Chemical composition of nanoparticles from α -pinene nucleation and the influence of isoprene and relative humidity at low temperature

Lucía Caudillo¹, Birte Rörup², Martin Heinritzi¹, Guillaume Marie¹, Mario Simon¹, Andrea C. Wagner³, Tatjana Müller^{1,4}, Manuel Granzin¹, Antonio Amorim⁵, Farnoush Ataei⁶, Rima Baalbaki², Barbara Bertozzi⁷, Zoé Brasseur², Randall Chiu³, Biwu Chu², Lubna Dada⁸, Jonathan Duplissy^{2,9}, Henning

- 5 Bertozzi⁷, Zoé Brasseur², Randall Chiu³, Biwu Chu², Lubna Dada⁸, Jonathan Duplissy^{2,9}, Henning Finkenzeller³, Loïc Gonzalez Carracedo¹⁰, Xu-Cheng He², Victoria Hofbauer¹¹, Weimeng Kong^{12,13}, Houssni Lamkaddam⁸, Chuan P. Lee⁸, Brandon Lopez¹¹, Naser G. A. Mahfouz¹¹, Vladimir Makhmutov^{14,26}, Hanna E. Manninen¹⁵, Ruby Marten⁸, Dario Massabò¹⁶, Roy L. Mauldin^{17,11}, Bernhard Mentler¹⁸, Ugo Molteni^{8,20,21}, Antti Onnela¹⁵, Joschka Pfeifer¹⁵, Maxim Philippov¹⁴, Ana A. Piedehierro²²,
- Meredith Schervish¹¹, Wiebke Scholz¹⁸, Benjamin Schulze¹², Jiali Shen², Dominik Stolzenburg², Yuri Stozhkov¹⁴, Mihnea Surdu⁸, Christian Tauber¹⁰, Yee Jun Tham², Ping Tian²³, António Tomé²⁴, Steffen Vogt⁷, Mingyi Wang¹¹, Dongyu S. Wang⁸, Stefan K. Weber¹⁵, André Welti²², Wang Yonghong², Wu Yusheng², Marcel Zauner-Wieczorek¹, Urs Baltensperger⁸, Imad El Haddad⁸, Richard C. Flagan¹², Armin Hansel^{18,19}, Kristina Höhler⁷, Jasper Kirkby^{1,15}, Markku Kulmala^{2,9,25}, Katrianne Lehtipalo^{2,22}, Ottmar
- 15 Möhler⁷, Harald Saathoff⁷, Rainer Volkamer³, Paul M. Winkler¹⁰, Neil M. Donahue¹¹, Andreas Kürten¹, Joachim Curtius¹.

¹Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany ²Institute for Atmospheric and Earth System Research (INAR) / Physics, Faculty of Science, University of Helsinki, 00014

Helsinki, Finland
 ³Department of Chemistry & CIRES, University of Colorado Boulder, Boulder, CO, 80309-0215, USA
 ⁴Max Planck Institute for Chemistry, Mainz, 55128, Germany
 ⁵CENTRA and FCUL, University of Lisbon, 1749-016 Lisbon, Portugal
 ⁶Leibniz Institute for Tropospheric Research, Leipzig, 04318, Germany

25 ⁷Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany ⁸Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland

⁹Helsinki Institute of Physics, University of Helsinki, 00014 Helsinki, Finland

- ¹⁰Faculty of Physics, University of Vienna, 1090 Vienna, Austria
- ¹¹Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
 ¹²Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
 ¹³California Air Resources Board, Sacramento, CA 95814, USA
 ¹⁴Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia
 ¹⁵CERN, 1211 Geneva, Switzerland
- ¹⁶Dipartimento di Fisica, Università di Genova and INFN, 16146 Genova, Italy
 ¹⁷Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
 ¹⁸Institute for Ion and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
 ¹⁹Ionicon Analytik GmbH, 6020 Innsbruck, Austria
 ²⁰Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland
- ²¹Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
 ²²Finnish Meteorological Institute, 00560 Helsinki, Finland
 ²³Beijing Weather Modification Office, China
 ²⁴IDL, Universidade da Beira Interior, R. Marquês de Ávila e Bolama, Covilhã, 6201-001, Portugal

1

²⁵Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China

²⁶Moscow Institute of Physics and Technology (National Research University), 117303, Moscow, Russia

Correspondence to: Lucía Caudillo (lucia.caudillo@iau.uni-frankfurt.de) and Joachim Curtius (curtius@iau.uni-frankfurt.de)

Supplementary Material

45

50 Figure S1. Carbon atom distribution C₂₋₁₁ and C₁₂₋₂₀ and oxygen atom content in gas and particle phase molecules. Both phases are measured with a Nitrate CI-APi-TOF Mass Spectrometer, while the TD-DMA is coupled to it for particle phase measurements. (a) and (c) α-pinene oxidation products at -30 °C and 20 % RH (α-30,20), (b) and (d) α-pinene + isoprene oxidation products at -30 °C and 20 % RH (α-30,20), (b) and (d) α-pinene + isoprene oxidation products at -30 °C and 20 % RH (α-30,20), (b) and (d), while isoprene level reached up to 30 ppbv in (b) and (d). Ozone level was stable at ~ 100 ppbv for all the experiments. The intensities are normalized by the total signal in each system. Each color properties a properties of a particle phase of 3 to 16.

55 in each system. Each color represents a specific number of oxygen atoms in the range of 3 to 16.

Figure S2. Carbon atom distribution C₂₋₁₁ and C₁₂₋₂₀ and oxygen atom content in gas and particle phase molecules. Both phases are measured with a Nitrate CI-APi-TOF Mass Spectrometer, while the TD-DMA is coupled to it for particle phase measurements. (a) and (c) α -pinene oxidation products at -50 °C and 20 % RH (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (b) and (d) α -pinene oxidation products at -50 °C and 60-100 % PM (α -50,20), (d) α -50,20) % PM (α -50,20) % PM (

60 % RH (α-50,60-100). The level of α-pinene was between 1 and 8 ppbv and Ozone level was stable at ~ 100 ppbv for all the experiments. The intensities are normalized by the total signal in each system. Each color represents a specific number of oxygen atoms in the range of 3 to 16.

Figure S3. Experimental overview for pure biogenic new particle formation. First panel: particle size distribution for four different
 experiments: α-pinene + isoprene at -30 °C and 20 % RH (αIP-30,20); α-pinene at -30 °C and 20 % RH (α-30,20); α-pinene at -50 °C and 20 % RH (α-50,20) and α-pinene at -50 °C and 60-100 % RH (α-50,60-100). The color scale represents the normalized mass concentration in µg m⁻³. Second panel: Particle number concentration in cm⁻³ measured by the PSM with a cut-off diameter of 1.7 nm and CPC with a cut-off diameter of 2.5 nm. Third panel: Mass concentration in µg m⁻³ (obtained by integrating the normalized mass concentration from the SMPS). Fourth panel: Mixing ratio in ppbv for the biogenic precursor gases, isoprene and α-pinene.

70 Fifth panel: Ozone mixing ratio in ppbv. The shaded areas refer to the time where the particles were collected using the TD-DMA.

Figure S4. TD-DMA Volatility distribution of the measured oxidation products in the particle phase for four different experiments:
(a) α-pinene at -30 °C and 20 % RH (α-30,20); (b) α-pinene + isoprene at -30 °C and 20 % RH (αIP-30,20); (c) α-pinene at -50 °C and 20 % RH (α-50,20) and (d) α-pinene at -50 °C and 60-100 % RH (α-50,60-100). Every individual volatility bin includes the sum of the intensity for the oxidation products normalized by the total signal in each system. Every individual volatility bin is defined at 300 K, shifted, and widened according to their corresponding temperature. The color bands in the background indicate the volatility regimes as in Donahue et al. (2012) and in Schervish and Donahue (2020). The normalized intensity is dimensionless. Nevertheless, it should be noted that the particle phase signal is given in normalized counts per second integrated over the evaporation time [ncps.

s].

Figure S5. Yield of total HOM as a function of temperature for pure α-pinene systems. Data points at -50 °C, -25 °C, -10 °C, +5 °C and +25 °C are from Simon et al. (2020) and the data points with the orange shadows are the contribution of this study (α-30,20, α-50,20 and α-50,60-100 and complementary pure α-pinene experiments at +5 °C and at -10 °C). The level of precursor gases from Simon et al., (2020) were 0.2 to 0.8 ppbv for α-pinene and 40 to 50 ppbv for ozone, while for experiments reported here (shown with orange shadows), the mixing ratios were 1 to 8 ppbv for α-pinene and 100 ppbv for ozone.

90

Figure S6. Volatility distribution of gas phase for two different systems and the normalized difference between them. Gas phase is measured with a Nitrate CI-APi-TOF Mass Spectrometer. Every individual volatility bin includes the normalized intensity difference (high-low)/low, which is calculated based on intensity of the system at high level of precursor gases (α -pinene was 2 - 3 ppbv and Ozone ~ 100 ppbv) and on the system at low level of precursor gases (α -pinene was 0.2 - 0.8 ppbv and Ozone ~ 40 - 50

95 ppbv). Every individual volatility bin is defined at 300 K, shifted, and widened according to their corresponding temperature. The lowest bin is an overflow bin. The color bands in the background indicate the volatility regimes as in Donahue et al. (2012) and in Schervish and Donahue (2020).

100 Figure S7. Pure biogenic nucleation rates at 1.7 nm diameter against isoprene-to-monoterpene carbon ratio (R) at different temperatures. Triangles represent Galactic Comic Rays (GCR) conditions. Data points at +5 °C and +25 °C are from Heinritzi et al., (2020). The points with the orange shadows are the experiments reported in this study for α-pinene + isoprene oxidation products at -30 °C and 20 % RH (*α*IP-30,20).