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The Kitaev material α-RuCl3 is among the most prominent candidates to host a quantum
spin-liquid state endowed with fractionalized excitations. Recent experimental and theoretical
investigations have separately revealed the importance of both the magnetoelastic coupling and
the magnetic anisotropy, in dependence of the applied magnetic field direction. In this combined
theoretical and experimental research, we investigate the anisotropic magnetic and magnetoelastic
properties for magnetic fields applied along the main crystallographic axes as well as for fields canted
out of the honeycomb plane. We found that the magnetostriction anisotropy is unusually large
compared to the anisotropy of the magnetization, which is related to the strong magnetoelastic

Γ̃′-type coupling in our ab-initio derived model. We observed large, non-symmetric magnetic
anisotropy for magnetic fields canted out of the honeycomb ab-plane in opposite directions, namely
towards the +c∗ or −c∗ axes, respectively. The observed directional anisotropy is explained by
considering the relative orientation of the magnetic field with respect to the co-aligned RuCl6
octahedra. Magnetostriction measurements in canted fields support this non-symmetric magnetic
anisotropy, however these experiments are affected by magnetic torque effects. Comparison of
theoretical predictions with experimental findings allow us to recognize the significant contribution
of torque effects in experimental setups where α-RuCl3 is placed in canted magnetic fields.

I. INTRODUCTION

Materials hosting quantum spin-liquid states have
attracted much interest recently [1–7], as in these systems
the quantum information may be protected from deco-
herence, and they can be applied in quantum computing
technology [8]. A prime example for a theoretical model
to host a quantum spin-liquid state is provided by
the exactly solvable Kitaev model on the honeycomb
lattice [9], which contains frustrated, bond-dependent
magnetic interactions that lead to fractionalized quasi-
particles; gauge fluxes and Majorana fermions. The
investigation and experimental verification of quantum
spin-liquid states presents, however, an ongoing chal-
lenge, that has brought α-RuCl3 to the forefront of
research as a prime candidate for Kitaev physics.

While the honeycomb-layered α-RuCl3 orders antifer-
romagnetically at low temperatures [10, 11], the possi-
bility of residual physics of fractionalization [12–16] or
even a field-induced Kitaev spin-liquid state [17–19] have
been intensively discussed. So far, numerous experi-
mental methods have been used for the investigation of
α-RuCl3, including neutron and Raman scattering [13,
19–24], specific heat [25], Grüneisen parameter [26],
microwave and terahertz absorption [18, 27, 28], as well
as thermal transport measurements [29–32], and notably

some reporting a half-integer-quantized thermal Hall
conductivity [33–36].

Various Raman scattering studies have reported pro-
nounced Fano line shapes [20, 22, 23, 37], which evidence
a significant magnetoelastic coupling between the phonon
modes and the magnetic continuum. Indeed, more recent
thermal expansion and magnetostriction measurements
have probed direct consequences of such coupling in
α-RuCl3 [38–40]. Strong magnetostrictive effects are
plausible, considering those two aspects. Firstly, magne-
toelastic coupling is expected to be especially sensitive in
Kitaev materials due to the strongly geometry-dependent
exchange mechanisms [4, 41, 42]. Secondly, the weak van-
der-Waals force between the honeycomb layers leads to
large changes in the lattice parameters when mechanical
stress is applied. We note that magnetoelastic coupling
is necessarily in play when measuring a hypothetical
spinful chiral edge current (that would be present in the
Kitaev spin-liquid) [43, 44]. Furthermore, magnetoelastic
coupling could also lend the phonons themselves a bulk
transverse (Hall) current, see e.g. Ref. 45.

Further understanding of the intrinsic anisotropy in
α-RuCl3 could be gained by field-angular dependent
measurements. So far, significant magnetic torque effects
have been found and investigated for various directions
of the magnetic (H) field [46–49]. Additionally, specific
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heat and thermal conductivity measurements have been
performed in magnetic fields applied in various in-plane
and out-of-plane angles and revealed anisotropic thermo-
dynamic and transport properties [32–36, 50]. Therefore,
combined investigations of the magnetoelastic coupling
and the magnetic anisotropy, using canted fields (i.e.
fields tilted out of the honeycomb plane), can help to
unveil the complex behavior of α-RuCl3.

In this combined experimental and theoretical study,
we focus on the angular, temperature, and magnetic
field dependence of the magnetic and magnetoelastic
properties of α-RuCl3. Depending on the in-plane field
angle, we resolve a phase transition between different
antiferromagnetic orders, in accord with recent previous
studies. In the presence of canted magnetic fields, we
observe an anomalous increase in the magnetostriction
at high fields related to the magnetic torque effects.
The combination of magnetic measurements reveals a
significant, non-symmetric anisotropy for magnetic fields
canted out of the hexagonal ab-plane in opposite direc-
tions, upwards or downwards, namely towards the +c∗

or −c∗ axes. This angular-anisotropy is related to the
co-aligned, corner-sharing RuCl6 octahedra within the
hexagonal planes. The experimentally observed magnetic
and magnetoelastic anisotropy is the largest when the
H field is rotated within the ac∗ plane, and smallest
when rotated within the bc∗ plane. To model the
magnetostriction and the effect of magnetic torque, we
employ ab-initio derived magnetoelastic couplings [51],
allowing us to separate the different contributions of
the magnetoelastic interactions. The theoretical model
provides a good qualitative description of the experi-
mental observations, namely predicting non-symmetric
angular-anisotropy for the ac∗ plane while excluding it
for the bc∗ plane. However, our experiments and the
theoretical model also point out the significant role of
magnetic torque in those experiments, where the sample
can freely move or deform, such as in magnetostriction
and thermal transport measurements. In case of magne-
tostriction measurement, the movement or deformation
of the sample is on the sub-µm scale, while in case of
thermal transport measurements the deformation can be
significantly higher.

II. EXPERIMENTAL AND THEORETICAL
METHODS

A. Experimental details

Single crystals of α-RuCl3 were grown using the chem-
ical vapor transport method [52]. The orientations
of the monoclinic a and b axes with respect to the
honeycomb plane were determined by angular dependent
magnetization measurements with H ∈ ab fields. The
angular dependent magnetization measurements were
carried out in a SQUID magnetometer (MPMS-XL,
Quantum Design). The field dependent magnetization

measurements up to µ0H=14 T were measured in a
vibrating sample magnetometer (VSM, PPMS, Quantum
Design). The precise 45 deg canting orientation of the
crystals was ensured by a pair of appropriately cut quartz
pads, between which the sample was fixed with varnish.
The ab-plane orientation of the crystals was aligned under
a microscope with ±1-2 deg angular precision.

The magnetostriction was measured using a custom-
built dilatometer based on the capacitance measurement
technique (AH2700A, Andeen-Hagerling) [53]. Due to
the dimensions of the available single crystals, the length
change ∆L of the sample was measured along the c∗ axis
(∆Lc∗ ‖ c∗, see Fig. 1(a)), while the H field could be
applied in arbitrary directions via the rotation of the
capacitance cell body or the sample. In this measurement
technique, the sample is held in place in the dilatometer
by a small uniaxial pressure applied on the sample during
the mounting. Therefore if sufficient torque is applied,
the sample may slightly rotate or deform within the
dilatometer, which is measured as an apparent length
change. This issue will be discussed in details in Sec. III
as well as we give an estimate to its magnitude. During
the magnetostriction measurement the magnetic field was
swept between ±14 T with 0.01 T/min or 0.03 T/min
rates at constant temperatures. The linear magnetostric-
tion coefficient along the c∗ axis (λc∗) was calculated as
the H-field derivative of the relative length change:

λc∗ =
∂

∂(µ0H)

∆Lc∗(T, µ0H)

Lc∗(300K, 0T )
. (1)

The measurements were performed on two different
pieces of α-RuCl3 crystals from the same batch (samples
#1 and #2) with thicknesses of ∼800µm.

B. Theoretical details

We compare our measurements to numerical results
on the extended Kitaev models. In such models, the
bonds are labeled as X, Y or Z depending on their
orientation. For a nearest-neighbor Z-bond (parallel
to the b axis, see Fig. 1(a)) with local C2h symmetry,
the symmetry-allowed magnetic exchange between the
Jeff = 1

2 pseudospins, labeled as Si and Sj is [54]

HZ =KSzi S
z
j + JSi · Sj + Γ

(
Sxi S

y
j + Syi S

x
j

)
+ Γ′

(
Sxi S

z
j + Szi S

x
j + Syi S

z
j + Szi S

y
j

)
, (2)

where K and J correspond to the Kitaev and Heisenberg
exchanges, respectively, while Γ,Γ′ are symmetric off-
diagonal exchanges. The X and Y bond exchanges can
be constructed via the cyclic permutation of (x, y, z) in
Eq. (2). The magnetic Hamiltonian is then given as the
sum of these exchange terms (including possible longer-
range terms) and the Zeeman term HZee = −µBµ0

∑
iH·

G·Si, where G is the gyromagnetic tensor. To solve it, we
employ exact diagonalization (ED) on a hexagon-shaped



3

0 9 0 1 8 0 2 7 0 3 6 0
0
2
4
6
8

0 9 0 1 8 0 2 7 0 3 6 0
0
2
4
6
8

0 9 0 1 8 0 2 7 0 3 6 0

4

5

6

0 5 1 0 1 5 2 0
2
3
4
5
6

�  ( d e g )

c *

M/
H (

10
-2  � B

/f.u
./T

)

c *

( e )  H ∈a c * ,
T  =  2 K
   # 1

� 0 H  =  1 T
          5 T

a ,  ⊥

1 T
5 T

( f )  H ∈b c * ,
T  =  2 K
   # 1

c *

�  ( d e g )

b ,  | |c *

M/
H (

10
-2  � B

/f.u
./T

)
�  ( d e g )

a ,⊥a ,⊥

( d )  H ∈a b ,
T  =  2 K
   # 1

� 0 H  =  2 T

b , | |

M/
H (

10
-2  � B

/f.u
./T

)

� 0 H  =  1 T
H  | |  b

H  | |  c *

M/
H (

10
-2  � B

/f.u
./T

)

T e m p e r a t u r e  ( K )

H  | |  a

( c )  # 1

( a )

c *

� - R u C l 3 ,  C 2 / m

b ,  ||  b o n d

a, 
⊥

 bo
nd

× 5

( b )
c *H

�

a ,  ⊥  b o n d

b ,  ||  b o n d

c * H
�

C 2

FIG. 1. (Color online) (a) Single honeycomb layer of α-RuCl3
and the crystallographic axes (a, b, and c∗). We highlight two
directions within the ab plane; the a axis is perpendicular (⊥
bond) and the b axis is parallel (‖ bond) to one of the Ru-Ru
bonds, respectively. Red and blue arrows at the honeycomb
sites indicate the zigzag domain with ordering wave vector
Q ‖ b. Dashed line indicates a C2 rotation symmetry around
an axis parallel to the b axis. (b) During the magnetization
and magnetostriction measurements, the magnetic field (H)
was canted out of the ab plane by an angle of ϑ, while the
planar projection of the applied field was either along the a or
b axis. (c) Temperature dependence of the magnetization for
fields along the main crystallographic axes in the field cooling
runs (µ0H=1 T). Note, that the data for H ‖ c∗ is multiplied
by a factor of 5 for better visibility. (d-e) Angular dependence
of the magnetization at T=2 K for fields rotated within the
ab, ac∗, and bc∗ planes, respectively. Measurement data is
plotted with symbols (full circles) for µ0H=1 T and 5 T. In
case of H ∈ ab, the measurements are plotted for µ0H=2 T.
Dashed curves in panels (e,f) correspond to the theoretical
calculations.

24-site cluster. As a magnetic model, we discuss the ab-
initio guided minimal model of Ref. 55, which has been
shown to reproduce many experimental observations in
α-RuCl3 [22, 25, 26, 49, 55–58]. Here the exchange
parameters are

(K, J, Γ, Γ′, J3) = (−5, −0.5, 2.5, 0, 0.5) meV, (3)

where J3 denotes an additional third-nearest-neighbor
Heisenberg exchange, and the components of G are
gab = 2.3 and gc∗ = 1.3, for the in-plane and out-of-
plane elements, respectively. Note that this model is C3-
simplified, i.e. the coupling magnitudes are equal on X, Y
and Z bonds. The C2/m structure of α-RuCl3 [10] does
however slightly break C3 symmetry, a property that
manifests in the in-plane angle-dependent measurements
discussed below and therefore it is not described in the
present model by construction.

To model the spin-lattice coupling, we employ the ab-
initio-derived linear magnetoelastic couplings of Ref. 51

for α-RuCl3, defined as J̃ =
(
∂J
∂ε

)
|ε=0, where ε =

∆Lc∗/Lc∗ and J ∈ {K,J, . . . , gab, gc∗}. The strongest
magnetoelastic exchange couplings are then

(K̃, J̃ , Γ̃, Γ̃′) = (40.5, 1.3, 7.5, −11.5) meV (4)

and the magnetoelastic g couplings (g̃ab, g̃c∗) =
(−1.6, 3.85). Note that the predicted large

magnetoelastic Γ̃′ coupling in this model is a somewhat
unexpected property, as the magnetic Γ′ coupling
is generally found to be subdominant or negligible
in magnetic models of α-RuCl3 (see, e.g., Ref. 59).

Nevertheless we find this large Γ̃′ to be essential
to reproduce the strong anisotropy found in our
magnetostriction measurements, as discussed below. In
our calculations we also include the weaker longer-range
magnetoelastic couplings of Ref. 51, which however
do not qualitatively change the results. For the
magnetostriction, we then employ the approximation
[51]

λc∗ ≈
κc∗

V

∑
J∈{K,J,... }

J̃
(
∂M

∂J

)
ε=0

, (5)

where the sum goes through all strain-dependent inter-
actions and g values. The parameter κc∗ ≡ −(∂ε/∂pc∗)
is the (unknown) linear compressibility along c∗ against
uniaxial pressure pc∗ . The field-dependence of λc∗ enters
through the field-dependencies of the magnetization sus-
ceptibilities

(
∂M
∂J
)
ε=0

, which we compute using ED in the

magnetic model described above.

III. MAGNETIC AND ELASTIC PROPERTIES
IN CANTED MAGNETIC FIELDS

Each layer of α-RuCl3 consists of edge-sharing RuCl6
octahedra that form a honeycomb network, as shown in
Fig. 1(a). For the crystal structure, both the rhom-
boedral R3̄ [60–62] and the monoclinic C2/m [10, 63]
structures are presently discussed in the literature. We
employ the axis convention of the C2/m structure, where
the honeycomb plane is spanned by the crystallographic a
and b axes, while c∗ is perpendicular to it, see Fig. 1(a,b).
Note that the b axis is parallel to one of the honeycomb
bonds, while the a axis is perpendicular to the same
bond.
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The antiferromagnetic “zigzag” long-range order [10]
(Fig. 1(a)) develops at TN=7.1 K, as shown by the
magnetization data (Fig. 1(c)) in moderate µ0H=1 T
fields applied along the main crystallographic axes. The
magnetization curves for H ‖ a and H ‖ b show a
sudden decrease at TN, however the weaker temperature
dependence for H ‖ b suggests that the ordered moments
are perpendicular to the b axis. The particular zigzag
domain structure associated to such ordering [64], where
the ordered moments lie in the ac∗-plane, is illustrated
in Fig. 1(a). Note, that the minor transition apparent
for H ‖ a at T=14 K is indicative of the so-called
ABC/ABAB-stacking faults [11, 65].

For fields applied perpendicular to the honeycomb
plane (H ‖ c∗) a much smaller susceptibility is found,
highlighting the strong easy-plane anisotropy in α-RuCl3.
This is further resolved in Fig. 1(e) and 1(f), where
the field is rotated within the ac∗-plane or bc∗-plane,
respectively (cf. Fig. 1(b)), in the presence of constant
field strength and temperature T=2 K. Corresponding
theoretical T=0 K results within the magnetic minimal
model (see Section II B) agree well with the measure-
ment, see dashed lines in Fig. 1(e,f). In case of mag-
netic properties, the easy-plane anisotropy is primarily
facilitated by the strong Γ-term and the anisotropic g-
tensor [49, 66]. Note, that theoretical curves in Figs. 1(e)
and 1(f) are identical, while the experimental curves are
different for H ∈ ac∗ and H ∈ bc∗. This is explained
by our C3-symmetrized model, which suppresses the in-
plane anisotropy, whereas the real α-RuCl3 is apparently
monoclinic. Therefore, the agreement between theory
and experiment is excellent only in Fig. 1(f). Nev-
ertheless, we obtain overall semi-quantiatve agreement
between theory and experiment.

Figure 1(d) shows the field-angular dependence of the
magnetization within the ab honeycomb plane for mod-
erate µ0H=2 T. In the angular dependence, components
with clear 2-fold and 6-fold symmetries are identified.
Assuming a honeycomb lattice with C6 symmetry, as
present in the proposed R3̄ structure of α-RuCl3, only an
angular dependence with 6-fold symmetry is expected. A
spontaneous selection of single-domain zigzag magnetic
order can break the 6-fold symmetry and give a compo-
nent with 2-fold symmetry. However, the same angular
dependence of M as shown in Fig. 1(d) is reproduced
repeatedly for every measurement, even after heating
the sample to room temperature, well above TN. Hence
the preference of zig-zag domain selection with respect
to the crystallographic axes is consistent, and probably
related to the crystal structure, compatible with the
suggested monoclinic C2/m space group. Accordingly,
the zero-field magnetic Hamiltonian favors certain zigzag
domains energetically out of the three possible domain
directions. From the measured angular preference we
infer, analogously as done in Ref. [67], that in our sample
the dominant domain at low field is that with ordering
wave vector Q ‖ b (as illustrated in Fig. 1(a)). While this
domain is expected to stay stable at finite fields H ‖ b, a
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FIG. 2. (Color online) Magnetic field dependence of the λc∗

linear magnetostriction coefficient at selected temperatures.
The ∆L length change was measured along the c∗ axis and
H ‖ a magnetic field was applied, perpendicular to one of the
Ru-Ru bonds.

re-orientation to the other zigzag domains is expected at
an intermediate field when H ‖ a [56, 67].

Figure 2 shows the experimental c∗-axis magnetostric-
tion (λc∗ , Eq. (1)) as a function of magnetic field H ‖ a
for selected temperatures within the ordered temperature
regime, the short-range correlated Kitaev paramagnet,
and the conventional thermal paramagnet. The magne-
tostrictions measured in increasing and decreasing fields
were found to be identical within the accuracy of the
measurement. At T=3 K, the magnetostriction λc∗ has a
positive peak at low fields and a sharp negative double-
peak structure at higher fields. The positive peak at
µ0H0=0.7 T corresponds to the aforementioned domain
re-population of the antiferromagnetic order and it is
present in both the field increasing and decreasing runs.
We resolve two sharp negative peaks at µ0H1=6.4 T
and µ0H2=7.2 T. The former is a phase transition at
µ0H1 where the inter-plane ordering between the zigzag-
ordered honeycomb planes changes [68], while the latter
at µ0H2 is the transition where the zigzag magnetic order
disappears. In agreement with Refs. 58, 67, and 68, the
extent between these two phases is the largest for H ‖ a
and the smallest or absent for H ‖ b (cf. Fig. 3(a)). At
T=5 K, the double-peak structure merges into a single,
negative peak at µ0H1=6.3 T. Above TN = 7.1 K, the
sharp peaks of the low-temperature magnetostriction
are replaced by broad field-dependent features. For
T & 30 K, the magnetostriction shows a linear field
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dependence, as expected for a conventional thermal para-
magnet [69]. In contrast, for intermediate temperatures
TN < T . 30 K, we find the magnetostriction to show
a non-linear and non-monotonic field dependence. This
appears to be a property of the short-range correlated
Kitaev paramagnet [13, 14, 56, 70] in this temperature
range.

The λc∗ magnetostriction with fields applied along
the main crystallographic axes as well as for H canted
out from the ab plane are shown in Fig. 3(a). The
experimental configuration and the definition of the ϑ
canting angle is illustrated in Fig. 3(c); The H field
is canted away from the a axis by angle ϑ within the
ac∗-plane. The measurement with ϑ=0 deg and 90 deg
corresponds to H ‖ a and H ‖ c∗, respectively. For better
comparison and for the sake of completeness, we present
the H ‖ b data reproduced after Ref. [39] (dashed pink
line in Fig. 3(a)). The λc∗ magnetostriction for H ‖ b has
one single negative peak at µ0H=7.5 T. Unlike λc∗ for
H ‖ a, no significant domain re-orientation at low fields
is visible, as expected for the identified dominant Q ‖ b
zigzag domain (Fig. 1(a)). In contrast to the in-plane
field results, the magnetostriction for H ‖ c∗ is small
and shows weak, non-monotonous field dependence. The
µ0H1 and µ0H2 critical fields of the two peaks in the
magnetostriction data, approximately follow a simple
∼ 1/ cosϑ angular dependence, as shown in Fig. 3(b).
Such an angular dependence is expected if the phase
transitions are entirely driven by the in-plane component
of the magnetic field. We note, that the µ0H0 critical
field does not follow the ∼ 1/ cosϑ angular dependence.
This deviation suggests that the reorientation of the three
differently oriented zigzag domains in the presence of
canted fields has a non-trivial energetic competition.

Theoretical calculations for the λc∗/κc∗ magnetostric-
tion are shown in Fig. 3(c) for the same field configura-
tions as in Fig. 3(a). The calculated magnetostrictions
for fields applied along the main crystallographic axes
(a, b, c∗) qualitatively reproduce the measured data. In
the experiments, we ascribed the measured µ0H0=0.7 T
peak to the zig-zag domain reorientation. However, in
our C3-symmetrized model, there is no preferred domain
orientation at µ0H=0 T, and therefore no reorientation
is expected. Moreover, due to the restriction to a
two-dimensional finite cluster in the calculations, the
results are limited in the reproduction of the lower-
field peak µ0H1 for H ‖ a (related to the inter-layer
re-ordering [68]), and peaks at phase transitions are
generally expected to be broadened. When the magnetic
field is tilted out of the ab plane, H ∈ ac∗, theoretical
calculations show that the peaks in the λc∗/κc∗ become
smaller and appear at higher fields. While the experimen-
tal data in Fig. 3(a) for ϑ=30 deg and 45 deg retain the
double-peak like features in λc∗ , they differ significantly
from the calculations. In contrast to the theory, the
measured λc∗ magnetostriction for θ=30 deg and 45 deg
changes sign at intermediate field strengths due to a large
positive component added to the measurement.

We attribute the observed anomalous component to
magnetic torque effects. When the magnetic torque is
strong, it could rotate, bend, and deform the α-RuCl3
crystal within the dilatometer, as discussed in the Sup-
plementary, in Fig. S2. Theoretical calculations for the
magnetic torque τ = dF

dϑ (F being the free energy) for
H ∈ ac∗ are shown in Fig. 3(d). The torque, facilitated
by Γ-exchange and g-anisotropy [49], is small for fields
along the main crystallographic axes (ϑ = 0 deg and
ϑ = 90 deg), but becomes large for intermediate canting
angles where it strongly increases with field strength.
Although theH field points along a main crystallographic
axis for ϑ=0 deg, (H ‖ a), a small but nonzero torque
persists anyway. Note that no symmetry in the Hamil-
tonian requires the torque to be maximal at θ=45 deg.
While the presently employed model parameters predict
the magnetic torque to reach its maximum close to
ϑ=45 deg in Fig. 3(d), a smaller g-tensor anisotropy can
further decrease the canting angle needed for maximum
torque. This can explain why the positive contribution
in the λc∗ magnetostriction measurement is larger for
ϑ=30 deg than for ϑ=45 deg in Fig. 3(a). This further
demonstrates that the effect of magnetic torque on the
magnetostriction measurements is a complex issue, which
depends on the spring constant, pressure setting, and
dimensions of the dilatometer, as well as the dimensions
and elastic constants of the sample. For small rotations
(deformations), it is reasonable to assume that the
change in the magnetostriction is linear in the torque
as ∆λc∗/κc∗ ∼ A · |τ |, where A is a material, measure-
ment setup, and pressure setting dependent, but field
magnitude- and angle-independent constant. Figure 3(e)
illustrates the modified magnetostriction, calculated with
the λc∗/κc∗ + A · |τ | relation, where A=2.2·105 Pa·Rad
/ (T2 · µB/f.u.) is a fixed value for all curves. The
A parameter was fitted to the ϑ=45 deg data with
the highest magnetic torque τ , so that λc∗/κc∗(H

∗) +
A · |τ | = 0 is satisfied for the theoretical data at
the same H∗ field as the measured magnetostriction
(λc∗(H

∗)=0). This qualitatively models that the strong
positive contributions to λc∗ in the measurements with
canted fields (ϑ=+30 deg and +45 deg) are related to
the rotational effect of the magnetic torque, and not
intrinsic to the sample. However, note that even with
these efforts, the effect of torque cannot be removed from
the measurement data in a quantitative manner.

Focusing back on the crystallographic axes a (ϑ=0 deg)
and c∗ (ϑ=90 deg), where torque effects are expected to
be much weaker, we point out a much stronger anisotropy
found in λc∗ than expected from the magnetization
anisotropy [69]. In principle, due to the Maxwell relation
λc∗ = −∂M/∂pc∗ , one can expect λc∗ to be roughly
proportional to the magnetization M at small field
strengths. However, this does not explain the observed
angular dependence of λc∗ : While the magnetization
for ϑ=90 deg is already reduced by a factor of ∼ 6
to 10 compared to ϑ=0 deg (cf. Fig. 1(e)), this alone
cannot account for the much larger ∼ 30-fold reduction
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FIG. 3. (Color online) (a) Field dependence of the linear magnetostriction coefficient λc∗ at T=3 K. The magnetic field was
applied along the main crystallographic axes, as well as canted out of the ab plane with projection perpendicular to the bond
(H ∈ ac∗). The ϑ=0 deg and 90 deg angles correspond to the a and c∗ axes, respectively. The two peaks in the λc∗ data
correspond to (µ0H1) a phase transition between different zigzag interplane orderings and (µ0H2) a transition into the field-
induced quantum paramagnetic phase. The µ0H1 and µ0H2 phase boundaries are indicated by triangles, respectively. (b)
Angular dependence of the µ0H1 and µ0H2 phase transition fields. The dashed lines indicate the ∼ 1/ cosϑ field dependence.
(c) The field dependence of the λc∗/κc∗ magnetostriction calculated for H field canted out of the ab plane with ϑ angle,
H ∈ ac∗. The inset defines the field angle ϑ. Note, that panels (a) and (c) are shown for different field scales. (d) Magnetic
field dependence of the calculated τ magnetic torque for selected ϑ canting angles, H ∈ ac∗. (e) The effect of magnetic torque
on the field-dependence of the magnetostriction is modelled with the λc∗/κc∗ +A · |τ | relation with the same A=2.2·105 Pa·Rad
/ (T2 · µB/f.u.) parameter fitted for each curve.

of the magnetostriction between ϑ=90 deg and ϑ=0 deg
(cf. Fig. 3(a)). This increased anisotropy effect is also
reproduced in our model calculations (Fig. 3(c)). In
the calculations, we can trace the unusual reduction
in magnetostriction back to contributions from different
magnetoelastic couplings, i.e. from different summands in

Eq. (5). The largest entering magnetoelastic couplings J̃
are the nearest-neighbor anisotropic couplings K̃, Γ̃, Γ̃′,
which are field-independent. The field-strength and field-
direction dependency enters through the susceptibilities

∂M/∂J . Figure 4(a) shows the largest summands (J̃ ·
∂M/∂J ) as a function of in-plane field H ‖ a (ϑ =
0deg), where a dominating effect from the contribution
with J = Γ′ is demonstrated. The large susceptibility
∂M/∂Γ′ for in-plane fields can be understood from the
fact that Γ′ is the exchange that tunes most strongly
the easy-plane anisotropy of α-RuCl3 [71]. However, for
out-of-plane fields H ‖ c∗, variations in Γ′ have little

effect onto the magnetization. Therefore the large Γ̃′-
contribution breaks off for H ‖ c∗, leading to a much
smaller λc∗ as shown in Fig. 4(b). The agreement with
experiment therefore confirms the presence of a strong

negative magnetoelastic Γ̃′ coupling in α-RuCl3 (see

Eq. (4)). Note that the large Γ̃′ < 0 suggests that the

application of 3% to 5% compressive uniaxial c∗-strain
may destabilize the zigzag magnetic order [51]. While
α-RuCl3 in measurements under hydrostatic pressure
show dimerization [72, 73], the application of uniaxial
strain leads to fundamentally different lattice deforma-
tions. As an example, compression along the c∗axis
expands the lattice within the ab plane, in contrast to
the application of hydrostatic pressure, which compresses
both the c∗ axis and the honeycomb ab plane. Another
estimate for the uniaxial pressure dependence of TN

comes from the Ehrenfest relation [69]:

∂TN

∂pc∗
= VmolTN

∆αc∗

∆Cp
, (6)

where pc∗ is the uniaxial pressure applied along the
c∗ axis, Vmol is the molar volume, and ∆Cp and
∆αc∗ are the heights of the anomaly in the specific-
heat and thermal-expansion at TN, respectively.
Using specific heat data ∆Cp=3.0 J/mol/K from
Ref. 25, ∆αc∗=−7·10−5 1/K from Ref. 39, and
Vmol=5.26·10−5 m3/mol, we get ∂TN

∂pc∗
≈ −8.8 K/GPa.

This means that a noticeable change in TN can be
obtained under experimentally achievable conditions [74].

While the magnetostriction measurements under
canted magnetic fields are strongly affected by the
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V
K̃
(
∂M
∂K

)
, 1

V
J̃
(
∂M
∂J

)
, 1

V
Γ̃
(
∂M
∂Γ

)
, 1

V
Γ̃′
(
∂M
∂Γ′

)
, and 1

V
G̃
(
∂M
∂G
)
, respectively. The line with J = G corresponds to

magnetoelastic coupling with the g-tensor. (a) In-plane field H ‖ a (ϑ = 0deg), (b) Out-of-plane field H ‖ c∗ (ϑ = 90deg).

magnetic torque, the magnetization measurements are
unaffected, as the sample is strongly fixed to a rigid
sample holder. Fig. 5 reveals an interesting anisotropy
found in the magnetization measurements for fields
rotated out of the ab-plane into opposite directions
(i.e. towards +c∗ or −c∗). Magnetization measurements
at T=2 K for H ∈ ac∗ and H ∈ bc∗, canted out
of the ab-plane by ϑ=±45 deg angles are shown in
Figs. 5(a-c) and 5(d-f), respectively. Figures 5(a,d),
5(b,e), and 5(c,f) show the H-field dependence of
the magnetization, the field-derivative, and the field
dependence of the ∆M magnetization difference
between the ϑ=+45 deg and −45 deg measurements
(∆M=M+45 deg −M−45 deg), respectively. For H ∈ ac∗,
in Fig. 5(a), the field dependence of the magnetization
for ϑ=+45 deg and −45 deg show clear differences above
µ0H=8 T, while those of H ∈ bc∗ show small differences
only. Moreover, peaks in the field derivative of the
magnetization (Fig. 5(b)) indicate two phase transitions
for the ϑ=+45 deg measurement at µ0H1=8.6 T and
µ0H2=10.3 T, while in the ϑ=−45 deg measurement
there is only one peak seen at µ0H

′
2=10.9 T. Note, that

the field derivatives in the H ∈ bc∗ measurements are
similar to those of the H ∈ ac∗ experiments, however here
the ϑ=−45 deg measurement has two peaks in dM/dH
and the ϑ=+45 deg measurement has one at slightly
different fields. The ∆M magnetization difference in
Fig. 5(c) shows a shoulder-like magnetization change
starting from µ0H=8.5 T and a peak at around
µ0H=10.7 T. The ∆M magnetization difference for
H ∈ bc∗ in Fig. 5(f) is about 4 times smaller and has
opposite sign than those for H ∈ ac∗.

For comparison, Fig. 5(g) shows the field dependence of
the λc∗ magnetostrictions for H ∈ ac∗ and H ∈ bc∗ fields

canted out from the ab-plane in ϑ=±45 deg angles for the
field-increasing runs. The complete set of measurements
for the field-increasing and decreasing runs are shown in
Fig. S1, while additional measurements on sample #1 are
shown in Fig. S3 [75]. During the λc∗ - H measurements
the H field was swept between ±14 T several times, then
the sample was removed and rotated to the next measure-
ment configuration. Curves labeled as field up and field
down refer to measurements in H field with increasing
or decreasing magnitudes, respectively. In Figs. 5(g), S1,
S2, and S3 we show three λc∗ - H curves to demonstrate
the signal to noise level, while Fig. S3 discusses the
reproducibility when we change the ϑ canting angle.
Note, that these magnetostriction measurements in such
canted fields show significant hysteresis. However, the
difference between the +45 deg and -45 deg magnetostric-
tion, ∆λc∗=λc∗,+45 deg − λc∗,−45 deg (Fig. 5(h)), is found
to be rather independent of the direction of the field
sweep. Similarly to the magnetization measurements, the
magnetostriction shows a significant difference ∆λc∗ for
H ∈ ac∗, but a small one for H ∈ bc∗. Furthermore
we can also observe a shoulder above µ0H=8 T and a
peak at µ0H=10.4 T for H ∈ ac∗. Note that the ∆M
and ∆λc∗ curves show a different field dependence at low
fields, which is related to torque effects not compensated
by the subtraction.

Theoretical calculations for the field dependence of
the magnetization are shown in Fig. 6(b) with the
experimental configurations illustrated in Fig. 6(a) for
H ∈ ac∗ as well as for H ∈ bc∗ with fields canted
out of the ab-plane by ϑ=±45 deg. Note that the
theoretical calculations are plotted on a wider field
range than those of the measurements. In line with
the experimental observations, the theoretical calcula-
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FIG. 5. (Color online) (a) Magnetic field dependence of the magnetization at T=2 K for H ∈ ac∗ with ϑ=±45 deg canting out
of the ab plane. (b) Magnetic field dependence of the field-derivative, and (c) the field dependence of the ∆M magnetization
difference for the ϑ=+45 deg and −45 deg measurements (∆M=M+45 deg − M−45 deg). The phase transitions for H ∈ ac∗

are indicated by triangles as peaks in dM/dH. (d-f) Magnetic field dependence of the magnetization, field derivative, and
∆M at T=2 K for H ∈ bc∗, ϑ=±45 deg. (g) Magnetic field dependence of the λc∗ magnetostriction coefficient at T=3 K for
H ∈ ac∗ and H ∈ bc∗ measured in the field-increasing runs with ϑ=±45 deg canting angles. Three λc∗ -H curves are shown
for each configuration, with numerals indicating the order of the measurements (complete list is shown in the supplementary
material [75], Fig. S1). The experimental conditions are illustrated as an inset in panels (a) and (d). While panels (a,b,d,e,g)
show measurements for the field-increasing runs, panels (c,f,h) show the measurements for the field increasing and decreasing
runs.

tions confirm the different M -H curves between the
ϑ=+45 deg and −45 deg canting angles for H ∈ ac∗, and
the calculated ∆M is shown in Fig. 6(c). This non-
symmetric difference in the magnetization is related to
the orientation of the Ru3+ magnetic moment within the
Cl6 octahedra, schematically illustrated in Fig. 6(a). For
ϑ=+45 deg and −45 deg angles with H ∈ ac∗, the net
magnetization points roughly towards the top vertex, or
towards the midpoint of the edge of the RuCl6 octahedra,
respectively. For H ∈ bc∗, the calculated M -H curves
are exactly the same for the ϑ=+45 deg and −45 deg
cases. In these cases, the Ru3+ magnetic moments are
pointing towards another edge of the RuCl6 octahedra in
sideways. Both cases are connected by the C2 rotation
symmetry around the b axis and therefore yield identical
response in an ideal crystal. The small ∆M difference

observed for the H ∈ bc∗ measurements can be related to
twinning faults, where the honeycomb layers are rotated
by 30 deg with respect to each other. This twinning fault
is a different structural defect from the earlier recognized
ABC/ABAB-stacking faults [11, 65].

Calculations for the field dependence of the mag-
netic torque τ , magnetostriction λc∗/κc∗ , and the mag-
netostriction difference ∆λc∗/κc∗ for H ∈ ac∗ and
ϑ=±45 deg canting angles are shown in Fig. 6(d), 6(e),
and 6(f), respectively. Similarly to the experimental
observations, the field dependence of λc∗/κc∗ is different
for ϑ=+45 deg and −45 deg, and ∆λc∗/κc∗ is finite for
H ∈ ac∗. For H ∈ bc∗ and ϑ=±45 deg, the λc∗/κc∗
curves are identical, similarly to the magnetization. In
order to account for the effect of the magnetic torque
on the experimental data, Fig. 6(d) shows calculations
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FIG. 6. (Color online) (a) Schematic illustration of the measurement configurations for each experiment. For H ∈ ac∗,
ϑ=+45 deg and ϑ=−45 deg, the net magnetization points along the vertexes and the edges of the Cl6 octahedra, respectively.
In both cases of H ∈ bc∗, ϑ=±45 deg, the net magnetization points along the side of the RuCl6 octahedra, which configurations
are connected by the C2 rotation in the honeycomb plane. (b) Magnetic field dependence of the magnetization and (c) ∆M
magnetization difference calculated for H ∈ ac∗ and H ∈ bc∗ with ϑ=±45 deg canting out of the ab plane. (d) Magnetic field
dependence of the τ magnetic torque for H ∈ ac∗, ϑ=±45 deg. (e) Magnetic field dependence of λc∗/κc∗ magnetostriction
and (f) ∆λc∗/κc∗ magnetostriction difference, calculated for H ∈ ac∗ and H ∈ bc∗, ϑ=±45 deg. The effect of the magnetic
torque on the ∆λc∗/κc∗ magnetostriction difference is illustrated in panel (f), the torque is scaled to the unit of λc∗/κc∗ with
A=2.2·105 Pa·Rad / (T2 · µB/f.u.).

for the τ magnetic torque for H ∈ ac∗, ϑ=±45 deg.
While the magnetic torque for both ϑ=±45 deg is large,
the calculations show only slight differences in the mag-
nitudes of the magnetic torques, i.e. the A · ∆τ=A ·
|τ+45 deg − τ−45 deg| is relatively small. Still, we find
that the modelled A · ∆τ is comparable in magnitude
to ∆λc∗/κc∗ , which is shown in Fig. 6(f) with the same
scaling factor as in Fig. 3(e) for ϑ=+45 deg . This means
that it is not possible to subtract the effect of torque on
the measurements by simply measuring and subtracting
the magnetostrictions in the ±ϑ configurations. There-
fore, we consider the experimentally observed ∆λc∗ in

Fig. 5(h) as an aggregate of the real ϑ=±45 deg non-
symmetric anisotropies in the magnetostriction and a
finite magnetic torque. Additional theoretical calcula-
tions for the angular dependence of the magnetization
for H ∈ ac∗ and H ∈ bc∗ are shown in Fig. S4 [75].

IV. SUMMARY

We have studied the magnetic anisotropy in the
Kitaev-candidate material α-RuCl3, using field-
dependent magnetization and magnetostriction λc∗
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measurements. During these measurements, the
magnetic field was selectively applied both along the
main crystallographic axes or canted out from the
honeycomb plane, while the length changes in the λc∗
experiments were always measured along the c∗ axis.
The field dependence of the low-temperature λc∗ -H
magnetostriction measurements shows a double-peak
structure for H ‖ a (perpendicular to one of the Ru-Ru
bonds) and a single peak for H ‖ b (parallel to that
Ru-Ru bond). This is in agreement with the extents of
the recently reported intermediate ordered phase with
modified inter-plane ordering [58, 68].

We found that the λc∗ -H measurements show an
unusually increased degree of field-angular anisotropy
compared to the magnetization measurements (H ‖ a
and H ‖ b experiments compared to H ‖ c∗). This
suggests an additional degree of anisotropy in the magne-
toelastic couplings. Our theoretical calculations based on
ab-initio derived magnetoelastic couplings show that this
effect can be explained through the presence of a strong

magnetoelastic Γ̃′-type coupling. The presence of the
latter implies the possibility to destabilize the magnetic
order via the application of uniaxial compressive strain.

Both the M -H and λc∗ -H measurements in the pres-
ence of canted fields show large differences and demon-
strate a significant angular asymmetry when fields are
canted away from the a-axis towards +c∗ or −c∗ axes
(H ∈ ac∗), i.e. for positive or negative canting angles
of the H field. This angular asymmetry stems from the
orientation of the H field with respect to the co-aligned
RuCl6 octahedra. However, we found that the magnetic
torque has a strong influence on our magnetostriction
measurements. From theory, magnetic torque is expected

to be large only for canted field directions. We confirmed
that the magnetic torque can qualitatively account for
the measured field dependence of the magnetostriction
and can contribute to the difference between of the
magnetostrictions measured in positive and negative ϑ
canting angles. This implies that when performing or
comparing experiments in canted magnetic fields where
the samples of different sizes are free-standing, such as
in case of dilatometry or thermal Hall measurements,
due to the very soft mechanical properties of α-RuCl3
the magnetic torque may add relevant contributions to
the measurements via plastic distortion or tilting of the
crystals.
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and V. Kataev, Phys. Rev. B 98, 184408 (2018).

[29] Y. Kasahara, K. Sugii, T. Ohnishi, M. Shimozawa,
M. Yamashita, N. Kurita, H. Tanaka, J. Nasu,
Y. Motome, T. Shibauchi, and Y. Matsuda, Phys. Rev.
Lett. 120, 217205 (2018).

[30] R. Hentrich, M. Roslova, A. Isaeva, T. Doert, W. Brenig,
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Casado, R. Beltrán Rodŕıguez, Q. Stahl, M. Kusch, S. P.
Limandri, R. Ray, P. Lampen-Kelley, D. G. Mandrus,
S. E. Nagler, M. Roslova, A. Isaeva, T. Doert, L. Hozoi,
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FIG. S1. (Color online) Magnetic field dependence of the
λc∗ linear magnetostriction coefficient at T=3 K for the field-
increasing and decreasing runs for field canted within the ac∗
and bc∗ planes (H ∈ ac∗ and H ∈ bc∗, respectively). For each
setting, three measurements are shown, the numerals indicate
the order of the measurements. The ab-plane projection of
the canted magnetic field was set perpendicular and parallel
to the Ru-Ru bonds, respectively in panels (a) and (b). The
magnetic field was canted out of the ab plane in ϑ=±45 deg
angles.

Figure S1 shows the magnetic field dependence of
the λc∗ linear magnetostriction coefficient at T=3 K.
In panels (a) and (b), the ab-plane projection of the
canted magnetic field was set parallel to the a and b
axes, respectively. The canting angle of the magnetic
field was set to ϑ=±45 deg. The λc∗ -H curves both

for H ∈ ac∗ and for H ∈ bc∗ were measured in a
complete ±14 T cycling of the H field; meaning 0 T
→ +14 T → −14 T → +14 T → . . . . In this sequence,
the 0 T → +14 T runs often show transient features,
and therefore these measurements are not presented.
The field increasing and decreasing runs for H ∈ ac∗
and H ∈ bc∗ are shown with solid and dashed lines,
meaning measurements with increasing and decreasing
magnitudes of the magnetic field, respectively. The field
increasing and decreasing runs show considerable, but
reproducible hysteresis, which is probably related to the
plastic deformation of RuCl3.

Here we give an estimate for the effect of magnetic
torque in the λc∗ magnetostriction measurements, using
the directly measured ∆Lc∗/L relative length change
shown in Fig. S2. As discussed in the main text, in
a magnetostriction measurement the sample is held in
place in the dilatometer by a force F applied on the
sample during the mounting. When the sample is placed
in a magnetic field, which is canted away from the main
crystallographic axes, a magnetic torque τ appears. This
magnetic torque tries to rotate the crystal within the
dilatometer, as illustrated in the inset of Fig. S2(a). The
sample rotates by a rotation angle α if the torque is
larger than the F · a0 maximum torque exerted by the
compression force of the dilatometer:

τ ≥ F · a0, (S7)

where the lateral size of our samples are a0=3.0 mm.
The rotation angle α of the sample can be estimated
using the measurements in Fig. S2. Using the directly
measured ∆Lc∗/L in Fig. S2(a), we estimate the positive
contribution of the magnetic torque to be of the order

of
(

∆Lc∗
L

)
τ
∼5·10−3, at the highest field, where the

thickness of the sample is L0=800µm. The ∆Lc∗/L gives
the estimation for the maximum of the dl lifting of the

side of the sample, as dl ∼
(

∆Lc∗
L

)
τ
L0. Therefore, we

can estimate the maximum of the α angle, as sin(α) =
dl
a0

, which is αmax ≈ 0.08 deg. Note, that according to
Eq. S7, the effect of the magnetic torque can be reduced
if the lateral size of the sample (a0) or the force (F ) are
increased.

Figure S3 investigates the reproducibility of the
λc∗ magnetostriction measurements for H ∈ ac∗ and
ϑ=±45 deg, using Sample #1 at T=1.8 K. In this
experiment, we have used a new dilatometer (Mini
Dilatometer, Kuechler), which is different from the
custom built one, used in the main text. In this
dilatometer it is possible to rotate the sample in-situ,
which means that it is not necessary to remove the
sample from the dilatometer to change the angle ϑ.
Therefore, the force applied on the sample is preserved
for each consecutive experiment. To suppress the
magnetic torque related signal, we have applied much
larger force on Sample #1 (in Fig. S3), than that
was applied in case of Sample #2 (in Fig. 5). In this
experiment, we measured the field dependence of the
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FIG. S2. (Color online) Magnetic field dependence of the
∆Lc∗/L relative length change and the corresponding λc∗

linear magnetostriction coefficient at T=3.0 K for the field
increasing runs. The magnetic field was canted out from the
ab plane in ϑ=±45 deg angles, perpendicular to the Ru-Ru
bonds, H ∈ ac∗. The inset of panel (a) illustrates the rotation
of the sample within the dilatometer, where the rotation angle
is α ≈ 0.08 deg.

magnetostriction, λc∗ -H and changed the ϑ canting angle
(H ∈ ac∗) between ±45 deg four times. We have found
that the difference in λc∗ -H between the ϑ = +45 deg
and −45 deg measurements qualitatively well reproduces
in this experiment; and it shows a similar difference
between the ±45 deg measurements as in Fig. 5,
however with a smaller magnitude. Note also, that
the magnetic torque related component is significantly
reduced due to the higher compression force in the
dilatometer. However, the new measurements show also
differences compared to the earlier measurements, i.e.
the magnitude of λc∗ -H is half as large than earlier
and the phase transition peaks are sharper. Moreover,
the negative peak at µ0H0=1.5 T only appears for the
ϑ = +45 deg measurements and not for ϑ = −45 deg,
which is a different behavior compared to that shown
in Fig. 5(g,h). These changes we relate to the larger
uniaxial pressure applied during the measurement shown
in Fig. S3 and to the lower measurement temperature
(T = 1.8 K), respectively. Figure S3(b) shows the ∆λc∗
magnetostriction difference calculated from the first two
measurement runs. The ∆λc∗ shows a similar decrease
in magnitude as the λc∗ -H. These differences motivate
further, uniaxial compression dependent magnetization
and magnetostriction measurements.

In Fig. S4(a,b) we show additional theoretical calcula-
tions for the angular dependence of the magnetization
up to fields µ0H = 15 T for H ∈ ac∗ and H ∈ bc∗,
respectively. In Fig. S4(c) we compare the angular
dependence of the magnetization for H ∈ ac∗ and H ∈
bc∗ in the presence of µ0H = 15 T, the horizontal axis
is expanded for better visibility. Note that while the
magnetization curve for H ∈ bc∗ is symmetric with
respect to the c∗ axis (ϑ = 90 deg), the M -ϑ curve for
H ∈ ac∗ is clearly not symmetric.
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FIG. S3. (Color online) (a) Magnetic field dependence of the λc∗ linear magnetostriction coefficient at T=1.8 K for sample #1.
The magnetic field was canted out of the ab plane in ϑ=±45 deg angles, H ∈ ac∗. During the measurement we changed the ϑ
canting angle in a +45 deg → −45 deg → +45 deg → −45 deg sequence. Numerals indicate the order of the measurements. (b)
Magnetic field dependence of the ∆λc∗ magnetostriction difference calculated from the measurements runs 1 and 2.
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FIG. S4. (Color online) Theoretical calculations for the angular dependence of the magnetization for (a) H ∈ ac∗ and for (b)
H ∈ bc∗. In panel (c), we compare the angular dependency for H ∈ ac∗ and H ∈ bc∗ at µ0H=15 T.


