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Engineering topological phases guided by statistical and machine learning methods
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The search for materials with topological properties is an ongoing effort. In this article we propose a systematic
statistical method, supported by machine learning techniques, that is capable of constructing topological models
for a generic lattice without prior knowledge of the phase diagram. By sampling tight-binding parameter vectors
from a random distribution, we obtain data sets that we label with the corresponding topological index. This
labeled data is then analyzed to extract those parameters most relevant for the topological classification and to
find their most likely values. We find that the marginal distributions of the parameters already define a topological
model. Additional information is hidden in correlations between parameters. Here we present as a proof of
concept the prediction of the Haldane model as the prototypical topological insulator for the honeycomb lattice
in Altland-Zirnbauer (AZ) class A. The algorithm is straightforwardly applicable to any other AZ class or lattice,
and could be generalized to interacting systems.
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I. INTRODUCTION

In recent years machine learning techniques have enjoyed
growing attention among the physics community. Fueled by
popular success in automation across a wide variety of indus-
trial applications, implementations to fundamental research
have been proposed. Apart from, for instance, the popular-
ized computer vision application in black hole research [1],
a lot of effort has been devoted to increase the efficiency of
available algorithms, such as Monte Carlo [2–6] or Density
Functional Theory [7–10]. Moreover, the concept of machine
learning has been shown to be able to grasp even the very
complex nature of topological phases, finding the correct or-
der parameter by itself [11–13]. Successful reports of both
supervised and unsupervised paradigms have been published
recently [14–25]. An extensive review of machine learning
applications to condensed matter physics is also available as
an overview [26].

In this work, we are proposing a different scheme where
we lay emphasis on minimal bias. Rather than speeding up
a (in this case) manageable computational task, we aim at
machine-assisted learning of previously unknown information
using the toolkit of data science and statistics. Specifically,
we construct, following this scheme, topological models for
honeycomb lattices. Dissecting first the well-known Haldane
model [27] to benchmark and validate our findings, we then
look at the most general model on a honeycomb lattice and
use our analysis to extract a topological prototype model for
each individual class label. These generated models turn out
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to be exactly of the Haldane type. This procedure can be
generalized to any generic lattice and shows that topological
models can be “learned” from the statistics of a randomized
data set, not only by a machine, since the result is readily
comprehensible.

The paper is organized as follows. In Section II we discuss
the generation of our data and features. Section III contains
the motivation and definition of the quantities used to extract
information from the data, which is then applied to the Hal-
dane model in Section IV and a general honeycomb lattice in
Section V.

II. DATA GENERATION

We first start by introducing some definitions of quantities
that will be used throughout the paper. We define “data”
as a set of feature vectors xi with dimension n f (number
of features), which can be stacked into a data matrix X =
(x0, x1, x2, . . .)T with dimensions ns × n f , where ns is the
number of samples or data points. The corresponding labels
are stored in variables yi ∈ Z, which can be written as a single
vector Y . We denote a specific feature as x j := Xi j = [xi] j ,
where we omit the sample index if possible. The feature
matrix X and the label vector Y are related by a nonlinear
transformation f , such that f (X ) = Y .

Here, we compute the label from X by calculating the
topological index (in this case the Chern number) from the
model specified by xi (the ith row of X )

yi = C[(Hk (xi )], (1)

where Hk (xi ) is the Bloch Hamiltonian of the model and
f = C ◦ H . The label yi serves as a classifier that allows us
to separate the data into different sets. We will then analyze
the differences between these different data sets by statistical
means without further reference to the label.
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Data points are generated by choosing a reference point
xref and subsequently sampling perturbations δi to this point
from suitable random distributions to create a cloud of data
points around xref . For each point we store both xi = δi and the
label yi.

Choice of features

A model describing a quantum material is typically
represented in terms of tight-binding parameters, where sym-
metries are already accounted for. A general representation
applicable to multiorbital materials is that of hopping matrix
elements or overlap integrals of orbitals. By denoting every
parameter ti j (R) with the displacement vector R between the
different orbitals, in addition to the site-orbital indices i, j,
we have more parameters at our disposal, which allow us to
break symmetries and potentially discover unknown topolog-
ical phases. Our feature vector thus consists of all ti j (R) up to
a cutoff distance |R|. We note that this choice would pose a
great challenge to typical machine learning applications since
not only the computation of the Chern number, but also the
diagonalization and construction of the Hamiltonian, has to be
learned, which would require an extremely complex model.
By choosing this most general data set (model parameters,
topological class label) we make sure that we can learn about
the relation of the topological classification to the physical
parameters of the system. In contrast to a similar approach,
where machine learning was used to speed up the construction
of a tight binding model [28], we are here only interested in
extracting previously unknown information from the data that
is not otherwise attainable.

We note that, concerning our study on topological phases,
this description of quantum materials encloses both non-
interacting electron systems as well as interacting electron
systems, where the concept of topological Hamiltonian is
applicable [29,30]. Since the validity of this topological
Hamiltonian is restricted to the weak to intermediate regime
of correlations, the self-energy is not strongly momentum-
dependent [31]. The weak sensitivity of the topological
invariants with respect to this momentum-dependence [30]
suggests that modifications of the local hopping parameters
(R = 0) can also describe correlation effects.

For simplicity, we work with real features x ∈ Rn f . How-
ever, overlap integrals ti j are generally complex numbers, not
necessarily real, therefore we impose a mapping g : C → R2

to obtain a real feature vector. For complex parameters, natu-
ral choices are either (Re(xi ), Im(xi )) or (|xi|,−i log(xi/|xi|)).
Since we don’t know a priori which is the better choice,
we will use in what follows both mappings. For strictly real
features we just take the real part of the definition above.

In order to be as unbiased as possible, we choose a uniform
probability distribution for sampling our features. However,
since we do not want to generate too many extremely un-
physical data points, we set the sample space independently
for each feature xi as �α = Bα|xi

ref |(x
i
ref ) ⊂ C, where Br (x) de-

notes the solid sphere with radius r, centered at x. The external
parameter α := ri/xi

ref is the ratio between the spread of the
data and the initial value, cf. Fig. 1. The probability density
function (PDF) is then given by the uniform distribution on
the sample space �α:

ρα (x) = U (�α ). (2)

FIG. 1. Features are uniformly distributed over a circular region
with radius ri = α|xi

ref | around the reference point xref . The spread in
the real parameter x j is given by r j = α|x j

ref |.

This choice guarantees our two requirements, namely being
unbiased and preserving at least some amount of physicality
of our model given a proper choice of the reference point xref .
The term “physicality” here refers to closeness to a known
physically reasonable configuration, that for example corre-
sponds to a material. If we sampled instead over arbitrary
domains of values, we would take into account only more of
those data points that do not conform with a tight-binding
representation (i.e. long-ranged hoppings much larger than
short-ranged).

III. STATISTICAL METHOD

After generating a reasonably large data set, we proceed
with the analysis of the information contained within.

In the first step we extract the most characteristic features
from the labeled data. We can define the relevance of a feature
through the discrimination between different labels. Restrict-
ing the data set to a specific class label will reduce the entropy
of certain features, which becomes clear if we interpret the
feature data and the label data as separate random variables X
and Y , respectively, H (X |Y ) = H (X ) − I (X ;Y ). One expects
the reduction in entropy, given by the mutual information
I (X ;Y ) [Eq. (5)], to be a measure for the importance of a
feature. Given at least our particular data, we find that this def-
inition lacks robustness with respect to noise and is therefore
inapplicable to a general case. We can nevertheless inspect the
probability distributions, or rather the frequency or empirical
probability, of the individual features.

We restrict our discussion to weakly correlated features,
and comment on possible treatment of correlations beyond
that, further below. Comparing probability distributions be-
tween different classes should thus yield a measure of
importance for the individual features. An illustration of this
motivation is provided in Fig. 2, where we show the differ-
ence between less important features (x0) and more important
features (x1). The projection onto the subspace corresponding
to label L results in only a minor modification for the former,
while the latter deviates substantially.

We quantify the difference between two probability dis-
tribution functions p(x), q(x) : R → [0, 1] in terms of the
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FIG. 2. Illustration of a probability distribution function for two
features x0 and x1. When restricted to the data subset with class label
L, the distribution of feature x1 deviates significantly from the base
distribution, i.e., the feature is more important for the classification.

Bhattacharyya distance [32]

DB(p, q) = − log

[∫ ∞

−∞

√
p(x)q(x) dx

]
, (3)

which satisfies DB(p, q) � 0 and DB(p, q) = 0 iff p = q.
Thus, according to the argument above, larger values of DB

represent a larger importance of the feature. This measure
has several advantages over the use of divergences in sig-
nal selection [33] and is also used for feature extraction
for image recognition [34,35]. We note that, mathematically
speaking, DB is not a distance since it does not satisfy the
triangle inequality. The related Hellinger distance DH (p, q) =√

1 − e−DB is a true distance function. In our calculations,
though, the Bhattacharyya distance proved to be more effec-
tive.

By only considering those features with the highest
importances, we can perform a dimensional reduction on
the data set. One could now introduce new features that
have a polynomial dependence on the original features
(xi0, xi1, ..., xiN , xi0xi1, ...). This can be repeated to find a more
optimal representation of the data. Albeit conceptionally sim-
ple, an actual implementation is not straightforward, though
it is feasible since all operations required in a single step are
basically O(N ).

Without introducing the aforementioned features it is un-
clear how this approach performs if features are correlated,
i.e., if phase separation lines do not lie along parameter axes.
We employ a twofold analysis based on the statistical de-
pendence and correlation, which indicates relations between
different random variables. In Figs. 3(a) and 3(b) we illustrate
for example that statistical dependence: (a) means that the
distribution function for one parameter depends on that of the
other, whereas this is not the case for independent parameters
(b). Correlations, on the other hand, specify a particular na-
ture of statistical dependence as seen in Figs. 3(c) and 3(d).
Here, we measure the statistical dependence in terms of a
normalized variant of the mutual information, that we call
“redundancy”

R = I (X ;Y )

H (X,Y )
, R ∈ [0, 1], (4)

FIG. 3. Illustration of the redundancy R [Eq. (4)] (top row) and
the Pearson correlation coefficient r [Eq. (7)] (bottom row). In (a) a
joint probability density function for two dependent random vari-
ables is shown. The redundancy is nonzero. The product of the
corresponding marginal distributions is shown in (b) and clearly
differs from the true joint distribution. The redundancy between
independent variables vanishes. (c) and (d) are examples for joint
distribution functions for positively and negatively correlated vari-
ables. Note the respective sign of the PCC.

where I is the mutual information

I (X ;Y ) =
∫ ∞

−∞
p(x, y) log

[
p(x, y)

p(x)p(y)

]
dxdy, (5)

and H (X,Y ) is the joint entropy of random variables X,Y

H (X,Y ) =
∫ ∞

−∞
p(x, y) log [p(x, y)]dx. (6)

Alternatively, when features are dependent on one another,
we quantify the nature of correlations in terms of the Pearson
correlation coefficient (PCC)

rXi,Xj = Cov(Xi, Xj )√
Var(Xi )Var(Xj )

, (7)

which can differentiate uncorrelated and positively or nega-
tively correlated features. Technically, the PCC is only good
for a linear dependence. Considering the limited window of
parameter values though, this method is still applicable and
proves to be reliable enough.

While statistical independence and correlations are two
different quantities, here we usually use the term “correla-
tions” for both. This simplification is fine since we always
look at statistical independence first and discuss statistical
correlations only in case of dependent features.

We note that, at this point, we choose to simplify and only
take into account correlations between pairs of features. Gen-
eralizations to higher order correlations exist, such as the total
correlation [36], however, it is clear that the higher the order
of the correlation function the more obvious the result will
be in terms of a finite value, since a large number of random
variables is less likely to be independent compared to a pair.
At the same time the information content of such quantities
decreases since one loses the fine granularity. Finding the right
balance between complexity and information content is thus
very difficult, but necessary to fully understand the interplay
between parameters.
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FIG. 4. Phase diagram of the Haldane model for φ = π/2 in
terms of next-nearest neighbor hopping t2 and mass m. Starting
out from the trivial phase (0), one can reach a nontrivial phase by
changing either m, t2, or both. The reference point xref is marked by
×.

IV. BENCHMARK CASE: HALDANE MODEL

The Haldane model [27] is defined as

H = t1
∑
〈i j〉

c†
i c j + t2

∑
〈〈i, j〉〉

eiφi j c†
i c j + m

∑
i

sign(i)c†
i ci, (8)

where φi j = ±1 for counterclockwise or clockwise hopping
within a hexagon. This ensures a staggered flux pattern that
results in a vanishing overall magnetic field. Since both time
reversal and particle hole symmetry are broken, Eq. (8) is an
example of a topological insulator in AZ class A [37,38]. One
obtains a rich phase diagram, see Fig. 4 for φ = π/2, with a
trivial insulator (C = 0) at m/|t2| > a, a Chern insulator with
topological index C = +1 at 0 < |m|/t2 < a, and a Chern
insulator with topological index C = −1 at a < |m|/t2 < 0.
The value of a ∈ R depends on φ, and will approach 0 when
reaching φ = nπ for n ∈ Z.

Implicitly, Eq. (8) assumes a perfect honeycomb. If we
relax this requirement we obtain a model with 11 independent
parameters

H =
∑
〈i, j〉

t i j
1 c†

j ci +
∑
〈〈i, j〉〉

t i j
2 c†

j ci +
∑

i

εic
†
i ci, (9)

namely three nearest neighbor terms t1, six next-nearest neigh-
bor terms t2, and two onsite terms εi with εA − εB = 2m.
Due to the requirement that the Hamiltonian be hermitian, εi

must be real. All other parameters are sampled as complex
values. Thus, we have nine complex and two real features, or
equivalently 20 real features. In order to fix the energy scale,
one of the onsite terms should always be set to zero, which
leaves a total of 19 real features.

The order of the complex features is defined in the follow-
ing way:

xi = (
0, m, t1

1 , t2
1 , t3

1 , t1
2 , t2

2 , t3
2 , t4

2 , t5
2 , t6

2

)
, (10)

where the superscript index differentiates the three (six)
different values of t1 (t2). The leading 0 corresponds to
the onsite energy εA. We first fix as a reference point
the coordinates of the Haldane model with m/t1 = 1.05,
t2/t1 = 0.2, which lies just barely inside the trivial phase

FIG. 5. (a) Nearest and next-nearest neighbor hopping terms
accounted for in the honeycomb lattice. We draw independent param-
eters in different colors. (b) Percentage of samples categorized by the
topological class label (outer ring) and the corresponding fraction of
insulators/metals (inner ring). Here, we find only y = 0, 1, −1 in the
surveyed region. The total sample size is ns = 107.

region, cf. Fig. 4. In feature space this can be written
as Re(xref ) = (0, 1.05, 1, 1, 1, 0, 0, 0, 0, 0, 0) and Im(xref ) =
(0, 0, 0, 0, 0.2,−0.2, 0.2,−0.2,−0.2, 0.2). The sign change
of the next-nearest neighbor term is due to Haldane’s require-
ment that the total flux be zero.

We run a fully unbiased sweep, where we draw samples
in this 19-dimensional space from the uniform probability
density function Eq. (2) with α = 2, which on one hand is
large enough to allow for a sign change, but on the other
hand is small enough not to require an unfeasible number
of samples. For each sample the Chern number is computed
and stored in the label vector. By using a binning analysis we
extract the frequency of different values for all features within
the different class labels.

We find a considerable number of nontrivial samples, cf.
Fig. 5, even in our totally unbiased approach. This number is
large enough to extract useful statistical information. With the
given xref we obtain two topological phases (1, -1), however,
data with -1 is less abundant due to the larger distance of
xref from that phase region. The importance scores [Eq. (3)]
computed from the distributions are shown in Fig. 6. Here,
we show both mappings to the real axis (Re/Im, |.|/ϕ). The
mass m is apparently most important, following behind are
Re(t1) and the phase of t2, ϕ(t2). Since the imaginary part of
t1 ranks comparatively low, the phase information must relate
to the sign. Obviously the real part contains the information
about the sign, so we choose here the real part. Therefore, we
can restrict the following discussion to the reduced set of 10
out of the total 39 features. We have also trained a random
forest classifier on the data and extracted importance scores
via the permutation importance, cf. [39], which resulted in a
very similar ranking. The advantage of the present method is
that we skip the costly training phase entirely.

Given the importance scores, we inspect the underlying
distributions more closely. These are expected to show a
certain symmetry such that, e.g., nearest neighbors are inter-
changeable. While this is true, here next-nearest neighbors
are divided into two distinct groups, namely those that con-
nect A and B sites, respectively. Thus, we end up with four

013132-4



ENGINEERING TOPOLOGICAL PHASES GUIDED BY … PHYSICAL REVIEW RESEARCH 3, 013132 (2021)

FIG. 6. Importance scores in terms of the Bhattacharyya distance
for all (real) features. Here, we take into account only the topological
class with Chern index C = 1. Most relevant are apparently the mass
m, the real part and phase of t1, and the phase of t2. We plot a separate
bar for every individual hopping vector. Equal colors indicate equal
lengths.

distinct distributions, for which we show the measured values
in Fig. 7.

Having extracted those features that show the clearest sta-
tistical response to the change of the topological label, or vice
versa, the question about the relationships between different
features remains open. Due to the extremely unbiased ap-
proach and the large number of degrees of freedom therein
it is clear that there will be no clear cut distinction between
the different phases. To understand this we assume that the
value of a feature can fall into separate intervals correspond-
ing to the different phases. Since the number of features is
large it is very likely that changing another feature moves

FIG. 7. Relative frequency (approximate probability density
function) for four important features. We chose here the mass m, the
real part of a nearest neighbor hopping t1, and the phases of two next-
nearest neighbor hoppings connecting A and B sites, respectively. For
all terms we observe a clear distinction of the PDF of the nontrivial
phase (C = 1, −1) from that describing the trivial phase (C = 0).

FIG. 8. Top: (a) Redundancy R, Eq. (4), shown here for the
phases of all parameters for the unbiased (left) and biased (right)
topological data set. The nearest neighbor hoppings show a small
redundancy in the unbiased data. This is not the case for the next-
nearest neighbor hoppings. Imposing the bias on the data reveals a
redundancy between t2A and t2B. (b) Joint probability density function
p[ϕ(t2A), ϕ(t2B )] for the next-nearest neighbor hoppings for unbiased
(left) and biased (right) data sets. Apparently, noise due to the large
number of degrees of freedom for the six next-nearest neighbor
hoppings reduces the contrast in the PDF, and therefore reduces
the measured redundancy. Bottom: Pearson correlation coefficient
[Eq. (7)] for the (c) C = 1 and (d) C = −1 phase. We observe
positive and negative correlations between the nearest-neighbor hop-
pings, respectively.

the intervals around. Marginalizing over all other features
then leaves us with a blurred out distribution that can no
longer confidently distinguish phases. Therefore, we aim here
only at finding the characteristic behavior. As a consequence
of the large number of correlated features the correlations
between any pair of features are rather small. This is inter-
esting as it demonstrates the stability of the topological phase
with respect to noise. Apparently, changing a single hopping
parameter—even drastically—can leave the topological phase
unchanged. This is also visible in the joint PDFs between any
pair of features, which are all close to the independent PDF
p(xi, x j ) = p(xi )p(x j ), resulting in small redundancy values.
Correlations between many (if not all) features should be
present, and the corresponding joint PDF contains the com-
plete information about the classification. Nevertheless, the
joint PDFs are extremely difficult to interpret.

Finding a prototype feature set for a specific label can
intuitively be done by taking the mean of the corresponding
data points in case of a symmetric distribution, or the peaks
in case of an asymmetric distribution. However, this does not
always lead to a correct classification, since correlations are
neglected. Given the measured frequency of a particular set of
features it is apparently more likely that, for a single sample,
most values lie close to the respective peaks, while only few
deviate significantly. Taking into account the correlation coef-
ficient between the features we can distinguish between actual
correlation and noise.

We investigate the statistical dependence of the parameters
in terms of the redundancy [Eq. (4)] in Fig. 8(a), and the
Pearson correlation coefficient [Eq. (7)] in Figs. 8(c) and 8(d).
In addition, we illustrate the corresponding joint PDF between
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FIG. 9. (a) Hopping parameters taken into account. Terms related
by symmetry are colored equally. (b) Percentage of samples from
the improved model categorized by the topological class label (outer
ring) and the fraction of insulators and metals therein (inner ring). In
the surveyed region we find almost exclusively insulators with labels
y = 0, 1; the number of y = −1 samples is statistically irrelevant.
The total sample size is 106.

a pair of features in Fig. 8(b). We find that the nearest neighbor
hoppings are positively correlated in the topological class
C = 1 [see Fig. 8(c)], which indicates that the three differ-
ent values are similar. For the C = −1 class [see Fig. 8(d)],
however, we find the opposite sign, i.e., the hopping values
are negatively correlated. This means that one or two values
have the opposite sign with respect to the mean.

Given this information we can construct effective models
for the two classes C = 1 and C = −1. To this end we reduce
the complexity further by assuming a symmetry between the
t1 and t2 features. While this is not necessary, as shown by
the statistical independence of the parameters in the data
[Fig. 8(a)], it greatly improves the interpretability of the data.
Depending on the topological class label and the associated
correlations, the hopping terms are either equal or have oppo-
site signs. The t2 values are split into two independent groups
based on the distinct PDFs obtained in the unbiased run. This
reduced set of parameters contains seven independent degrees
of freedom versus the original 19.

The improved model with reduced complexity is given
by four distinct parameters, i.e., one real onsite term, one
complex nearest neighbor term, and two complex next-nearest
neighbor terms. Due to the reduced complexity, good statistics
are obtained at lower sample sizes, allowing for a quicker eval-
uation. In Fig. 9 we show that the visibility of the nontrivial
topological C = +1 phase in the data has greatly improved,
which validates the choice of symmetries for our biased
model. We use the data obtained from this run to finally settle
exemplary values for the prototype model.

By measuring the frequency of the features, distinguished
by class labels, cf. Fig. 10, we make an interesting obser-
vation. Apparently, choosing the symmetry in the particular
way that we did introduced a certain bias to our model. As
a consequence, the nearest neighbor hopping term is now
completely irrelevant for the classification. The next-nearest
neighbor terms, though, are showing improved contrast, since
there is less possibility for noise, which is also apparent in
the redundancy and joint PDF, cf. Fig. 8. While we are able
to detect a redundancy in Fig. 8(a), the values are still rather

FIG. 10. Relative frequency (approximate probability density
function) for the mass m, a nearest neighbor term t1 and two next-
nearest neighbor terms t2 for the biased data. Compared to the
unbiased data (see Fig. 7), the nearest neighbor term is suddenly
completely indistinguishable between different phases, while the
contrast of the next-nearest neighbor terms is increased. The y = −1
label can apparently only appear for a specific sign of the next-
nearest neighbor phases.

small. As a consequence, we can regard the parameters as
mostly independent and consider their marginal distributions.
The C = −1 phase was not produced in a statistically relevant
sample size. We can relate this to the fact that we chose the
correlations of the C = +1 phase when setting up symmetries
and that the reference point is much closer to the C = +1
phase. Implementing the correlations between the nearest
neighbor hoppings via a sign change will result in a data set
with a majority of samples belonging to the C = −1 class.

V. GENERAL HONEYCOMB LATTICE

So far the reference point was carefully chosen to represent
the Haldane model and located close to a nontrivial phase to
make sure that both trivial and nontrivial samples are pro-
duced. In this section we want to test if our analysis also works
for cases where no prior information is known. Therefore, we
start from a very general honeycomb lattice, where we choose
the reference point as

xref = (
tA
0 , tB

0 , t1
1 , t2

1 , t3
1 , t1

2 , t2
2 , t3

2 , t4
2 , t5

2 , t6
2 , . . .

)
, (11)

where ti = 1/di is chosen to be the inverse distance of the
respective link. tA

0 , tB
0 are set to 0 and 1, respectively, which

fixes the scale and units of energy. For the honeycomb lattice
odd neighbors come in triplets and even neighbors come in
sixtuplets. Therefore, we can write

xref =
(

0, 1,
1

d1
,

1

d1
,

1

d1
,

1

d2
,

1

d2
,

1

d2
,

1

d2
,

1

d2
,

1

d2
, . . .

)
,

(12)
with d1 = 1, d2 = √

2, . . .. This constitutes a rather generic
but realistic a priori ansatz that is known to be topologically
trivial. We run a fully unbiased sweep without assuming any
symmetries and obtain the data presented in the top row of
Fig. 11.
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FIG. 11. Results for the honeycomb lattice. Top row: Fully unbiased model. Bottom row: Symmetrized model. (a) The fraction of
topological samples is comparable to the Haldane case in the unbiased data, but much smaller in the symmetric data because the reference
point is far away from a topological phase. While the majority of samples are metallic, all samples have separable bands. (b) PDFs of features
with highest importance score DB, separated from the rest by an order of magnitude. For the unbiased model we use all data points, while
in the biased case we restrict to insulators only. (c) and (d) are the same representation of the data for the biased calculation. The phases
of the next-nearest neighbor hoppings are now a strong indicator for the topological phase. In (e) we show the overlap of the features
with the parameters of a generic Haldane model (grey) for the C = 1 (orange) and C = −1 (green) phase. The effective model contains
the characteristics of the Haldane model.

Despite the presumably large distance of the reference
point to a topologically nontrivial phase, we obtain a reason-
able number of nontrivial samples [Fig. 11(a)]. Apparently,
regardless of the greatly increased number of degrees of free-
dom, the phases of the hopping terms are revealed to be
distinctly important, second only to the mass term. We take
a look at the PDFs of these features in Fig. 11(b) and observe
that the phases for the next-nearest neighbor hoppings are
split into two distinct categories. We note that the sign of the
class index is reflected in the distribution of the next-nearest
neighbor terms. In addition to the known phases from the
Haldane model we observe also larger indices ±2 and ±3
(not shown). We compare the PDFs within the four different
classes of hopping parameters in terms of DB(pt1,i , pt1, j ) etc.,
and observe that all distributions are very similar, except the
ones of t2A and t2B. This observation lends itself as an argu-
ment for introducing a symmetry between the hoppings with
equal PDFs.

Taking into account this symmetry of the probability
density functions and the correlations between features,
we reduce the model to a six-parameter model with
m, t1, t2A, t2B, t3, t4, which corresponds to 11 real features in-
stead of the general 37.

Within this symmetrized (“biased”) model (bottom row of
Fig. 11) we then observe a large number of different class
labels. The C = ±1 classes that also appeared in the Haldane
model represent by far the largest group of the nontrivial
data and show very similar statistics, compare Fig. 11(d) with
Fig. 10. The phases of the next-nearest neighbor hoppings
have a tendency toward opposite signs between A and B
sublattices, which accounts for the vanishing net magnetic

field. It is interesting how the added higher-order terms come
into play. Statistically speaking, the added third and fourth
nearest neighbor terms are irrelevant for the C = ±1 phase,
which becomes apparent from the negligible deviation of their
probability density functions from the base distribution and
the absence of correlations. Obviously, samples of these two
classes are continuously connected to the Haldane model.
The new information here is that these phases are stable with
respect to noise and added longer range hopping terms.

During the sampling, especially in the general honey-
comb model, it is clear that some combinations of parameters
will not produce an insulating phase. Especially among the
nontrivial data points we find only a small fraction to be
insulating, while the majority lacks a band gap, cf. Figs. 11(a)
and 11(c). However, in all cases we find topological bands that
are clearly separable, which guarantees that the Chern index is
well defined. Although these phases are not insulators at all,
we chose to keep them in the initial unbiased run to reduce
the amount of samples needed. In fact, comparing the dis-
tributions between the topological metals and the topological
insulators reveals that the key features are the same, i.e., it is
not strictly necessary to discard these data points, although the
contrast, and therefore the amount of information, is higher for
the insulating phases due to reduced noise. This is reflected
in higher importance scores for all features in the topologi-
cal insulator set compared to the topological metal set. It is
possible to increase the insulating fraction by choosing the
distribution observed for the topological insulator instead of
the uniform distribution for the sampling process. This could
be interpreted as learning the ideal distribution for generating
topological insulators by looking at a completely unbiased
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data set, but performs less than ideal due to the assumption
of independence during the sampling process.

In case the features are uncorrelated we can extract an
effective model for each topological phase by looking at the
peaks and average of the PDFs for each class label. More
information, however, is encoded in the PDFs themselves and
can be readily inspected due to the dimensional reduction.
This information can be a guide to form a decision tree, i.e.,
understanding which parameters must be taken to produce a
topological insulator.

The effective model found by our algorithm is shown in
Fig. 11(e). For both the unbiased and biased parameter se-
lection we observe the characteristic features of the Haldane
model with an added phase on the nearest neighbor hopping
and real third- and fourth-neighbor hopping. The latter terms
have already been found to be rather unimportant, i.e., the
occurrence in our effective model is entirely due to the ref-
erence point. The beauty of this result is that, by starting from
a completely generic topologically trivial honeycomb model,
we reproduced the Haldane model as the characteristic topo-
logical Chern insulator by purely statistical means. Although
we did introduce a bias to combat the noise in the data, there
are traces of the Haldane model already visible in the unbiased
data set. The effective models for the C = +1 and C = −1
phase differ only in the sign of the phase in the next-nearest
neighbor hopping, as is known from Haldane’s original work
[27].

VI. CONCLUSION & OUTLOOK

We have presented a scheme to learn the characteristics
of topological phases and extract minimal models for a spe-
cific lattice. Using methods from data science and statistics
toolbox we performed dimensional reduction on an initially
large feature space by extracting the most relevant features for
the classification of each phase. Methods like these are essen-
tial to the construction of efficient machine learning models.
We chose here to inspect only the statistical distributions of
the individual parameters and their correlations between one
another given a particular topological class, which comes
at comparably low computational cost, and found that these
quantities already contain enough information to extract a
prototypical model for each topological phase. In particular,
by starting from a generic (far from topological) honeycomb
model, we recovered the prototypical Haldane model as the
topological model in the Altland-Zirnbauer class A for the
honeycomb lattice. It is expected that the method works even
better for symmetry protected phases due the much lower po-
tential for noise in models with fewer free parameters. While
the presented results are valid only for the noninteracting
regime, one can use a similar approach to learn about possible
topological phases in interacting systems [30].

Our method relies mainly on the inspection of integrated
quantities, i.e., distribution functions where all but one fea-
tures are integrated out. This raises the question if this can
still be useful, since more often than not phase boundaries are
complicated functions of many if not all parameters of the
model. However, we have observed that our approach cap-

tures the exact same physics as the permutation importance
of random forests at much lower computational cost. In the
present work correlations between pairs of features are taken
into account, where we constrain the algorithm to features
regarded as important in the first place.

The method presented here exploits the typical character-
istics of phase diagrams, i.e., that phases are not randomly
distributed throughout the parameter space but follow partic-
ular patterns. As a consequence, not all parameter values will
be equally likely to generate a particular phase, provided that
the phase boundary crosses the parameter axis. This type of
analysis works irrespective of the types of phases studied,
and it is not necessary to recognize the physical concepts
underlying the different phases.

By using the bare tight-binding parameters as features
we maximize the potential of learning comprehensible infor-
mation about the data itself, since these parameters carry a
straightforward meaning. The success of the method shows
that this information can be easily extracted.

Engineering new features in the data processing phase
would allow for a more quantitative description of the phase
diagram. To this end one could make use of higher-order cor-
relation functions and try to maximize the importance score of
a proposed new feature in an iterative learning algorithm. The
prospects of such a method highly depend on the complexity
of the model, though.

We note that this method is not in competition with neural
network classifiers such as [40,41], which attempt to learn
the physics underlying the data. Although the importance of
parameters with respect to a particular classification can in
principle be extracted from both methods, this process is much
more difficult for sufficiently complex neural networks. In
addition, we have shown that for this purpose training is not
needed.

Besides finding topological models for arbitrary lattices as
demonstrated, the method can be applied for data preparation
and feature engineering for machine learning. In particular,
by choosing fitted or ab initio computed parameters as a
starting point, our method can easily predict the possibility
of engineering a topological phase for that particular material
as well as a guide to how one could achieve this goal. The task
of extracting a prototypical model can be accomplished much
easier than with a complicated machine learning model, which
by construction is good at predicting but hard to understand.
A way to combine both approaches would be to increase the
interpretability of machine learning, which has been a highly
active field of research in recent years [42–45]. By performing
feature optimization to reduce the complexity of the model we
have applied one possible step in this direction in the present
work.
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