that all harmonics ni and symmetry planes Ψni

are unique on the left-hand side in the above expression. These coefficients can be understood in the
following way: ai counts how many times a harmonic ni appears in the azimuthal correlator on the
right-hand side of Eq. (2) (harmonics with positive and negative signs are counted separately). The total
number of particles, i.e. the order of the multiparticle azimuthal correlator, is given by ∑i ai. The index
k on the left-hand side labels only unique harmonics in the original set n1,n2, . . . ,nl , therefore k ≤ l. As
an example, for the correlator

〈
ei(2ϕ1−ϕ2−ϕ3)

〉
it follows that n1 = 2,a1 = 1,n2 = n3 = −1,a2 = 2. The

advantage of this generalized notation is that now ni and ai decouple naturally either into a subscript
or into an exponent when associated with flow amplitudes vni in Eq. (2), which enables their distinct
physical interpretation. Finally, solely from the definition of the Fourier series in Eq. (1) one can prove
that v−n = vn and Ψ−n = Ψn, which is used in the rest of the paper. Due to this property, the final a
coefficient for harmonic n in Eq. (2) is a sum an +a−n.

Taking into account all these technical considerations, the simplest definition of SPC observables is
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provided by the following expression [24, 25, 39]:

〈
ei(a1n1Ψn1+···+aknkΨnk )

〉
,

k

∑
i

aini = 0 , (3)

where all ai are positive and all ni are unique integers. Angular brackets 〈 〉 indicate here an average
over all events. Defined this way, SPC observables are rotationally invariant and therefore invariant with
respect to random event-by-event fluctuations of the impact parameter vector, while the periodicity of
each individual symmetry plane is accounted for by definition. Experimentally, Eq. (2) is used as a
starting point for an estimator for SPC. However, to isolate the true SPC part, the prefactor va1

n1
· · ·vak

nk

has to be divided out. The importance of this technical detail was neglected in all previously used SPC
estimators.

The new and improved SPC estimator, named the Gaussian Estimator (GE), was developed recently in
Ref. [15]. Its key improvement amounts to using the following expression to estimate SPC:

〈cos(a1n1Ψn1 + · · ·+aknkΨnk)〉GE =

√
π

4
〈va1

n1
· · · vak

nk
cos(a1n1Ψn1 + · · ·+aknkΨnk)〉√
〈v2a1

n1 · · · v2ak
nk 〉

, (4)

which was derived by approximating multi-harmonic flow fluctuations with a two-dimensional Gaussian
distribution. Both the numerator and denominator on the right-hand side in the above expression can
be estimated by using Eq. (2) with suitably chosen harmonics ni. Further explanations of the techni-
cal details of the GE based on the example 〈cos [4(Ψ4−Ψ2)]〉 are provided in Appendix A. The main
improvement of this new estimator can be found in the denominator where the GE has the joined multi-
variate moment of different flow amplitudes, 〈v2a1

n1
· · · v2ak

nk
〉. This is in contrast to the previously used SP

estimator, defined as [43]

〈cos(a1n1Ψn1 + · · ·+aknkΨnk)〉SP =
〈va1

n1
· · · vak

nk
cos(a1n1Ψn1 + · · ·+aknkΨnk)〉√
〈v2a1

n1 〉 · · · 〈v2ak
nk 〉

, (5)

which uses instead 〈v2a1
n1
〉 · · · 〈v2ak

nk
〉 in the denominator and therefore assumes that event-by-event fluc-

tuations of flow amplitudes are mutually independent. This assumption is in contradiction with recent
experimental results which reported strong and non-trivial correlated fluctuations of different flow am-
plitudes, both at RHIC and LHC energies, and across different collisions systems [26, 58–61]. These
shortcomings of the previous SPC results are the main motivation for the current work. As it was pointed
out in Ref. [15], the GE does not account for cross-correlations between flow amplitudes and symmetry
planes. However, the study in Ref. [15] showed that the contribution by these cross-correlations is minor
when compared to the correlations between flow amplitudes.

The rest of the article is organized as follows. In Sec. 2 the ALICE detector is introduced, together with
the analyzed data set and analysis details, such as the event and track selection criteria. In Sec. 3 the SPC
results using the GE are presented, comparisons with previous experimental results are discussed, and
confrontation with state-of-the-art theoretical models is displayed. The article concludes in Sec. 4 with
the summary. A more detailed discussion about the technical details of the GE can be found Appendix A.

2 Data Analysis

The data set consists of Pb–Pb collisions at a center-of-mass energy per nucleon pair
√

sNN = 2.76 TeV
recorded by ALICE in 2010. A detailed description of the apparatus and its performance is given in
Refs. [62, 63]. The Silicon Pixel Detector (SPD), which comprises the two innermost layers of the
Inner Tracking System (ITS) [64, 65], and both V0 detectors [66] were used for triggering. The latter
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consists of two arrays of scintillator counters, the V0A and V0C, covering a pseudorapidity range of
2.8 < η < 5.1 and −3.7 < η <−1.7, respectively. The SPD covers pseudorapidities of |η |< 2.0 for its
inner and |η |< 1.4 for its outer layer. Minimum bias collisions were selected by requiring a signal in at
least two out of the three following: two chips in the outer layer of the SPD, the V0A, and the V0C. For
this analysis, only events with a primary vertex within ±10 cm of the nominal interaction point along
the beam axis were used. The centrality of the collisions [67] was estimated with the SPD. Backgrounds
events due to beam–gas interactions and parasitic beam–beam interactions were removed by using V0
and Zero Degree Calorimeter [68] timing information. Overall, after the event selection the used data set
consists of 7.36×106 reconstructed collisions for the centrality range 0–50%.

The reconstruction of charged particle trajectories was performed using only information from the Time
Projection Chamber (TPC) [69] due to its uniform acceptance in azimuth. This analysis used tracks with
transverse momenta 0.2 < pT < 5.0 GeV/c and in a pseudorapidity range of |η | < 0.8, while covering
the full azimuth. The lower boundary of the transverse momentum selection ensured a large and stable
tracking efficiency in the TPC, while the upper cutoff decreases the contribution from jets which in
general have larger momenta. The charged tracks were accepted for the analysis if they had a minimum
of 70 out of a maximum of 159 space points in the TPC. The χ2 per space point from the track fit was
set to be within 0.1 < χ2/NDF < 4.0. The distance of closest approach (DCA) of the extrapolated tracks
to the primary vertex was required to be at maximum 2.4 cm in the transverse plane and 3.2 cm in the
beam direction. Daughter tracks with a reconstructed secondary weak-decay kink topology (i.e. tracks
with an abrupt change of direction) were discarded. The contamination from secondaries as well as the
reconstruction efficiency with this track selection can be found in Ref. [70].

The pT-dependent reconstruction efficiency was corrected using particle weights according to Ref. [57].
These weights were obtained with the HIJING (Heavy-Ion Jet INteraction Generator) Monte Carlo gener-
ator [71] by comparison of generated and reconstructed tracks, using a GEANT3 [72] detector simulation
and event reconstruction. At the same time, weights to correct for non-uniform acceptance in azimuthal
angle did not have to be applied due to the uniform acceptance of the TPC over the whole azimuth in the
analyzed data set. Nonflow contributions, i.e. correlations between a few particles unrelated to collective
anisotropic flow, were investigated with HIJING for the numerator and denominator of the GE in Eq. (4)
separately. For all SPC combinations, both the numerator and denominator were found to be consistent
with zero in all considered centrality ranges, demonstrating that the analyzed SPC observables are not
influenced by most important sources of nonflow correlations such as jets or resonance decays.

The statistical uncertainties of the measured SPC were obtained via propagation of uncertainties of the
numerator and denominator in Eq. (4). Systematic uncertainties were evaluated by varying the default
event and track selections. All variations were performed one at a time and only those with a difference
larger than 2σ , where σ is the uncertainty of the difference, with respect to the default selection were
taken into account for the final systematic uncertainty. All individual systematic variations were con-
sidered independent and combined in quadrature to obtain the total systematic uncertainty. Regarding
the event selection criteria, the position of the primary vertex along the beam line was varied to ±6 cm
and ±8 cm, where a relative effect on the measured observables of up to 5% was found. A systematic
uncertainty of up to 6% from the centrality estimation was determined by using the V0 instead of the
SPD. To evaluate the uncertainty due to the track selection, the number of TPC clusters used in the track
reconstruction was varied to a required minimum of 80, 90 and 100 compared to the default 70. This
resulted in a systematic uncertainty of up to 6%. The sensitivity of the results to the track quality was
checked by varying the χ2/NDF to 0.3 < χ2/NDF < 4.0 and 0.1 < χ2/NDF < 3.5, which led to an
additional uncertainty of up to 6%. Two variations were performed regarding the DCA by changing the
upper limit in the transverse direction to 1 cm and in the longitudinal direction to 2 cm. The variation of
the DCA changes the contribution from secondaries in the analysis as these particles usually have a larger
DCA than primary particles. The DCA variation in the transverse plane led to a systematic uncertainty of
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about 3–10%, while the check along the beam axis had a relative variation of about 4%. Additionally, an
independent analysis was performed by using a different track reconstruction procedure, which employs
combined information from both the TPC and the ITS. This led to an uncertainty in the range of 5–10%.

3 Results
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Figure 1: Comparison of the extracted correlations between different combinations of two symmetry planes (a)
and between three and four planes (b) using the GE in Eq. (4). Statistical (systematic) uncertainties are shown as
lines (boxes).

The centrality dependence of the correlations between different combinations of two and three sym-
metry planes, as well as the first measurement of a correlation between four planes, are presented
in Fig. 1. In the case of two symmetry planes shown in Fig. 1(a), the strongest correlation is ob-
served for 〈cos [4(Ψ4−Ψ2)]〉GE, while the correlation strength gets weaker for 〈cos [6(Ψ6−Ψ2)]〉GE
and 〈cos [6(Ψ6−Ψ3)]〉GE. The results for 〈cos [6(Ψ2−Ψ3)]〉GE are compatible with zero within un-
certainties. A hierarchy, 〈cos [4(Ψ4−Ψ2)]〉GE > 〈cos [6(Ψ6−Ψ3)]〉GE > 〈cos [6(Ψ6−Ψ2)]〉GE, holds
for the centrality range 5–50%, with an exception of 〈cos [6(Ψ6−Ψ3)]〉GE and 〈cos [6(Ψ6−Ψ2)]〉GE
being comparable at centralities above 20%. The details of the centrality dependence vary for the dif-
ferent combinations of symmetry planes. While 〈cos [4(Ψ4−Ψ2)]〉GE and 〈cos [6(Ψ6−Ψ2)]〉GE are
increasing non-linearly from central to semicentral collisions, 〈cos [6(Ψ6−Ψ3)]〉GE shows a weak cen-
trality dependence. The observed zero signal for 〈cos [6(Ψ2−Ψ3)]〉GE indicates that no correlation
is present within the current uncertainties for the final-state planes Ψ2 and Ψ3, while v2 and v3 are
anti-correlated [26, 44, 58, 58, 59, 73–75]. This result justifies the necessity of measuring separately
correlations of symmetry planes and flow magnitudes, because these measurements can be used to inde-
pendently constrain properties of the matter produced in heavy-ion collisions.

The different magnitudes of correlations are also observed for three symmetry planes as shown in
Fig. 1(b). The magnitude and details of the centrality dependence vary for different combinations
of flow harmonics. The 〈cos [2Ψ2 +3Ψ3−5Ψ5]〉GE observable exhibits the strongest correlations
and 〈cos [2Ψ2−6Ψ3 +4Ψ4]〉GE shows the weaker signal. The SPC 〈cos [2Ψ2−6Ψ3 +4Ψ4]〉GE
is the only correlator with a negative sign, which will be discussed later on in more detail. The
〈cos [8Ψ2−3Ψ3−5Ψ5]〉GE observable is consistent with zero within uncertainties, similar to
〈cos [6(Ψ2−Ψ3)]〉GE. The correlation between four planes, 〈cos [2Ψ2−3Ψ3−4Ψ4 +5Ψ5]〉GE shows
the strongest centrality dependence among all harmonic combinations and increases towards peripheral
collisions.
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The magnitudes of SPC are ordered approximately based on the corresponding order of the particle
correlations. The two largest SPCs, 〈cos [4(Ψ4−Ψ2)]〉GE and 〈cos [2Ψ2 +3Ψ3−5Ψ5]〉GE, are both
measured with three-particle correlators. In contrast, the smallest ones are 〈cos [6(Ψ2−Ψ3)]〉GE and
〈cos [8Ψ2−3Ψ3−5Ψ5]〉GE, which are five- and six-particles correlations, respectively. One possible ex-
planation is the following: the flow vector fluctuations encoded in the observed correlations are mainly
attributed to the fluctuation of the initial state. Also, the initial state fluctuation is attributed to the fluc-
tuation of a finite amount of “sources” produced at the degrees of freedom collision points, namely
protons and neutrons, in the collision region. The Central Limit Theorem (CLT) states that for inde-
pendent random variables (here, the position of sources), the sample average tends toward a Gaussian
distribution when the number of sampling increases. A clear example of such behavior was studied for
initial ellipticity in Ref. [76], where it was shown how the ellipticity fluctuation distribution changes
from elliptic-power distribution with large skewness to a Gaussian distribution at a large number of
sources. The order of particle correlations corresponds to the order of the cumulants of the underly-
ing flow vector fluctuation. To see the clear connection, correlations should be written in a Cartesian
notation rather than polar notation (see Refs. [77–79] for the relation between skewness and Kurtosis
of flow vector distribution to the particle correlations). Only the second-order cumulant, namely the
width of the distribution, is nonvanishing for a Gaussian distribution. As a result, higher-order cumu-
lants (skewness, kurtosis, etc.) are small for distributions close to Gaussian. These studies are done
for flow amplitudes with only one harmonic, but the logic is true for more than one harmonic as well.
The observed ordering of magnitudes in Fig. 1 indicates that the contribution of higher-order cumulants
is smaller compared to lower ones in general, meaning the lowest-order cumulants have the dominant
role in deviation from Gaussianity. A crossing between 〈cos [6(Ψ6−Ψ3)]〉GE (a three-particle corre-
lation) and 〈cos [6(Ψ6−Ψ2)]〉GE (a four-particle correlation) is observed with centralities above 25%
where the number of final state particles is lower. The same is true for 〈cos [2Ψ2 +4Ψ4−6Ψ6]〉GE (a
three-particle correlation) and 〈cos [2Ψ2−3Ψ3−4Ψ4 +5Ψ5]〉GE (a four-particle correlation). The effect
of non-Gaussianity is expected to be more dominant in this centrality region since the system size is
smaller and less number of sources are expected. At a finite number of sources, the actual ordering of the
correlation magnitudes depends on the details of the underlying source fluctuation that needs a separate
study.

In Figs. 2 and 3 the experimental data for SPC estimated with the GE are compared with the results
obtained from ATLAS [24] and ALICE [27] using the SP method. While the analysis of the SP method
by ALICE used the same kinematic range as the work presented in this article, the analysis by ATLAS
was performed in a wider range of 0.5 GeV/c < pT and |η | < 2.5. Despite this difference in kinematic
regions, the SPC extracted by the SP method from ALICE and ATLAS agree within uncertainties. In
general, the obtained data from the GE are significantly smaller than the estimates performed with the SP
method for centralities larger than 10%. This difference is mainly attributed to the fact that correlations
between flow amplitudes were not removed in the SP method as it was demonstrated in Ref. [15]. For the
SPC 〈cos [4(Ψ4−Ψ2)]〉 and 〈cos [6(Ψ6−Ψ2)]〉 shown in Fig. 2, the GE and SP method are compatible
only in 0–5% centrality, while for 〈cos [6(Ψ6−Ψ3)]〉 the GE differs in all centrality intervals when
compared to the SP method by ATLAS. For centralities larger than 5%, a clear splitting between all
of the previously mentioned SPC is visible with significantly smaller values obtained by the GE. For
〈cos [6(Ψ2−Ψ3)]〉 the experimental data of the GE are compatible with zero within the uncertainties in
all considered centrality intervals. In contrast to that, the results of the SP method show a small, but non-
zero value. However, the results obtained with the GE show larger uncertainties when compared to the SP
for this particular SPC. Future studies with larger data sets will show whether the SPC 〈cos [6(Ψ2−Ψ3)]〉
remains compatible with zero within uncertainties when using the GE or if a small non-zero correlation
exists which cannot be resolved within the present uncertainties. In the latter case, the results of the GE
will nonetheless lead to significantly smaller values than reported by the SP method.

Similarly, the experimental results of the GE and the SP method are compared to each other for SPC be-
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Figure 2: Experimental data of correlations between two symmetry planes obtained with the GE compared with
measurements from ATLAS [24] and ALICE [27] using the SP method. Statistical and systematic uncertainties
are represented by lines and boxes, respectively.

tween three planes. The results are presented in Fig. 3. For the combinations 〈cos [2Ψ2 +3Ψ3−5Ψ5]〉,
〈cos [2Ψ2 +4Ψ4−6Ψ6]〉 and 〈cos [2Ψ2−6Ψ3 +4Ψ4]〉 the GE again leads to significantly smaller values
than the SP method for centralities larger than 10%. For 〈cos [2Ψ2 +3Ψ3−5Ψ5]〉 it has to be noted that
the observables previously employed by ALICE [27] and ATLAS [24] differ in the denominator. AT-
LAS uses a fully factorized denominator 〈v2

2〉〈v2
3〉〈v2

5〉 as in the definition of the SP method (5), while the
denominator in the ALICE measurement is only partially factorized 〈v2

2v2
3〉〈v2

5〉 and thus is not defined
exactly as in Eq. (5). To ease the notation in Fig. 3 we still label 〈cos [2Ψ2 +3Ψ3−5Ψ5]〉 measured
by ALICE [27] as SP method. The SPC 〈cos [8Ψ2−3Ψ3−5Ψ5]〉 is the only combination where the
estimates by the GE and the SP method are compatible with each other within uncertainties in all consid-
ered centralities, as the results from the SP method are already close to zero. The difference in physical
interpretation between the two SPC involving Ψ2, Ψ3 and Ψ5 is discussed later.

The new measurements of SPC with the GE are compared with Monte Carlo simulations with the
TRENTo+VISH(2+1)+UrQMD event generator [80–84]. In this article, the maximum a posteriori
(MAP) estimation obtained in the Bayesian analysis in Ref. [7] is used for the parameters of the
model. In inferring the MAP parameterization, a series of ALICE measurements (two- and four-particle
correlations, charged particle multiplicities, etc.) were used as inputs into the Bayesian analysis, while
the SPC are not included in these studies. Including new observables (e.g. SPC) in the Bayesian
analysis can lead to an improvement in the uncertainty of the inferred parameter and resolving the
discrepancies [12, 13]. If the discrepancy between model and data persists even after including new
observables as input, the model itself needs to be revised.

In addition to the model predictions of final-state SPC, initial-state participant plane correlations are
studied with TRENTo. The participant plane of order n takes the same role in the initial state as the

8



Symmetry plane correlations in Pb–Pb collisions at
√

sNN = 2.76 TeV ALICE Collaboration

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Co

rre
la

tio
ns

(a) 〈cos[2Ψ2 + 3Ψ3 − 5Ψ5]〉

0.0

0.2

0.4

0.6

0.8

1.0

1.2
(b) 〈cos[2Ψ2 + 4Ψ4 − 6Ψ6]〉

0.15

0.10

0.05

0.00

0.05

0.10

Co
rre

la
tio

ns

0 10 20 30 40 50
Centrality percentile

(c) 〈cos[8Ψ2 − 3Ψ3 − 5Ψ5]〉

ALICE
GE, 0.2 < pT < 5.0 GeV/c, |η| < 0.8

ALICE (PLB 773 68 (2017))
SP, 0.2 < pT < 5.0 GeV/c, |η| < 0.8

ATLAS (PRC 90 024905 (2014))
SP, 0.5 GeV/c < pT, |η| < 2.5

0 10 20 30 40 50
Centrality percentile

0.15

0.10

0.05

0.00

0.05

0.10
(d) 〈cos[2Ψ2 − 6Ψ3 + 4Ψ4]〉

Pb–Pb
√
sNN = 2.76 TeV

Figure 3: Correlations between three symmetry planes obtained with the GE compared with measurements from
ATLAS [24] and ALICE [27] using the SP method. Statistical and systematic uncertainties are shown as lines and
boxes, respectively.

symmetry plane in the final state. The correlations between participant planes are extracted from the
initial state where flow vectors vneinΨn are replaced first by eccentricities [85], and second by cumulants
of the initial energy density [38, 86, 87]. The eccentricities are defined as

εneinφn =−{r
neinϕ}
{rn} , n > 1 , (6)

where {· · ·} = ∫
rdrdϕ ε(r,ϕ) stands for the average with respect to the initial energy density ε(r,ϕ)

in the transverse direction and (r,ϕ) are the polar coordinates in the transverse plane. Eccentricities
are the moments of the initial energy density distribution. The cumulants of the initial energy density
distribution, cneinΦn , are obtained as a combination of eccentricities and the radial moments of the energy
density, {rn}. In fact, cumulants are a better measure to study the deformation of a distribution close to
a Gaussian. Borrowing a motivating example from Ref. [86], a Gaussian distribution e−x2/2σ2

x−y2/2σ2
y has

infinitely many non-vanishing moments, while only its second order cumulants are non-zero. Following
the convention of Ref. [86], the first two cumulants and eccentricities are equivalent, cneinΦn = εneinφn

for n = 2,3. Higher order cumulants have non-trivial relations to eccentricities. Here, only the fourth
harmonic is shown as an example:

c4ei4Φ4 = ε4ei4φ4 +3
({r2}2

{r4}

)
ε

2
2 ei4φ2 . (7)

More details can be found in Refs. [38, 86, 87].

The comparison with initial and final state SPC demonstrates how much of the observed correlation is
inherited from the initial state. This is due to the linear and non-linear response of the medium [88].
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Figure 4: Experimental data for correlations between two symmetry planes compared to theoretical predictions
in the initial and final state obtained with TRENTo and TRENTo+VISH(2+1)+UrQMD [80–84], respectively. For
〈cos [6(Ψ2−Ψ3)]〉GE (c), the initial state predictions calculated via eccentricities and energy density cumulants,
〈cos[6(φ2− φ3)]〉GE and 〈cos[6(Φ2−Φ3)]〉GE, fully overlap. Statistical (systematic) uncertainties of the ALICE
data are shown as lines (boxes). The statistical uncertainties of the models are represented by the colored bands.

For the second- and third-order anisotropies, the linear response is expected to dominate i.e. v2ei2Ψ2 =
ω2c2ei2Φ2 and v3ei3Ψ3 = ω3c3ei3Φ3 , especially in central and semicentral collisions [73, 85, 89]. The ωi

describe the linear hydrodynamic coupling constants. For higher orders, non-linear contributions will
play a significant role, e.g. in case of the fourth order as

v4ei4Ψ4 = ω4c4ei4Φ4 +ω422c2
2ei4Φ2 , (8)

where ω422 is the non-linear coupling between the second- and fourth-order anisotropies [38, 86, 87].
As an example of how this impacts the SPC, one can build the quantity v2

2v4ei4(Ψ4−Ψ2). The real part of
its phase corresponds to the SPC 〈cos [4(Ψ4−Ψ2)]〉. Using the linear and non-linear response, one can
translate this into the initial state as:

v2
2v4ei4(Ψ4−Ψ2) = ω2ω4c2

2c4ei4(Φ4−Φ2)+ω422ω
2
2 c2

2 . (9)

The latter equation shows that the initial and final state SPC 〈cos [4(Ψ4−Ψ2)]〉 will be equal to each
other in the limit of pure linear response, while they will deviate in case of a non-zero non-linear coupling
ω422.

Figure 4 shows the comparison between the model calculations and the experimental data for the correla-
tion between two symmetry planes. For the SPC 〈cos [4(Ψ4−Ψ2)]〉GE the initial-state participant plane
correlations given by the energy density cumulants overlap with the final-state prediction of the SPC up
to 10% in centrality, indicating a vanishing non-linear coupling in the regime dominated by flow fluctu-
ations. For higher centralities, the two curves increasingly deviate, showing the presence of a non-zero
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Figure 5: Experimental data for correlations between three (a-d) and four (e) symmetry planes compared with
theoretical predictions in the initial and final state obtained with TRENTo and TRENTo+VISH(2+1)+UrQMD [80–
84], respectively. Statistical (systematic) uncertainties of the ALICE data are shown as lines (boxes). The statistical
uncertainties of the models are represented by the colored bands.

non-linear coupling between the second- and fourth-order flow vectors. In particular, it can be observed
that the final-state prediction increasingly deviates from the data with increasing centrality. This is ex-
pected, since in this regime strong correlations between the second and fourth harmonics can originate
from the initial ellipsoidal geometry. The non-linear coupling constant between initial-state elliptic-
ity and v4ei4Ψ4 from TRENTo to iEBE-VISHNU was studied in Ref. [90]. It was demonstrated that this
coupling is very small up to 10% and it is positive up to 70% centrality. For 〈cos [6(Ψ2−Ψ3)]〉GE the ex-
perimental data show a flat centrality behavior and are compatible with zero within the uncertainties. The
model predicts small values for 〈cos [6(Ψ2−Ψ3)]〉GE with a flat centrality behavior although the predic-
tions for the final state slightly overestimate the data. However, the initial-state correlations decrease to
more negative values for centralities above 30%. For 〈cos [6(Ψ2−Ψ3)]〉GE, a linear response is expected
to be an accurate approximation for harmonics n = 2,3 in central and semicentral collisions [73, 85, 89].
As such, one would expect that the initial state participant plane correlations should be the same as the
final state symmetry plane correlations between the second- and third-order harmonics. One possible ex-
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planation is that higher-order terms beyond linear response are responsible for decreasing the correlation
during the hydrodynamic evolution, and the final value accidentally lands on very small numbers. In this
respect, more rigorous study is needed in the future. While the model captures the qualitative behavior
of the experimental signal in the two previous cases, a quantitative agreement is not observed in every
case, particularly not for SPC involving Ψ6 or correlations between four symmetry planes. For the SPC
〈cos [6(Ψ6−Ψ2)]〉GE and 〈cos [6(Ψ6−Ψ3)]〉GE, a large deviation between the data and the final-state
model prediction can be observed. This deviation could be related to the complex dynamics of the sixth-
order symmetry plane, which involves multiple non-linear responses to the lower order symmetry planes
Ψ2, Ψ3 and Ψ4. For the SPC 〈cos [6(Ψ6−Ψ3)]〉GE it is in particular interesting that the initial-state
correlation becomes stronger with increasing centrality, while the final-state correlation becomes weaker
with increasing centrality in the model. In contrast to that, the experimental data shows only a very weak
centrality dependence.

The sign change between correlations obtained from eccentricities (green short-dashed curves) and initial
energy density cumulants (blue long-dashed curves) in Fig. 4 was pointed out in Ref. [87]. The actual
shape of the initial state is captured by cneinΦn . As a result, the linear hydrodynamic response approxima-
tion is more accurate when employing cumulants. As an example, SPC 〈cos [4(Ψ4−Ψ2)]〉GE in Fig. 4
panel (a) is considered. Referring to Eq. (7), the difference between ε4einφ4 and c4einΦ4 is proportional
to {r2}2/{r4}, which merely depends on the radial shape of the initial state. The numerator of the cor-
relation 〈cos(4φ2−4φ4)〉GE is proportional to the real part of 〈ε2

2 ε4e4iφ2−4iφ4〉. Substituting from Eq. (7)
(c2e2iΦ2 and ε2e2iφ2 are identical), one finds 〈ε2

2 ε4e4iφ2−4iφ4〉 = 〈c2
2c4e4iΦ2−4iΦ4〉−3〈({r2}2/{r4})c4

2〉. In
case the second term on the right is small, SPC of cumulants are expected to be close to those calculated
from eccentricities. However, noting that 3〈({r2}2/{r4})c4

2〉 is real and positive, the contribution of this
term is such that it leads to a negative sign for 〈ε2

2 ε4e4iφ2−4iφ4〉. Therefore, one concludes that, regarding
the hydrodynamic response, using energy-density cumulants for the initial state is more appropriate. A
more detailed study can be found in Ref. [90].

In Fig. 5, the same comparison of model predictions with respect to the experimental data was performed
for SPC involving three or four symmetry planes. For the SPC 〈cos [2Ψ2 +3Ψ3−5Ψ5]〉GE, a non-zero
correlation signal was extracted, which existed to a larger extent already in the initial state. The final-state
predictions of TRENTo+iEBE-VISHNU are in good agreement with the experimental data. Further con-
sidering the same three symmetry planes Ψ2, Ψ3 and Ψ5, the combination 〈cos [8Ψ2−3Ψ3−5Ψ5]〉GE
results in an experimental signal that is compatible with zero within uncertainties for all reported cen-
trality intervals. The deviation between 〈cos [2Ψ2 +3Ψ3−5Ψ5]〉GE and 〈cos [8Ψ2−3Ψ3−5Ψ5]〉GE can
be attributed to different contributions from the initial-state in the non-linear response of the two observ-
ables. While the non-linear response term for 〈cos [2Ψ2 +3Ψ3−5Ψ5]〉GE does not contain contributions
from any participant plane correlations, the non-linear part of 〈cos [8Ψ2−3Ψ3−5Ψ5]〉GE picks up such
an additional correlation from the initial state. In particular, the SPC 〈cos [8Ψ2−3Ψ3−5Ψ5]〉GE has a
non-linear coupling to the initial-state correlation between the second- and third-order participant planes.
Similar to previously presented examples of SPC that involve the sixth-order symmetry plane Ψ6, the
final-state model prediction for 〈cos [2Ψ2 +4Ψ4−6Ψ6]〉GE shows a large deviation compared to the
measurements. This deviation is again attributed to the complexity of Ψ6, which makes it particularly
sensitive to the model parameters. One finds that 〈cos [2Ψ2 +3Ψ3−5Ψ5]〉GE has the strongest signal in
data while 〈cos [2Ψ2 +4Ψ4−6Ψ6]〉GE is larger than 〈cos [2Ψ2 +3Ψ3−5Ψ5]〉GE in the model. The re-
sults of 〈cos [2Ψ2−6Ψ3 +4Ψ4]〉GE are the only measurement with a negative signal for the SPC. While
the model predicts this behavior as well, it can be observed that the initial-state correlations are strictly
non-negative. Thus, the sign-change between the initial and final state can be linked to the hydrodynamic
evolution of the system. Lastly, Fig. 5 shows the comparison with the first experimental measurement of
correlations between four symmetry planes. While the final-state model prediction captures the qualita-
tive behavior, a quantitative agreement between experimental data and model is not observed. A recent
Bayesian analysis of the QGP hydrodynamic properties [13] has shown that higher-order correlations as
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well as measurements involving higher order flow harmonics are more sensitive to changes in the QGP
parameters. Thus, in particular the measurements of SPC including Ψ6 and the correlations between four
symmetry planes are expected to give more stringent constraints in future analyses of this kind.

4 Conclusion

Utilizing the recently introduced Gaussian Estimator, the first measurements of symmetry plane correla-
tions, which are not influenced by correlations between different flow amplitudes, are presented in Pb–Pb
collisions at

√
sNN = 2.76 TeV. Correlations between two, three and, for the first time, four symmetry

planes were shown. The data show a clear order for the different SPC, which can be related to the cumu-
lants of the underlying flow vector fluctuations. The measurements using the new GE show significantly
smaller symmetry plane correlations than previously reported by the SP method. This observation is
in qualitative agreement with the study in Ref. [15] which reported the bias of the SP method to larger
values due to the influence of correlations between the flow amplitudes. In contrast to the SP method,
the results of 〈cos [6(Ψ2−Ψ3)]〉GE are consistent with zero with the current uncertainties. Within the
uncertainties, this shows that Ψ2 and Ψ3 are fully uncorrelated, which was qualitatively reported by
a previous ALICE study [23]. Future studies using Run 2 Pb–Pb data as well as the upcoming Run
3 Pb–Pb campaign will show whether a small non-zero correlation exists between Ψ2 and Ψ3, which
cannot be resolved within the present uncertainties. Employing state-of-the-art hydrodynamic model
calculations, one could see that the predictions and the measurements are not in quantitative agree-
ment for all SPC. The most significant deviations are observed in the correlations 〈cos [6(Ψ6−Ψ3)]〉GE,
〈cos [6(Ψ6−Ψ2)]〉GE, 〈cos [2Ψ2 +4Ψ4−6Ψ6]〉GE and 〈cos [2Ψ2−3Ψ3−4Ψ4 +5Ψ5]〉GE. Future stud-
ies have to address how the initial state correlations between the second- and third-order participant
planes are suppressed in the final state SPC 〈cos [6(Ψ2−Ψ3)]〉GE as one would expect linear response
to be a good approximation for the second- and third-order flow harmonics. Since the measured SPC
contain independent information about flow vector fluctuations, they will provide useful inputs for future
Bayesian analyses aiming at extracting the properties of the QGP.
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A A brief overview of the Gaussian Estimator

The details of the derivation and validation of the GE in Eq. (4) can be found in Ref. [15]. In the
following, a brief overview of the main idea is presented. The concept of the GE is similar to estimating
the average elliptic flow originating from the geometry of the collision by using the flow measurements
v2{2k}. To briefly explain, let us define v2,x = v2 cos2(Ψ2−ΨRP) and v2,y = v2 sin2(Ψ2−ΨRP). Since
Ψ2 fluctuates around the reaction plane angle ΨRP, the average v2 = 〈v2,x〉 depends merely on the nonzero
average of the initial elliptic shape and 〈v2,y〉 vanishes [92]. However, the angle ΨRP rotates randomly
event-by-event in the experiment, therefore, v2 is not accessible directly. To estimate the value of v2,
one employs the central limit theorem to approximate the fluctuation of (v2,x,v2,y) as a 2D Gaussian

proportional to exp
[
−((v2,x− v2)

2 + v2
2,y)/2σ2

v

]
= exp

[
−(v2

2 + v2
2−2v2v2 cos2Ψ2)/2σ2

v
]
. By averaging

over Ψ2, one finds a Bessel–Gaussian distribution depending on the random variable v2 where v2 is a
parameter that controls the shape of the distribution [14, 92, 93]. Using this information, one finds the
estimation v2 ≈ v2{2k} for k > 1 [92].

To explain the idea behind Eq. (4), the SPC 〈cos4(Ψ4−Ψ2)〉 is considered as a simple. More general
cases can be obtained accordingly. In order to estimate 〈cos4(Ψ4−Ψ2)〉 in terms of quantities such as
〈v2

2v4 cos4(Ψ4−Ψ2)〉, the two variables R = v2
2v4 and θ = 4(Ψ4−Ψ2) are defined, or in Cartesian form

Rx = Rcosθ and Ry = Rsinθ . Since R and θ are correlated, the ratio 〈Rcosθ〉/〈R〉 would not be equal
to 〈cosθ〉. However, the (Rx,Ry) fluctuation can be approximated with a 2D Gaussian distribution,

N(Rx,Ry) =
1

πσ2
R

exp

[
−
(Rx−µx)

2 +R2
y

σ2
R

]
, (A.1)

where
µx = 〈Rx〉= 〈v2

2v4 cos4(Ψ4−Ψ2)〉, σR ≈
√
〈R2

x〉+ 〈R2
y〉=

√
〈v4

2v2
4〉. (A.2)

The equation (A.1) in polar coordinates is proportional to exp[−(R2 +µ2
x −2Rµx cosθ)/σ2

R]. Averaging
over the variable θ would lead to a Bessel-Gaussian distribution. However, the goal of this study is the
extraction of information about cosθ fluctuations. Therefore, one needs to average out the variable R to
find a distribution that depends on θ only. As a result, one finds

〈cosθ〉 ≈
√

π

4

(
µx

σR

)
, (A.3)

where the prefactor
√

π/4 ≈ 0.886 is the consequence of integration over R and θ in the calculation of
〈cosθ〉. Substituting Eq. (A.2) into Eq. (A.3), one finds

〈cos4(Ψ4−Ψ2)〉GE =

√
π

4
〈v2

2v4 cos4(Ψ4−Ψ2)〉√
〈v4

2v2
4〉

, (A.4)

which is a special case of Eq. (4). To derive the analytical expression in Eq. (A.3), an expansion up to
leading terms with respect to µx/σR was considered. Also it has been assumed that 〈R2

x〉 ≈ 〈R2
y〉. On

top of these assumptions, the (Rx,Ry) fluctuation should be close to a 2D Gaussian to have an accurate
estimation. Comparing with the true values of the SPC in the hydrodynamic simulations, it turns out that
these approximations lead to an accurate estimation [15]. In the scalar product method, the correlation is
given by

〈cos4(Ψ4−Ψ2)〉SP =
〈v2

2v4 cos4(Ψ4−Ψ2)〉√
〈v4

2〉〈v2
4〉

. (A.5)

Apart from the numerical prefactor, the denominator of GE contains a joint correlation 〈v4
2v2

4〉 rather than
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〈v4
2〉〈v2

4〉 as in the SP method.
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