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Strontium ruthenate Sr2RuO4 is an unconventional superconductor whose pairing symmetry has
not been fully clarified, despite more than two decades of intensive research. Recent NMR Knight
shift experiments have rekindled the Sr2RuO4 pairing debate by giving strong evidence against all
odd-parity pairing states, including chiral p-wave pairing that was for a long time the leading pairing
candidate. Here, we exclude additional pairing states by analyzing recent elastocaloric measurements
[YS. Li et al., Nature 607, 276–280 (2022)]. To be able to explain the elastocaloric experiment,
we find that unconventional even-parity pairings must include either large dx2−y2 -wave or large
{dxz | dyz}-wave admixtures, where the latter possibility arises because of the body-centered point
group symmetry. These {dxz | dyz}-wave admixtures take the form of distinctively body-centered-
periodic harmonics that have horizontal line nodes. Hence gxy(x2−y2)-wave and dxy-wave pairings
are excluded as possible dominant even pairing states.

I. INTRODUCTION

The nature of the superconductivity of strontium
ruthenate (SRO) remains elusive. In the three decades
following its discovery [1], an impressive array of exper-
iments have been performed with high precision and on
exceedingly pure samples [2–6]. Yet the most straightfor-
ward interpretations of the various experimental results
are regularly at odds with one another. Although many
proposals [7–21] have been made on how the assortment
of experimental results might be reconciled, no consensus
has formed around which proposal is the correct one. Be-
fore presenting our results, in the next six paragraphs we
review what is currently known about the pairing state.
This literature review is not essential to our argument
and can be skipped.

The superconductivity (SC) of SRO is unconventional.
This has been established early on by the absence of
a Hebel-Slichter peak [22] in the NMR relaxation rate
1/T1 [23–25], and by the large suppression of the SC tran-
sition temperature Tc by non-magnetic impurities [26–
29] that saturates the Abrikosov-Gor’kov bound [30, 31].
Subsequent experiments have only further confirmed the
unconventional character of SRO’s SC.

The pairing of SRO is more likely to be even than
not. Recent32 NMR Knight shift [33–35] and polarized
neutron scattering [36] experiments strongly favor sin-
glet pairing, as do numerous studies [6, 37] indicating
that the in-plane critical field Bc2∥ab is Pauli limited [38].
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Although the observation of π phase shifts [39] and half-
quantum vortices [40–42] is at tension with even-parity
SC, possible explanations do exist [10, 43, 44]. Rec-
onciling an 80% drop in the in-plane Knight shift [35]
with triplet pairing, or a strained critical field anisotropy
Bc2∥ab/Bc2∥c ∼ 3 [45] far below the SC anisotropy
ξab/ξc ∼ 60 [46, 47] without Pauli limiting [6], is signifi-
cantly more challenging, but perhaps possible [48, 49].

The evidence for time-reversal symmetry breaking
(TRSB) is mixed. Zero-field muon spin relaxation (ZF-
µSR) [50–54] and polar Kerr effect [55, 56] experiments
indicate TRSB at a TTRSB at or very near Tc, yet the cur-
rent response of micron-sized Josephson junctions [57, 58]
exhibits time-reversal invariance. Under ⟨100⟩ uniax-
ial pressure, ZF-µSR [53] observes a large splitting be-
tween TTRSB and Tc,59 yet no signatures of a TRSB
phase transition below Tc have been found in heat ca-
pacity [60] or elastocaloric [61] measurements. Under
disorder and hydrostatic pressure, no splitting between
SC and TRSB is observed in ZF-µSR [54]. Prelimi-
nary ZF-µSR measurements point towards splitting of
SC and TRSB under ⟨110⟩ uniaxial stress [62]. In the
presence of TRSB, spontaneous magnetization and cur-
rents are generically expected to appear around domain
walls, edges, and defects, yet scanning SQUID and Hall
probe microscopy [63–70] has failed to find any evidence
for them. Josephson junction experiments [57, 71–73]
show signs of SC domains in their interference patters,
switching behavior, and size dependence of their trans-
port properties, but the domains themselves need not be
chiral.

The coupling of SC to strain is partially known from
measurements of elastic constants. The main obstacle to
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Table I. Examples of functions transforming according to the
irreps of the point group D4h of SRO. D4h is generated by
fourfold rotations around z, twofold rotations around x and
y, twofold rotations around the diagonals x ± y, and parity.
It has five even (A1g, A2g, B1g, B2g, Eg) and five odd (A1u,
A2u, B1u, B2u, Eu) irreps, of which Eg and Eu are 2D.

A1g A2g B1g B2g Eg

1, x2 + y2, z2 xy(x2 − y2) x2 − y2 xy {yz | −xz}
A1u A2u B1u B2u Eu

xyz(x2 − y2) z xyz (x2 − y2)z {x | y}

making these measurements conclusive is the fact that
strain inhomogeneities, such as stacking faults or lattice
dislocations, mix elastic waves of different symmetry.74
That said, according to elastic constant measurements,
the SC order appears to couple quadratically to εxx −
εyy ∈ B1g strain and possibly linearly to εxy ∈ B2g

strain. (Irreducible representations (irreps) of SRO are
summarized in Table I.) The evidence for the former is
the quadratic dependence of Tc on εxx − εyy, whether
measured globally [45, 75, 76] or locally [77], and the
absence of a jump at Tc in the shear elastic modu-
lus CB1g = 1

2 (C11 − C12) [78–80]. The evidence for
the latter is a jump at Tc in the shear elastic constant
C66 ∈ B2g [79–81], as measured by ultrasound. How-
ever, the magnitude of this jump varies by a factor of 50
between the two experimental groups [79, 80] and direct
measurements of Tc under [110] strain show linear depen-
dence without any splitting and whose magnitude can be
fully accounted without any linear coupling to εxy [82].
This raises the possibility that the observed jump in C66

is due to lattice defect effects that, however, need to be
channel selective so as to not generate a jump in CB1g

.
One such proposal [9] is that a subleading pairing chan-
nel activates near dislocations; the product of the lead-
ing and subleading pairing irreps then determines which
elastic modulus experiences a jump. No jump has been
observed for the elastic modulus C44 ∈ Eg [78, 80], indi-
cating that the coupling to Eg strain is quadratic. Large
jumps in the A1g components of the viscosity tensor have
recently been discovered at Tc [83].

The preponderance of evidence points towards line
nodes. The expected dependence on temperature is
found in the heat capacity [84–86], ultrasound attenu-
ation rate [78, 87], NMR relaxation rate [24], and Lon-
don penetration depth [88]. In weak in-plane fields, the
heat capacity [86, 89] and Knight shift [35] obey Volovik
scaling (∝

√
B/Bc2) expected of line nodes [90]. The

in-plane thermal conductivity [91, 92] exhibits univer-
sal transport, which is a type of transport found only
in nodal SC [93–96]. Finally, STM spectroscopy [97, 98]
shows a V -shaped conductance minimum.99 The only ev-
idence to the contrary is an STM/S study [100] that
scanned micron-sized grains (∼ 10 ξab) situated on top
of SC aluminium and found an implausibly large SC gap

∆ of 3.5K. Given that so many studies [24, 78, 84–89]
found nodal behavior, in some cases down to as low as
0.04K ≈ Tc/30, any fully gapped SC must have extraor-
dinarily deep minima.

The location and orientation of the line node(s) is not
settled. Heat capacity [86] and in-plane thermal con-
ductivity [101, 102] both display a fourfold anisotropy in
their dependence on the in-plane B orientation.103 Since
these anisotropies are small (∼ 1%), they can be ex-
plained by both horizontal and vertical nodes. That the
heat capacity anisotropy has the same sign down to Tc/20
appears to exclude dxy-wave pairing [86], and maybe
other pairings too. The universal heat transport along
c has been found finite with 2σ significance [92], indicat-
ing that nodal quasi-particles have a finite c-axis velocity.
If true, this result is strong evidence against symmetry-
enforced horizontal line nodes. A resonance at transfer
energy ≈ 2∆ and momentum with a finite z component
was reported below Tc in the inelastic neutron scatter-
ing intensity [104], suggesting horizontal line nodes, but
was not reproduced in subsequent measurements [105].
In the Fourier transform of the real-space STM tunnel-
ing conductance [98], peaks were found at nesting vectors
expected of dx2−y2-wave SC. However, the peaks are not
clearly resolved because of noise and compatibility with
other pairings was not investigated.

Compelling evidence on SRO’s gap structure has re-
cently emerged from measurements performed under uni-
axial pressure. When ⟨100⟩ uniaxial pressure is applied
on SRO, its SC is drastically enhanced [45, 75, 76, 106,
107], with Tc increasing from 1.5K to a maximal 3.5K
before decaying again. The most likely cause of this
enhancement is the Lifshitz transition that occurs at
εxx = −0.44% ≡ εVH strain [45, 76, 108] and is accom-
panied by an increase in the density of states (DOS). The
DOS peaks at εVH, as does the normal-state entropy [61].
In the SC state, however, the entropy becomes a mini-
mum at εVH, as directly measured by the elastocaloric
effect [61]. As we later explain, this is only possible if
SRO’s SC does not have vertical line nodes at the Van
Hove lines that induce the DOS peak at εVH. This is
a severe constraint on possible pairing states, one whose
implications we explore in this article. The final piece
of the argument is that these properties of strained SRO
carry over to the unstrained SC state, which is supported
by the absence of any signatures of a bulk SC state change
at finite strain in the heat capacity [60], elastocaloric ef-
fect [61], or NMR Knight shift [33, 35].

The main result of this work is that, among even pair-
ings, only s-wave (A1g), dx2−y2 -wave (B1g), and body-
centered periodic {dxz | dyz}-wave (Eg) pairings gap the
Van Hove lines. Thus the SC state must include ad-
mixtures from at least one of these three pairings to be
consistent with the elastocaloric experiment. The logic
of our argument does not put any constraints on the sub-
leading channels. For instance, almost degenerate states
like dx2−y2 + i gxy(x2−y2) [7] or s′ + i dxy [14, 15] are con-
sistent with a dominant dx2−y2 -wave or s-wave state, re-
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spectively. Among odd-parity pairings, all irreps can gap
the Van Hove lines. However, A2u and B2u pairings must
be made of body-centered periodic wavefunctions, and for
the rest we find non-trivial constraints on the orientations
of their Balian-Werthamer d-vectors [109].

The paper is organized as follows. In Sec. II we review
some basic properties of SRO. After that, in Sec. III, we
explain what has been measured in the elastocaloric ex-
periment [61] and why these measurements forbid vertical
line nodes at the Van Hove lines. The precise location of
the Van Hove lines is the subject of Sec. IV. Because of
its multiband nature, SRO supports a richer set of pair-
ing states than single-band SC [110–112], which is briefly
discussed at the beginning of Sec. V and at length in
Appendix C. Section V contains the main results of our
work: how the momentum and spin-orbit parts of the
SC gap behave near the Van Hove lines and which SC
states are excluded by the elastocaloric measurements.
Table VI is our main result. In the last section, we dis-
cuss our results.

II. CRYSTAL AND ELECTRONIC STRUCTURE

SRO is a layered perovskite with a body-centered
tetragonal lattice (a = 3.86Å, c = 12.7Å), space group
I4/mmm, and point group D4h [2, 113]. The character
table of D4h is given in Table II.

SRO has three conduction bands, conventionally re-
ferred to as α, β, and γ, with cylindrical Fermi sheets [2,
113]. They are depicted in Figure 1. These bands primar-
ily derive from the t2g orbital manifold of the Ru atoms,
which is made of dyz, dzx, and dxy orbitals [2, 20, 113].
To a first approximation, due to the high anisotropy, dyz
and dzx have 1D tight-binding dispersions:

ϵyz(k) = −µ− 2t cos ak2, (1)
ϵzx(k) = −µ− 2t cos ak1, (2)

whereas dxy has a 2D tight-binding dispersion:

ϵxy(k) = −µ− 2t(cos ak1 + cos ak2)

− 4t′ cos ak1 cos ak2,
(3)

where (µ, t, t′) ≈ (0.35, 0.3, 0.1) eV [16, 114]. After in-
troducing interorbital mixing and spin-orbit coupling,
ϵyz(k) and ϵzx(k) hybridize into the quasi-1D α and β
bands, whereas ϵxy(k) hybridizes into the quasi-2D γ
band [Figure 1]. Interlayer hopping adds warping along
k3. Below 25K, SRO is a quasi-2D Fermi liquid. Its
quasi-particles are strongly renormalized by electronic
correlations [2, 115]. In the clean limit, SRO develops
SC below 1.5K [2].

Below 25K, SRO is well-described by a tight-binding
model based on the t2g orbitals of ruthenium [16, 114,
117, 118]. Within it, the hopping amplitudes tδ be-
tween neighboring lattice sites are significantly con-
strained by the symmetries of SRO. In a body-centered

Table II. The character table of the point group D4h [116].
Irreps are divided into even (g) and odd (u) ones. C4 are
rotations by ±π/2 around the z axis. C2, C′

2, and C′′
2 are

rotations by π around the z axis, x or y axes, and diagonals x±
y, respectively. P is parity. S4, Σh, Σ′

v, Σ′′
d are compositions

of C4, C2, C′
2, C′′

2 with P , respectively.

D4h E 2C4 C2 2C′
2 2C′′

2 P 2S4 Σh 2Σ′
v 2Σ′′

d

A1g 1 1 1 1 1 1 1 1 1 1

A2g 1 1 1 −1 −1 1 1 1 −1 −1

B1g 1 −1 1 1 −1 1 −1 1 1 −1

B2g 1 −1 1 −1 1 1 −1 1 −1 1

Eg 2 0 −2 0 0 2 0 −2 0 0

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2u 1 1 1 −1 −1 −1 −1 −1 1 1

B1u 1 −1 1 1 −1 −1 1 −1 −1 1

B2u 1 −1 1 −1 1 −1 1 −1 1 −1

Eu 2 0 −2 0 0 −2 0 2 0 0

Figure 1. The Fermi surfaces of SRO. The solid black lines
are the k3 = 0 cross-sections of the cylindrical α, β, and γ
Fermi sheets of unstrained SRO, as determined by our tight-
binding model [Appendix B]. The dashed red line is the γ
band of SRO under Van Hove unaxial strain ε100 = −0.44% ≡
εVH [61, 108]. At this strain, the γ band opens at the Van
Hove lines

(
0,±π

a
, k3
)
, here denoted with red dots.

lattice, hopping amplitudes along the half-diagonal δ =
1
2 (aê1 + aê2 + cê3), as well as many other δ, are ad-
ditionally possible. However, all such characteristically
body-centered hoppings necessarily connect different lay-
ers and are thus suppressed by SRO’s anisotropy. For the
purpose of making estimates, throughout this paper we
employ the normal-state model of Ref. [114], the details
of which are provided in Appendix B.
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III. IMPLICATIONS OF ELASTOCALORIC
MEASUREMENTS

The elastocaloric effect describes the change in the
temperature that accompanies an adiabatic change in the
strain εαβ . By measuring it, one may determine the de-
pendence of the entropy S on strain. This is made pos-
sible by the thermodynamic identity:

∂T

∂εαβ

∣∣∣∣
S

= − T

Cε(T )

∂S

∂εαβ

∣∣∣∣
T

, (4)

where Cε(T ) = T (∂S/∂T )ε is the heat capacity at con-
stant strain. Recently, important progress has been made
in the experimental techniques for measuring the elas-
tocaloric effect and in their analysis for correlated elec-
tron systems [119–121].

The elastocaloric effect has been measured last year for
strain applied along the [100] direction [61]. Numerical
analysis of this dense data set [122] enables the separation
of the contribution from Cε and the reconstruction of the
dependence of the entropy on strain; see Figure 2.

As clearly seen in the figure, the normal-state entropy
has a maximum at the Van Hove strain ε100 = −0.44% ≡
εVH. As we enter the SC state, however, this maximum
becomes a minimum as a function of strain. To under-
stand this behavior, let us recall that the entropy of a
Fermi liquid is given by [123, 124]:

S = V
π2

3
k2BT

∫
dE g(E) δT (E), (5)

δT (E) =
3

π2kBT

[
− f log f − (1− f) log(1− f)

]
, (6)

where V is the volume, g(E) the DOS, E is relative to the
chemical potential, and f = 1/(eE/kBT + 1). δT (E) →
δ(E) as T → 0 so S ∼ Tg(0). This formula applies to
both the normal and the SC state. Thus to understand
the entropy, we need to study the DOS near the Fermi
level E = 0.

In the normal state, at Van Hove strain the γ band
experiences a Lifshitz transition in which its cylindri-
cal Fermi surface opens at the Van Hove lines kVH ≈(
0,±π

a , k3
)

along the k2-direction [45, 76, 108]. This is
shown in Figure 1. Because of the particularly weak k3-
dispersion of the γ band at kVH (∼ 1K), the Van Hove
lines contribute a pronounced peak in the DOS that is
only rounded on an energy scale of about one kelvin [61].
It is this peak in the DOS that explains the observed
normal-state entropy maximum.

To gain a qualitative understanding of what sort of
pairings can induce an entropy minimum at εVH strain,
it is sufficient to consider the γ band near the Van Hove
lines. This is justified by the fact that the γ band con-
tributes 60% of the total DOS [Appendix B] and is solely
responsible for the normal-state peak in the entropy. For
the moment, we shall also neglect the k3-dispersion.

The DOS of a band in 2D with a dispersion ϵk and SC

Figure 2. The entropy S as a function of strain ε100 at con-
stant temperatures T ranging from 2.5K (blue) to 4.0K (red)
in 0.1K increments. The entropies at different temperatures
are naturally offset from each other by their temperature de-
pendence. The entropy has been reconstructed from elas-
tocaloric measurements [61] using Eq. (4). At Van Hove strain
ε100 = −0.44% ≡ εVH, Tc attains its maximal value of 3.5K.
Above (below) 3.5K, the entropy has a maximum (minimum)
at εVH strain.

gap ∆k is given by:

gsc(E) = 2

∫
dk1 dk2
(2π)2

δ
(
E − ξk

)
, (7)

where the 2 is due to spin and ξk =
√
ϵ2k + |∆k|2 is the

Bogoliubov quasi-particle dispersion. It is often easier to
calculate the integrated DOS

Nsc(E) =

∫ E

0

dE′ gsc(E
′) = 2

∫
ξk≤E

dk1 dk2
(2π)2

(8)

and then differentiate it to get gsc(E). Near the Van Hove
point (0, π), the dispersion of the γ band is approximately
given by [see Appendix B or Eq. (18)]:

ϵk =
1

2m1
k21 −

1

2m2
k22 =

1

m∗
q+q−, (9)

where m∗ =
√
m1m2 = 1/3200K, r = 4

√
m2/m1 = 0.59,

and q± = 1√
2
(rk1 ± k2/r). Since this expression for ϵk

only applies near the Van Hove point, we impose a mo-
mentum cutoff |q±| ≤ Λ.

In the normal state (NS), ∆k = 0 and the DOS at the
Van Hove strain equals:

gNS
sc (E) =

8m∗
(2π)2

log
Λ2

m∗E
. (10)
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This diverges logarithmically as E → 0. As we move
away from ε100 = εVH, the logarithmic divergence is
moved away from the Fermi level E = 0, explaining the
normal-state entropy maximum.

If we fully gap (FG) the saddle point, ∆k = ∆0, then
the DOS vanishes up to ∆0, gFG

sc (E ≤ ∆0) = 0, and
diverges above it according to (E > ∆0):

gFG
sc (E) =

8m∗
(2π)2

E√
E2 −∆2

0

log
Λ2

m∗
√
E2 −∆2

0

. (11)

Since δT (E) in Eq. (5) has a width ∼ kBT , for sufficiently
large ∆0/kBT the normal-state entropy maximum can be
suppressed so strongly that it becomes a minimum as a
function of strain. Hence fully gapping the Van Hove
lines reproduces the features of Figure 2. Note that a
constant gap does not necessarily mean an s-wave state,
but merely that the gap is finite in the vicinity of the Van
Hove point. For instance, dx2−y2 -wave pairing is finite at
the Van Hove point (0, π) and approximately constant
around it. Our analysis focuses only on the behavior of
the pairing gap near the saddle point of the dispersion.

Can pairings with nodal lines at the Van Hove lines
also reproduce the SC entropy minimum? To answer
this question, let us calculate the DOS for a vertical and
horizontal line node. For vertical line nodes (VLN), there
are two cases to distinguish: when ∆k is linear and when
∆k is quadratic in k.

In the linear case, we may always write the gap as:

∆k = ∆0 (q+ cosφ+ q− sinφ) /Λ = ∆0(p1/Λ). (12)

In the limit of small E, the inequality ξk ≤ E that de-
termines Nsc(E) simplifies to

∆2
0

Λ2
p21 +

sin2(2φ)

4m2∗
p42 ≤ E2, (13)

where p2 = q− cosφ − q+ sinφ. The area enclosed by
this inequality equals π′ |p1,max|E |p2,max|E , where π′ =

4
∫ 1

0
dx

√
1− x4 ≈ 3.496, and therefore for small E:

gVLN
sc (E → 0) =

3π′

(2π)2
Λ

∆0

√
2m∗E
|sin 2φ| . (14)

This gVLN
sc ∝

√
E behavior persists up to the point where

gVLN
sc (Ew) ≈ gNS

sc (Ew). By solving this equation with
∆0 ∼ 3K (the Tc at εxx = εVH) and Λ ∼ 0.5, one obtains
Ew ∼ 0.2K.125 Exceptionally, when φ = 0 or π/2, one
finds a constant DOS up to ∆0:

gVLN′

sc (E ≤ ∆0) =
8m∗
(2π)2

arcsinh
Λ2

m∗∆0
. (15)

Thus if a single line node cuts through the Van Hove
point, the DOS generically vanishes like

√
E in a very

narrow range E ≲ 0.2K. If this line node is fine-tuned to
coincide with the lines q+ = 0 or q− = 0, then the DOS
becomes finite and large.

Figure 3. The Van Hove line contributions to the DOS gsc(E)
for the four possible types of gaps considered in the text:
normal state (NS), SC with a fully gapped (FG) Van Hove
line, SC with a vertical line node (VLN) on the Van Hove line,
and SC with a horizontal line node (HLN) crossing the Van
Hove line. These correspond to Eqs. (10), (11), (14), and (16),
respectively. The VLN case (with φ = π/4) was calculated
numerically. The parameter values m−1

∗ = 3200K, ∆0 = 3K,
and Λ = 0.5 were used in all four cases. Note that the Fermi
energy (E = 0) is tuned precisely to the saddle point, so this
depicts the DOS at the Van Hove strain ε100 = −0.44%.

The second case is when ∆k is quadratic in k.
Quadratic ∆k may correspond to a line node with a
quadratic orthogonal dispersion, a pair of line nodes that
intersect at k = 0, or a point node, depending on the
eigenvalues of the Hessian. The inequality ξk ≤ E is in
this case invariant under the scaling k 7→ √

αk, E 7→ αE.
Hence Nsc(E) is linear in E for small E, yielding a finite
gVLN′′

sc (E = 0) and no opening of a gap. Exceptionally,
when we have two SC line nodes that coincide with the
Van Hove strain Fermi surfaces q± = 0, the SC gap equals
∆k = ∆0(q+q−/Λ2), from which we see that gVLN′′′

sc re-
tains the normal-state logarithmic singularity, albeit with
a renormalized 1/m∗ 7→

√
1/m2∗ +∆2

0/Λ
4.

Lastly, there’s the possibility of a horizontal line node
(HLN) crossing the vertical Van Hove line (0, π, k3). For
a schematic ∆k = ∆0(k3/π), the 3D DOS can be calcu-
lated by averaging Eq. (11):

gHLN
sc (E) =

∫ π

−π

dk3
2π

gFG
sc (E)

∣∣
∆0→∆0|k3|/π

=
4m∗
(2π)2

E

∆0

[
π log

2Λ2

m∗E
− ζ(E)

]
,

(16)

where ζ(E ≤ ∆0) = 0 and for E > ∆0:

ζ(E) = (π − 2 arccosx) log
Λ2

m∗E
+ 2arcsinx log(2x)

− 2 arctan
x√

1− x2
log x+Cl2(ϕ), (17)
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where x =
√

1−∆2
0/E

2, ϕ = arccos(1 − 2x2), and
Cl2(ϕ) =

∑∞
k=1 sin(kϕ)/k

2 is the Clausen function. gHLN
sc

is thus roughly linear in E up to ∆0.
The dependence of the DOS gsc(E) for different real-

izations of the SC gap ∆k near the saddle point is sum-
marized in Figure 3.

Now we come back to the question of whether line
nodes at the Van Hove lines are consistent with an en-
tropy minimum. To clarify this issue, we need to take into
account the k3-dispersion, the energy integral in Eq. (5),
and the DOS contributions of the other bands.

The k3-dispersion of the γ band smears all characteris-
tically 2D features of the DOS by the scale of its energy
variation δϵVH ∼ 2K [Eq. (18)]. The normal-state log-
arithmic singularity becomes a peak. The gVLN

sc ∝
√
E

ascent is cut off to give a finite zero-energy DOS that is
because of Ew/ δϵVH ≪ 1 of the same magnitude as the
normal-state DOS. Finally, the HLN DOS attains a finite
zero-energy DOS that is at most a factor of three or so
smaller than the normal-state DOS (since δϵVH/∆0 ∼ 1).
The δT (E) factor in Eq. (5) leads to a temperature smear-
ing that has a similar effect: the “effective DOS” that en-
ters the entropy is not gsc(0), but gsc(E) averaged over
E ∼ kBT . All in all, because of these smearing effects,
vertical line nodes at the Van Hove lines (0,±π, k3) do
not suppress the entropy contribution coming from the
Van Hove lines, whereas horizontal line nodes can indeed
suppress it.

Because of the strain-dependence of Tc, the SC gap
becomes ε100-dependent at constant T , peaking at Van
Hove strain. A strong enough gapping of the α and β
bands could then, in principle, suppress the entropy more
than the Van Hove singularities enhance it, resulting in
a minimum. To exclude this scenario, we have calculated
the entropy for when the α, β, and 80% of the γ band
have ∆k = ∆0, and the remaining 20% of the γ band
that includes the Van Hove lines has ∆k = 0.126 The
result of this calculation is that a minimum as a function
of strain does develop, but the drop in the entropy is 20%
too small when compared to experiment at 2.5K. Thus
even in this worst-case scenario, where line nodes that
are known [24, 78, 84–89] to be present in the system are
neglected, the Van Hove lines must be gapped in some
way to agree with experiment.

The final conclusion that follows from all of these con-
siderations is that the Van Hove lines kVH ≈

(
0,±π

a , k3
)

must be either fully gapped or can at most have a hori-
zontal line node crossing them. Hence, we may exclude
vertical line nodes at kVH near Van Hove strain [61].
That the heat capacity jump is maximal at the Van Hove
strain [60] also supports this conclusion. Vertical line
nodes away from the Van Hove lines are still possible.

To draw conclusions for the unstrained tetragonal sys-
tem from measurements performed at uniaxial strain
ε100 ≈ εVH, we rely on the assumption that the pair-
ing states of the strained and unstrained system are
adiabatically connected. Measurements of the highly-
sensitive elastocaloric effect [61] and heat capacity [60]

show no hints of a transition between two different bulk
SC states under [100] strain. By contrast, the onset of
spin-density waves, previously found through muon spin
relaxation [53], is clearly visible in the elastocaloric data
of Ref. [61]. So the elastocaloric effect is able to identify
a variety of phase transitions.

We may thus exclude all SC states of the unstrained
system that are adiabatically connected to SC states of
the εxx strained system which have a vertical line node
at kVH ≈

(
0,±π

a , k3
)
. Given that εxx strain preserves all

the symmetry operations that map the Van Hove lines to
themselves, as we shall see in Sec. V, we may conclude
that there are no vertical line nodes at either

(
±π

a , 0, k3
)

nor
(
0,±π

a , k3
)

in the unstrained tetragonal system. In-
tuitively, this means that SRO’s SC takes full advantage
of the enhanced DOS induced by the Van Hove lines.
Indeed, the drastic enhancement of Tc and Bc2 under
uniaxial pressure [45, 75, 76, 106, 107] were suggestive of
this conclusion long ago, but only with the recent elas-
tocaloric measurements of Ref. [61] could more conclusive
statements be made.

IV. LOCATION OF THE VAN HOVE LINES

Here we establish that the Van Hove lines are ade-
quately approximated with

(
±π

a , 0, k3
)

and
(
0,±π

a , k3
)
.

For a simple-tetragonal lattice, the Van Hove lines are
lines of high symmetry. However, they are not lo-
cated precisely on the boundary of the body-centered
first Brillouin zone relevant here, which could in princi-
ple allow for large deviations away from

(
±π

a , 0, k3
)

and(
0,±π

a , k3
)
. As we shall see, the high anisotropy of SRO

makes these deviations negligible, justifying the subse-
quent analysis.

Van Hove points are points in momentum space where
the gradient of the band energy ϵk vanishes. In 3D,
the solutions of ∇ϵk = 0 are generically isolated points.
However, quasi-2D dispersions may yield Van Hove lines,
that is, lines on which a number of Van Hove points are
situated of similar energy. The quality of the emergent
Van Hove lines is quantified by how well-aligned the Van
Hove points are to a line and by how close the energies
of the Van Hove points are.

Consider the Van Hove line
(
0, πa , k3

)
. Then for any

two k =
(
δk1,

π
a + δk2, k3

)
and k′ = R(g)k related by

a symmetry operation g ∈ D4h, ϵk = ϵk′+K for any re-
ciprocal lattice vector K. Applying this to parity gives
∇ϵk = 0 at the mid-points of the Brillouin zone faces,
which for body-centered tetragonal SRO are

(
0, πa ,±π

c

)
.

These are the first two Van Hove points. The positions of
the other two Van Hove points are restricted by symme-
try to be at

(
0, πa + δkVH,2, 0

)
and

(
0, πa − δkVH,2,± 2π

c

)
.

Reflection across the k1 = 0 plane implies ∂k1
ϵk = 0

in the k1 = 0 plane and reflection across the k3 = 0
plane implies ∂k3

ϵk = 0 in the planes k3 = 0,± 2π
c . If

the system were simple tetragonal-periodic, then reflec-
tion across the k2 = 0 plane would imply ∂k2

ϵk = 0 in
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the k2 = ±π
a planes, making δkVH,2 = 0. Because of the

smallness of the characteristically body-centered hopping
in SRO, which is always between layers, δkVH,2 is very
close to zero.

From the tight-binding model [Appendix B], we may
extract the following simplified expression for the disper-
sion of the γ band near the Van Hove line

(
0, πa , k3

)
:

ϵk = µVH +
a2

2m1
k21 −

a2

2m2

(
k2 −

π

a

)2

− δϵVH cos ck3 +
a2

m2
δkVH,2

(
k2 −

π

a

)
cos

ck3
2
.

(18)

Its form follows from symmetry; only the lowest powers
in k1, k2 and lowest harmonics in k3 were retained. Here
µVH = 54meV, δϵVH = 2.4K, δkVH,2 = 0.013/a, m−1

1 =

1100K, and m−1
2 = 9300K. While this dispersion was

derived from a model of unstrained SRO, it offers a good
understanding of the effects of the k3-dispersion on the
Van Hove line. The deviation of the Van Hove points
from the (πa , 0, k3)-line is characterized by δkVH,2 ≪ 2π

a ,
which is a factor of 500 smaller than the width of the
Brillouin zone. Furthermore, the difference in the γ band
energies of the Van Hove points is given by δϵVH which
is on the order of a few kelvins. We may thus conclude
that the four Van Hove points, illustrated in Figure 4,
together constitute a Van Hove line

(
0, πa , k3

)
to a high

degree of accuracy. The same is true for the Van Hove
lines

(
0,−π

a , k3
)

and
(
±π

a , 0, k3
)
.

V. BEHAVIOR ON THE VAN HOVE LINES

To see which SC states are excluded by the fact that
vertical line nodes on the Van Hove lines are incompati-
ble with the elastocaloric effect data, we first need to see
which SC states are possible. This is significant because
the multiband nature of SRO allows for a richer set of
possibilities than usual. Since this has already been an-
alyzed [110–112], here we only briefly discuss how the
multiband case differs from the singleband one, delegat-
ing the details of the categorization of all possible SC
states to Appendix C.

To describe SRO’s SC, we employ an effective model
based on the t2g orbitals of Ru [Appendix B]. Within it,
SC is described by a gap matrix ∆αβ(k) which is char-
acterized by its momentum dependence and spin-orbit
structure. It is the possibility of a non-trivial orbital
structure that sets multiband systems apart from single-
band ones. Thus, for instance, when dealing with even
pairings, we cannot simply assume a spin singlet that
transforms trivially (A1g) under all symmetry operations
and equate the irrep of the momentum wavefunction with
the irrep of the total gap matrix. The irrep of the gap
matrix is determined by the product of the irreps of its
momentum and spin-orbit parts. Within the effective
model, there are spin-orbit matrices belonging to all the
possible irreps of D4h for both even and odd pairings.

(a) 3D Brillouin zone

(c) zoomed-in (×2.5)

k2δkVH,2

(b) k1 = 0 cross-section

k2

k3

Figure 4. The body-centered tetragonal Brillouin zone of
SRO (a), its k1 = 0 cross-section (b), and the region around
the

(
0, π

a
, k3
)

Van Hove line (c). Shaded in blue is the simple
tetragonal Brillouin zone. The red crosses are the

(
0, π

a
,±π

c

)
Van Hove points. The blue dots are the

(
0, π

a
+ δkVH,2, 0

)
and(

0, π
a
− δkVH,2,± 2π

c

)
Van Hove points. Together they consti-

tute the Van Hove line
(
0, π

a
, k3
)
, drawn here with a dashed

red line. The displacement length δkVH,2 ≈ 0.013/a is desig-
nated in (c).

The details of how ∆αβ(k) are constructed by combin-
ing pairing wavefunctions d(k) with spin-orbit matrices
Γ can be found in Appendix C.

Now we analyze which SC states of the εxx strained
system gap the Van Hove lines sufficiently strongly to be
able to explain the elastocaloric experiment [61]. Viable
unstrained SC states must be adiabatically connected to
these states. As we shall see, in the arguments of this
section the key symmetry operations are those that map
the Van Hove lines kVH =

(
0,±π

a , k3
)

to themselves. As
it turns out, although εxx strain reduces the point group
from D4h to D2h [Table III], the symmetries that map
the Van Hove lines to themselves are the same for both
D4h and D2h. Hence we may do the whole analysis ei-
ther with or without εxx strain. We have opted for the
latter. Using Table IV, one may translate all the results
for irreps of D4h of this section into results for irreps of
D2h. Table IV also specifies which irreps of D2h are adia-
batically connected to which irreps of D4h, which brings
us back to the initial D4h irreps.

Let us consider the Van Hove line kVH =
(
0, πa , k3

)
.

For a SC gap matrix ∆a(k) to be able to gap the γ band
at kVH, both its pairing wavefunction da(k) and the pro-
jection of its spin-orbit matrix Γa onto the γ band must
be finite there.
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Table III. The character table of the point group D2h [116].
Irreps are divided into even (g) and odd (u) ones. Primes
have been added on the irreps to distinguish them from D4h

irreps. Cx
2 , Cy

2 , and Cz
2 are rotations by π around the x, y, and

z axes, respectively. P is parity. Σx, Σy, Σz are compositions
of Cx

2 , Cy
2 , and Cz

2 with P , respectively.

D2h E Cz
2 Cy

2 Cx
2 P Σz Σy Σx

A′
1g 1 1 1 1 1 1 1 1

B′
1g 1 1 −1 −1 1 1 −1 −1

B′
2g 1 −1 1 −1 1 −1 1 −1

B′
3g 1 −1 −1 1 1 −1 −1 1

A′
1u 1 1 1 1 −1 −1 −1 −1

B′
1u 1 1 −1 −1 −1 −1 1 1

B′
2u 1 −1 1 −1 −1 1 −1 1

B′
3u 1 −1 −1 1 −1 1 1 −1

Table IV. Reduction of the D4h irreps (top) to D2h irreps
(bottom) that occurs under εxx uniaxial strain. Parity stays
the same so we have suppressed the g/u subscripts. {x | y}
transforms according to the ρ(E)(g) of Eq. (C4), Appendix C.

D4h : A1{x} B1{x} A2{x} B2{x} E{x | y}

D2h : A′
1{x} B′

1{x} B′
2{y} B′

3{x}

The only point group symmetries g ∈ D4h that con-
strain da(kVH) or the band projections of Γa are those
that map the

(
0, πa , k3

)
line to itself, modulo body-

centered reciprocal lattice vectors. One readily find that
these are

Σ′
x : k3 7→ k3,

Σ′
y, C2z : k3 7→ k3 +

2π

c
,

Σh, C
′
2y : k3 7→ −k3,

C ′
2x : k3 7→ −k3 +

2π

c
.

(19)

Here, C ′
2x, C ′

2y, C2z are rotations by π around x, y, and
z, respectively, and Σ′

x = PC ′
2x, Σ′

y = PC ′
2y, Σh = PC2z

are reflections. Given that C2z = Σ′
xΣ

′
y and C ′

2y = Σ′
xΣh,

we may focus solely on the reflections and C ′
2x. Their

matrices are listed in Table V. The strongest constraints
follow from Σ′

x because it maps k3 7→ k3. In the simple
tetragonal limit, k3 ∼= k3+

2π
c so kVH are on the Brillouin

zone boundary and Σ′
y, C2z give strong constraints too.

Consider one of the four g from Table V and a k3 that g
maps to itself, modulo 4π

c . Periodicity and the symmetry
transformation rule of pairing wavefunctions [Eq. (C5),
Appendix C] then give the constraint:

da
(
0, πa , k3

)
=

dimλ∑
b=1

ρ
(λ)
ab (g)db

(
0, πa , k3

)
. (20)

Table V. The ρ
(λ)
ab (g) of non-trivial irreps λ of D4h.

g A2g B1g B2g Eg A1u A2u B1u B2u Eu

Σ′
x −1 1 −1

(
1 0

0 −1

)
−1 1 −1 1

(
−1 0

0 1

)

Σ′
y −1 1 −1

(
−1 0

0 1

)
−1 1 −1 1

(
1 0

0 −1

)

Σh 1 1 1

(
−1 0

0 −1

)
−1 −1 −1 −1

(
1 0

0 1

)

C′
2x −1 1 −1

(
1 0

0 −1

)
1 −1 1 −1

(
1 0

0 −1

)

By analyzing it, we find the following symmetry-enforced
behavior of da

(
0, πa , k3

)
, depending on its irrep and k3:

• d belonging to A2g, B2g, A1u, and B1u vanish for
all k3.

• For {d1 | d2} ∈ Eg, d2 vanishes for all k3, whereas
d1 vanishes only at k3 = 0,± 2π

c .

• For {d1 | d2} ∈ Eu, d1 vanishes for all k3, whereas
d2 vanishes only at k3 = ±π

c .

• For those {d1 | d2} ∈ Eg/u that are periodic under
simple tetragonal translations [k3 ∼= k3 +

2π
c ], both

components vanish for all k3.

• d from irreps A2u and B2u vanish only at k3 = 0,
±π

c , and ± 2π
c , but are otherwise unconstrained.

• d from A1g and B1g are completely unconstrained
for all k3.

To proceed, we consider the pairing of the band eigen-
states of the problem and focus on intraband pairing.
To find it, we need to project Γa onto the bands. Call
Vk = (vk↑, vk↓) the Kramers-degenerate eigenvectors of
the γ band, HkVk = ϵkVk. The projection is then given
by:

Pka = V †
kΓaV

∗
−k =

∑
µ
Pµ
a (k)σµ(iσy), (21)

where the Pauli matrices act in pseudospin space. Since
all three t2g orbitals are even, we may locally choose a
gauge in which V−k = Vk so that P ⊺

ka = sP−ka = sPka,
where Γ⊺

a = sΓa. µ = 0 for antisymmetric Γa (s = −1),
whereas µ ∈ {x, y, z} for symmetric Γa (s = +1).

Whenever a g ∈ D4h maps a k to itself modulo pe-
riodicity, its symmetry transformation matrix U(g) =
M(g) ⊗ S(g) [Appendix B, Table VII] commutes with
the normal-state Hamiltonian Hk:

U†(g)HkU(g) = HR(g−1)k = Hk. (22)

This means that the interband parts of U(g) vanish. As
for the intraband part, we may always choose a basis for



9

the Kramers degenerate subspace such that it takes a
spin-like form:

V †
kU(g)Vk = S(g). (23)

The symmetry transformation rule of spin-orbit matrices
[Eq. (C6), Appendix C] now gives the constraint:

S†(g)PkaS
∗(g) =

dimλ∑
b=1

ρ
(λ)
ab (g)Pkb. (24)

For k on the Van Hove line
(
0, πa , k3

)
, the g from Ta-

ble V constrain certain Pµ
a (k) to vanish, depending on

the (anti-)symmetry, irrep, and k3. The (anti-)symmetry
Γ⊺
a = sΓa we shall denote with an irrep superscript
s = ±. Thus, for instance, Γ ∈ A−

1g are antisymmet-
ric under transposition, whereas Γ ∈ B+

1g are symmetric
under transposition. The symmetry-enforced behavior of
Pµ
a

(
0, πa , k3

)
we may summarize as follows:

• Γ belonging to A−
2g and B−

2g have P 0 = 0 for all k3.

• {Γ1 | Γ2} ∈ E−
g have P 0

2 = 0 for all k3, whereas
P 0
1 = 0 only at k3 = 0,± 2π

c .

• Γ ∈ A+
1g, B

+
1g have P y = P z = 0 for all k3, and

P x = 0 only at k3 = 0,± 2π
c .

• Γ ∈ A+
2g, B

+
2g have P x = 0 for all k3, and P y = 0

only at k3 = 0,± 2π
c . P z is unconstrained.

• {Γ1 | Γ2} ∈ E+
g have P y

1 = P z
1 = P x

2 = 0 for all k3,
and P z

2 = 0 only at k3 = 0,± 2π
c . The remaining

P x
1 and P y

2 are unconstrained.

• The P 0 of Γ from A−
1g and B−

1g are completely un-
constrained for all k3.

In the limit of vanishing body-centered tetragonal hop-
ping, the following Pµ

a vanish in addition:

• For {Γ1 | Γ2} ∈ E−
g , P 0

1 vanishes for all k3 so both
P 0
a are zero.

• For Γ ∈ A+
1g, B

+
1g, P

µ completely vanish for all k3.

• For Γ ∈ A+
2g, B

+
2g, P

y = 0 for all k3, but P z is still
unconstrained.

• For {Γ1 | Γ2} ∈ E+
g , P z

2 = 0 for all k3, but P x
1 and

P y
2 are still unconstrained.

Owning to the fact that all characteristically body-
centered hopping is necessarily between layers and that
these hoppings are very small in SRO because of its high
anisotropy, the vanishing Pµ

a listed above are very small
for SRO, although not precisely zero. Using the tight-
binding model of Ref. [114], described in Appendix B, we
have quantified their smallness: the vanishing Pµ

a listed
above are by a factor of 50 or more smaller than the

largest possible Pµ
a ∼ 1, where all Γa have been normal-

ized to tr Γ†
aΓa = 1 for a fair comparison.

Unlike the above anisotropy argument, arguments
based on the dxy orbital character of the γ band do not
suppress any irreps, but only inform us on which Γa from
within a given irrep have large Pµ

a .
Finally, we synthesize the results found for da and Γa.

This is done by going through the multiplication table of
irreps [Table XI in Appendix C] and seeing which entries
yield a ∆a(k) with a finite γ band projection. The re-
sults are summarized in Table VI. Table VI is the main
result of this paper. As mentioned, SRO’s anisotropy
suppresses the blue entries of the table by two orders of
magnitude. This means that a ∆ with a maximal value
∼ kBTc is way too small on the Van Hove lines to ex-
plain the observed entropy quenching [61]. Hence the
blue entries of Table VI are excluded as possible leading
SC states as well.

From Table VI we see that, among even pairings, only
A1g, B1g, and Eg irreps have pairings that do not have
symmetry-enforced vertical line nodes on the Van Hove
lines. Thus even pairings must have admixtures from
one of these three irreps to be able to explain the elas-
tocaloric experiment of Ref. [61]. It is worth noting
that within these three irreps, pairings with symmetry-
enforced vertical line nodes on kVH do exist, like for in-
stance ∆(k) = Λ1(iσy) sin ak1 sin ak2 ∈ B−

2g ⊗B2g = A1g

[Λ1 is given in Appendix A]. So Table VI also yields
non-trivial information on the spin-orbit and momentum
structure of these Van Hove line-gapping admixtures.
Three representatives of such even-parity kVH-gapping
SC states are plotted in Figure 5.

One such piece of information is that Eg pairing must
be made of wavefunctions da that are body-centered pe-
riodic, but not simple tetragonal periodic. The lowest
order such {dxz | dyz} ∈ Eg is:{

sin
ak1
2

cos
ak2
2

sin
ck3
2

∣∣∣∣cos ak12 sin
ak2
2

sin
ck3
2

}
. (25)

It is this pairing state, only allowed because of the body-
centered tetragonal structure of SRO, that opens a gap
at the Van Hove line and that we cannot exclude based
on the elastocaloric data. In Ref. [16] it was shown
that such a pairing state can be stabilized by a strongly
momentum-dependent spin-orbit coupling. A better un-
derstanding of the origin of such momentum dependence
might help elucidate whether this state is a viable option
for SRO’s SC. In distinction, the Eg pairing state

{sin ak1 sin ck3 | sin ak2 sin ck3}, (26)

which would be the only allowed one for simple-
tetragonal lattices, cannot be the only pairing state as
it does not open a gap on the Van Hove line. An impor-
tant difference between these two types of states [(25)
vs. (26)] is that the former always have horizontal line
nodes at k3 = 0,± 2π

c .
Among odd pairings, all irreps have pairings without

symmetry-enforced vertical line nodes on kVH. However,
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Table VI. Even-parity (a) and odd-parity (b) pairings that
do not have a vertical line node at

(
0, π

a
, k3
)
, constructed by

combining pairing wavefunctions da(k) with spin-orbit ma-
trices Γa according to the multiplication table of D4h ir-
reps [Table XI, Appendix C]. A ‘+’ superscript on a spin-
orbit matrix irrep means that the matrices are symmetric
(Γ⊺ = +Γ), whereas a ‘−’ superscript indicates antisymmetry
under transposition. A zero component of Eg/u means that
it vanishes on

(
0, π

a
, k3
)
. Highlighted red are those da that

must be periodic under body-centered translations, but not
under simple tetragonal translations, to be finite on

(
0, π

a
, k3
)
.

For examples, see Table IX from Appendix C. Such da have
horizontal line nodes at k3 = 0,± 2π

c
. Highlighted blue are

those Γa whose projections onto the γ band are suppressed
by two orders of magnitude because of the weakness of body-
centered interlayer hopping. Such Γa are unable to account
for the elastocaloric experiment, but are listed for the sake of
completeness.

⊗ A1g{d} B1g{d} Eg{d1 | 0}
A−

1g{Γ} A1g{Γd} B1g{Γd} Eg{Γd1 | 0}
B−

1g{Γ} B1g{Γd} A1g{Γd} Eg{Γd1 | 0}

E−
g

{
Γ1

0

}
Eg

{
Γ1d

0

}
Eg

{
Γ1d

0

}
A1g{Γ1d1 + 0}
⊕B1g{Γ1d1 − 0}

(a) Even pairings that are finite on
(
0, π

a
, k3

)
.

⊗ A2u{d} B2u{d} Eu{0 | d2}
A+

1g{Γ} A2u{Γd} B2u{Γd} Eu{0 | Γd2}
A+

2g{Γ} A1u{Γd} B1u{Γd} Eu{Γd2 | 0}
B+

1g{Γ} B2u{Γd} A2u{Γd} Eu{0 | −Γd2}
B+

2g{Γ} B1u{Γd} A1u{Γd} Eu{Γd2 | 0}

E+
g

{
Γ1

Γ2

}
Eu

{
Γ2d

−Γ1d

}
Eu

{
Γ2d

Γ1d

} A1u{0 + Γ2d2}
⊕A2u{Γ1d2 − 0}
⊕B1u{0− Γ2d2}
⊕B2u{Γ1d2 + 0}

(b) Odd pairings that are finite on
(
0, π

a
, k3

)
.

the orientations of the Balian-Werthamer d-vectors [109]
are non-trivially restricted and the non-suppressed A2u

and B2u pairings are necessarily made of characteristi-
cally body-centered periodic da.

In multiband systems with spin-orbit coupling, a d-
vector is associated with each band in its pseudospin
(Kramers) space. It is defined through:

V †
kn∆(k)V ∗

−kn = dkn · σ(iσy), (27)

where Vkn = (vkn↑, vkn↓) are the Kramers-degenerate
eigenvectors of the n-th band and V−kn = Vkn. We make
the following gauge choice for the pseudospins:

V †
kn(1⊗ iσy)V

∗
kn = iσy,

V †
kn(1⊗ σz)Vkn = szσz,

V †
kn(1⊗ σx)Vkn = sxσx + δxzσz,

(28)

(a) ∆k = Λ4(iσy) ∈ A1g

(b) ∆k = Λ4(iσy) (cosκ1 − cosκ2) ∈ B1g

(c) ∆k = Λ4(iσy)
(
sin κ1

2
cos κ2

2
± i cos κ1

2
sin κ2

2

)
sin κ3

2
∈ Eg

Figure 5. Projections onto the Fermi sheets of three Van Hove
line-gapping SC states ∆k from Table VI, belonging to irreps
A1g (a), B1g (b), and chiral Eg (c), respectively. κ1 = ak1 ∈
[−π, π], κ2 = ak2 ∈ [−π, π], and κ3 = ck3 ∈ [−2π, 2π]. In the
γ sheet plots, the Van Hove lines

(
±π

a
, 0, k3

)
and

(
0,±π

a
, k3
)

are highlighted red. Because of the Λ4 = diag(0, 0,
√
2) orbital

structure we have chosen, the projections are only large where
the bands have dxy orbital character, which is on the γ sheet
and where the γ and β sheets nest. More plots can be found
in Appendix D.

where sz, sx, δxz ∈ R. This is the closest one can
make the pseudospins look like spins. In general δxz is
not zero, nor are the δyx, δyz from V †

kn(1 ⊗ σy)Vkn =
syσy + δyxσx + δyzσz. However, in SRO the only regions
where δxz, δyx, δyz are substantially different from zero is
at the nesting of the α, β, and γ bands at k1 = ±k2 [Fig-
ure 1]. The explanation for this is the fact that spin-orbit
coupling most strongly affects the band structure there.

Using the tight-binding model of SRO [Appendix B],
we have explored the orientation of the dkn-vectors on
the α, β, and γ Fermi sheets. Everywhere except near
the k1 = ±k2 nesting of the sheets, we find that symmet-
ric spin-orbit matrices from 1D irreps have dkn pointing
along ±ẑ, whereas {Γ1 | Γ2} from E+

g always have in-
plane dkn. So the non-suppressed A2u and B2u from Ta-
ble VI (b) have dkn ∥ ẑ. Moreover, among odd pairings
not made of body-centered da(k), A1u and B1u pairings
have dkn ∥ ẑ and Eu pairings have in-plane dkn. Given
that body-centered {d1 | d2} ∈ Eu have horizontal line
nodes, on the one hand, and that the spin susceptibil-
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ity is intimately related to the orientation of the Balian-
Werthamer d-vector, on the other, this information may
prove to be useful in further narrowing down the odd-
pairing SC candidates.

VI. CONCLUSION

This paper was motivated by the measurements of the
elastocaloric effect of Sr2RuO4 under strain reported in
Ref. [61]. The elastocaloric effect measures, with high
accuracy, the entropy derivative ∂S(ε, T )/∂ε. Above
Tc, the elastocaloric effect revealed a pronounced max-
imum in the entropy as function of strain ε. As demon-
strated in Ref. [61], this maximum of S(ε) can be fully
accounted for by the DOS enhancement that occurs when
the Fermi energy crosses the Van Hove points near the
lines

(
0,±π

a , k3
)
. Below Tc, the entropy maximum was

found to transform into a minimum. This is only possi-
ble if the states near the saddle points of the electronic
dispersion open a gap as one enters the SC state. Hence,
with rather minimal modelling, it is possible to obtain
information about the momentum-space structure of the
SC gap from a thermodynamic measurement.

In order to draw more detailed conclusions about the
allowed pairing states, we performed a symmetry anal-
ysis for a three-dimensional, three-band description of
SRO. Here we focus primarily on even-parity states, given
the strong evidence for even parity in NMR measure-
ments [33–35]. From a simple two-dimensional perspec-
tive, one would conclude that the SC state must open a
gap at the Van Hove points

(
±π

a , 0
)

and
(
0,±π

a

)
. How-

ever, to distinguish the relevant pairing states, in partic-
ular those of the 2D irreducible representation Eg that
transform like {dxz | dyz}, we must include the third
momentum direction. It is well known that the energy
dispersion of SRO is strongly anisotropic. Indeed, our
analysis shows that the energy scale below which the
three-dimensionality of the Fermi surface becomes impor-
tant is about one kelvin, fully consistent with magneto-
oscillation experiments [2]. We also show that the saddle
points deviate by very small amounts δkVH,2 ≪ 2π

a from
the lines

(
±π

a , 0, k3
)

and
(
0,±π

a , k3
)
. However, this need

not be the case for the SC state. While the single particle
spectrum of SRO is highly anisotropic, it is possible that
many-body interactions that are responsible for the SC
pairing couple different layers more efficiently. Hence, at
least in principle, one should not exclude a strong de-
pendence of the gap function on k3; such dependence is
crucial for the {dxz | dyz}-wave pairing states.

With these insights, we then turned to the symme-
try analysis of potential pairing states. If one assumes
for a moment that the crystal structure of SRO is sim-
ple tetragonal, one is left with only two possible even
pairing states, namely, the s-wave state of A1g symme-
try and the dx2−y2-wave state of B1g symmetry. Given
that fine-tuning is required for s-wave pairing to be con-
sistent with the pair-breaking role of impurities [26–29],

dx2−y2 -wave pairing would then appear to be the only
natural pairing candidate. However, Sr2RuO4 is a body-
centered tetragonal compound. The corresponding sym-
metry analysis now allows, in addition to dx2−y2 -wave
pairing, for a {dxz | dyz}-wave state of Eg symmetry like
the one given in Eq. (25).

Our analysis does, however, allow us to exclude
dxy-wave pairing states that transform like B2g and
gxy(x2−y2)-wave pairing states that transform like A2g as
sole pairing states. Such states may at best be subleading
contenders that could be added to the pairing wavefunc-
tion at fine-tuned points of accidental degeneracy. In
addition, we can exclude {dxz | dyz}-wave pairing that is
exclusively of the type given in Eq. (26). The nature of
our argument does not allow us to more precisely quantify
how large these subleading dxy-wave or gxy(x2−y2)-wave
contributions are because they vanish precisely where the
elastocaloric experiment is most sensitive: at the Van
Hove lines. Thus, while the elastocaloric measurements
do not allow for a unique determination of the supercon-
ducting order parameter symmetry, they do constrain the
available options. To finally resolve the nature of super-
conductivity in Sr2RuO4 requires a better understanding
of the origin of time-reversal symmetry breaking and of
the orientation of line nodes.
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Appendix A: Gell-Mann matrices

We use the following unconventional choice for the nine
Gell-Mann matrices:

Λ0 =

1 0 0
0 1 0
0 0 0

 , Λ1 =

0 1 0
1 0 0
0 0 0

 , (A1)

Λ2 =

0 −i 0
i 0 0
0 0 0

 , Λ3 =

1 0 0
0 −1 0
0 0 0

 , (A2)

Λ4 =

0 0 0
0 0 0

0 0
√
2

 , (A3)
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and:

Λ5 =

0 0 1
0 0 0
1 0 0

 , Λ6 =

0 0 −i
0 0 0
i 0 0

 , (A4)

Λ7 =

0 0 0
0 0 1
0 1 0

 , Λ8 =

0 0 0
0 0 −i
0 i 0

 . (A5)

They are normalized so that tr ΛµΛν = 2δµν .

Appendix B: Tight-binding model of SRO

Within the effective tight-binding model of SRO based
on the t2g orbitals of Ru, the point group operation g ∈
D4h acts on electrons according to:

Û†(g)ψkÛ(g) =M(g)⊗ S(g)ψR(g−1)k, (B1)

where ψk are column vectors of fermionic destruction
operators in the basis (dyz↑, dyz↓, dzx↑, dzx↓, dxy↑, dxy↓)

⊺,
Û(g) are the Fock-space symmetry operators, and
R,M,S are unitary representations of D4h whose gen-
erators are listed in Table VII. Time-reversal Θ acts like:

Θ−1ψkΘ = (1⊗ iσy)ψ−k, (B2)

where 1 is the 3× 3 identity matrix and σµ are the Pauli
matrices.

Since there is only one ruthenium atom per a body-
centered unit cell, the tight-binding Hamiltonian takes
the form:

H0 = −
∑
R,δ

ψ†
R+δ

[
Tδ ⊗ 1+ i

3∑
µ=1

Λδ;µ ⊗ σµ

]
ψR, (B3)

where R, δ go over the body-centered tetragonal lattice
whose primitive lattice vectors are:

a1 = aê1, a2 = aê2, a3 = 1
2 (aê1 + aê2 + cê3) . (B4)

The Hamiltonian is hermitian only when T−δ = T †
δ and

Λ−δ;µ = −Λ†
δ;µ. Point group symmetries constrain and

relate different hopping amplitudes:

M†(g)TδM(g) = TR(g−1)δ, (B5)

M†(g)Λδ;µM(g) = detR(g)

3∑
ν=1

Rµν(g)ΛR(g−1)δ;ν . (B6)

To ensure time-reversal invariance, all matrix elements
must be made real, i.e., T ∗

δ = Tδ and Λ∗
δ;µ = Λδ;µ.

Symmetries that map δ to itself constrain the forms of
the hopping amplitudes. For the eight closest δ of SRO,

Table VII. The generators of the representations R, M , and
S of the point group D4h. C4z is a rotation by π/2 around
z. C′

2x and C′′
2d are rotations by π around x and the diagonal

x+ y, respectively. P is parity.

g R(g) M(g) S(g)

C4z

0 −1 0

1 0 0

0 0 1


 0 1 0

−1 0 0

0 0 −1

 σ0 − iσz√
2

C′
2x

1 0 0

0 −1 0

0 0 −1


1 0 0

0 −1 0

0 0 −1

 −iσx

C′′
2d

0 1 0

1 0 0

0 0 −1


 0 −1 0

−1 0 0

0 0 1

 −i
σx + σy√

2

P −1 1 σ0

Table VIII. Upper part: the values of our tight-binding model
parameters in meV according to Ref. [114]. The parameters
set to zero have not been considered in Ref. [114]. Lower part:
the parameters in meV according to other references. Those
parameters not listed vanish.

t1 t2 t3 t4 t5 t6 t7 t8 t9

27.8 257.8 −22.4 13.6 3.2 −35.5 0 −4.7 0

t10 t11 t̄1 t̄2 t̄3 t̄4 t̄5 t̄6 t̄7

0 −2.4 356.8 126.3 −1.0 17.0 22.3 0 0

µ1D µ2D ti1 ti2 ti3 ti4 tj η1 η2

286.9 351.9 −2.0 7.8 0 0 2.7 59.2 59.2

t1 t2 t̄1 t̄2 t̄4 µ1D µ2D ti1 η1 η2 Ref.
16 145 81 39 5 122 122 0 32 32 [117]
9 88 80 40 5 109 109 0 35 35 [118]
13 165 119 49 0 178 176 21 0 0 [127]

we find that:

T0 =

µ1D 0 0
0 µ1D 0
0 0 µ2D

 , Ta1
=

t1 0 0
0 t2 0
0 0 t̄1

 , (B7)

Ta1+a2
=

 t3 ti1 0
ti1 t3 0
0 0 t̄2

 , Ta3
=

 t4 ti2 tj
ti2 t4 tj
tj tj t̄3

 , (B8)

T2a1
=

t5 0 0
0 t6 0
0 0 t̄4

 , T2a1+a2
=

 t7 ti3 0
ti3 t8 0
0 0 t̄5

 , (B9)

T2(a1+a2) =

 t9 ti4 0
ti4 t9 0
0 0 t̄6

 , T3a1
=

t10 0 0
0 t11 0
0 0 t̄7

 .

(B10)

Among these closest and thus largest Tδ, only Ta3 con-
nects different layers, reflecting the high anisotropy of
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SRO. Moreover, it is only through Ta3
that the body-

centered periodicity of SRO is felt on the level of the
one-particle Hamiltonian. The on-site spin-orbit cou-
pling takes the form:

Λ0;1 =

0 0 0
0 0 −η1
0 η1 0

 , Λ0;2 =

 0 0 η1
0 0 0

−η1 0 0

 , (B11)

Λ0;3 =

 0 −η2 0
η2 0 0
0 0 0

 . (B12)

Off-site (k-dependent) spin-orbit coupling we shall not
include, although one should keep in mind that some [16]
have found that it has a large effect on the preferred
Cooper pairing, even when small.

For our analysis, we have used the tight-binding pa-
rameter values of Ref. [114], which they found by fit-
ting to the ARPES-based tight-binding 17-band model
of Ref. [128]. Their tight-binding parameter values are

reproduced in Table VIII. The hopping amplitudes of
Refs. [114] and [16] are broadly in agreement, as one
would expect given that both were fitted to Ref. [128].
However, the hoppings of both [16, 114] are by a fac-
tor of two or so larger than those of Refs. [117, 118, 127],
which are also ARPES-derived; see Table VIII. Although
all these models give the correct shapes for the Fermi
sheets, find that the γ band is responsible for over 50%
of the normal-state DOS, and predict a roughly 20% in-
crease in the DOS at Van Hove strain, consistent with our
entropy data [Figure 2], the predicted values for the total
DOS differ by a factor of two. Only Ref. [117] has checked
that their model gives a total DOS (g ≈ 17 states per eV
per body-centered tetragonal unit cell) that is consistent
with the experimentally measured Sommerfeld coefficient
γ = (π2/3)Rg ≈ 40mJ/(K2 mol) [84–86], where R is the
molar gas constant. The main takeaway is that the var-
ious estimates cited in the main text might be off by a
factor of two, which is still sufficient for our purposes and
does not impact our argument in any way.

In momentum space, the tight-binding Hamiltonian equals:

Hk = −
∑
δ

[
Tδ ⊗ 1+ i

3∑
µ=1

Λδ;µ ⊗ σµ

]
e−ik·δ (B13)

=

ϵ1D(k) ϵi(k) ϵj(k)
ϵi(k) ϵ̃1D(k) ϵ̃j(k)
ϵj(k) ϵ̃j(k) ϵ2D(k)

⊗ σ0 +

 0 iη2σ3 −iη1σ2

−iη2σ3 0 iη1σ1

iη1σ2 −iη1σ1 0

 , (B14)

where ϵ̃1D(k1, k2, k3) = ϵ1D(k2, k1, k3), ϵ̃j(k1, k2, k3) = ϵj(k2, k1, k3), and:

ϵ1D(k) = −µ1D − 2t1 cosκ1 − 2t2 cosκ2 − 4t3 cosκ1 cosκ2 − 8t4 cos
1
2κ1 cos

1
2κ2 cos

1
2κ3 − 2t5 cos 2κ1 − 2t6 cos 2κ2

− 4t7 cos 2κ1 cosκ2 − 4t8 cosκ1 cos 2κ2 − 4t9 cos 2κ1 cos 2κ2 − 2t10 cos 3κ1 − 2t11 cos 3κ2, (B15)

ϵ2D(k) = −µ2D − 2t̄1 (cosκ1 + cosκ2)− 4t̄2 cosκ1 cosκ2 − 8t̄3 cos
1
2κ1 cos

1
2κ2 cos

1
2κ3 − 2t̄4 (cos 2κ1 + cos 2κ2)

− 4t̄5 (cos 2κ1 cosκ2 + cosκ1 cos 2κ2)− 4t̄6 cos 2κ1 cos 2κ2 − 2t̄7 (cos 3κ1 + cos 3κ2) , (B16)

ϵi(k) = 4ti1 sinκ1 sinκ2 + 8ti2 sin
1
2κ1 sin

1
2κ2 cos

1
2κ3 + 8ti3 (cosκ1 + cosκ2) sinκ1 sinκ2 + 4ti4 sin 2κ1 sin 2κ2,

(B17)

ϵj(k) = 8tj sin
1
2κ1 cos

1
2κ2 sin

1
2κ3. (B18)

Above k = (k1, k2, k3), κ1 = ak1, κ2 = ak2, and κ3 = ck3.

The coupling to strain, needed for Figure 1, was taken
from the Supplementary information of Ref. [61]. The
dispersion of the γ band near the Van Hove line

(
0, πa , k3

)
,

provided in the main text in Eqs. (9) and (18), was
found by diagonalizing Hk with the parameter values of
Ref. [114].

Appendix C: Superconducting states of SRO

For the purpose of classifying even-frequency pairings,
it is sufficient to consider the static case because the two
behave the same symmetry-wise [129]. Odd-frequency

pairings are beyond the scope of this article. On the
mean-field level, static zero-momentum SC is described
by a pairing term in the Hamiltonian of the form:

HSC =
∑
kαβ

ψ†
kα∆αβ(k)ψ

†
−kβ + h.c., (C1)

where α, β are spin-orbit indices. Because of the
fermionic anticommutation, the SC gap matrix ∆αβ(k)
satisfies the exchange property:

∆⊺(k) = −∆(−k), (C2)

where ⊺ is transposition.
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Table IX. A sample of possible pairing wavefunctions da(k)
categorized according to the transformation rule (C5). The
irrep subscripts g and u mean even and odd under parity,
respectively. The two-component {d1(k) | d2(k)} transform
according to the ρ(E)(g) given in Eq. (C4). k = (k1, k2, k3)
and κ1 = ak1, κ2 = ak2, κ3 = ck3. Highlighted red are
those wavefunctions that are periodic under body-centered
translations, but not under simple tetragonal translations.

A1g 1, cosκ1 + cosκ2, cosκ3, cosκ1 cosκ2

A2g (cosκ1 − cosκ2) sinκ1 sinκ2

B1g cosκ1 − cosκ2

B2g sinκ1 sinκ2, sin 1
2
κ1 sin

1
2
κ2 cos

1
2
κ3

Eg
{sinκ2 sinκ3 | − sinκ1 sinκ3} ,{

cos 1
2
κ1 sin

1
2
κ2 sin

1
2
κ3 | − sin 1

2
κ1 cos

1
2
κ2 sin

1
2
κ3

}
A1u (cosκ1 − cosκ2) sin

1
2
κ1 sin

1
2
κ2 sin

1
2
κ3

A2u sinκ3, cos 1
2
κ1 cos

1
2
κ2 sin

1
2
κ3

B1u sin 1
2
κ1 sin

1
2
κ2 sin

1
2
κ3

B2u (cosκ1 − cosκ2) sinκ3

Eu

{sinκ1 | sinκ2} ,
{(cosκ1 − cosκ2) sinκ1 | − (cosκ1 − cosκ2) sinκ2} ,{

sin 1
2
κ1 cos

1
2
κ2 cos

1
2
κ3 | cos 1

2
κ1 sin

1
2
κ2 cos

1
2
κ3

}

If the pairing were conventional, all point group op-
erations would be preserved and Û†(g)HSCÛ(g) = HSC
would hold for all g ∈ D4h, giving the constraint
U†(g)∆(R(g)k)U∗(g) = ∆(k), where U(g) ≡ M(g) ⊗
S(g). Unconventional pairing is classified by the way it
breaks this constraint:

U†(g)∆a(R(g)k)U
∗(g) =

dimλ∑
b=1

ρ
(λ)
ab (g)∆b(k). (C3)

Here, λ is an irrep of D4h, a, b are indices internal to the
irrep, and ρ

(λ)
ab are the corresponding matrices. Only for

the 2D irreps Eg/u are there multiple possible ρ(λ)ab . We
choose (cf. representation R):

ρ(E)(C4z) =

(
0 −1
1 0

)
, ρ(E)(C ′

2x) =

(
1 0
0 −1

)
,

ρ(E)(C ′′
2d) =

(
0 1
1 0

)
, ρ(Eg/u)(P ) = ±

(
1 0
0 1

)
.

(C4)

To construct a ∆a(k) that properly transforms accord-
ing to Eq. (C3), we need to combine the momentum de-
pendence and spin-orbit structure in just the right way.
This is accomplished [110–112] by first separately classi-
fying pairing wavefunctions and spin-orbit matrices (Ta-
bles IX and X), and then combining them according to a
set of rules (Table XI). Let us emphasize that the emer-
gent SC order parameter that enters Ginzburg-Landau
theory belongs to the irrep determined by the total SC
gap ∆a(k) according to Eq. (C3), and not to the irreps
of its momentum or spin-orbit parts.

Table X. Spin-orbit matrices Γa categorized according to the
transformation rule (C6) and (anti-)symmetry (C7). The ir-
rep subscript g means even under parity. The irrep super-
scripts ± are the values of s [Eq. (C7)], so + (−) means that
the matrices are (anti-)symmetric under transposition. The
matrices are written in terms of [µ, ν] ≡ Λµ ⊗ σν(iσy), where
the Gell-Mann matrices Λµ have been listed in Appendix A.
Subtractions of pairs [µ, ν] represent subtractions of the re-
spective matrices. The two-component {Γ1 | Γ2} transform
according to the ρ(E)(g) given in Eq. (C4). Highlighted blue
are the singlet and triplet pairings with trivial orbital struc-
tures, typical of one-band SC.

A−
1g [0, 0], [2, z], [4, 0], [6, y]− [8, x]

A−
2g [6, x] + [8, y]

B−
1g [3, 0], [6, y] + [8, x]

B−
2g [1, 0], [6, x]− [8, y]

E−
g {[2, y] | −[2, x]}, {[7, 0] | −[5, 0]}, {[6, z] | [8, z]}

A+
1g [5, y]− [7, x]

A+
2g [0, z], [2, 0], [4, z], [5, x] + [7, y]

B+
1g [1, z], [5, y] + [7, x]

B+
2g [3, z], [5, x]− [7, y]

E+
g

{[0, x] | [0, y]}, {[1, y] | [1, x]} , {[3, x] | −[3, y]} ,
{[4, x] | [4, y]}, {[5, z] | [7, z]} , {[8, 0] | −[6, 0]}

Pairing wavefunctions da(k) are classified according to:

da(R(g)k) =

dimλ∑
b=1

ρ
(λ)
ab (g)db(k). (C5)

All da(k) should be made periodic, just like ∆a(k). If
we call κ1 = ak1, κ2 = ak2, and κ3 = ck3, the primitive
translations of a body-centered tetragonal lattice map
(κ1, κ2, κ3) to (κ1+2π, κ2, κ3−2π), (κ1, κ2+2π, κ3−2π),
and (κ1, κ2, κ3+4π). Conventionally, we also make da(k)
real so that TRSB is seen through imaginary coefficients
preceding da(k). Examples of pairing wavefunctions are
provided in Table IX.

When it comes to spin-orbit matrices Γa, notice that
U(P ) = 1 leaves the matrix part of Eq. (C3) invariant.
This means that all spin-orbit matrices are even.130 We
classify them according to:

U†(g)ΓaU
∗(g) =

dimλ∑
b=1

ρ
(λ)
ab (g)Γb, (C6)

where U(g) = M(g) ⊗ S(g). Given the transposition in
Eq. (C2), it is natural to further categorize Γa according
to (anti-)symmetry:

Γ⊺
a = sΓa, (C7)

where s ∈ {±1}. We shall also ensure time-reversal in-
variance:

(1⊗ iσy)Γ
∗
a(1⊗ iσy) = Γ⊺

a, (C8)
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Table XI. Direct sum decompositions of the direct products between irreps of D4h. Since all Γ irreps are even, the parity of
the d irrep and direct product irrep are the same so we have suppressed their g/u subscripts. All E irreps transform according
to the same 2D representation (C4).

⊗ A1{d} A2{d} B1{d} B2{d} E{d1 | d2}
A1g{Γ} A1{Γd} A2{Γd} B1{Γd} B2{Γd} E{Γd1 | Γd2}
A2g{Γ} A2{Γd} A1{Γd} B2{Γd} B1{Γd} E{Γd2 | −Γd1}
B1g{Γ} B1{Γd} B2{Γd} A1{Γd} A2{Γd} E{Γd1 | −Γd2}
B2g{Γ} B2{Γd} B1{Γd} A2{Γd} A1{Γd} E{Γd2 | Γd1}

Eg

{
Γ1

Γ2

}
E

{
Γ1d

Γ2d

}
E

{
Γ2d

−Γ1d

}
E

{
Γ1d

−Γ2d

}
E

{
Γ2d

Γ1d

}
A1{Γ1d1 + Γ2d2} ⊕A2{Γ1d2 − Γ2d1}
⊕B1{Γ1d1 − Γ2d2} ⊕B2{Γ1d2 + Γ2d1}

so that TRSB manifests itself through imaginary prefac-
tors. As the basis of the orbital part of Γa, we use Gell-
Mann matrices Λµ [Appendix A]. The spin-orbit matrices
we write in terms of these:

Γa ∼
∑

Λµ ⊗ σν(iσy). (C9)

Given that Λ†
µ = Λµ, written thusly Γa automatically

satisfy time-reversal invariance (C8). In three-band sys-
tems, there are in total 4 · 32 = 36 possible Γa, of which
15 are antisymmetric and 21 are symmetric. The catego-
rization of all Λµ ⊗ σν(iσy) ≡ [µ, ν] is given in Table X.

SC gap matrices ∆(k) are constructed by combin-
ing pairing wavefunctions da(k) and spin-orbit matrices
Γa. Because of the exchange property (C2), we may
only combine even da(k) with antisymmetric Γa, or odd
da(k) with symmetric Γa. Now consider a {da(k)} ∈ λd
and {Γa} ∈ λΓ, where λd and λΓ are irreps. The ob-
ject ∆ab(k) ≡ Γadb(k) then transforms according to the
λΓ ⊗ λd representation:

U†(g)∆ab(R(g)k)U
∗(g) =

=

dimλΓ∑
a′=1

dimλd∑
b′=1

ρ
(λΓ)
aa′ (g)ρ

(λd)
bb′ (g)∆a′b′(k).

(C10)

Since we want to construct SC gap matrices that trans-
form according to irreducible representations [Eq. (C3)],
we decomposed ∆ab(k) into irreducible parts with the
help of Table XI. The most general {∆a(k)} belong-
ing to irrep λ∆ is then given by a sum over all possible
{da(k)} ∈ λd and {Γa} ∈ λΓ such that λ∆ ∈ λΓ ⊗ λd.

For example, let us construct SC gap matrices belong-
ing to B1g. In Table XI every row has a B1, meaning
antisymmetric Γa belonging to every irrep could be used.
Combining [0, 0] = Λ0(iσy) ∈ A−

1g and cosκ1 − cosκ2 ∈
B1g gives a ∆(k) = Λ0(iσy) (cosκ1 − cosκ2) ∈ B1g, but
so do many others:

A−
1g ⊗B1g : (Λ6σy − Λ8σx) (iσy) (cosκ1 − cosκ2) ,

A−
2g ⊗B2g : (Λ6σx + Λ8σy) (iσy) sinκ1 sinκ2,

B−
1g ⊗A1g : Λ3(iσy) cosκ1 cosκ2,

B−
2g ⊗A2g : Λ1(iσy) (cosκ1 − cosκ2) sinκ1 sinκ2,

E−
g ⊗ Eg : Λ2 (σx sinκ1 − σy sinκ2) (iσy) sinκ3,

etc. The most general ∆(k) ∈ B1g is a linear superposi-
tion of all of these.

Appendix D: Van Hove line-gapping SC states

In Figures 6, 7, and 8, we have plotted the Fermi
surface-projections of a number of Van Hove line-gapping
even SC states from Table VI. These have been con-
structed by combining the six A−

1g and B−
1g spin-orbit

matrices [Table X] with the lowest order A1g, B1g, and
Eg pairing wavefunctions [Table IX]. ∆k constructed
from the highly suppressed E−

g spin-orbit matrices aren’t
shown. Of all the possible superpositions in the case
of Eg pairing, we have shown the chiral ones as they
are the most interesting because of the various evi-
dence [50–56] indicating TRSB. The most general Van
Hove line-gapping ∆k belonging to A1g, B1g, or chiral
Eg is a superposition of the shown ones, plus higher
order harmonics. κ1 = ak1 ∈ [−π, π], κ2 = ak2 ∈
[−π, π], κ3 = ck3 ∈ [−2π, 2π], and d(x±iy)z(k) =(
sin κ1

2 cos κ2

2 ± i cos κ1

2 sin κ2

2

)
sin κ3

2 . In the γ sheet
plots, the Van Hove lines

(
±π

a , 0, k3
)

and
(
0,±π

a , k3
)

have
been highlighted red. Even though the projections of
some ∆k onto the γ band might be small (shaded blue)
near the Van Hove lines (e.g., Figure 6 (b)), they are only
exactly zero at a certain κ3 for the ∆k ∈ Eg that have
horizontal nodes at κ3 = 0,±2π.
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(a) ∆k = Λ0(iσy)

(b) ∆k = Λ2σ3(iσy)

(c) ∆k = Λ4(iσy)

(d) ∆k = (Λ6σy − Λ8σx) (iσy)

(e) ∆k = Λ3(iσy) (cosκ1 − cosκ2)

(f) ∆k = (Λ6σy + Λ8σx) (iσy) (cosκ1 − cosκ2)

Figure 6. Projections onto the Fermi sheets of a number of
Van Hove line-gapping SC states ∆k belonging to the A1g

irrep. See the text for details.

(a) ∆k = Λ0(iσy) (cosκ1 − cosκ2)

(b) ∆k = Λ2σ3(iσy) (cosκ1 − cosκ2)

(c) ∆k = Λ4(iσy) (cosκ1 − cosκ2)

(d) ∆k = (Λ6σy − Λ8σx) (iσy) (cosκ1 − cosκ2)

(e) ∆k = Λ3(iσy)

(f) ∆k = (Λ6σy + Λ8σx) (iσy)

Figure 7. Projections onto the Fermi sheets of a number of
Van Hove line-gapping SC states ∆k belonging to the B1g

irrep. See the text for details.
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(a) ∆k = Λ0(iσy)d(x±iy)z(k)

(b) ∆k = Λ2σ3(iσy)d(x±iy)z(k)

(c) ∆k = Λ4(iσy)d(x±iy)z(k)

(d) ∆k = (Λ6σy − Λ8σx) (iσy)d(x±iy)z(k)

(e) ∆k = Λ3(iσy)d(x±iy)z(k)

(f) ∆k = (Λ6σy + Λ8σx) (iσy)d(x±iy)z(k)

Figure 8. Projections onto the Fermi sheets of a number of
chiral Van Hove line-gapping SC states ∆k belonging to the
Eg irrep. See the text for details.
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