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The interplay of dynamical correlations and electronic ordering is pivotal in shaping phase dia-
grams of correlated quantum materials. In magic angle twisted bilayer graphene, transport, ther-
modynamic and spectroscopic experiments pinpoint at a competition between distinct low-energy
states with and without electronic order, as well as a competition between localized and delocalized
charge carriers. In this study, we utilize Dynamical Mean Field Theory (DMFT) on the topo-
logical heavy Fermion (THF) model of twisted bilayer graphene to investigate the emergence of
electronic correlations and long-range order in the absence of strain. We explain the nature of emer-
gent insulating and correlated metallic states, as well as transitions between them driven by three
central phenomena: (i) the formation of local spin and valley isospin moments around 100K, (ii)
the ordering of the local isospin moments around 10K, and (iii) a cascadic redistribution of charge
between localized and delocalized electronic states upon doping. At integer fillings, we find that
low energy spectral weight is depleted in the symmetric phase, while we find insulating states with
gaps enhanced by exchange coupling in the zero-strain ordered phases. Doping away from integer
filling results in distinct metallic states: a “bad metal” above the ordering temperature, where co-
herence of the low-energy electronic excitations is suppressed by scattering off the disordered local
moments, and a “good metal” in the ordered states with coherence of quasiparticles facilitated by
isospin order. Upon doping, there is charge transfer between the localized and delocalized orbitals
of the THF model such that they get periodically filled and emptied in between integer fillings. This
charge reshuffling manifests itself in cascades of doping-induced Lifshitz transitions, local spectral
weight redistributions and periodic variations of the electronic compressibility ranging from nearly
incompressible to negative. Our findings highlight the essential role of charge transfer, hybridization
and ordering in shaping the electronic excitations and thermodynamic properties in twisted bilayer
graphene and provide a unified understanding of the most puzzling aspects of scanning tunneling
spectroscopy, transport, and compressibility experiments.

I. INTRODUCTION

When two layers of graphene are stacked on top of each
other with a relative twist angle of 1.1 degrees (the magic
angle), the emergent long-wavelength moiré pattern gives
rise to a band structure with extremely flat bands at the
charge neutrality point [1–3]. Electronic interaction ef-
fects are enhanced in the flat bands, leading to a rich low-
temperature phase diagram where superconducting [4–
7], insulating [8], correlated metallic [9, 10], and exotic
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magnetic phases [5, 11–15] have been observed in exper-
iment by manipulating the charge carrier density. There
has been a large theoretical effort towards understanding
the insulating [16–74] and superconducting [17–22, 75–
102] phases, ferromagnetism [46, 69–72, 103, 104], the
topological properties [101, 105–114], and on construct-
ing suitable models [3, 16, 109, 111, 115–136]. Simultane-
ously, there has been extensive experimental work [137–
164]. For integer fillings, static mean-field approaches
such as Hartree-Fock [16, 37, 38, 55, 57, 58, 61] re-
vealed a number of candidate ordered states related by
the approximate symmetries of the system that are very
close in energy. Depending on filling and the strain
and relaxation properties of the sample, these include
the time-reversal symmetry breaking Kramer’s inter-
valley coherent (K-IVC) state, valley-polarized states
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(VP) [16] and incommensurate Kekulé spiral (IKS) states
[27, 58, 61] accompanied by a time-reversal symmetry
preserving inter-valley coherent (T-IVC) order. The
near-degeneracy of the ordered states suggests that the
true state is sample-dependent owing to perturbations
such as substrate effects, defects, and most importantly
strain, in line with recent experiments [165, 166].

While the static mean-field approach is suitable for
studying the integer-filled case deep in the ordered
regime, understanding fractional doping and the transi-
tion to the symmetric state, made up of disordered fluctu-
ating local moments, requires a dynamic treatment of lo-
cal correlations. A suitable many-body method for this is
dynamical mean-field theory (DMFT) [167, 168]. Previ-
ous applications of DMFT have successfully investigated
the symmetric phase using the Wannier-construction–
based multi-orbital projector models [169, 170] and the
topological heavy Fermion model [171], shedding light on
Kondo physics and Fermi-surface resetting cascade tran-
sitions [142]. These studies focused on fully symmetric
states. Therefore, the interplay between dynamic corre-
lations and spontaneous symmetry-breaking remains an
outstanding question that needs to be addressed.

In this paper, we apply DMFT on a set of symmetry-
broken states of unstrained magic-angle twisted bilayer
graphene (TBLG)—treating static and dynamic effects
on the same footing, and compare the resulting spectral
and thermodynamic observables with calculations in the
symmetric state. In the symmetric (or interchangeably
disordered) state we explicitly suppress long-range or-
der. Our calculations provide a unified understanding of
scanning tunneling spectroscopy [142] and compressibil-
ity experiments [149, 150, 172, 173], and some puzzling
aspects of transport [137, 150, 174] experiments based on
three effects: (i) the formation of local isospin moments
around 100 K, (ii) a cascadic charge reshuffling between
localized and delocalized electronic states, and (iii) the
ordering of local isospin moments around 10K.

At integer fillings in the symmetric state, there is
hybridization-induced depletion of spectral weight at the
Fermi level. In the zero-strain ordered state, there is a
hard gap, and the spectral functions are comparable to
Hartree-Fock calculations [16]. We find ordering temper-
atures of∼15K at ν = 0,−1, and∼10K at ν = −2 (where
ν measures the number of charge carriers per moiré unit
cell with respect to the charge neutrality point). These
ordering temperatures are about an order of magnitude
lower than the Hartree-Fock prediction, indicating strong
suppression of long-range order by local dynamic fluctu-
ations, and the existence of a local moment regime span-
ning a wide temperature range. We further extend our
symmetry-broken calculations to fractional fillings. At
small doping away from the insulator, we find a doping-
induced insulator-to-metal transition involving the pop-
ulation of coherent light charge carriers. We characterize
the Fermi surface across a range of fillings, and find that
the topology, the orbital character, and the coherence of
the Fermi surface depends on the filling, and the absence

or presence of long-range order. We identify the changes
in the Fermi surface with a sequence of Lifshitz transi-
tions associated with a redistribution of charge between
localized and delocalized orbitals. These Lifshitz transi-
tions manifest themselves as the filling-induced cascade
transitions seen in compressibility [149, 150, 173, 175]
and spectroscopic measurements [142].
Entropy and transport measurements have observed

the isospin Pomeranchuk effect in TBLG [137, 149, 150,
174], in a phenomenological analogy to helium-3 [176].
The Pomeranchuk effect has previously been discussed in
the solid state context in the Hubbard model [177, 178],
and in cold atoms [179]. At certain fillings, raising
the temperature induces a transition from a metallic
state (resistivity ≈ 10−1 kΩ) to a near-insulating state
(resistivity ≈ 101 kΩ) at around 5–10 K [150, 174].
Our approach allows us to distinguish between two dis-
tinct metallic states in TBLG—an order-induced coher-
ent good metal below the DMFT ordering temperature,
and an incoherent bad metal. Our results therefore point
to a microscopic mechanism underlying the observations
of “Pomeranchuk physics” in transport and thermody-
namics experiments, with good agreement of the tem-
perature scale.
The doping dependencies of the electronic spectra and

the existence of disordered moments at temperatures
above ∼10 K is closely linked to the dependence of the
chemical potential µ on doping ν in the symmetric phase.
Our calculations unveil a balancing mechanism between
the filling of the correlated and uncorrelated subspaces,
by which the former is progressively occupied with in-
creasing total filling, and the latter is cyclically filled and
depleted. We discuss the correlated nature of the system
at integer and fractional fillings, showing how, coherently
with what is known about the physics of the periodic
Anderson model, Mott-like behavior emerges at integer
values of the total filling. We compare our DMFT results
with the exact solution of the topological heavy Fermion
model [16] (see also Sec. II) in the zero-hybridization
limit [180] and explain the observed features in the ex-
perimentally measurable charge compressibility. This is
found to exhibit a saw-tooth behavior and negative val-
ues in extended ranges of dopings, once the geometrical
capacitance contribution is subtracted out analogously to
experiments [181–183].

II. MODEL

We use the topological heavy Fermion (THF) model
from Ref. [16] to describe the electronic structure of
TBLG. This model, derived from the microscopic inter-
acting Bistritzer-MacDonald model [3], connects a set
of completely localized f -orbitals to highly dispersive c-
orbitals that carry the topology. Per spin and valley
(s ∈ {↑, ↓}, η ∈ {+,−} respectively), there are two f -
orbitals (α ∈ {1, 2}), and four c-orbitals (two of each
forming the Γ3 (a ∈ {1, 2}) and Γ1 ⊕Γ2 (a ∈ {3, 4}) rep-
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FIG. 1. The momentum-resolved A(k, ω) and momentum-integrated A(ω) spectral functions at integer filling in the symmetric
(top panels) and symmetry-broken phases (bottom panels) at the fillings ν = 0,−1,−2 (from left to right). In the color plot
for Atot(k,w), the hue represents the orbital character (blue for f vs red for c) of the spectral weight. The different lines in the
A(ω) plot denote total (X = tot) or orbital-projected (X = f, c(. . .)) spectral functions. The data is at 7.7 K.

resentations). The f -orbitals make up most of the flat
bands; the exception is at the Γ point in the moiré Bril-
louin zone, where the flat band character changes to that
of the Γ1 ⊕ Γ2 c-orbitals through f -c hybridization. The
THF Hamiltonian can be written as

ĤTHF = Ĥc + Ĥcf︸ ︷︷ ︸
Ĥ0

+ĤU + ĤW + ĤV + ĤJ . (1)

The terms comprising the non-interacting Hamiltonian
Ĥ0 are Ĥc, which contains the dispersion of the c-orbitals,
and Ĥcf , which contains the hybridization between the

two subspaces. Ĥ0 defines two important energy scales:
the splitting of the Γ1 ⊕ Γ2 c-subspace, M = 3.7 meV,
which sets the bandwidth of the flat bands, and the f -c
hybridization term at Γ, γ = −24.8 meV, which sets the
gap between the flat bands and the high-energy bands.
The four terms in the interacting part of the Hamiltonian
are ĤU (ĤV ), the density-density interaction in the f(c)-

subspace, ĤW , the density-density interaction between c-
and f -states, and ĤJ , the exchange interaction between
the f - and c-subspaces. See App. B or [16] for the defini-

tion of each term. In our calculation, we treat ĤU with
DMFT, taking its local many-body effects into account,
and the remaining interaction terms via static mean-field
decoupling. We perform two sets of calculations: (a)
allowing for symmetry-broken states where symmetry-
breaking in the first iteration is guided by Hartree-Fock
results from [16]; (b) in a fully symmetric state. For later
convenience, we define nf , nc, and n = nf +nc to be the
number of f -, c-, and total electrons per moiré unit cell

in the system. The corresponding fillings with respect
to the charge neutrality point are given by νf = nf − 4,
νc = nc − 8, and ν = n − 12. Due to the exact particle-
hole symmetry of the THF model (which may be bro-
ken by additional terms not included in this study), the
physics at positive and negative ν is related by a particle-
hole transformation, and we will limit our discussions to
ν ≤ 0. In this paper, isospin refers to a generalized spin
consisting of electron spin, valley, and orbital degrees of
freedom. The corresponding local moments are referred
to interchangeably as isospin moments, local moments,
and local isospin moments.

III. METHODS

We split the total Hamiltonian into a static and a dy-
namic part,

Ĥstat =Ĥc + Ĥfc + ĤMF
W + ĤMF

V + ĤMF
J

− 3.5U
∑
αησ

f†αησfαησ, (2)

Ĥdyn =
U

2

∑
(αησ)̸=(α′η′σ′)

f†αησfαησf
†
α′η′σ′fα′η′σ′ . (3)

The superscript MF represents a static mean-field de-
coupled interaction term (Hartree+Fock for ĤMF

W and

ĤMF
J and Hartree for ĤMF

V ).

Ĥstat plays the role of the lattice Hamiltonian in the
DMFT calculation. It must be self-consistently deter-
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mined as the mean-field decoupled interaction terms de-
pend on the system’s density matrix ρ. Ĥdyn acts on the
f -subspace only and induces a frequency-dependent self-
energy in the f -subspace. We solve the impurity problem
with two continuous-time quantum Monte Carlo (CT-
QMC) hybridization expansion solvers (TRIQS-cthyb
[184–186] and w2dynamics [187, 188]). We converge
two self-consistency loops at once: the DMFT self-
consistency condition for the self-energy Σ of the f -
subspace, and the Hartree-Fock mean-field condition for
the total density matrix ρ. Details of the calculations as
well as the CT-QMC parameters are given in App. C.

The results shown in this paper are obtained for the
lowest energy ordered phases predicted by a Hartree-Fock
analysis [16] of the THF model in the absence of strain.
That is, at the charge neutrality point (ν = 0), both spin
sectors are half-filled with K-IVC order, upon hole doping
once (ν = −1), one spin sector is K-IVC ordered, while
the other spin sector is valley polarized, and at half-filling
(ν = −2), one spin sector has K-IVC order, while the
other has no long-range order. We emphasize that these
states and their flat- and chiral-U(4) related counterparts
valley-polarized (VP), and intervalley-coherent (T-IVC)
states are very close in energy. The true ordered state
is therefore sensitive to defects, substrate effects, strain,
and other sample-dependent perturbations. These effects
can be incorporated with DMFT on the THF model with
additional terms, and will be the subject of a future pub-
lication. Our goal is to make universal statements about
the interplay of correlations and ordering in this system,
which likely does not depend on which of the several com-
peting low-temperature ordered phases the system is in.

For the symmetry-broken calculations at integer fill-
ings, we bias the system towards the chosen symmetry-
broken solution by applying a weak polarizing field for
the first few DMFT iterations, and then turning it off
for the remainder until self-consistency is reached. (See
Appendix D for the definition of the polarizing field). In
the ordered phase, we approach fractional fillings around
each integer filling by gradually doping the integer-filling
self-consistent solution in small increments.

IV. RESULTS

A. (Nearly) insulating states at integer filling

Fig. 1 shows the DMFT spectral functions in the sym-
metric and the symmetry-broken phases at integer fill-
ings ν = 0,−1,−2. In all cases, the local Hubbard term
in Ĥdyn shifts the flat-band spectral weight of the f -
subspace away from the Fermi level to form lower and
upper Hubbard bands. The remaining low-energy exci-
tations have residual f - and Γ1 ⊕ Γ2 c-orbital character,
while the Γ3 c-spectral weight remains pushed away to
higher energies (∼γ = 24 meV) by the f -c hybridiza-
tion term. We point out two generic differences be-
tween the spectral functions in the symmetric ((a)-(c))
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FIG. 2. (a) The magnitude of the symmetry-breaking or-
der parameter at various fillings and temperatures. In the
bottom panel, white circles represent numerical data points
from DMFT simulations at and around the ν = −2 (K-IVC),
ν = −1 (K-IVC+VP), and ν = 0 (K-IVC) parent states in
the left, middle, and right panels respectively. The space be-
tween circles is filled by linear interpolation. The top panel
shows the same quantity from a Hartree-Fock simulation (note
the different vertical scale). In the dark blue regions, the
self-consistency loop flows to the symmetric state, indicat-
ing that the symmetry-broken solution does not exist. (b) A
schematic filling-temperature phase diagram: local moments
form below the Hartree-Fock ordering temperature (Tmoments)
in the orange region. These local moments order below the
DMFT ordering temperature (Torder) in the blue region. The
DMFT ordering temperature marks the boundary between a
bad metal and a (order-facilitated) good metal at fractional
fillings as discussed in Sec. IVE and Sec. IVG in the main
text. The correlated insulators at integer fillings emerging
below Torder (dark red) fades into the bad metal above Torder

forming regions with most strongly suppressed quasiparticle
weights, c.f. Fig. 5b).

and symmetry-broken ((d)-(f)) phases. First, the Hub-
bard bands are relatively sharp in the symmetry- bro-
ken phase compared to those in the symmetric phase,
indicating that dynamic correlations are weaker in the
symmetry-broken phases [189]. Second, while low-energy
spectral weight is depleted also in the symmetric state,
symmetry-breaking supports a robust insulating gap in
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the absence of strain. This is best seen comparing
the momentum-integrated spectral functions in the right
panels of Fig. 1(a) and (d). In the symmetric case, spec-
tral weight is reduced at the Fermi level but does not
vanish. In the ordered case, the spectral weight vanishes
and there is a robust gap. This can be understood in the
language of the THF model. At the Γ point, the bare
(with f -c hybridization turned off) dispersion of the THF
model has two contributions at zero energy: per spin and
valley, there is a pair of f -orbitals with completely flat
bands at zero, and a pair of Γ3 c-orbitals that contribute
a pair of particle-hole related parabolic bands touching
at zero. f -c hybridization moves both of these contri-
butions away from zero to the high-energy bands at the
Γ point. Precisely at the Γ point, the flat bands are en-
tirely of Γ1 ⊕ Γ2 c-character. Generically, the c-electron
spectral weight is affected by interactions in the f -sector
directly by the f -c exchange interaction (HJ), and indi-
rectly through hybridization effects. The former directly
gaps out the c-electron spectral weight near the Fermi
level. This is evident in the energy difference between the
bright spots in the spectral functions at the Γ point at the
charge neutrality point (CNP) in Fig. 1(a) and Fig. 1(d).
In the symmetric phase (a), the Γ1 ⊕ Γ2 c-orbitals re-
tain the 2M splitting of the non-interacting Hamiltonian.
In the symmetry-broken case (d), the splitting gains an

additional contribution from the f -c exchange term ĤJ

and is given by
√

(2M)2 + (OJ/2)2, where O is the off-
diagonal inter-valley term in the f -subspace density ma-
trix.

What is the nature of the (nearly) insulating states
at integer fillings? Given the close relation between the
THF and the periodic Anderson model (PAM), we at-
tempt a classification of insulating states of the THF
model in terms of the phenomenology of the periodic
Anderson model. In the PAM, different types of insu-
lators including band insulators, Kondo insulators, Mott
insulators, and charge transfer insulators have been es-
tablished [190, 191].

At integer νf , the limit of U → ∞ corresponds to re-
moving all f -states from the THF Hamiltonian. How-
ever, without c-f coupling (and thus also without f -
states at all) the THF model is metallic [16] and not
gapped. Clearly, the absence of a gap at U → ∞ in the
symmetric state, rules out TBLG at integer filling being
a genuine Mott insulator, in agreement with the inter-
pretations of [169, 170]. At the experimentally relevant
temperatures of a few K, a Kondo insulator at integer
fillings is unlikely, since the f -electron moments are not
yet fully screened down to ∼1 K [171].

The absence of a hard Mott gap can be traced back
to a finite tfc in our THF model, similarly to what has
been discussed in Ref. [192]: even at strong interaction
strengths, as long as the f -electrons can hop into a non-
interacting band crossing the Fermi level, a Mott insu-
lator with a clean gap is prevented. The heavy Fermi-
liquid that replaces it has typically a very low coherence
temperature. In accordance with these general expec-

tations (and despite the differences between our model
and those of Ref. [192]) we find (see section IVG) that
the quasiparticle weight never vanishes in the symmet-
ric state, even close to integer fillings where it is heavily
suppressed, displaying the commensurability effects char-
acteristic of incipient Mott phases. Still, in order to see
a clean gap, long-range ordering is needed, as we find in
our calculations for broken-symmetry states.
The presence of f - and c- spectral weight near the

Fermi level is reminiscent of “p-metals” [191] or charge
transfer (CT) insulators [190]. In typical transition metal
oxide-based CT insulators like NiO or cuprates [190], the
electronic gap is bounded by transition metal 3d and
oxygen 2p-spectral weight from above and below, respec-
tively. The insulating states at ν = −2 with dominantly
c-spectral weight below the Fermi level and f -spectral
weight above (c.f. Figs. 1 (c) and (f) ) resemble this CT
scenario. Also the insulating states ν = 0 and ν = −1 are
similar to CT insulators, yet with one decisive difference
to the usual CT and p-metal case: in TBLG at ν = 0
and ν = −1 we have delocalized c-bands dispersing in
between the f -type Hubbard bands from above and be-
low. Also differently from the transition metal oxide CT
cases, the spectral depletion regions near the Fermi level
of TBLG in the symmetric state rely on hybridization
between delocalized (c) and localized (f) states. In the
ordered states of TBLG, it is the exchange interaction be-
tween c and f orbitals leading to mass terms [180] which
markedly enhance the gaps in the c-sector and thus also
the total gaps.

B. Fluctuations and the stability of the ordered
solution

Next, we study how doping or raising the temperature
affects the ordered states at integer fillings. Fig. 2(a)
shows the order parameter of the self-consistent solution
in a doping-temperature plane generated by gradually
doping a particular ordered state at an integer filling. We
define the order parameter in the symmetry-broken phase
at arbitrary filling by the matrix inner product with the
traceless part of the corresponding parent state density
matrix (see Appendix. D). At high enough temperatures,
the system flows to the disordered phase under the self-
consistency loop. We find the threshold temperature to
be ∼15 K at ν = 0,−1, and ∼10 K at ν = −2. The
ordering temperature predicted by Hartree-Fock is an or-
der of magnitude higher (∼100-150 K; see upper panel of
Fig. 2(a)). Our DMFT simulations show that long-range
order is suppressed by local dynamic fluctuations down
to about 10 K. Spatial fluctuations are expected to re-
duce the ordering temperature further. Just below the
DMFT ordering temperature, doping away from an inte-
ger solution also leads to a disordered solution, resulting
in dome-shaped ordered regions as seen in the lower panel
of Fig. 2(a). At low enough temperatures, the ordered
solution continued from either neighboring integer filling
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may co-exist at a given fractional filling.
We interpret the Hartree-Fock ordering temperatures

as the point at which local moments start to form. Antic-
ipating the results of Sec. IVC and Sec. IVE, where we
discuss the metallic states below and above the ordering
temperature, we construct a schematic phase diagram in
Fig. 2(b). Below the ordering temperature of ∼10 K, we
find an insulator at integer fillings, and a good metal at
fractional fillings. The state above the ordering temper-
ature is discussed in Sec. IVE, where we will show that
the spectral weight at the Fermi level is generically in-
coherent, indicating a bad metal. Our results point to
a coherence from order at low temperatures, which we
expand on in Sec. IVF.

C. Doping-induced insulator-to-metal transition

Away from integer filling, the normal state of TBLG is
metallic. The nature of the metallic state depends on the
filling and temperature. In fact, we find distinct behav-
iors upon doping with electron or holes away from the
insulators at ν = 0 or ν = −1 on one hand and ν = −2
on the other hand. In Fig. 3(a), we show how the spec-
tral function changes as we slightly dope the system away
from ν = −1 at T = 5.8 K in the ordered state with elec-
trons or holes. In this case, we find that the Fermi level
moves into the dispersive part of the low-energy bands
around the Γ point: the active bands are coherent with
delocalized c-character. Here, we expect Fermi liquid-
like behavior. Metallic behavior derived from c-orbitals
on both sides of the insulator points back to the peculiar
property of the charge-transfer insulator at ν = −1 with
c-bands dispersing both above and below. In contrast,
the behavior at ν = −2 is asymmetric with respect to
doping. Consider the spectral function in Fig. 1 (f). The
c-part of the upper band is flattened. While hole dop-
ing at ν = −2 would lead to metallic behavior just like
at ν = −1, electron doping would start to immediately
occupy the f -orbitals. This is much more reminiscent of
a conventional charge transfer insulator, with localized
carriers on one side and delocalized carriers on the other
side of the gap.

Upon further doping away from ν = −1 towards
ν = 0, the Fermi level eventually also hits the local-
ized f -part of the flat bands. This occurs generically
once between every two successive integer fillings, and
is shown in Fig. 3(b) for ν = −0.6. The supplemen-
tary material includes a movie showing the evolution
of the spectral function as the filling is varied (https:
//youtu.be/cw3K0YEsPU0). The ordered phase (in the
left panel) has a splitting in the f -subspace that is ab-
sent in the symmetric phase (in the right panel). This is a
consequence of a feedback of the ferromagnetic exchange
interaction ĤJ , which is only active in the ordered phase.
Due to the isospin order in the f -sector, ĤJ behaves like a
polarizing field in the c-sector, inducing analogous isospin
order in the c-sector. The induced isospin order in the

c-sector in turn causes a small polarizing field in the f -
sector, resulting in the splitting seen in the left panel of
Fig. 3(b).

In both the symmetric and ordered state, hitting the
localized f part of the spectrum induces a charge reshuf-
fling between the localized and delocalized subspaces, re-
sulting in the sawtooth pattern of orbital-resolved fill-
ing seen in [171, 180, 193]. This is precisely the re-
gion of fillings where experiments see negative compress-
ibilities [150, 175]. We discuss the orbital-resolved fill-
ings along with the compressibility further in Sec. IVH.
These filling regions are also associated with a sequence
of Lifshitz transitions. We identify these Lifshitz tran-
sitions with the experimentally observed cascade transi-
tions [142, 175] in Sec. IVE.

D. Cascade transitions and signatures of order

In Fig. 4(a), we show the momentum-integrated spec-
tral function as a function of filling in the symmetric
and symmetry-broken phases. In both cases, there is a
reconstruction of the low-energy spectral features upon
changing the doping by an integer value. These are the
cascade transitions that have been seen experimentally
with scanning tunnel spectroscopy (STS) [11, 142] and
which have been similarly found in the DMFT study of
Datta et al. [170] for the symmetric state. In the sym-
metric state, at integer fillings, the spectral function has
a two-peak structure, with a lower and an upper peak
that are similarly far away from zero, but with their rel-
ative spectral weight depending on which integer filling
the system is tuned to (for instance, compare ν = −2
and ν = −1 in Fig. 4). Upon hole doping away from
an integer filling, the two peak structure shifts to higher
energies, the lower peak merges with a zero-energy res-
onance, and the upper peak fades away. Upon further
hole doping, as the system approaches the next integer
filling, the zero energy resonance shifts to higher ener-
gies becoming the new upper peak, and a new lower peak
emerges.

The symmetry-broken state behaves the same way ex-
cept that there is fine low-energy structure, owing to
isospin order. The details of the fine structure will de-
pend on the particular ordered state. In particular, the
zero-energy peak at fractional fillings, made up primar-
ily of f -spectral weight, is split by a feedback effect from
the exchange interaction ĤJ . This splitting is present as
long as there is isospin order. See Fig. 2 for the sets of
filling and temperature values where this fine structure
may be present. Note that our calculation does not in-
clude spatial fluctuations, which might further suppress
ordering temperatures.

https://youtu.be/cw3K0YEsPU0
https://youtu.be/cw3K0YEsPU0
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FIG. 3. Spectral functions at 5.8 K (a) at and close to ν = −1 in the ordered phase (b) at ν = −0.6 in the ordered and
symmetric phases. In (a), the electron and hole doped panels are shifted such that the Hubbard bands match up with the
middle panel. Lightly doping away from an integer-filled insulator moves the Fermi level into the coherent c-spectral weight
around the Γ-point leading to a coherent metal. Upon further doping as in (b), the Fermi level hits the f -part of the flat bands,
leading to coherent and incoherent spectral weight at the Fermi level.

E. Fermiology and Lifshitz transitions

We perform a quasiparticle analysis at the Fermi level
to better understand the Fermi surface reconstruction
and the Lifshitz transitions underlying the cascades. The
exact shape of the Fermi surface will depend on perturba-
tions such as strain, but some general features such as the
existence and loose integer-periodic nature of the Lifshitz
transitions will remain. We numerically find the zeros,
Ĥqp(k)

∣∣ψi(k)
〉
= 0, of the quasiparticle Hamiltonian

Ĥqp(k) = Ẑ
1
2Re

[
G−1(ω + iϵ, k)

]
ω→0

Ẑ
1
2 , (4)

where Ẑ =
(
1− ∂iωImΣ̂tot(iω)

∣∣∣
iω→0

)−1

is the matrix

quasiparticle weight. Σ̂tot is the f -subspace self-energy
promoted to the full f⊕c space by padding with zeros in
the c-sector (the c-sector is treated on a mean-field level
and the static contribution to the self-energy is included
in the mean-field terms in Ĥstat), the superscript i on∣∣ψi(k)

〉
labels the zeros in case there is degeneracy at

any k-point. The zeros of Ĥqp point at potential quasi-
particles at the Fermi level. In particular, the quasipar-
ticle weight Ẑ evaluated at the zeros gives information
on the coherence of spectral weight at the Fermi level in
the form of a k-dependent quasiparticle weight

1

Zi(k)
=

〈
ψi(k)

∣∣ Ẑ−1
∣∣ψi(k)

〉
(5)

along a potential Fermi contour. For an uncorrelated
Fermi liquid, Zi(k) = 1, and

∣∣ψi(k)
〉
would give the

quasiparticle eigenstates at the Fermi surface. Technical
details on the root-finding algorithm used to find

∣∣ψi(k)
〉

and the rest of the quasiparticle analysis are provided in
Appendix F.

The blue lines in Fig. 4(b)-(f), which we henceforth
refer to as zero energy lines (ZEL), mark the location of

the zeros
∣∣ψi(k)

〉
in k-space overlaid on the spectral func-

tion at the Fermi level in the first moiré Brillouin zone
at select fillings. For clarity, the symmetric phase data
in Fig. 4(b)-(d) projected to the K-valley only. The K ′

valley contribution is related by a C2 rotation. We find
that the topology of the ZEL changes with doping. In our
zero-strain calculation, between the CNP and ν = −1, we
see three regimes. Upon lightly doping away from CNP,
(b), TheK-projected ZEL consists of two concentric con-
tours. The three lobes of the outer contour jutting away
from the Γ point have low quasiparticle weight, and cor-
respondingly smeared out spectral weight. The inner ring
and the inner sections of the outer ring are primarily of
c-character and more coherent, and form a Fermi con-
tour. Halfway to ν = −1 (c), the Fermi level hits the flat
f -part of the flat band (see also Fig. 3(b)). This coin-
cides with the concentric ZEL connecting to form a trefoil
knot. This ZEL has three points where it intersects itself
corresponding to potential van Hove singularities at the
Fermi level. As in the previous case, however, the outer
lobes of the ZEL have low quasiparticle weight and are
primarily f -character. Finally, approaching ν = −1, the
ZEL consists of a single closed contour, as seen in (d).
We reiterate that the other valley contributes additional
60 degree rotated copies of these Fermi surfaces restoring
C6 symmetry.

In the ordered case Fig. 4(e)-(g), the zeros are not
valley-decoupled as the charge carriers occupy inter-
valley coherent orbitals. The color map therefore shows
the full spectral weight with both valleys included.
Generically, away from integer fillings, the zeros are co-
herent with high quasiparticle weight. The symmetry
and topology of the Fermi surface depends on the prop-
erties of the active orbital at the chosen filling. Doping
with holes away from CNP, the Fermi surface consists
of K-IVC orbitals getting depleted, resulting in a Fermi
surface that is 6-fold symmetric. Near ν = −1, there are
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FIG. 4. (a) The momentum-integrated spectral function Atot(ω) at 11.6 K in the symmetric phase (left) and 5.8 K in the
ordered phase (right) as a function of hole doping. The electron-doped side (with respect to CNP) is related to the hole-doped
side by a partice-hole transformation. (b)-(d) The K-valley–projected zero-energy spectral function in the first moiré Brillouin
zone in the symmetric phase at select fillings. (e)-(g) The full zero-energy spectral function in the first moiré Brillouin zone in
the ordered state at select fillings. The light blue lines mark the zeros of the effective Hamiltonian as identified by a quasiparticle
analysis (see main text). (h) A comparison of the f -orbital quasiparticle weight Zf in the symmetric and ordered states. In the
ordered case, only the spin-up K-IVC occupied and unoccupied orbitals are shown for clarity. (i)-(j) The quasiparticle weight
projected onto the quasiparticle basis along the zeros of the quasiparticle hamiltonian.

two occupied K-IVC orbitals in one spin sector, and an
occupied valley-polarized orbital in the other spin sector.
Electron (hole) doping corresponds to occupying (deplet-
ing) the unoccupied (occupied) valley-polarized orbital,
resulting in a Fermi surface that is 3-fold symmetric. We

emphasize that perturbations such as strain will change
the details of the ordered state and the shape and sym-
metries of the Fermi surface. However, there will still
be Lifshitz transitions between integer fillings when the
Fermi level hits the incoherent f -band.
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F. Pomeranchuk physics and coherence from order

An important takeaway from Fig. 4 is the different na-
ture of the metallic state in the symmetric and ordered
phases. Generically, the spectral weight at the Fermi
level in the ordered state originates from much more co-
herent excitations than in the disordered state. This can
be seen from Fig. 4(h), where we show the quasiparti-
cle weight in the orbital basis over a range of fillings,
and from Fig. 4(i)-(j), where we show the quasiparticle
weight in the quasiparticle basis Z(k) from Eq. (5) at
chosen fillings. Thus, generically at fractional fillings, we
expect a good metal in the ordered state, and a bad metal
in the disordered state. With an ordering temperature
of about 10–15 K, this interpretation is consistent with
transport experiments [137, 174], which observe a sharp
drop in resistivity at temperatures below 5–10 K for a
range of fillings around the correlated insulating phases.
With this analysis, we are able to provide a microscopic
explanation for the isospin Pomeranchuk effect in TBLG.
The bad metal at high temperatures is the result of an
incoherent metal stabilized by the isospin entropy of pre-
formed local moments, in analogy to solid helium-3 in the
original Pomeranchuk effect [176]. The low-temperature
Fermi liquid is a coherent metal induced by spontaneous
symmetry-breaking. The spectral function in the ordered
phase is composed of bands of coherent quasiparticles,
which become occupied upon doping away from the in-
sulating states in the close vicinity of integer filling. In
this regard, in contrast to the original Pomeranchuk ef-
fect, it is coherence facilitated by order that is responsible
for the resistivity drop.

Taken together, our DMFT study reveals the follow-
ing similarities and differences between the Pomeranchuk
physics in He-3 and TBLG. In both systems, disordered
fluctuating (iso)spin moments give rise to a high-entropy
high temperature phase. Both, in He-3 and TBLG, the
(iso)spin entropy is suppressed in the low-temperature
state. Both, the low-temperature state of TBLG (at non-
integer filling) and He-3, can have T -linear Fermi liquid
derived contributions to the entropy. Yet, there is a de-
cisive difference between the low-temperature states of
TBLG and He-3: In TBLG, the entropy suppression is
due to ordering of the (iso)spin moments, while in He-3
realizes a Fermi liquid without long range spin-order. In
other words, there are no local moments in He-3 at low
T , while the isospin moments still exist in TBLG albeit
ordered.

G. Importance of integer total fillings

Fig. 5 reports the filling of the f - and c-orbitals, as
a function of the total filling ν. It is instructive to
compare the DMFT solution of the full model with hy-
bridized f - and c-orbitals to the solution of the zero-
hybridization model from [180]. This is illustrated in
Fig. 5(a) where the solid lines refer to the solution with

finite hybridization solved with DMFT and the light cir-
cles to the zero-hybridization case. It is clear that the
model with hybridization obeys a similar energetic bal-
ance to the one without hybridization. The c-orbitals are
periodically filled up and emptied, upon increasing ν. In
DMFT, this yields the characteristic, albeit smoothened
out, sawtooth behavior. These overall trends displayed
by νf and νc are a consequence of the strong correlations
due to the f -f -Coulomb terms together with f -c and c-
c interactions terms that are present both in the zero-
hybridization solution of Ref. [180] and in our DMFT
calculation.
There is a further, more fundamental difference be-

tween finite and zero hybridization, namely the special
role played in the former—and not in the latter—by the
integer values of the total filling ν. In the zero hybridiza-
tion model, ν = −3, ν = −2, ν = −1 and so on, have no
special meaning apart from trivially imposing νc = 0. On
the contrary, the DMFT solution with finite hybridiza-
tion bears a clear witness of the integer values of the
total ν, as evident from Fig. 5(b)-(c). The quasiparti-
cle weight of the f -orbitals displays particularly strong
variations approaching integer values of ν. At the same
time, the fluctuations of the f -occupation ⟨n2f ⟩ − ⟨nf ⟩2
are suppressed near integer values of ν, in contrast to the
zero-hybridization case, for which this quantity is flat and
vanishes. Everywhere apart from the precise fillings at
which the cusps in these two quantities occur, the behav-
ior evidenced by these two indicators of the many-body
nature of the f -electrons reveals a crucial property of the
THF model with its full heavy-light fermion hybridiza-
tion.

Periodic Anderson models ubiquitously show Mott-like
behaviors at integer values of the total filling, rather than
at integer fillings of the correlated subspace [191, 194].
This is independent of whether or not Mott insulating
phases are fully realized and is to some extent counterin-
tuitive. One may indeed naively think that the strongest
propensity to Mottness is present at integer values of νf ,
not of ν. This “commensurability” physics as a function
of total filling is obviously possible only when the hy-
bridization puts the correlated and itinerant subspaces
in communication and is captured by DMFT. Indeed,
there are two main features that render DMFT especially
suited to the task at hand: first, being by construction
in the thermodynamic limit it is able to treat integer and
fractional fillings on an equal footing. Second, DMFT
has been proven to be able to solve models possessing
degrees of freedom with different correlation strength in
the low-energy subspace (as are f - and c-orbitals in our
case) taking the charge fluctuations occurring between
the two fully into account.

H. Compressibility

In Fig. 6 we show the total, f - and c-fillings as a func-
tion of the intrinsic chemical potential µ. A discussion
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of the full model with hybridization. The light dotted curves are results from the zero-hybridization model solved exactly in
[180]. (b) Quasiparticle weight for the f -orbitals, calculated at 11.6 K. (c) Charge fluctuations of the f -orbitals ⟨n2
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values of ν, in contrast to the zero-hybridization solution.

on the precise definition of the intrinsic chemical po-
tential and on how the mean-field interaction terms are
operationally accounted for in our charge self-consistent
DMFT calculation can be found in Appendix G; in short,
this amounts to separating intrinsic from geometric con-
tributions to the thermodynamic potential [195, 196] and
to the chemical potential. What follows uses the intrinsic
chemical potential µ unless otherwise stated.

The blue solid lines in Fig. 6 report the total and
orbital-resolved fillings as a function of µ. These are to
be compared with the black dots, which report the same
for the zero-hybridization model. In both cases, the over-
all behavior of the filling is a consequence of an energetic
balance between the orbital species. The f -c hybridiza-
tion constitutes the additional feature captured by our
DMFT study with respect to the zero-hybridization case
described in [180], and causes a breakdown of the rigid-
band picture. The role of the f -c hybridization is to
provide a “smoothing” effect on the cross-talk between
the two subspaces. Note that, differently from the stan-
dard periodic Anderson models considered in literature,
the THF model [16] features a specific momentum, and
hence real-space, dependence of the hybridization term
Hfc(k) .

The capricious ups and downs of νc shown in Fig. 6(c)
have to be contrasted to the progressive filling of the
uncoupled reservoir of itinerant electrons in the zero-
hybridization case: in both cases, when an additional
flat f -electron band passes through the Fermi level, it
provides a large, rapid increase in occupation, which is
compensated by emptying the dispersive c-bands. This
behavior is discontinuous in the decoupled case, with νc
travelling multiple times from ≈ −0.85 to ≈ +0.85 along
the same path marked by the black dots in Fig. 6(c). By

contrast, the presence of f -c hybridization and broad-
ening in the DMFT solution forces both νf and νc to
vary continuously. This results in the behaviors high-
lighted by the blue curves in Fig. 6(b) and (c) respec-
tively: the f -electron occupation monotonically increases
with respect the total ν (see also Fig. 5(a)); when pic-
tured upon varying µ, it shows a series of continously
connected plateaux. These occur trivially at integer val-
ues in the zero-hybridization model, while the DMFT
solution with hybridization displays plateaux that are
not pinned to integer νf , except obviously for νf = 0
because of particle-hole symmetry. Due to the previ-
ously mentioned occupation balancing mechanism, νc
has instead to necessarily decrease in some intervals
upon increasing the total ν, resulting in the peculiar
“loops” of Fig. 6(c). A movie showing the evolution of
the momentum-resolved spectral function across the fill-
ing range is included in the supplementary information
(https://youtu.be/cw3K0YEsPU0). It clearly shows the
mutual transfer of low-energy spectral weight between f
and c.

For comparison to experiments, we extract the elec-
tronic compressibility of the model and plot its inverse
in Fig. 7(a). One can see how the full resets of µ in the
zero-hybridization case result in extremely pronounced
negative spikes. In DMFT, these negative regions are
much less prominent and the intensity varies between the
charge neutrality point and the full/empty fillings. How-
ever, the minima of the DMFT data coincide with the
negative spikes of the zero-hybridization model, and the
positive spikes at integer fillings are consistent between
the two methods. While the maxima in the compress-
ibilities found here and by the DMFT study of Datta et
al. [170] are in qualitative agreement, there are no neg-

https://youtu.be/cw3K0YEsPU0
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to DMFT simulations tuning the chemical potential to obtain
a target (total) filling. The black dots show results for the zero
hybridization model solved in [180].

ative compressibilities reported in Ref. [170]. We assign
this discrepancy to geometric capacitance terms, which
may not have been fully subtracted in Ref. [170].

The comparison of our DMFT results to experiments,
shown in both panels of Fig. 7 reveals an overall reason-
able agreement between DMFT and experiments from
[150, 173, 175]. Yet, even if DMFT suppresses the nega-
tive compressibilities with respect to zero hybridization,
these regions are still overestimating the experimentally
observed ones (compare the blue to the green, red NS
purple curves in Fig. 7). Among the different experi-
mental curves, showing some discrepancies between one
another, it is interesting to notice how the position of the

DMFT positive peaks at integer fillings match rather well
those of [173], while the negative peaks and the overall
behavior of the chemical potential are more similar to
that of [175]. Since the THF model is by design particle-
hole symmetric it doesn’t account for the asymmetries
experimentally measured for electron and hole doping.
Our results are a better match for positive doping than
negative doping. A calculation including strain and addi-
tional particle-hole symmetry breaking terms will be the
subject of a future study.

I. Significance and origin of the negative
compressibilities.

All chemical potential terms discussed so far referred
to the intrinsic chemical potential, while only the total
thermodynamic potential determines instabilities of the
system. The total thermodynamic potential has to in-
clude also the geometric contributions, which are present
in both, the theoretical model [16] and all experimen-
tal realizations of TBLG [142, 149, 150, 175]: the charge
required to dope TBLG away from charge neutrality is
taken from gate electrodes. The geometric contribution
to the total thermodynamic potential is the classical elec-
trostatic energy that builds up upon charge transfer from
the gate to TBLG. The intrinsic chemical potential does
not involve the contribution from electrostatic potential
associated with the charge transfer between gate and
TBLG and thus, in turn, a negative compressibility refer-
ring only to a derivative involving the intrinsic chemical
potential dn/dµ does neither imply necessarily an insta-
bility of the system nor a tendency to phase separate.
In the THF model of Ref [16], the TBLG system is

supposed to sit in the middle of two gate electrodes, pro-
viding an electric potential dependent on the gate sepa-
ration. As detailed in Appendix G, this entails a large ge-
ometric capacitance term, which has to be taken into ac-
count when determining the total TBLG compressibility.
In Fig. G.2 and G.3 of the Appendix we show the same
data of Figs. 6 and 7, plotted without the subtraction of
the geometrical capacitance contribution, i.e. referring
to the full TBLG system, which necessarily includes the
gates where the doping charges are taken from. There,
most of the negative compressibility regions are gone,
though a small region survives close to ν ± 0.6. As de-
tailed in the Appendix, this effect is related to the form of
the double-gate screened Coulomb integrals considered in
the original THF model, which sets an inter-gate distance
ξ = 10nm [16]. The geometric contribution depends
linearly on the distance between the capacitor plates,
which suggests that an interaction term corresponding
to a larger separation would have removed even the re-
maining ν ± 0.6 negative compressibility region. Similar
geometric effects are also ubiquitously present in experi-
mental realizations [142, 149, 150, 175], where TBLG is
typically placed in single or multigate structures in order
to achieve gate controlled charge doping. In the experi-
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mentally realized setups, assuming the electrodes/back-
gate to be ideal metals, which do not feature quantum
capacitance effects, the only contribution to the negative
compressibility comes from exchange/correlation contri-
butions on the TBLG layer [197], which are accounted
for in DMFT locally to all orders.

V. CONCLUSIONS

Our study provides a unified understanding of dy-
namic correlations and spontaneous symmetry-breaking
in TBLG, allowing us to reconcile a set of complemen-
tary experiments spanning a wide range of temperatures.
Strong electronic interactions in the material give rise to
the formation of local isospin moments at temperatures
on the order of ∼ 100 K, which order around ∼ 10 K.

Once the local moments have formed, regardless of
whether they order or not, exchange-correlation effects
in the localized f -states lead to “integer-periodic” vari-
ations in the compressibility ranging from nearly incom-
pressible to negative values as found in capacitance ex-
periments [150, 173, 175]. Concomitantly, there is a pe-
riodic redistribution of charge between the f - and the c-
states upon doping. This charge reshuffling is responsible
for the doping-induced cascade transitions seen in scan-
ning tunneling spectroscopy [142] and explains why the
cascades first appear at a temperature of ∼100 K [150].
Our study focuses on finite temperatures T ≳ 5 K and

highlights the special role of total integer fillings and the
appearence of (nearly) incompressible insulating states
there. While there is a hybridization-induced depletion
of low-energy spectral weight already in the symmetric
phase, exchange interactions generically support a hard
gap at integer fillings in the ordered phase in the absence

of strain.

Regarding the nature of the metallic states in TBLG,
we find disordered local moments which cause scatter-
ing and predominantly incoherent low-energy electronic
spectral weight in the temperature range of approxi-
mately 10 K< T < 100 K. Ordering of the isospin mo-
ments leads to coherence and the appearance of well-
defined quasiparticles for T ≲ 10 K. This order-induced
coherence stands behind the isospin Pomeranchuk effect
observed in transport experiments. Above the ordering
temperature but below the temperature of moment for-
mation, the isospin entropy of the local moments stabi-
lizes an incoherent “bad metal” phase, which manifests
in incoherent spectral weight at the Fermi level. Below
the ordering temperature, the Fermi surface is composed
of delocalized coherent quasiparticle excitations imply-
ing Fermi liquid-like behavior. This change from inco-
herent to coherent spectral weight at the Fermi level can
explain the generic resistivity drop seen in many experi-
ments below ∼ 10 K [5, 137, 147, 149, 150]. In contrast to
the original Pomeranchuk effect discussed in He-3, sup-
pression of entropy and the coherence in TBLG at low
temperatures comes from the ordering of local moments
and not from the fate of local moments. The coherence
from order physics demonstrated here for TLBG reveals
similarities between TBLG and materials such as metallic
ferromagnets like SrRuO3 [198] and compounds related
to Fe-based superconductors [199].

Our results show that ordering affects electronic spec-
tra and even Fermi surface topologies in metallic states.
Thus, we expect that further symmetry-breaking, i.e.
particularly superconductivity at lower temperatures
T∼1 K, will be impacted by this order-facilitated coher-
ence.
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Appendix A: Non-interacting Hamiltonian

The topological heavy Fermion model is derived and described in [16]. For completeness, we rewrite the single
particle Hamiltonian:

Ĥ0 =

Ĥc︷ ︸︸ ︷∑
|k|<Λc

∑
aa′ησ

H
(c,η)
aa′ (k)c†kaησcka′ησ

+
1√
NM

∑
|k|<Λc,R

∑
aαησ

[
eik·R− |k|2λ2

2 H(fc,η)
aα (k)f†Rαησckαησ + h.c.

]
︸ ︷︷ ︸

Ĥcf

. (A1)

The fist term is the dispersion of the c-sector, and Λc is a momentum cutoff. The second term is the coupling of the
dispersionless f -sector with the c-sector. NM is the number of moiré unit cells, R labels the moiré lattice vectors,
λ = 0.3375aM is a damping factor where aM is the moiré lattice constant. The spin and valley degrees of freedom are
decoupled, and at each momentum vector k, the Hamiltonian takes the form of 6× 6 matrix per spin and per valley.
It can be represented compactly by H(c,η)(k) and H(fc,η)(k) as shown below

H(c,η)(k) =

(
02×2 v⋆(ηkxσ0 + ikyσz)

v⋆(ηkxσ0 − ikyσz) Mσx

)
, (A2)

σ0,x,y,z are Pauli matrices in orbital space,M = 3.697 meV defines the bandwidth of the flat bands, v⋆ = −4.303 eV Å
is a fitting parameter.

H(fc,η)(k) =
(
γσ0 + v′⋆(ηkxσx + kyσy) 02×2

)
, (A3)

γ = −24.75 meV sets the gap between the flat band and the high energy bands, and v′⋆ = 1.622 eV Å is a fitting
parameter.

Appendix B: Interaction Hamiltonian

The interaction Hamiltonian of the THF model is derived in detail in the SI of [16]. We summarize their calculation
here and bring their result to the form we use for our DMFT calculations. The interaction Hamiltonian is computed
by performing the Coulomb integrals in the Bistritzer-Macdonald basis

ĤI =
1

2

∫
d2r1d

2r2V (r1 − r2) : ρ̂(r1) :: ρ̂(r2) :, (B1)

where V (r1 − r2) is the double-gate-screened Coulomb interaction, and : ρ̂ : is the normal-ordered density operator.
Of all the terms generated, the most important ones are identified to be the density-density interaction in the f(c)-

subspace, ĤU (ĤV ), the density-density interaction mixing c- and f -subspaces, ĤW , and the exchange interaction

between the f - and c-subspaces ĤJ

ĤI ≈ ĤU + ĤW + ĤV + ĤJ . (B2)

We treat ĤU with DMFT, ĤW and ĤJ with Hartree+Fock, and ĤV with Hartree. Importantly, we treat every
term, including the ones in the delocalized c-subspace, on at least a Hartree level. This means that we capture any
relative static energy shifts between the different orbitals upon doping. We calculate the Hartree+Fock mean-fields
self-consistently making this essentially a charge self-consistent DMFT calculation.

In the following, it is convenient to define the normal-ordered operator with the colon symbol

: f†Rα1η1σ1
fRα2η2σ2

: = f†Rα1η1σ1
fRα2η2σ2

− 1

2
δα1η1σ1;α2η2σ2

, (B3)

: c†k1a1η1σ1
ck2a2η2σ2

: = c†k1a1η1σ1
ck2a2η2σ2

− 1

2
δk1α1η1σ1;k2α2η2σ2

, (B4)
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and the following density matrices

Of
α1η1σ1;α2η2σ2

=
1

NM

∑
R

⟨Ψ| : f†Rα1η1σ1
fRα2η2σ2

: |Ψ⟩ , (B5)

Oc′′

α1η1σ1;α2η2σ2
=

1

NM

∑
|k|<|Λc

⟨Ψ| : c†k1a1η1σ1
ck2a2η2σ2 : |Ψ⟩ , a1, a2 ∈ [3, 4] (B6)

Ocf
aη1σ1;α2η2σ2

=
1√
NM

∑
|k|<|Λc

e−ik·R ⟨Ψ| c†kaη1σ1
fRαη2σ2 |Ψ⟩ . (B7)

Of is the density matrix in the f -sector, Oc′′ is the density matrix in the Γ1 ⊕ Γ2 c-sector, and Ocf is the c-f
off-diagonal block.

1. ĤU : f-f density-density term (on-site)

ĤU =
U

2

∑
R

∑
(αησ) ̸=(α′η′σ′)

(
f†RαησfRαησ − 1

2

)(
f†Rα′η′σ′fRα′η′σ′ − 1

2

)
, (B8)

with U = 57.95 meV. We treat this term dynamically. In order to perform our charge self-consistent DMFT simu-
lations, it is useful to separate out the bilinear term that enforces charge neutrality. Collecting the bilinear terms in
ĤU and collapsing the sum we obtain

ĤU =
U

2

∑
R

∑
(αησ)̸=(α′η′σ′)

f†RαησfRαησf
†
Rα′η′σ′fRα′η′σ′ − 3.5U

∑
R

∑
αησ

f†RαησfRαησ +O(1). (B9)

We call the first term Ĥdyn, and it enters the DMFT calculation as the interaction Hamiltonian of the impurity

problem. The second term forms part of the static Hamiltonian Ĥstat along with the remaining three interaction
terms decoupled via static mean fields, and the non-interacting terms.

2. ĤV : c-c density-density term

We treat the density-density term within the c-subspace on the Hartree level. Since the primary effect of ĤV is to
shift the relative energies of the c- and f -subspaces, and all the symmetry-breaking happens in the f -subspace, we
neglect the Fock contribution (in accordance with [16]). The Hartree contribution is a static shift in the c-subspace
depending only on the c-electron filling νc

ĤMF
V = V νc

∑
|k|<Λ,aησ

c†kaησckaησ +O(1), (B10)

where V = 48.33 meV and νc is the filling of the c-electrons with respect to charge neutrality. Refer to SI of [16] for
derivation.

3. ĤW : c-f density-density term

The Hartree term involves only the orbital-resolved occupations, contributing a static shift in the f -(c-)sector
depending on the occupation of the c-(f -)sector:∑

|k|<Λc

∑
aησ

Waνf : c†kaησckaησ : +
∑
R

∑
aαησ

Waνc,a : f†RαησfRαησ : +O(1). (B11)

The Fock term involves the c-f density matrix:

− 1√
NM

∑
R

∑
|k|<Λc

∑
αα′ηη′σσ′

Wa(O
cf
aη′σ′,αησe

ik·Rf†Rαησckaη′σ′ + h.c.) +O(1). (B12)

Thee coupling to the Γ3 c-sector is W1 = W2 = 44.03 meV, and the coupling to the Γ1 ⊕ Γ2 sector is W3 = W4 =
50.20 meV. See SI of [171] for derivation.
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4. ĤJ : c-f exchange term

ĤJ is a ferromagnetic exchange coupling with J = 16.38 meV. The Hartree term takes the form

J

2

∑
R

∑
αα′ηη′σσ′

: f†R,αησfR,α′η′σ′ : Oc′′

α′η′σ′,αησ

+
J

2

∑
|k|<Λc

∑
αα′ηη′σσ′

: c†k,αησck′,α′η′σ′ : Of
α′η′σ′,αησ +O(1) (B13)

For the Fock term, it is useful to define the mean fields V3, V4 (following the nomenclature in [171])

V3 =
∑
R

∑
|k|<Λc

∑
αησ

eik·Rδ1,η(−1)α+1

NM

√
NM

⟨ψ| f†Rαησckα+2ησ |ψ⟩ (B14)

V4 =
∑
R

∑
|k|<Λc

∑
αησ

eik·Rδ−1,η(−1)α+1

NM

√
NM

⟨ψ| f†Rαησckα+2ησ |ψ⟩ (B15)

The Fock term is

J
∑
R

∑
|k|<Λc

∑
αησ

{
e−ik·R
√
NM

[
δ1,η(−1)α+1f†Rαησckα+2ησV

∗
3 + δ−1,η(−1)α+1f†Rαησckα+2ησV

∗
4

]
+ h.c.

}
+O(1) (B16)

5. Summary

All together, we arrive at the Hamiltonian Ĥstat + Ĥdyn for the “charge self-consistent” DMFT calculation with

Ĥdyn =
U

2

∑
R

∑
(αησ) ̸=(α′η′σ′)

f†RαησfRαησf
†
Rα′η′σ′fRα′η′σ′ (B17)

Ĥstat =Ĥ0 − 3.5U
∑
R

∑
αησ

f†RαησfRαησ + V νc
∑

|k|<Λ,aησ

c†kaησckaησ

+
∑

|k|<Λc

∑
aησ

Waνf : c†kaησckaησ : +
∑
R

∑
aαησ

Waνc,a : f†RαησfRαησ :

+− 1√
NM

∑
R

∑
|k|<Λc

∑
αα′ηη′σσ′

Wa(O
cf
aη′σ′,αησe

ik·Rf†Rαησckaη′σ′ + h.c.)

+
J

2

∑
R

∑
αα′ηη′σσ′

(ηη′ + (−1)α+α′
) : f†R,αησfR,α′η′σ′ : Oc′′

α′η′σ′,αησ

+
J

2

∑
|k|<Λc

∑
αα′ηη′σσ′

(ηη′ + (−1)α+α′
) : c†k,αησck′,α′η′σ′ : Of

α′η′σ′,αησ

+ J
∑
R

∑
|k|<Λc

∑
αησ

{
e−ik·R
√
NM

[
δ1,η(−1)α+1f†Rαησckα+2ησV

∗
3 + δ−1,η(−1)α+1f†Rαησckα+2ησV

∗
4

]
+ h.c.

}
+O(1). (B18)

In addition to the self-energy Σ, we have a second self-consistently computed quantity—the full f ⊕ c density matrix
of the system ρ. They are both needed to fix Ĥstat.

Appendix C: DMFT Implementation

In practice, we have two iteration-dependent quantities: the density matrix of the system ρi and the f -projected
self-energy Σi, where the label i refers to the iteration number. The dynamic self-energy is zero in the c-subspace, so
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FIG. C.1. Regular centered sampling of the first moiré Brillouin zone. Edges and corners are weighted 1/2 and 1/3 respectively.
In this example sample len=4.

we can always promote Σi to the full c ⊕ f space by padding with zeros. The static part of the c-sector self-energy
is already included in the mean-field terms in Ĥstat and we assume that there is no frequency-dependent component.
In each iteration, ρi fixes Ĥstat, which together with Σi gives us the local lattice Green function. We project the local
lattice Green function to the f -subspace and compute the Weiss field, which we then input to the CT-QMC impurity
solver in addition to Ĥdyn. The impurity solver gives us a new self-energy Σi+1 and a new interacting impurity Green
function from which we compute the new density matrix ρi+1. This step is repeated until the density matrix and the
self-energy converge. We choose a static self-energy for the initial guess. The exact value is inconsequential as long
as it is reasonable, i.e. as long as the f -bands lie close to the Fermi level between the upper and lower c-bands. We
use the initial choice of the density matrix to specify a particular symmetry-broken phase or the symmetric phase.

In DMFT, we consider the local Hamiltonian. We consider a single moiré lattice site labelled by R = (0, 0), so that
NM = 1. We sum momenta over the first moiré Brillouin zone (FMBZ), meaning that all references to |k| < Λc are
rather k ∈ FMBZ. We sample the FMBZ with a regular centered grid. The resolution is parametrized by a number
sample len, which counts the number of steps between Γ and K. Points on the edges and corners are degenerate,
and therefore weighted 1/2 and 1/3 respectively. See Fig. C.1 for an example grid.
Note that for calculations in the symmetric phase, we simplified the interaction Hamiltonian further by neglecting

the Fock part of ĤW and setting the W -coupling with both c-sectors to be equivalent Wa → W1+W3

2 = 47.12 meV.

The ĤJ contribution to the symmetric state is zero. This allows the static self-consistency loop to be absorbed into a
double counting term as described in the SI of [171] which is relatively seamless to incorporate in DMFT codes. We
have checked for a range of parameter values that the differences with the full calculation are solely quantitative and
small.

As an extra check to ensure the accuracy of our calculations, we implemented our model twice with two different
DMFT codes independently, and compared test cases. GR worked with the TRIQS suite of packages, and LC worked
with w2dynamics.

1. TRIQS runs

a. DMFT parameters

For summation within the DMFT runs, we used a grid with sample len=9, which has 271 points. We considered
our system converged when the maximum element of the difference of the current and previous density matrix reached
order 10−3. This took between 50-200 iterations. At most fillings and temperatures, we used a mixing factor of 0.9,
i.e. the new self energy and density matrix were nine parts the output of the impurity solver and one part the previous
self-energy or density matrix. In regions where convergence was difficult (where the Fermi level hits the flat band,
and negative compressibility is seen), we used lower mixing factors. For most fillings and temperatures, we updated
the self-energy and density matrix every iteration. In regions of difficult convergence, we updated the density matrix
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only every 2, 3, or 5 iterations.

b. QMC parameters

In the convergence runs, we used the QMC solver with 1.2 × 107 total cycles (measurements) distributed on 192
cores, with 5000 warmup cycles. Each cycle consisted of 1000 QMC moves. We measured in the imaginary time
basis, and performed a tail fit with 4 moments. The tail fitting window, defined by the lower (fit min n) and
upper Matsubara frequency index (fit max n), depends strongly on temperature and we chose it heuristically to be
fit min n = ⌊160T−0.9577746167096538)⌋ and fit max n = ⌊209T−0.767031728744396⌋

c. Analytic continuation

We use the maximum entropy method [200] as implemented in triqs maxent package [201] to obtain the spectral
functions on the real axis. We first analytically continue the imaginary-frequency self-energy obtained from the
CT-QMC solver to a real-frequency self-energy. Then, we use the real-frequency self-energy to compute the Green
functions, spectral functions, etc on the real axis. We always perform the analytic continuation step in the natural
basis defined by the chosen symmetry-broken phase (see App. D). In this basis, the self-energy is diagonal, which
allows us to avoid the complications inherent in analytically continuing matrix quantities.

The self-energy continuation method uses an intermediate auxiliary object Gaux(ω). We use a hyperbolic mesh for
the auxiliary spectral function Aaux(ω), such that we have an energy resolution of about 0.01, 0.2, and 1 meV at
ω = 0, 1 and 20 meV respectively.

2. w2dynamics runs

The k-space Hamiltonian grid for the w2dynamics runs was independently generated following the same weighting
philosophy described above. To account for the larger weight of the bulk points with respect to the edges and corners
of the BZ, an oversampling strategy was adopted considering duplicated k-points in the number of 6 for the bulk, 3
for the edges and 2 for the corners, for a total of 2071 k-points.

a. DMFT parameters

As a criterion for convergence of the DMFT simulations we considered the step-by-step variation of local observables
such as orbital/spin/valley - resolved occupations with a threshold of 10−4. Since the compressibility runs were
obtained at high temperature (≈ 11K), i.e. in the disordered phase, convergence was rather quick and never required
more than 50 DMFT loops. In order to properly follow the compressibility curve in the negative slope branches, we
run every simulation at increasing values of ν starting from the converged self-energy of the previous step. For the
same reason, the mixing factor was set at 0.5. The spacing between doping values was in general 0.025, but it was
decreased in more challenging intervals such as the negative slope branches of the compressibility curves and around
the divergence points of the inverse compressibility. The total number of points for the fixed-ν simulations is 325, and
for the fixed-µ simulations it is 218.

b. QMC parameters

For the QMC runs with T = 11.6K we used 144 CPU cores. At each DMFT loop a sufficient number of measure-
ments was found to be Nmeas = 7.5 · 104 per core, with a number of steps Ncorr = 2000 per core between successive
measurements to avoid autocorrelation effects. Nwarmup = 2 · 106 steps per core were run before each measurement
begun. We measured in imaginary time domain and used the Legendre polynomial basis, with maximum order
NLegMax = 35.
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c. Analytic continuation

Analytical continuation was performed starting from the last DMFT run using the MaxEnt method from the
ana cont software suite [202]. For the local spectral function A(ω) plots, we performed analytic continuation of the
Matsubara-summed local Green’s function, extracted from the last DMFT loop of each simulation. For the momentum-
resolved spectral function plots, we analytically continue the self-energy, and use the resulting real-frequency Σ(ω)
in the calculation of A(k, ω). The self-energy has no off-diagonal components in the symmetric phase. We used a
regular mesh of 1001 real-axis frequency points in the interval [−250 : +250] meV for A(ω) and [−300 : +300] meV
for Σ(ω) and no preblur.

Appendix D: Breaking symmetries

We specify a chosen symmetry-broken state through the parent state density matrix, ρ0. In the parent states, all
doped charge goes to the f -subspace, i.e. the c-subspace is always half-filled. In the f -subspace, we choose the up
spin sector to be in the K-IVC phase, and the down spin sector to be in the K-IVC, valley-polarized, or disordered
phases at fillings ν = 0,−1,−2.

ρ0f,↑(ν) =
1

2
σ0τ0 −

1

2
σyτy

ρ0f,↓(ν) =


1
2σ0τ0 −

1
2σyτy for ν = 0

diag([1, 0, 0, 0]) for ν = −1

diag([0, 0, 0, 0]) for ν = −2

ρ0c(Γ3)
(ν) = ρ0c(Γ1⊕Γ2)

(ν) =
1

2
σ0τ0ζ0

(D1)

where σµ, τµ, ζµ, are Pauli matrices in orbital, valley and spin space, with µ = 0, x, y, z, and the subscripts (f, c(. . .)),
(↑, ↓) signify projections to the electron species or spin sector.

The polarizing field Ĥpol used to bias the system towards a given ordered state is defined by the parent state density
matrices

Ĥpol = −λpolΨ† (ρ0 − ρ0,symm
)
Ψ (D2)

where Ψ is a vector of c and f operators in the same order as in ρ0, and ρ
0,symm are the analog of the parent state

density matrices for the symmetric phase:

ρ0,symm
c(Γ3)

= ρ0,symm
c(Γ1⊕Γ2)

=
1

2
σ0τ0ζ0, (D3)

ρ0,symm
f =

(
1

2
+
ν

8

)
σ0τ0ζ0, (D4)

where ν = 0,−1,−2.
We chose the strength of the polarizing field λpol to be 3 meV. We found it sufficient to turn off the polarizing field

after 10 iterations.

1. Basis rotation and symmetrization

In order to minimize the sign problem in the QMC simulations, we specify the impurity problem in the natural
basis of the parent state density matrix, in which the hybridization function (the dynamical mean-field that describes
electrons hopping in and out of the bath) is (almost diagonal) diagonal in the (ordered) symmetric phases. In the
symmetric phase or when a spin sector is valley-polarized, the natural basis coincides with the original heavy Fermion
basis, so no rotation is needed. When a spin sector has K-IVC order, a basis rotation is required. For instance, in
the K-IVC+VP parent state at ν = −1 described by the density matrix in (D1), the corresponding wave function is
written as ∣∣K-IVC+VPν=−1

0

〉
=
1

2
f†1+↓(f

†
1+↑ + f†2−↑)

× (−f†1−↑ + f†2+↑) |FS⟩ , (D5)
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where |FS⟩ is the Fermi sea of all the lower c bands occupied. In this case, the natural basis in the up spin sector

corresponds to the operators f̃α̃η̃↑ defined by

f̃1±s =
1√
2
(f†1+s ± f†2−s) (D6)

f̃2±s =
1√
2
(∓f†1−s + f†2+s) (D7)

In the natural basis, the self-energy is diagonal. We symmetrize the self-energy output by the QMC solver after
every iteration. For calculations in the symmetric phase, this takes the form Σx′x′ → 1

8

∑
x Σxx, where the index x

represents combined orbital, valley, and spin indices. In the symmetry-broken phase, a reduced symmetrization is
applicable. Based on the parent states in (D1), the sets of degenerate elements are

{f̃1+↑, f̃2+↑, f̃1+↓, f̃2+↓}, {f̃1−↑, f̃2−↑, f̃1−↓, f̃2−↓} K-IVC at ν = 0− δ

{f̃1+↑, f̃2+↑}, {f̃1−↑, f̃2−↑}, {f1−↓, f2−↓}, {f1+↓}, {f2+↓} K-IVC+VP at ν = −1∓ δ (D8)

{f̃1+↑, f̃2+↑}, {f̃1−↑, f̃2−↑}, {f1+↓, f2+↓, f1−↓, f2−↓} K-IVC at ν = −2∓ δ

The self-energy is symmetrized within each set of degenerate orbitals. This symmetrization procedure is connected
to the symmetries of the THF in App. E.

2. Order parameter

In the ordered state, we find the solution at an arbitrary filling ν and temperature T by gradually doping the
solution away from a reference integer fillings νref = 0,−1 or −2 and temperature T . As we dope away from the
integer filling, the system may or may not stay in the ordered state. We quantify this using the order parameter defined
as follows. For an f -projected density matrix ρ

νref

f (ν, T ) corresponding to the self-consistent solution at filling ν and
temperature T continued from the symmetry-broken self-consistent solution at νref = 0,−1, or −2 and temperature
T , the order parameter Oνref (ν, T ) is given by

Oνref (ν, T ) =〈(
ρ0f (νref )−

(
1

2
+
νref
8

)
Id

)
,
(
ρ
νref

f (ν, T )
)〉

,
(D9)

where ⟨A,B⟩ = trace(ĀT ·B) is the matrix inner product, Id is the identity, and ρ0f (νref ) is the density matrix of the

parent state at νref . This definition has the advantage that all types of order (spin polarization, IVC, VP, etc.) are
treated on the same footing, so we can plot all three panels in Fig. 2(a) together. The order parameter is constrained
to [0, 1] under the reasonable assumption that the self-consistent solution does not flip the sign of the polarization of
the parent state.

Appendix E: Finite-temperature Hartree-Fock theory for the THF model

This appendix provides a concise overview of the finite-temperature Hartree-Fock theory as it applies to the THF
model, elaborating on the comprehensive discussion found in Ref. [203]. Initially, we revisit the notation set forth in
Ref. [203], which treats the f - and c-electrons on equal footing. Subsequently, we derive the Hartree-Fock Hamiltonian
for a generic symmetry-broken ground state. In the final section, we adapt the self-consistent Hartree-Fock algorithm
to accommodate the partial symmetrization methods delineated in D1. This adjustment enables a direct comparison
between DMFT and finite-temperature Hartree-Fock simulations, as both now incorporate a similar symmetrization
approach.

1. Generic notation

Within the THF Hamiltonian from Eq. (A1), the c-fermions are only defined within a limited region around the

ΓM point. Following Ref. [203], we will extend the Λc cutoff so that the c†k,a,η,σ fermion covers exactly one Brillouin
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zone. Next, we introduce the γ†k,η,i,σ fermions (for 1 ≤ i ≤ 6), which are defined by

γ†k,η,i,σ ≡

{
c†k,η,i,σ, for 1 ≤ i ≤ 4

f†k,η,i−4,σ, for 5 ≤ i ≤ 6
. (E1)

The corresponding single-particle Hamiltonian matrix, whose blocks are given by Eq. (A2) and Eq. (A3), reads as

hη (k) =

(
H(c,η) (k) H†(fc,η) (k)
H(fc,η) (k) 02×2

)
. (E2)

With the new notation at hand, the density matrix of the system is given by

ϱiησ;i′η′σ′ (k) =
〈
: γ†k,i,η,σγk,i′η′σ′ :

〉
, (E3)

where
〈
Ô
〉

denotes the expectation value of the operator Ô in the grand canonical ensemble of the system (at

temperature T and chemical potential µ). Throughout this work, we restrict ourselves to states that preserve moiré
translation symmetry. The total filling of the f - and c-electrons are related to the traces of the corresponding diagonal
blocks of the density matrix,

νc =
1

NM

4∑
i=1

∑
k,η,σ

ϱiησ;iησ (k) and νf =
1

NM

6∑
i=5

∑
k,η,σ

ϱiησ;iησ (k) , (E4)

while the total electron filling is ν = νc + νf .

2. Hartree-Fock Hamiltonian

In this section, we briefly review the finite-temperature Hartree-Fock theory of the THF model [203]. For a given
state of the system characterized by the density matrix ϱiησ;i′η′σ′ (k), the interaction Hartree-Fock Hamiltonian of
the model can be obtained via the standard decoupling procedure [203] and is given by

HI,MF =
∑
i,η,σ

i′,η′,σ′

hI,MF
iησ;i′η′σ′ (k) γ

†
k,i,η,σγk,i′,η′,σ′ + E0, (E5)

where the corresponding Hartree-Fock Hamiltonian matrix reads as

hI,MF
iησ;i′η′σ′ (k) =

2∑
α=1

Uνf +
1

NM

4∑
a=1

Wa

∑
k′

∑
η′′,σ′′

ϱaη′′σ′′;aη′′σ′′ (k′)

 δ(α+4)iδ(α+4)i′δηη′δσσ′

+

4∑
a=1

(V νc +Waνf ) δaiδai′δηη′δσσ′

− U

NM

2∑
α,α′=1

δ(α+4)iδ(α′+4)i′

∑
k′

ϱi′η′σ′;iησ (k
′)

−
2∑

α=1

4∑
a′=1

Wa′

NM

[
δ(α+4)iδa′i′ + δ(α+4)i′δa′i

]∑
k′

ϱi′η′σ′;iησ (k
′)

+
1

NM

∑
i1,η1,σ1
i2,η2,σ2

(Ji1η1σ1;i2η2σ2;iησ;i′η′σ′ + Jiησ;i′η′σ′;i1η1σ1;i2η2σ2)
∑
k′

ϱi1η1σ1;i2η2σ2 (k
′)

− 1

NM

∑
i1,η1,σ1
i2,η2,σ2

(Ji1η1σ1;i′η′σ′;iησ;i2η2σ2
+ Jiησ;i2η2σ2;i1η1σ1i′η′σ′)

∑
k′

ϱi1η1σ1;i2η2σ2
(k′) , (E6)
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E0 = −NM

Uν2f
2

+
U

2Nm

∑
k,k′

2∑
α,α′=1

∑
η,σ
η′,σ′

ϱ(α′+4)η′σ′;(α+4)ησ (k
′) ϱ(α+4)ησ;(α′+4)η′σ′ (k)

−
4∑

a=1

Waνf
∑
k,η,σ

ϱaησ;aησ (k) +
1

NM

∑
k′,k

4∑
a=1

Waϱa′η′σ′;(a+4)ησ(k
′)ϱ(a+4)ησ;a′η′σ′(k)− V

ν2c
2

− 1

2NM

∑
i1,η1,σ1
i2,η2,σ2

(Ji1η1σ1;i2η2σ2;iησ;i′η′σ′ + Jiησ;i′η′σ′;i1η1σ1;i2η2σ2)
∑
k′

ϱi1η1σ1;i2η2σ2 (k
′)
∑
k

ρiησ;i′η′σ′ (k)

+
1

2NM

∑
i1,η1,σ1
i2,η2,σ2

(Ji1η1σ1;i′η′σ′;iησ;i2η2σ2 + Jiησ;i2η2σ2;i1η1σ1i′η′σ′)
∑
k′

ϱi1η1σ1;i2η2σ2 (k
′)
∑
k

ρiησ;i′η′σ′ (k) . (E7)

In Eq. (E6) and Eq. (E7), we have introduced the following tensor

Ji1η1σ1;i2η2σ2;i3η3σ3;i4η4σ4 = −J
2

2∑
α,α′=1
η,η′

[
ηη′ + (−1)

α+α′]
δ(α+4)i1δ(α′+4)i2δ(α′+2)i3δ(α+2)i4δηη1δη′η2δη′η3δηη4δσ1σ4δσ2σ3

−J
4

2∑
α,α′=1
η,η′

[
ηη′ − (−1)

α+α′]
δ(α+4)i1δ(α′+2)i2δ(α′+4)i3δ(α+2)i4δηη1

δη′η2
δη′η3

δηη4
δσ1σ4

δσ2σ3

−J
4

2∑
α,α′=1
η,η′

[
ηη′ − (−1)

α+α′]
δ(α+4)i2δ(α′+2)i1δ(α′+4)i4δ(α+2)i3δηη1

δη′η2
δη′η3

δηη4
δσ1σ4

δσ2σ3
, (E8)

which encodes the ĤJ and ĤJ̃ interaction terms of the THF Hamiltonian [16]. The mean field Hamiltonian from

Eq. (E5) corresponds to the Hartree-Fock decoupling of the ĤU , ĤW , ĤJ , and ĤJ̃ , interaction terms of the THF

Hamiltonian (wherein the nearest-neighbor f -electron repulsion U2 is ignored), as well as to the ĤV term decoupled

only the in Hartree channel. The exclusion of the Fock channel in ĤV aligns with both Ref. [16] and the methodology
used in the DMFT simulations. Finally, the constant term in Eq. E7 simply results in a shift of the Hartree-Fock
charge excitation bands. Therefore, it can be disregarded in our subsequent discussions

The total mean field Hamiltonian is obtained by summing the single-particle Hamiltonian and the Hartree-Fock
interaction one, HMF = Ĥ0 +HI,MF, with the corresponding matrix reading as

hMF
iησ;i′η′σ′ (k) = hηii′ (k) δηη′δσσ′ + hI,MF

iησ;i′η′σ′ (k) , (E9)

such that

HMF =
∑
k

∑
i,η,σ

i′,η′,σ′

hMF
iησ;i′η′σ′ (k) γ

†
k,i,η,sγk,i′,η′,s′ . (E10)

Finally, we note that at self-consistency, the Hartree-Fock Hamiltonian and the density matrix are related by [203]

ϱT (k) =
{
exp

[
β
(
hMF (k)− µ1

)]
+ 1

}−1 − 1

2
1, (E11)

where 1 denotes the identity matrix, β = 1/T is the inverse temperature, and µ is the chemical potential of the
system.

3. Density matrix symmetrization

In this section, we are interested in obtaining the phase diagrams of the correlated insulators discussed in Eq. (D1)
at finite temperature and doping. Similarly to the DMFT simulations, the density matrix away from integer filling
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can be obtained by gradually doping the integer-filled self-consistent solution in small increments, as will be explained
in section E 4. To ensure the consistency with the partial symmetrization employed in the DMFT simulations, as
explained in section D1, the density matrices of both the doped and undoped correlated insulators will be symmetrized
according to the symmetries of the corresponding integer-filled parent states, as will be explained in detail below.
In section D1, a natural basis was constructed for each of the three correlated insulators from Eq. (D1). When
computing the self-energy of the doped symmetry-broken phases, a reduced symmetrization was performed on the
self-energy, such that the latter is diagonal in the natural basis of the corresponding parent state. In this section, we
also offer a justification for this ad-hoc symmetrization procedure, and show that it arises naturally if one requires
that the doped correlated phases obey the symmetries of the undoped parent states.

We start by analyzing the symmetries of the correlated insulators from Eq. (D1). Before doing so, it is useful to
define a number of symmetry operators. The generators of the spin-SU (2) symmetry of the system are given by

Ŝµ =
∑
k

∑
i1,η1,σ1
i2,η2,σ2

[
D

(
Ŝµ

)]
i1η1σ1;i2η2σ2

γ†k,i1,η1,σ1
γk,i2,η2,σ2

, for µ = x, y, z, (E12)

with D
(
Ŝµ

)
= Dc

(
Ŝµ

)
⊕Df

(
Ŝµ

)
and

Dc
(
Ŝµ

)
= σ0τ0ζµ ⊕ σ0τ0ζµ, Df

(
Ŝµ

)
= σ0τ0ζµ, for µ = x, y, z. (E13)

Similarly, the valley U (1) rotation is generated by

V̂U(1) =
∑
k

∑
i1,η1,σ1
i2,η2,σ2

[
D

(
V̂U(1)

)]
i1η1σ1;i2η2σ2

γ†k,i1,η1,σ1
γk,i2,η2,σ2 , (E14)

where D
(
V̂U(1)

)
= Dc

(
V̂U(1)

)
⊕Df

(
V̂U(1)

)
and

Dc
(
V̂U(1)

)
= σ0τ0ζµ ⊕ σ0τzζ0, Df

(
V̂U(1)

)
= σ0τzζ0. (E15)

We also define the (spinless) unitary threefold rotation C3z, twofold rotation C2z, as well as the (spinless) antiunitary
time-reversal T and Kramers K symmetry operators, such that

gγ†k,i,η,σg
−1 =

∑
i′,η′,σ′

γ†gk,i′,η′,σ′ [D (g)]i′η′σ′;iησ , for g = C3z, C2z, T,K, (E16)

for which the representation matrices are given by D (g) = Dc (g)⊕Df (g), with

Dc (C3z)=e
2πi
3 σzτzζ0 ⊕ σ0τ0ζ0, Df (C3z)=e

2πi
3 σzτzζ0 (E17)

Dc (C2z)=σxτxζ0 ⊕ σxτxζ0, Df (C2z)=σxτxζ0 (E18)

Dc (T )=σ0τxζ0 ⊕ σ0τxζ0, Df (T )=σ0τxζ0 (E19)

Dc (K)=− i (σ0τyζ0 ⊕ σ0τyζ0) , Df (K)=− iσ0τyζ0. (E20)

Finally, we introduce five symmetry operations which act in specific spin-valley flavors. We define a Kramers and a
twofold rotation symmetry operator acting only in the spin σ =↑ sector, a time-reversal symmetry operator acting in
spin σ =↓ sector, as well as a C2zT symmetry operator acting only in the spin σ =↓ and valley η = − sector, whose
actions on the γ-fermions are given, respectively, by

K↑γ
†
k,i,η,σK

−1
↑ =

{∑
i′,η′ γ

†
−k,i′,η′,↑ [D (K)]i′η′↑;iη↑ , if σ =↑

γ†k,i,η,σ, if σ =↓
, (E21)

[C2z]↑ γ
†
k,i,η,σ [C2z]

−1
↑ =

{∑
i′,η′ γ

†
−k,i′,η′,↑ [D (C2z)]i′η′↑;iη↑ , if σ =↑

γ†k,i,η,σ, if σ =↓
, (E22)

[T ]↓ γ
†
k,i,η,σ [T ]

−1
↓ =

{∑
i′,η′ γ

†
−k,i′,η′,↓ [D (T )]i′η′↓;iη↓ , if σ =↓

γ†k,i,η,σ, if σ =↑
, (E23)

[C2zT ]↓,− γ
†
k,i,η,σ [C2zT ]

−1
↓,− =

{∑
i′ γ

†
k,i′,−,↓ [D (C2zT )]i′−↓;i−↓ , if σ =↓ and η = −

γ†k,i,η,σ, otherwise
, (E24)
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where D (C2zT ) = D (C2z)D (T ). Additionally, we define a valley U (1) rotation operator acting only on the spin
σ =↓ sector [

V̂U(1)

]
↓
=

∑
k

∑
i1,η1
i2,η2

[
D

(
V̂U(1)

)]
i1η1↓;i2η2↓

γ†k,i1,η1,↓γk,i2,η2,↓. (E25)

With the symmetry operators at hand, we now consider the symmetry-broken phases of the THF model at the
Hartree-Fock level. In analogy with the DMFT simulations, in our finite-temperature Hartree-Fock simulations, we
will ignore any correlations between f -electrons belonging to different lattice sites. As a result, for a given correlated
phase of the THF model characterized by the density matrix ϱiησ;i′η′σ′ (k), the f -electron block will be k-independent
and given by

ϱ(α+4)ησ;(α′+4)η′σ′ (k) = Of
αησ;α′η′σ′ , for 1 ≤ α, α′ ≤ 2. (E26)

Moreover, if we assume that the corresponding correlated phase is symmetric under the crystalline symmetry g or is
invariant under a continuous symmetry generated by g, then its density matrix will obey the following constraint

ϱi1η1σ1;i2η2σ2 (k) =
∑

i3,η3,σ3
i4,η4,σ4

[D (g)]i3η3σ3;i1η1σ1
ϱ
(∗)
i3η3σ3;i4η4σ4

(gk) [D (g)]
∗
i4η4σ4;i2η2σ2

, (E27)

where gk = k if g is a continuous symmetry and (∗) denotes complex conjugation whenever g is antiunitary.
As will be explained in section E 4, the correlated phases at finite doping can be obtained by doping into the charge-

one excitation bands of an integer-filled insulator, then recalculating the self-consistent solution for that particular
non-integer filling. We note that each integer-filled correlated insulator state breaks some of the symmetries of the
system while retaining others. In principle, as the integer-filled solution is gradually doped, the system can undergo
further symmetry-breaking transitions at fractional fillings. To prevent this scenario, our calculations for the doped
correlated insulators ensure that the remaining symmetries of the corresponding integer-filled state persist even in the
doped phase. Practically, this is achieved by imposing the symmetry constraint from Eq. (E27) for every symmetry
of the undoped insulator at the level of the f -electron density matrix of the doped phase.
In what follows, we will individually discuss the unbroken symmetries for each of the correlated insulators from

Eq. (D1). We will also show that by imposing these symmetries in the corresponding doped phases, the f -electron
block of the density matrix both at and away from integer filling becomes diagonal in the natural bases introduced
in section D1.

a. The ν = 0 K-IVC state

The ν = 0 K-IVC correlated insulator state from Eq. (D1) is symmetric under the C3z, C2z, spin SU (2), and K
symmetries. As a result, through Eq. (E27), we will require that the correlated phases obtained by doping it away
from integer filling have the following f -electron block in their density matrices

Of = a1σ0τ0ζ0 + a2σyτyζ0, with a1, a2 ∈ R. (E28)

We note that if we cast the f -electron density matrix in the natural basis of the ν = 0 K-IVC state introduced in
section D1, (

f̃†k,1,+,↑, f̃
†
k,2,+,↑, f̃

†
k,1,+,↓, f̃

†
k,2,+,↓, f̃

†
k,1,−,↑, f̃

†
k,2,−,↑, f̃

†
k,1,−,↓, f̃

†
k,2,−,↓

)
, (E29)

the resulting density matrix has the following form

Õf = diag ([a′1, a
′
1, a

′
1, a

′
1, a

′
2, a

′
2, a

′
2, a

′
2]) , with a′1, a

′
2 ∈ R. (E30)

By transforming to the natural basis, we enforce the density matrix of the f -electrons to take the form given in
Eq. E30, thus ensuring that all the remaining symmetries preserved by the parent ν = 0 K-IVC insulator are also
preserved in the non-integer correlated phases obtained by doping it.
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b. The ν = −1 K-IVC+VP state

The case of the ν = −1 K-IVC+VP state requires a slightly more involved analysis. We note that the parent
state (the ν = −1 K-IVC+VP state) we consider here still has C3z and spin Ŝz symmetries. When computing the
self-consistent solutions of the correlated phases obtained by doping it away from integer filling, we will impose these
symmetries (C3z and Ŝz) to the corresponding density matrices. In doing so, we ensure that the unbroken symmetries
of the integer-filled ν = −1 K-IVC+VP insulator persist in the correlated phases obtained by doping it. This then
leads to two constraints on the density matrix according to Eq. (E27) and also implies that the density matrix is
spin-diagonal. Additionally, the spin σ =↑ sector has K and C2z symmetry (meaning that the correlated insulator as
a whole has K↑ and [C2z]↑ symmetries), which requires that its density matrix obeys

ϱi1η1↑;i2η2↑ (k) =
∑
i3,η3
i4,η4

[D (K)]i3η3↑;i1η1↑ ϱ
∗
i3η3↑;i4η4↑ (−k) [D (K)]

∗
i4η4↑;i2η2↑ , (E31)

ϱi1η1↑;i2η2↑ (k) =
∑
i3,η3
i4,η4

[D (C2z)]i3η3↑;i1η1↑ ϱi3η3↑;i4η4↑ (−k) [D (C2z)]
∗
i4η4↑;i2η2↑ . (E32)

The spin σ =↓ sector features valley U (1) symmetry, which implies that the correlated insulator is symmetric under

the continuous symmetry generated by the
[
V̂U(1)

]
↓
operator and that its density matrix obeys

ϱi1η1↓;i2η2↓ (k) =
∑
i3,η3
i4,η4

[
D

([
V̂U(1)

]
↓

)]
i3η3↓;i1η1↓

ϱi3η3↓;i4η4↓ (k)

[
D

([
V̂U(1)

]
↓

)]∗
i4η4↓;i2η2↓

, (E33)

thus being valley-diagonal in the spin σ =↓ sector. Finally, the spin-valley sector corresponding to σ =↓ and η = −
also features C2zT symmetry. The ν = −1 K-IVC+VP correlated insulator is thus symmetric under [C2zT ]↓,−, which
implies that its density matrix obeys

ϱi1−↓;i2−↓ (k) =
∑
i3,i4

[
D

(
[C2zT ]↓,−

)]
i3−↓;i1−↓

ϱ∗i3−↓;i4−↓ (k)
[
D

(
[C2zT ]↓,−

)]∗
i4−↓;i2−↓

. (E34)

In practice, we require that the correlated phases obtained by doping the ν = −1 K-IVC+VP insulator preserve the
remaining symmetries of the corresponding integer-filled state. This implies that the constraints from Eq. (E31),
Eq. (E32), Eq. (E33), and Eq. (E34) must hold for the density matrices of the doped phases, which will then assume
the following form in the f -block

Of
αη↑;α′η′↓ = Of

αη↓;α′η′↑ = 0, (E35)

Of
αη↑;α′η′↑ = [a1σ0τ0 + a2σyτy]αη;α′η′ , (E36)

Of
α+↓;α′+↓ = [a3σ0 + a4σz]αη;α′η′ , (E37)

Of
α−↓;α′−↓ = a5 [σ0]αη;α′η′ , (E38)

Of
α+↓;α′−↓ = Of

α−↓;α′+↓ = 0, (E39)

where ai ∈ R, (1 ≤ i ≤ 5). In the natural basis of the ν = −1 K-IVC+VP state introduced in section D1,(
f̃†k,1,+,↑, f̃

†
k,2,+,↑, f̃

†
k,1,−,↑, f̃

†
k,2,−,↑, f

†
k,1,+,↓, f

†
k,2,+,↓, f

†
k,1,−,↓, f

†
k,2,−,↓

)
, (E40)

the f -electron density matrix of both the ν = −1 K-IVC+VP insulator and of the phases obtained by doping it will
have the following form

Õf = diag ([a′1, a
′
1, a

′
2, a

′
2, a

′
3, a

′
4, a

′
5, a

′
5]) , with a′i ∈ R, for 1 ≤ i ≤ 5. (E41)

c. The ν = −2 K-IVC+VP state

Similarly to the ν = −1 K-IVC+VP state, the ν = −2 K-IVC state features C3z and spin-Ŝz symmetries, thus
being spin-diagonal. The latter also features C2z symmetry in both spin sectors. These three symmetries constrain
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the density matrix according to Eq. (E27). Additionally, the ν = −2 K-IVC state features
[
V̂U(1)

]
↓
and T↓ symmetries

which imply that

ϱi1η1↓;i2η2↓ (k) =
∑
i3,η3
i4,η4

[
D

([
V̂U(1)

]
↓

)]
i3η3↓;i1η1↓

ϱi3η3↓;i4η4↓ (k)

[
D

([
V̂U(1)

]
↓

)]∗
i4η4↓;i2η2↓

, (E42)

ϱi1η1↓;i2η2↓ (k) =
∑
i3,η3
i4,η4

[D (T↓)]i3η3↓;i1η1↓ ϱ
∗
i3η3↓;i4η4↓ (−k) [D (T↓)]

∗
i4η4↓;i2η2↓ . (E43)

As a result, the density matrix of the ν = −2 K-IVC state, as well as of the correlated phases obtained by doping it
away from integer fillings must have the following parameterization of their f -electron block

Of
αη↑;α′η′↓ = Of

αη↓;α′η′↑ = 0, (E44)

Of
αη↑;α′η′↑ = [a1σ0τ0 + a2σyτy]αη;α′η′ , (E45)

Of
αη↓;α′η′↓ = a3 [σ0τ0]αη;α′η′ , (E46)

for a1, a2, a3 ∈ R. In the natural basis of the ν = −2 K-IVC state from D1,(
f̃†k,1,+,↑, f̃

†
k,2,+,↑, f̃

†
k,1,−,↑, f̃

†
k,2,−,↑, f

†
k,1,+,↓, f

†
k,2,+,↓, f

†
k,1,−,↓, f

†
k,2,−,↓

)
, (E47)

the f -electron density matrix is given by

Õf = diag ([a′1, a
′
1, a

′
2, a

′
2, a

′
3, a

′
3, a

′
3, a

′
3]) , with a′1, a

′
2, a

′
3 ∈ R. (E48)

4. Self-consistent solution

To obtain the self-consistent density matrix for a given correlated insulator at integer filling ν0, we start from an
initial guess of the density matrix

ϱ
(0)
iησ;i′η′σ′ (k) =

{
ρ0(i−4)ησ;(i′−4)η′σ′ − 1

2δii′δηη′δσσ′ if 5 ≤ i, i′ ≤ 6

0 otherwise
. (E49)

For the correlated phases obtained by doping the integer-filled insulator, we use a pre-computed density matrix at a
nearby integer filling, as will be explained below. Starting from the initial condition, we iterate the following Hartree-

Fock algorithm whereby a new density matrix ϱ
(n+1)
iησ;i′η′σ′ (k) can be obtained from the density matrix at the n-th step,

ϱ
(n)
iησ;i′η′σ′ (k). The Hartree-Fock self-consistent loop can be summarized as follows:

1. Using ϱ
(n)
iησ;i′η′σ′ (k), we construct the Hartree-Fock Hamiltonian at the n-th step according to Eq. (E9).

2. The Hartree-Fock Hamiltonian is diagonalized as∑
i′,η′,σ′

hMF
iησ;i′η′σ′ (k)φm;i′η′σ′ (k) = ϵm (k)φm;iησ (k) , (E50)

with ϵm (k) and φm;i′η′σ′ (k) denoting the m-th Hartree-Fock energy and eigenvector. A new density matrix is
then constructed according to

ϱ′iηs;i′η′s′ (k) =
∑
m

1

eβ(ϵm(k)−µ) + 1
φ∗
m;iηs (k)φm;i′η′s′ (k) , (E51)

where the chemical potential µ is fixed by requiring that the total filling of the system ν equals the desired
value.
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3. The new density matrix ϱ′iηs;i′η′s′ (k) will not generically have a k-independent f -electron block with the correct
parameterization, as derived in section E 3. This is because the f -c hybridization of the single-particle THF
Hamiltonian is k-dependent. We seek solutions where the f -electrons at different sites are uncorrelated, meaning
that the f -electron block of the corresponding density matrix is k-independent. To drop the k-dependency of
the density matrix in the f -block, we now replace the f -electron density matrix at different k points by its
average across the BZ

O′f
αησ;α′η′σ′ ≡

[
1

NM

∑
k′

ϱ′(α+4)ηs;(α′+4)η′s′ (k
′)

]
, for 1 ≤ α, α′ ≤ 2 (E52)

ϱ′(α+4)ησ;(α′+4)η′σ′ (k) → O′f
αησ;α′η′σ′ , for 1 ≤ α, α′ ≤ 2, and any k. (E53)

4. Although k-independent, the f -electron block of the new density matrix, O′f
αησ;α′η′σ′ , will not generically obey

the remaining symmetries of the correlated phase from which it was obtained. For example, the correlated phase
at ν = −0.1 is obtained by doping the ν = 0 K-IVC state and, per our assumptions around Eq. (E27), should
obey the remaining symmetries of the K-IVC state discussed in section E 3 a. With infinite precision arithmetic,
if the density matrix at the beginning of the self-consistent step ϱ(n) (k) obeys some of the symmetries of the
THF model, then the corresponding mean field Hamiltonian hMF (k) and, consequently, the new density matrix
ϱ′ (k) should obey the same symmetries. However, in finite precision arithmetic, ϱ′ (k) will only obey these
symmetries approximately. Over the course of many iterations, these small errors would grow leading to the
self-consistent solution for ν = −0.1 not obeying the symmetries of the ν = 0 K-IVC state.

To prevent these numerical instabilities, we will require that O′f
αησ;α′η′σ′ has the correct symmetry-enforced

parameterization at every Hartree-Fock step. For example, when computing the order parameter of the ν = −0.1
correlated phase, we impose the parameterization in Eq. (E28) as follows

a1 ≡ 1

8
Tr

[
σ0τ0ζ0O

′f ] , a2 ≡ 1

8
Tr

[
σyτyζ0O

′f ] , (E54)

O′f → a1σ0τ0ζ0 + a2σyτyζ0, (E55)

which then leads to the new density matrix

ϱ
(n+1)
iησ;i′η′σ′ (k) =

{
O′f

αησ;α′η′σ′ if 5 ≤ i, i′ ≤ 6

ϱ′iηs;i′η′s′ (k) otherwise
. (E56)

Similar types of symmetrization are performed for the correlated phases obtained by doping the ν = −1 K-
IVC+VP and ν = −2 K-IVC correlated insulator by imposing the corresponding parameterizations derived in
sections E 3 b and E3 c, respectively.

To mitigate fluctuations in the self-consistent iterative algorithm, we use a two-pronged approach for improved con-
vergence. Initially, we employ linear mixing to smooth out oscillations when the algorithm is far from convergence
(implying that ρ(n+1) (k) → 1

2ρ
(n) (k) + 1

2ρ
(n+1) (k) is performed at the end of each self-consistent step). As the

density matrix changes become smaller, we switch to the DIIS convergence acceleration method, as described in
Ref. [204]. Convergence is determined by the criterion that the Hartree-Fock Hamiltonian and the density matrix
should commute (i.e.,

[
ϱT (k) , hMF (k)

]
= 0, up to numerical accuracy), a condition implied by Eq. (E11).

To generate the Hartree-Fock phase diagrams depicted in Fig. 2, we first calculate the self-consistent density matrix
for integer-filled correlated insulators at a specific temperature T . Once the self-consistent solution is obtained for
an insulator at an integer filling ν0 and temperature T , we can obtain the symmetry-broken phases in the vicinity
of ν0 by incrementally doping the system and requiring the doped states have the same symmetries as the state at
integer filling ν0. Specifically, we examine fillings of ν0 + nδν, where n ∈ Z and |n| ≤ 1

2δν . This means that we
incrementally dope the integer-filled correlated insulator by at most 1/2, using δν as the step size. To solve for each
new filling ν0 + nδν, we use the previously computed self-consistent density matrix ϱ (k) at ν0 + (n− 1)δν (if n > 0)
or ν0 + (n+ 1)δν (if n < 0) as initial conditions. In our calculations, we set δν = 1/50.

Finally, we note that for each iteration of the algorithm outlined above, we enforce that the f -electron density
matrix, when expressed in the natural basis of the doped correlated insulator, must be proportional to the identity
matrix within each set of degenerate elements. These sets are defined as per Eq. (D8). This procedure is equivalent
to enforcing that the self-consistent solutions have the same symmetry as our initial parent state or, in other words,
have the same symmetry as the correlated state at the corresponding integer filling ν0. Our numerical checks also
confirm that this constraint leads to a self-consistent density matrix that respects the symmetries of its correlated
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FIG. G.1. Sketch of the MATBLG realization assumed in the Song-Bernevig model, assumed MATBLG in between two
capacitor plates.

insulator parent state. This, according to Eq. (E11), ensures that the Hartree-Fock Hamiltonian also adheres to these
symmetries.

Specifically, the f -electron component of the Hartree-Fock Hamiltonian, when expressed in the natural basis of the
parent correlated insulator, will also be proportional to the identity matrix within each degenerate set, as outlined
in Eq. (D8). Furthermore, Eq. (E6) dictates that this Hartree-Fock Hamiltonian will exhibit k-independence in the
f -electron block. Consequently, the f -electron block of the self-energy is k-independent, and, when expressed in the
natural basis of the parent correlated insulator, is proportional to the identity matrix within each set of degenerate
elements. Since the Hartree-Fock Hamiltonian is precisely the static part of the electron self-energy, this implies that
within the natural basis, the f -electron static self-energy is proportional to the identity matrix within each degenerate
set. This mirrors the partial symmetrization used in the DMFT calculations and outlined in section D1 which requires
that the entire f -electron self-energy (i.e., both the dynamic and the static parts) are diagonal in the natural basis
and proportional to the identity within each set of degenerate elements.

Appendix F: Quasiparticle analysis

The first step in the quasiparticle analysis is to find the zeros of Ĥaux defined in (4). We do this using an iterative

inflation scheme. We start by evaluating the eigenvalues of Ĥaux on the regular centered sampling of the first Brillouin
zone as defined in C with sample len=20. We filter the k-points by their smallest eigenvalue, i.e. we sort the k-points
by their smallest eigenvalue and keep a fraction of the them. We determine this fraction heuristically. Then we inflate
the k-mesh around the selected k-points. This new set of k-points is a finer sampling of a subset of the Brillouin zone
within which the zeros are contained. We perform the filtering and inflation procedure iteratively until the smallest
eigenvalue of all the filtered k-points falls below a threshold, which we chose to be 0.1 meV.

Appendix G: Chemical potential definition and geometric capacitance

Interacting electron models can contain terms which relate to what is referred to as geometric capacitance in
experimental contexts. (See for instance the capacitor circuit model detailed in the SI of [175].) Hence, special
care has to be taken when comparing chemical potentials, compressibilities or related quantities between different
theoretical models and different experimental setups, since geometric capacitance effects have to be consistently
treated or consistently cancelled. We explain in the following how to avoid the geometric capacitance contributions
in our calculations.

We base our calculations on the Song-Bernevig model from Ref. [16]. The interaction terms in the Song-Bernevig
model derive from Coulomb integrals, where TBLG is assumed to be placed in a double gate structure (see Sec. 3A
in the SI of [16]), which also contains a geometric capacitance contribution. Specifically, the Coulomb integrals
correspond to a geometry, where the TBLG layer is sandwiched by two capacitor plates (see Fig. G.1) and where
the total system is charge neutral. The two plates are assumed to be equivalent and equally spaced from the TBLG
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FIG. G.2. Occupation with respect to CNP as a function of the chemical potential, total value (a) and orbital-valley resolved
(b-c), for T=11.6 K. The blue curves refer to DMFT simulations tuning the chemical potential to obtain the requested (total)
occupation value. The orange curves refer to DMFT simulations performed at fixed chemical potential. The red curve follows
the fixed-chemical-potential solution for decreasing value of µ (right-to-left). The black data refer to the zero-hybridization
model, solved in [180]. In these plots, the geometrical capacitance contribution is included in the value of µ, contrary to Fig. 6
of the main text. It is clear how, the presence of this geometrical term was the cause of the wide negative compressibility regions
displayed by the νf + νc curve throughout most of the parameter range. Remarkably, a small region of negative compressibility
is however still present around ±0.6.

layer by a distance of ξ/2. If the arbitrarily doped TBLG layer has surface charge σ, each plate possesses charge
−σ/2. The surface charge density corresponding to the filling νtot is

νe
Ω0

, where Ω0 is the area of the moiré unit cell.

The voltage between the top plate and the TBLG layer ∆Φ is given by σ
2ϵ0ϵr

ξ
2 = νtot

eξ
4Ω0ϵ0ϵr

where ϵ0 and ϵr are the

vacuum permittivity and the relative permittivity. Ref. [16] assumes ϵr = 6 stemming from the hBN encapsulation
and ξ = 10 nm. The contribution from the geometric capacitance to be subtracted is then

e∆Φ = νtot
e2ξ

4Ω0ϵ0ϵr
= νtot · 47meV. (G1)

We explain in the following how we have approximately cancelled the geometric contribution according to Eq. G1
in our theoretical framework. In order to apply DMFT to solve the Song-Bernevig model [16], we have split the
interaction terms in three categories: the first (HU1 term) is dynamically treated, the second (HW , HV , HJ terms) is
accounted for at the mean-field level and the third (HU2 term) is small enough to be neglected. Let us for simplicity
restrict ourself to the symmetric case, where HMF = HW +HV : since HW and HV are density-density terms, apart
from constant energy shifts and omitting the indices,

HW =W
[
νf

(∑
c†c

)
+ νc

(∑
f†f

)]
(G2)
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FIG. G.3. (a) Inverse compressibility obtained from the fixed-occupation DMFT simulations for T = 11.6K, compared with the
experimental data of [175], for B|| = 0, T = 4K and θ = 1.13◦. Here, the geometric capacitance contribution has been taken
into account, causing a positive shift of the compressibility values. While the negative spikes of the zero-hybridization solution
are still present, such shift is enough make dµ/dν positive except for the small regions around ±0.6. (b) Chemical potential
for DMFT simulations at T = 11.6K compared with [175] data. Again, this scenario is relative to the convention according
to which the contributions of the geometric capacitance of the plane-plate capacitor have not been subtracted out. This bad
agreement with the green curve from experiments confirms the choice made in the main text with the geometric capacitance
contributions to the chemical potential.

HV = V
[
νc
(∑

c†c
)]

(G3)

HMF can equivalently be decomposed in the two following terms

Htot =
(
Wνf + V νc

)(∑
f†f +

∑
c†c

)
=

(
Wνf + V νc

)
N̂ (G4)

Hf =
(
W (νf − νc)− V νc

)(∑
f†f

)
=

(
W (νf − νc)− V νc

)
n̂f (G5)

where N̂ and n̂f are the total and f-subspace occupation number operators respectively.
Remembering that W ≈ V ≈ 47 ± 1 meV and comparing Htot to the geometric capacitance contribution from

Eq. G1, we notice that discarding Htot is equivalent, within 1meV (and hence generating an error smaller than, for
example, the exclusion of the HU2 interaction term) to cancelling the geometrical capacitance contribution. Hence,
we discard Htot and impose HMF = Hf . We refer to the chemical potential derived within this convention as µ. All
data show in the manuscript refer to this definition of the chemical potential µ, which can also be directly compared
to experiments like [175].

The addition of symmetry-breaking terms such as HJ does not alter this picture, since the total and f -subspace
shifts only couple to diagonal entries in the system density matrix.

We could relate µ to the chemical potential µ1, which would be obtained from treating the Song-Bernevig model
without geometric capacitance subtraction. In this case, Htot is to be included leading to

µ1 = µ+Wνf + V νc. (G6)

When the DMFT simulations are performed at fixed density, the chemical potential µ is not set a priori as a
parameter, but iteratively adjusted as to obtain the desired total occupation.

As stated above, the expression of the mean-field interaction terms via Eq. G4 and G5 has, as a first benefit, the
peculiarity of isolating a term (Htot) which is to all intents and purposes equivalent to the geometric capacitance
e∆Φ. It also comes with a relevant computational advantage: instead of dealing with two different energy shifts
for the f - and c-subspaces, to be self-consistently determined at every DMFT loop, we now effectively consider
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only one shift restricted to the f -subspace, and hence analogous to the usual double-counting corrections typical of
DFT+DMFT calculations [205–207]. Moreover, the overall energy shift is calculated in one single operation upon
self-consistently adjusting µ, without calculating Htot. This avoids convergence instabilities due to the oscillations of
νf and νc.

It is instructive to look at the filling-vs-µ and inverse compressibilty data when the geometrical capacitance contri-
bution is not subtracted out (see Figs. G.2 and G.3). Regarding the inverse compressibilities (cfr. Fig.7 in the main
text), while the huge negative spikes of the zero-hybridization solution are obviously hardly affected, the negative
inverse compressibility regions in the DMFT curve have almost disappeared. Relatedly, the filling data of Fig. G.2
acquire a sizable horizontal offset, with the value of µ now varying in a range roughly ten times bigger than the one
in Fig. 6 in the main text. The f orbitals get filled up in an almost-staircase fashion, and the c orbitals display a
clearer saw-tooth behavior, as shown in Fig. G.2(c). It is interesting to note how the zero-hybridization data, which
in Fig. 6(c) travel multiple times along the same curve, here move along a set of shifted disconnected branches, each
one corresponding to a f -electron plateau of Fig. G.2(b).

The data points in orange and red refer to two other sets of DMFT simulations run using an alternative procedure:
instead of fixing the overall occupation, we required the converged solution to have a specific chemical potential,
letting the occupation value freely adjust as a consequence. The orange data thus obtained are in agreement with
a portion the positive-slope branches of the total filling curve in Fig. 6(a) of the main text. We can access a larger
section of the fixed-ν curve (red data) by converging each µ-point and using the resulting self-energy as the starting
point of the next simulation, in a decreasing µ direction. In both cases, however, the negative-slope branches of
Fig. 6(a) remain out of reach.

Even including the geometric contribution, a small region of negative compressibility still persists in the range
νf + νc ∈ [0,±1], as apparent from Fig. G.3, suggesting perhaps the tendency of the full TBLG system towards
intrinsic (electronic) phase separation around ν values close to ±0.6. A larger separation between the screened
Coulomb interaction gates of the interaction Hamiltonian would however strech out the νf + νc vs. µ curves further
and stabilize the system eventually at all dopings.

Appendix H: Experimental data comparison

The experimental data of Fig.7 in the main text have been extracted from work by Zondiner et al. (in the following
denoted as Z, [175]), Pierce et al. (P, [173]) and Saito et al. (S, [150]). In the two panels of the figure, the plotted
quantities are related by derivative/integration. Hence, for each experimental source only one set of data has been
considered, and the other has been numerically obtained. For Z, this is the chemical potential, while for P and S it
is the inverse compressibility. An important point to notice is the difference between charge carrier density (denoted
in Z and P as n) and filling factor ν, which is analogous to the one used in our work. The two are related via

ν = nΩ0, where Ω0 is the area of the moiré unit cell, and depends on the twist angle θ via Ω0 = 8π2/3
√
3k2θ where

kθ = 2|K| sin θ/2 and K is the Dirac point of one graphene layer. This conversion factor, dependent on the twist
angle, has to be applied to data from Z (which provides µ as a function of n) and P (which provides dµ/dn as a
function of ν). When the µ(ν) data are obtained through integration, an offset given by the value µ(0) is subtracted.
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