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Adrian Valadkhani1, Belén Zúñiga Céspedes2, Salony Mandloi2, Mingyu Xu3,4, Juan

Schmidt3,4, Sergey L. Bud’ko3,4, Paul C. Canfield3,4, Roser Valent́ı1, and Elena Gati2∗
1 Institute for Theoretical Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany

2 Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
3 Ames National Laboratory, US Department of Energy,
Iowa State University, Ames, Iowa 50011, USA and

4 Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
(Dated: July 21, 2023)

Lattice strains of appropriate symmetry have served as an excellent tool to explore the interac-
tion of superconductivity in the iron-based superconductors with nematic and stripe spin-density
wave (SSDW) order, which are both closely tied to an orthorhombic distortion. In this work, we
contribute to a broader understanding of the coupling of strain to superconductivity and competing
normal-state orders by studying CaKFe4As4 under large, in-plane strains of B1g and B2g symmetry.
In contrast to the majority of iron-based superconductors, pure CaKFe4As4 exhibits superconduc-
tivity with relatively high transition temperature of Tc ∼ 35K in proximity of a non-collinear,
tetragonal, hedgehog spin-vortex crystal (SVC) order. Through experiments, we demonstrate an
anisotropic in-plane strain response of Tc, which is reminiscent of the behavior of other pnictides
with nematicity. However, our calculations suggest that in CaKFe4As4, this anisotropic response
correlates with the one of the SVC fluctuations, highlighting the close interrelation of magnetism and
high-Tc superconductivity. By suggesting moderate B2g strains as an effective parameter to change
the stability of SVC and SSDW, we outline a pathway to a unified phase diagram of iron-based
superconductivity.

PACS numbers: xxx

The phase diagrams of high-temperature superconduc-
tors typically show various competing ordering tenden-
cies, the fluctuations of which might be considered as
the main pairing glue for superconductivity1. It is of-
ten found that the competing electronic orders are ac-
companied by the formation of a pronounced in-plane
anisotropy2–4. This observation has initiated a huge
surge in using external stresses and strains of appropriate
symmetry, that couple directly to the anisotropic elec-
tronic state5–11, as a tool to explore the role of its fluc-
tuations for superconductivity.

In this context, iron-based superconductors have
served as prime examples to explore and establish the
intimate connection between anisotropic electronic states
and superconductivity. Many of the members of this fam-
ily, such as Ae1−xAxFe2As2 (Ae=Ba, Sr, Ca and A=K,
Na) or Ba(Fe1−xTx)2As2 (T =Co, Rh, Ni, Pd)12 with
1-2-2 stochiometry, show superconductivity in proximity
of stripe-type spin-density wave (SSDW) magnetism13

(see Fig. 1 (a)). The SSDW order is characterized by
ordering vectors QSSDW = (π, 0) or (0, π), which gives
rise to an inequivalence between the two in-plane direc-
tions of the high-temperature tetragonal lattice. This
type of magnetism therefore results, aside from broken
spin-rotational symmetry, in a spontaneous B2g lattice
distortion, which reduces the crystallographic symmetry
from C4 to C2. The order with broken lattice symme-
try but preserved time-reversal symmetry is commonly
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referred to as nematic order. It is therefore often found
to be ’vestigial’ to the SSDW order14,15. In other cases,
like FeSe16, the nematic phase is even more prominent,
as it is not accompanied by the formation of long-range
SSDW order at ambient pressure.

The understanding of normal-state of iron-based su-
perconductors has been tremendously advanced by uti-
lizing lattice strains of different symmetry8–11. This was,
for example, crucial in establishing the electronically-
driven nature of nematicity3,7,11,17. In order to provide
compelling evidence that superconductivity benefits from
this unusual, anisotropic normal state, a set of experi-
ments recently studied the direct impact of applied lat-
tice strains on the superconducting critical temperature
Tc in a series of tetragonal 122 compounds18,19. They
found that, whereas B2g strains, which break the same
symmetry as the nematic order, measurably suppress Tc

both under compression and tension, the application of
strain in the B1g channel (i.e., a strain that is oriented
45◦ away from the nematic axis) has resulted in a much
weaker response19. Based on a phenomenological Lan-
dau model, the anisotropic strain-response of Tc was at-
tributed to the coupling thereof to the nematic order pa-
rameter. This has strengthened the notion that nematic
fluctuations play a key role11,20 in boosting Tc.

However, this notion might be questioned21,22 by the
discovery of superconductivity with very high Tc val-
ues in proximity to magnetic and charge-ordered states
that preserve the tetragonal C4 symmetry. In this con-
text, a particular notable reference material is the quar-
ternary compound CaKFe4As4, which is a supercon-
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FIG. 1. (a) Schematic temperature-doping phase diagrams
of the two superconductors CaKFe4As4 (’1144’, after Ref.25)
and Ba0.5K0.5Fe2As2 (’122’, after Ref.34). Upon adding elec-
trons to the systems, superconductivity (SC, light blue) is
suppressed and magnetic phases emerge. For electron-doped
1144, the magnetic phase is the so-called spin-vortex (SVC)
phase that preserves the tetragonal C4-symmetry. In contrast,
for the 122 compounds, the magnetic phase is the stripe spin-
density wave order (SSDW), which displays C2 symmetry and
is accompanied by a vestigial nematic phase. Only in prox-
imity of both SC and C2-SSDW order, a small region of C4

magnetic order can be observed in the 122 compound; (b)
Schematic representation of the symmetry decomposition of
applied strains with respect to the tetragonal unit cell. A1g

strains preserve the tetragonal symmetry, whereas B1g and
B2g do not (after Ref.8). The induced B1g and B2g strains
are larger than the A1g strains due to the in-plane Poisson
ratio, see SI.

ductor with high Tc ≈ 35K23,24 in its stochiometric
form, i.e., free from substitutional disorder. This su-
perconducting state occurs in proximity of a C4 mag-
netic state25–32 (see Fig. 1 (a)). In this so-called spin-
vortex type (SVC) magnetic order, the moments rotate
clock-wise/anti-clock-wise in an Fe plaquette33 (QSVC =
(π, π)). Importantly, upon tuning by doping and hydro-
static pressure25,28,29,31, so far no C2 symmetric order has
been identified. This phenomenology has motivated pro-
posals that isotropic magnetic fluctuations, related to the
SVC order, are sufficient to generate high-temperature
superconductivity21,22.

Clearly, CaKFe4As4 presents a unique and possibly
much richer platform to explore the coupling of super-
conductivity and its normal-state properties to in-plane
strains, compared to the majority of iron-based super-
conductors with prominent SSDW magnetism and ne-
maticity (see Fig. 1 (a)). Yet, the evolution of the su-
perconductivity and magnetism in CaKFe4As4 have not
been studied under large, tunable in-plane strains, even
though such studies promise key insights for developing a
unified understanding of the phase diagram of iron-based

superconductors.

In this work, we combine experiments and density-
functional theory (DFT) calculations to shed light on this
issue. We first demonstrate that the superconducting Tc

of CaKFe4As4 shows a strong anisotropic response under
antisymmetric in-plane strains of B1g and B2g symme-
try, reminiscent of the findings in 122 compounds. We
then show through calculations, that in-plane strains in
CaKFe4As4 have primarily a different effect than in 122
compounds. In CaKFe4As4, moderate, experimentally
achievable, in-plane strains of B2g symmetry offer an ex-
cellent mean to change the preference from an SVC to
SSDW state. In contrast, B1g strains leave the pref-
erence for SVC unchanged. Taken together, these re-
sults suggest that the development of in-plane anisotropic
strain response is not a unique fingerprint of coupling to
nematicity, but can also arise from the coupling of su-
perconductivity to fluctuations of the non-collinear SVC
magnetic order. With these results, we provide impor-
tant insights to a broader understanding of strain tuning
of the multiple phases in iron-based superconductors.

For clarity, we will use the notion of irreducible strains
throughout this paper. For the tetragonal unit cell
of CaKFe4As4, there are two antisymmetric irreducible
strains, denoted by ϵB1g and ϵB2g, which break C4 sym-
metry. In this work, B1g and B2g refer to the irreducible
representations of the tetragonal point group associated
with the actual crystallographic unit cell rather than the
one-Fe unit cell. As schematically shown in Fig. 1 (b),
ϵB1g and ϵB2g strains are primarily induced when strain
is applied along the crystallographic [1 0 0] and [1 1 0] di-
rections, respectively, in addition to a smaller fully sym-
metric strain ϵA1g. The used decomposition procedure
is described in the SI35. Tensile (compressive) strains
are denoted throughout our work by positive (negative)
signs.

We first demonstrate how the superconducting crit-
ical temperature, Tc, changes with these in-plane an-
tisymmetric strains through experiments. To this end,
oriented CaKFe4As4 crystals36 (along [1 0 0] and [1 1 0])
were mounted on rigid platforms37,38. Varying strains
were applied to the platform and the sample with a
piezoelectric-actuator-based uniaxial pressure cell5. Tc

was determined through temperature-dependent mea-
surements of the mutual inductance of two concentric
coils wound around the platform with the sample (see SI
Sec. A 1 for details).

Figure 2 shows the temperature dependence of the mu-
tual inductance, M , at different strains of type (a)-(b)
ϵB2g and (c)-(d) ϵB1g. In each figure, the top (bottom)
panel shows the data taken under tensile (compressive)
strains. The superconducting transition is clearly identi-
fied in all data sets by a sharp drop of M and we assign
Tc to the temperature where M has reached 50% of its
full value (see grey dashed line). The bare M data re-
veals clearly our main experimental findings. First, the
response of Tc to ϵB2g is larger than the one to ϵB1g

strain (Note the same scale of the temperature axes in all
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FIG. 2. Mutual inductance data on CaKFe4As4 as a function
of temperature for different applied, antisymmetric strains
(a)-(b) ϵB2g and (c)-(d) ϵB1g. Top (bottom) panels show data
under tensile (compressive) strains. The spacing in strain
between two data sets amounts to ∼ 0.05%. The grey dashed
line visualizes the 50% threshold that is used to infer Tc.

plots). Second, both compressive and tensile ϵB2g strains
suppress Tc. The suppression is as large as ∆Tc ∼ -0.8K
by ϵB2g ∼ − 0.4%.

To further quantify the statements above, we com-
piled the phase diagram as ∆Tc = Tc(ϵ) − Tc(ϵ = 0)
up to ± 0.4% antisymmetric strains (and ± 0.2% sym-
metric strains) in Fig. 3. The color shaded areas around
the Tc(ϵ) data indicate the width of the superconduct-
ing transition at each ϵ, determined from 25% and 75%
threshold values.

By consideration of symmetry-allowed terms in a
Ginzburg-Landau approach14,18, it is expected that, to
lowest order, ∆Tc(ϵ) ∼ DA1gϵA1g +Diϵ

2
i with i = B1g or

B2g. The linear strain dependence can only result from
the dependence of Tc on ϵA1g, which are also induced in
our experiments.

Figure 3 shows that the data of Tc vs. ϵB2g is clearly
dominated by the quadratic strain dependence, expected
for antisymmetric strains, over almost the full strain
range. A polynomial fit of order two (see dashed line)
yields the quadratic coefficient DB2g/Tc(0) = −(2780 ±
50) . Only for high compression (|ϵ| >∼ 0.3%), small devi-
ations from the quadratic behavior are observed, which,
however, are still within the error bars of our experiment.

For the B1g data, a weak quadratic change of Tc with
ϵB1g can also be identified, even though the linear con-
tribution to Tc(ϵ) due to A1g strains dominates. The
quadratic coefficient amounts to DB1g/Tc(0) = −(36 ±
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FIG. 3. Change of superconducting critical temperature of
CaKFe4As4, ∆Tc = Tc(ϵ) − Tc(ϵ = 0) with antisymmetric
ϵB2g (closed symbols) and ϵB1g (open symbols) strains (bot-
tom axis). In both experiments under dominating B1g and
B2g strains, a finite symmetric A1g strain is induced as well
and depicted on the top axis. The color shading represents
the width of the transition. Dashed and dotted grey lines cor-
respond to polynomial fits up to the second order in strain.

1) , which is unlikely to result from a small misalignment
of the crystal (see SI) and is therefore considered intrinsic
to the B1g channel. Similar to the B2g data, only small
deviations from the polynomial fit within the error bars
of the experiment occur for |ϵ| >∼ 0.3%.

To explore possible correlations of Tc(ϵ) with the strain
dependence of the normal-state fluctuations, we discuss
in the following our results of DFT calculations under
the same antisymmetric strain fields. In CaKFe4As4 at
ambient conditions, no static magnetic order22,39 can be
found, but strong SVC fluctuations22,40 exist. In pre-
vious computational studies, it has been shown that it
is crucial to take spin fluctuations into account for ac-
curate predictions of the ambient-pressure structure and
structural transitions at high pressures28,41,42. In these
works, the presence of spin fluctuations was simulated
by imposing a ”frozen” magnetic configuration within a
reduced Stoner theory, in which the size of magnetic mo-
ments is adjusted for the values found in experiment in
Ni-doped CaKFe4As4

26. Given that this approach has
proven successful in exploring the coupling of magnetism
to strain, we now calculate within DFT the energy of
”frozen” SVC and SSDW orders in CaKFe4As4 under fi-
nite in-plane strains (see SI) and use it as a proxy for the
nature and strength of magnetic fluctuations.

Consistent with earlier DFT results28,41, the result
at ϵ = 0 is that a SVC configuration is energetically
favored over the SSDW (ESVC(0) < ESSDW(0)), see
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FIG. 4. (a,b) Calculated energies of CaKFe4As4 for imposed
”frozen” spin configurations of spin-vortex crystal (SVC) or-
der and stripe spin-density wave (SSDW) order as a func-
tion of antisymmetric strains of (a) B2g and (b) B1g symme-
try. Whereas for B1g strains the SVC configuration remains
clearly energetically favorable, B2g strains change the pre-
ferred type of spin fluctuations from SVC to SSDW around
ϵB2g ≈ ± 0.8%, i.e., when ESSDW(ϵ) < ESVC(ϵ). The SVC
(SSDW) ordering motif is visualized by red (blue) arrows in
the small cartoons; (c) Energy of the SVC state as a function
of antisymmetric strains on enlarged scales in the experimen-
tally studied strain range.

Fig. 4. For finite strains, the change in energy of a
given magnetic configuration is, to lowest order, given
by ∆E ∼ CA1gϵA1g+Ciϵ

2
i with i = B1g, B2g. The calcu-

lated energies for both SVC and SSDWmagnetic configu-
rations are well-described by such a linear plus quadratic
strain dependence for ϵB2g (Fig. 4 (a)) and ϵB1g (Fig. 4
(b)). The sign and strength of the quadratic term of the
strain dependence, however, strongly differ between the
different orders and strains, as we discuss below.

Specifically, ϵB2g strongly weakens the tendency to-
wards the SVC configuration and promotes the one to-
wards SSDW order (Fig. 4 (a)), consistent with a sym-
metry analysis within a Landau approach43, since the
SSDW couples directly to ϵB2g (see also Fig. 1). In con-
trast, the energy of the SVC configuration is only weakly
increased by ϵB1g. At the same time, the SSDW configu-
ration becomes significantly unfavorable under increasing
ϵB1g (Fig. 4 (b)).

On a quantitative level, following important conclu-
sions can be drawn. First, a B2g strain of ϵcritB2g ≈
± 0.8% changes the preferred type of spin fluctuations

from SVC and SSDW. We note that ϵcritB2g is larger than
typical strains that are induced by a spontaneous ne-
matic/SSDW distortion in the 122 pnictides (ϵB2g

<∼
0.3%)34. This reflects the fact that the CaKFe4As4 is not
as close to a SSDW-nematic instability at ambient con-
ditions as the related 122 compounds30. Second, for B1g

strains, there is hardly any change in the magnetism and,
the SVC configuration remains clearly favorable. Over-
all, this results in a clear anisotropy of the antisymmetric
strain dependence of the magnetic energies of the SVC
order of (CB2g/CB1g)SVC ∼ 52 (Fig. 4 (c)).

The qualitatively similar anisotropic strain re-
sponse of the SVC configuration in Fig. 4 (c) and the
experimentally-determined superconducting Tc in Fig. 3
under both types of antisymmetric strains, ϵB1g and ϵB2g,
is striking and is the main result of the present work.
Even the magnitude of the measured anisotropy parame-
ters of Tc of DB2g/DB1g ∼ 77 and of E of CB2g/CB1g ∼
52 is similar. Even though the calculated energies can
only serve as a rough proxy for the spin fluctuations, it
is natural to assume that in a scenario of magnetically-
driven superconductivity44–46, there exists a correlation
of E and Tc (and correspondingly of Ci and Di). As
a consequence, in the case of CaKFe4As4 with SVC
configuration, it is the fact that ϵB2g strains primarily
weaken SVC fluctuations43, while ϵB1g do not, that is
most likely at the origin of the observed in-plane strain
anisotropy of Tc. Whereas the anisotropic strain re-
sponse of Tc is a widely observed feature of iron-based
superconductivity18,19,47, it is driven in CaKFe4As4 by
the coupling of superconductivity to magnetism, rather
than by nematicity, as suggested for the 122 compounds.
This conclusion strengthens the view that it is the mag-
netism that dominates the properties of high-Tc iron-
based superconductivity. The observation that bulk
FeSe does not show a clear quadratic contribution38,48 to
Tc(ϵB2g) further points to magnetic degrees of freedom47

being an important ingredient for the development of a
strain-anisotropy of Tc.

At the same time, our results clearly demonstrate a
route towards a unified phase diagram of iron-based su-
perconductivity by using antisymmetric strains in the
CaKFe4As4 family, since these strains might be used to
manipulate the relative importance of SVC and SSDW
magnetism30 for superconductivity. The theoretical pre-
diction of the strain tunability of magnetism (see Fig. 4)
within an experimentally-achievable strain range moti-
vates a series of studies in the future. For example,
it would be very interesting to study superconducting
properties at larger B2g strains, in particular at those
strains, where SSDW fluctuations become dominant. A
simple extrapolation of the present Tc(ϵB2g) data, us-
ing the quadratic fit function, to ϵcritB2g ± ∼ 0.8% would
predict a quite sizable Tc of ∼ 27K. If such a relatively
high Tc can be confirmed and combined with microscopic
insights49–57, the idea that both SVC and SSDW fluctua-
tions promote similar superconducting states33 with high
Tc might be strengthened.
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In summary, we have established how antisymmet-
ric strains can be used to tune the superconductiv-
ity and the nature of magnetic fluctuations in the sto-
chiometric high-Tc superconductor CaKFe4As4. Specifi-
cally, we demonstrated that both superconductivity and
the preferred magnetic configuration develop a highly
anisotropic strain response to in-plane antisymmetric
strains of B2g and B1g type. The correlation of these two
quantities strongly suggests that the anisotropic response
is driven by the coupling of the non-collinear SVC mag-
netic configuration to antisymmetric strain, rather than
by nematicity. Thus, our work contributes to a broader
understanding of how antisymmetric strains impact su-
perconductivity and its competing states. Based on the
prediction that moderate antisymmetric strains can be
used to manipulate the relative stability of non-collinear
and collinear orders, antisymmetric strain tuning is ex-
pected to be a powerful tuning parameter for a wide range
of magnetic quantum materials.
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S. L. Bud’ko, P. C. Canfield, and Y. Furukawa, Phys.
Rev. Lett. 121, 137204 (2018).

[23] A. Iyo, K. Kawashima, T. Kinjo, T. Nishio, S. Ishida,
H. Fujihisa, Y. Gotoh, K. Kihou, H. Eisaki, and
Y. Yoshida, Journal of the American Chemical Society
138, 3410 (2016).

[24] W. R. Meier, T. Kong, U. S. Kaluarachchi, V. Taufour,
N. H. Jo, G. Drachuck, A. E. Böhmer, S. M. Saunders,
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[61] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[62] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[63] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[64] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169

(1996).
[65] G. Kresse and J. Furthmüller, Computational Materials

Science 6, 15 (1996).
[66] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.

Lett. 77, 3865 (1996).
[67] C. Bradley and A. Cracknell, The Mathematical Theory

of Symmetry in Solids: Representation Theory for Point
Groups and Space Groups, EBSCO ebook academic col-
lection (OUP Oxford, 2010).



7

Appendix A: Supplemental Information

1. Extended Methods

Experiment - Samples of CaKFe4As4 were grown fol-
lowing the procedure described in Ref.36. For measure-
ments under varying strains, we used a piezoelectric-
actuator based uniaxial pressure cell5. Since CaKFe4As4
is very malleable and cleaves easily, we relied on the
method of attaching thin samples to rigid platforms that
are stressed to apply large, tunable strains to mechan-
ically delicate samples, initially described in detail in
Ref. 37,38. This method ensures as homogeneous strain
as possible by avoiding buckling and minimizes the risk
for cleavage of the sample.

(a)

(b)

(c)

sample

platform

coils

 contacts

FIG. 5. Experimental setup for the determination of the su-
perconducting transition temperature of CaKFe4As4 under
tunable in-plane strains; (a) Bar-shaped sample cut out of a
larger piece of single crystal, using Plasma Focus Ion Beam
milling; (b) Sample mounted on rigid platform, and contacted
for four-probe resistance measurements; (c) Two coils wound
around the section of the platform, on which the sample is
mounted, for measurements of the mutual inductance.

To ensure good strain transmission into the bulk of
the sample (see Ref.37 for finite-element simulations),
the sample dimensions were typically chosen to be ∼
800 × 180 × 10µm3, with longest axis either along the
[1 0 0] or the [1 1 0] direction. The in-plane dimensions
and orientation were precisely controlled using Plasma
Focused Ion Beam (PFIB) cutting (see Fig. 5 (a)). The
small out-of-plane thickness was achieved by multiple
cleaving steps of the samples prior to PFIB cutting. Af-
ter cleaving and cutting, the samples were glued on the

platforms using Stycast 1266 (see Fig. 5 (b)). Using this
procedure, the maximum misalignment of the sample in
the plane amounts to ∼ 3◦.

The maximum applied strain that was achieved in our
experiments was ∼ ± 0.6%, corresponding to ϵB2g ∼
± 0.4% (see below). This value is limited by plastic defor-
mation of the platform material (grade 5 Ti-V-Al in our
work), but not by the elastic limit42 of CaKFe4As4, which
showed fully elastic behavior across the entire strain
range studied and reproducible Tc behavior upon vari-
ous strain sweeps. We note that the elastic limit of the
platform material here exceeds the report of Refs. 37,38

by a factor of 2. This was achieved by work hardening
the platform inside a force-displacement cell, similar to
the one described in Ref.58, at room temperature prior
to mounting the sample. Monitoring both force and dis-
placement through capacitive sensors installed in the cell
(see Ref. 58 for a description of the working principle of
the sensors) allows for the detection of plastic deforma-
tion of the platform. For all measurements reported here,
the platform showed linear elastic behavior to a good
approximation, i.e., showed a linear force-displacement
relation. Only very close to the maximal strains ap-
plied, some small deviations from perfect linearity were
observed.

For the reference value ϵ0 = 0, we chose the strain
at which Tc is maximal for [1 1 0]T strain and used the
same capacitance reading of the displacement sensor as
the strain-neutral point for the data with strain along
[1 0 0]T .

The superconducting transition temperature, Tc, was
determined through temperature-dependent measure-
ments of the mutual inductance of two concentric
coils wound around the platform with the sample (see
Fig. 5 (c)). We used about 20 turns per coil, which was
sufficient to measure the superconducting signal with
high-enough signal-to-noise ratio.

In total, 10 samples were measured (8 with strain ap-
plied along the crystallographic [1 1 0] orientation and
2 with strain applied along the [1 0 0] direction) using
two different platform materials (grade 5-Titanium and
quartz). Results were found to be consistent among dif-
ferent samples and platforms, so that we focus here on
results from samples mounted on the Ti platforms only.

Theory - We perform electronic structure calcu-
lations within density functional theory (DFT)59,60

by using the pseudo-potential augmented plane-wave
(PAW)61,62 Vienna Ab initio Simulation Package
(VASP)63–65. All calculations were performed with the
Perdew–Burke–Ernzerhof (PBE) generalized gradient
approximation (GGA)66 and include spin orbit coupling.
The energy cut-off was set to 600 eV. For the relaxations
we used a 6× 6× 4 gamma centered k-mesh with a force
threshold of 0.001 eV/Å and unrestricted DFT magnetic
moments. We increased the number of k-points to
10× 10× 4 and set a convergence criterion of 10−6 eV
for the self-consistent-field (SCF) total energies. For all
of the calculations we follow the protocol established in
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previous works25,28,30,41,42. In order to get information
about the most stable underlying magnetic order which
is responsible for the nature of the spin fluctuations at
a given strain value, we compared the total energies of
the two competing orders in this structure – antifer-
romagnetic stripe and vortex ”hedgehog”25,41 – to the
zero-strain energy difference of the vortex and stripe
state. The strains were applied in our calculations on a√
2 ×

√
2 × 1 unit cell for a strain range from −0.5%

to 0.5% in steps of 0.25% in each direction for each
order with its unrestricted DFT magnetic moments.
The DFT ground state for the vortex order converges to
a magnetic moment µFe,v = 1.35µB per iron site, while
the stripe order converges to a value of µFe,s = 1.47µB

per iron site. With these DFT magnetic moments
µFe,v/s the stripe order is lower in energy compared to
the vortex order. Experimental observations, however,
suggest the vortex fluctuations to be the most dominant
with a much lower magnetic moment µFe ≈ 0.4µB per
iron site26. By carefully decreasing the size of our DFT
magnetic moments in the SCF calcuations but keeping
their direction and the structure of the unrestricted
DFT calculation, each order has been restricted to ten
different magnetic moments ranging from 0.2µB to
1.5µB . At about µFe ≈ 0.8µB and less the vortex order
is lower in energy than the stripe order. To obtain the
energy E of an order for a given magnetic moment µi we
interpolated the 10 points with cubic splines and took
the respective energy Ei = E(µi). For the vortex order,
the two strain directions are [100] and [110]. For the
stripe order, the [100] direction is treated in the same
way, however, for the [110] case it is important to dis-
tinguish between applying strain along or perpendicular
to the stripes. This was tested explicitely by initializing
the stripe order once along [110] and once along [11̄0].
Of the two stripe orientation datasets, the datapoints
lowest in energy were used to obtain the final fit. The fits
were determined using a second order polynomial. For
all of our fits we took the experimental reference value of
µi = 0.4µB

26 for Ni-doped CaKFe4As4 at zero strain to
obtain the total energy in dependence of strain. Every
order has been compared to the zero strain vortex case.
Due to the restriction of the magnetic moments to µi on
a structure with very different DFT magnetic moment
µFe,v/s (magneto-elastic) stresses were induced to the
unit cell. Within the range of our strains, the stress
tensor remains unchanged except for the component we
want to change, therefore, we were able to correct the
unwanted stresses by adding a linear correction term to
the fitted total energies.

2. Decompositions of strains into irreducible
representations

Here, we outline how the applied strains, ϵ[1 0 0]

and ϵ[1 1 0], can be decomposed into irreducible

representations8, see Fig. 1 (b) for a schematic represen-
tation. The decomposition follows from the character
table of point group 4/mmm67.
The irreducible strains are given by following decompo-

sition rules: ϵA1g = 1
2 (ϵ[1 0 0]+ϵ[0 1 0]) =

1
2 (ϵ[1 1 0]+ϵ[1 1̄ 0]),

ϵB1g = 1
2 (ϵ[1 0 0] − ϵ[0 1 0]) and ϵB2g = 1

2 (ϵ[1 1 0] − ϵ[1 1̄ 0]).
The strains along the different crystallographic directions
are related by the Poisson ratio ν.
In our experimental configuration, where thin samples

are attached to a rigid platform, ν is given by the Pois-
son’s ratio of the platform. Thus, for a titanium-alloy
platform, ν = −ϵ[0 1 0]/ϵ[1 0 0] = −ϵ[1 1̄ 0]/ϵ[1 1 0] ∼ 0.3238.

Consequently, ϵA1g = 1
2 (1 − ν)ϵ[1 0 0] = 0.34ϵ[1 0 0] =

0.34ϵ[1 1 0], ϵB1g = 0.66ϵ[1 0 0] and ϵB2g = 0.66ϵ[1 1 0],
which has been used to decompose the data shown in
the main text.
For the theoretical calculations, we use the DFT-

calculated strain tensor and the same decomposition
rules to determine ϵB1g and ϵB2g.

3. Influence of possible small misalignments of the
crystallographic axes on analysis

In the following, we discuss how a possible, small
misalignment of the crystal axes with respect to the
strain axis influences our measurement results of Tc(ϵ).
In the present study, this analysis is particularly rele-
vant for measurements under ϵB1g, where both Tc(ϵB1g)
and Tc(ϵB2g) exhibit a quadratic suppression of Tc with
DB1g ≪ DB2g and thus, the observed Tc(ϵB1g) might
be significantly influenced by a small misalignment.
As a first confirmation of the good sample aligment,

we show in Fig. 6 the elastoresistance of the normal-
state, measured at T = 37K, i.e., above Tc. In gen-
eral in many iron-based superconductors, the normal-
state elastoresistance is signficant and shows a strongly
anisotropic behavior, depending on whether strain is ap-
plied along the [1 0 0] or the [1 1 0] direction. This is also
the case for CaKFe4As4, as shown in previous works25,30,
where it was shown that the longitudinal elastoresistance
m = 1/R∆R/∆ϵ shows a different sign for ϵ100 vs. ϵ110
and m110 ∼ −3m100. Our data of the elastoresistance,
shown in Fig. 6, is fully in line with previous results, sug-
gesting only a very minor, possible misalignment error.
For an explicit error analysis, we evaluated the possi-

bile scenario that DB1g = 0 and the observed quadratic
component in Tc(ϵB1g) therefore solely results from a mis-
alignment of the crystal, so that the contribution of B2g

strains to the experimentally applied strain is significant.
The result of this calculation showed that this scenario
is only possible, if the misalignment of the crystal is
around 6 − 7◦, which is quite a bit larger than realis-
tic error of maximally 3◦. We therefore conclude that a
weak quadratic suppression of Tc with ϵB1g is intrinsic to
CaKFe4As4.
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FIG. 6. Longitudinal elastoresistance of CaKFe4As4, ∆R/R,
measured at T = 37K> Tc for strain applied along the
tetragonal [110] direction (black squares) and the [100] direc-
tion (red circles).
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