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For genus g = r(r+1)
2 + 1, we prove that via the forgetful map, the universal Prym–Brill–

Noether locus Vr
g has a unique irreducible component dominating the moduli space Rg

of Prym curves.

1 Introduction

The moduli space Rg of Prym curves was brought to the attention of algebraic geometers

by Mumford in his influential paper [15], as a way of understanding principally

polarized Abelian varieties. For an element [C, η] of Rg, we let π : C̃ → C be the associated

double cover and let Nmπ : Pic2g−2(C̃) → Pic2g−2(C) be the norm map of this morphism

of curves. In this situation, the preimage of ωC consists of two disjoint varieties

P+ =
{
L ∈ Pic2g−2(C̃) | Nm(L) = ωC and h0(C̃, L) ≡ 0 (mod 2)

}

and

P− =
{
L ∈ Pic2g−2(C̃) | Nm(L) = ωC and h0(C̃, L) ≡ 1 (mod 2)

}
.

isomorphic to the Prym variety in Pic0(C̃).
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Following this development, Welters emphasized in [17] that Prym–Brill–Noether

theory can be employed in order to understand the geometry of subvarieties of Prym

varieties. More precisely, he considered the loci

Vr(C, η) :=
{
L ∈ Pic2g−2(C̃) | Nm(L) ∼= ωC, h0(C̃, L) ≥ r + 1, and h0(C̃, L) ≡ r + 1 (mod 2)

}

in order to study the singularities of the theta divisor of the associated Prym variety.

The relation between Prym–Brill–Noether theory and the study of singularities of theta

divisors piqued the interest of other mathematicians. The two papers [17] and [2] showed

that when g ≥ r(r+1)
2 +1, the locus Vr(C, η) is non-empty of dimension at least g−1− r(r+1)

2 .

In addition, for a generic [C, η] ∈ Rg, the locus Vr(C, η) has exactly this dimension when

g ≥ r(r+1)
2 + 1 and is empty when g <

r(r+1)
2 + 1; see [16]. Subsequently in [4], De Concini

and Pragacz viewed Vr(C, η) as a Lagrangian degeneracy locus (cf. [14]) and computed

the class of Vr(C, η) in the Prym variety when it has the expected dimension g−1− r(r+1)
2 .

In recent years, two new perspectives for the study of Prym–Brill–Noether theory

emerged. On one hand, it has been studied from the point of view of tropical geometry

(see [3] and [13]), thus providing another proof for the dimension estimate of Vr(C, η) for

a generic [C, η] and, on the other hand, from the perspective of moduli theory, with a

view to understanding the birational geometry of Rg for small values of g. It is natural

to ask when g ≥ r(r+1)
2 + 1 whether the universal Prym–Brill–Noether locus

Vr
g :=

{
[C, η, L] | [C, η] ∈ Rg and L ∈ Vr(C, η)

}

has a unique irreducible component dominating the moduli space Rg. This is true for

g >
r(r+1)

2 +1 because the fibre above a general [C, η] ∈ Rg is irreducible; see [5, Examples

6.2]. However, as pointed out in [12], this was not known for g = r(r+1)
2 + 1. The present

paper aims at showing that when g = r(r+1)
2 + 1, the moduli space Vr

g has a unique

irreducible component dominating Rg. In the interest of proving this result, we will

consider the compactification Rg of the moduli space of Prym curves Rg; see [1] and [10].

Ultimately, we degenerate to the boundary locus of Rg and employ the theory of limit

linear series, adapted to our situation.

2 Prym Linear Series

Our goal in this section is to provide a suitable definition of Prym linear series and then

use it to prove our main result. We will start by recalling some definitions regarding

limit linear series, while referring the reader to [6] for a thorough study.
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First, recall that a gr
d on a smooth curve Y is defined to be a pair (V, L) of a degree

d line bundle L together with an (r + 1)-dimensional vector subspace V ⊆ H0(Y, L). This

definition extends naturally to curves of compact type.

Let Y be a genus g curve of compact type. A crude limit gr
d consists of a gr

d (Vi, Li)

for every irreducible component Yi of Y, further satisfying the following property:

• Let q be a node of Y connecting two irreducible components, Yj and Yk, and

let 0 ≤ a0 < · · · < ar ≤ d and 0 ≤ b0 < · · · < br ≤ d be the vanishing orders at q of the

sections in Vj and Vk, respectively. Then, for any 0 ≤ i ≤ r we have

ai + br−i ≥ d.

If for any node q all the inequalities are in fact equalities, the limit linear system is

called refined.

Lastly, we define the Brill–Noether number associated to a smooth pointed curve

and a gr
d on it. Let (Y, p1, . . . , pn) be a smooth genus g curve together with n points on it,

and let l = (V, L) be a gr
d on Y. Let 0 ≤ ai

0 < · · · < ai
r ≤ d be the vanishing orders at pi

of the sections in V. The Brill–Noether number of the gr
d with respect to the points pi is

defined as

ρ(l, p1, . . . , pn) := g − (r + 1)(g − d + r) −
n∑

i=1

r∑
j=0

ai
j + n · r(r + 1)

2
.

Having these definitions, we are ready to particularize to our situation.

Let [C, η] ∈ Rg be a generic Prym curve. Then, we know from [17, Lemma 3.2] that

a generic element L ∈ Vr(C, η) satisfies h0(C̃, L) = r + 1. Moreover, when g = r(r+1)
2 + 1

we know from [16, Theorem 1.1] that all L ∈ Vr(C, η) satisfy h0(C̃, L) = r + 1. In

particular, the line bundle L can be viewed as a gr
2g−2 on the curve C̃. Furthermore, up to

restricting to an open subset, we can view all irreducible components of Vr
g dominating

Rg as contained in the moduli space Gr
2g−2(Rg) parametrizing limit gr

2g−2 over double

covers [π : C̃ → C] where C̃ is of compact type. We ask what points can appear in the

compactification of Vr
g inside this space.

Let [π : C̃ → C] ∈ Rg such that C is of compact type and admits a unique

irreducible component X satisfying ηX � OX . For this component X, we denote by

pX
1 , . . . , pX

sX
its nodes and by gX

1 , . . . , gX
sX

the genera of the connected components of C \ X

glued to X at these points. For an irreducible component Y of C, different from X, we

denote by qY the node glueing Y to the connected component of C \ Y containing X,
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and by pY
1 , . . . , pY

sY
the other nodes of Y. We denote by gY

0 , gY
1 , . . . , gY

sY
the genera of the

connected components of C \ Y glued to Y at these points.

Using the above notations, we can define the concept of a Prym limit gr
2g−2:

Definition 2.1. A Prym limit gr
2g−2, denoted L, is a crude limit gr

2g−2 on C̃ satisfying the

following two conditions:

1. For the unique component X̃ of C̃ above X, the X̃-aspect LX̃ of L satisfies

Nmπ|X̃ LX̃
∼= ωX

( s∑
i=1

2gX
i pX

i

)
.

2. For a component Y of C different from X, we denote by Y1 and Y2 the two

irreducible components of C̃ above it. We identify these two components with

Y via the map π . With this identification the Y1 and Y2 aspects of L satisfy

the following:

LY1
⊗ LY2

∼= ωY

(
(2g − 2 + 2gY

0 )qY +
s∑

i=1

gY
i pY

i

)
.

Because the points in the boundary need to respect the norm condition, we

immediately obtain that:

Lemma 2.1. Let [π : C̃ → C] ∈ Rg with C̃ of compact type, and let Vr
g be the closure

of Vr
g inside Gr

2g−2(Rg). Then the fibre of the map Vr
g → Rg over the point [π : C̃ → C] is

contained in the locus of Prym limit gr
2g−2 on [π : C̃ → C].

We are now ready to use a degeneration argument in order to prove our main

result.

Theorem 2.2. When g = r(r+1)
2 + 1, the space Vr

g has a unique irreducible component

dominating Rg.

Proof. We consider the boundary divisor �1 ⊆ Rg whose generic point is of the form

[Y ∪x E,OY , ηE �= OE ], where Y and E are components of genus g − 1 and 1, respectively.

Let [Y1 ∪x1
Ẽ ∪x2

Y2 → Y ∪x E] be the double cover associated to a generic element of �1.

We want to describe the locus of Prym limit gr
2g−2’s on such a double cover.
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Let L be a Prym limit gr
2g−2 on [Y1 ∪x1

Ẽ ∪x2
Y2 → Y ∪x E]. The additivity of the

Brill–Noether numbers implies the following:

ρ(2g − 1, r, 2g − 2) = −r ≥ ρ(LY1
, x1) + ρ(LẼ , x1, x2) + ρ(LY2

, x2).

But we know from [7, Theorem 1.1] and [9, Proposition 1.4.1] that ρ(LY1
, x1) ≥ 0,

ρ(LY2
, x2) ≥ 0 and ρ(LẼ , x1, x2) ≥ −r. It is clear that these are in fact equalities and L

is a refined limit gr
2g−2.

We denote by 0 ≤ a0 < a1 < · · · < ar ≤ 2g − 2 and 0 ≤ b0 < b1 < · · · <

br ≤ 2g − 2 the vanishing orders for the Y1 and Y2 aspects, respectively. The equality

ρ(LẼ , x1, x2) = −r implies that ai + br−i = 2g − 2 for all 0 ≤ i ≤ r.

The genericity of [Y2, x2] ∈ Mg−1,1 together with ρ(LY2
, x2) = 0 imply that

h0(Y2, LY2
(−bix2)) = r + 1 − i for all 0 ≤ i ≤ r. Using that LY1

⊗ LY2
∼= ωY(2g · x) and

the Riemann–Roch theorem, we obtain

h0(Y1, LY1
(−(2 + ar−i)q)) = g + r − 1 − ar−i − i.

Choosing i = 0 we get ar = g + r − 1. Inverting the roles of the ai’s and bi’s we obtain

that a0 = g − r − 1. Because we have the divisorial equivalences

aix1 + br−ix2 ≡ ajx1 + br−jx2

on the elliptic curve E for every 0 ≤ i, j ≤ r, we obtain that ai − ai−1 ≥ 2 for every

1 ≤ i ≤ r. This implies that ai = g − r + 2i − 1 for every 0 ≤ i ≤ r.

We now view the moduli space Mg−1,1 as embedded in Rg via the map

π : Mg−1,1 → Rg sending a pointed curve [Y, x] ∈ Mg−1,1 to [Y ∪x E,OY , ηE ] where [E, x]

is a generic elliptic curve and ηE is a 2-torsion line bundle on E. For the ramification

sequence α = (g − r − 1, . . . , g − 1) associated to the vanishing orders a = (a0, . . . , ar) =
(g−r−1, . . . , g+r−1), we consider the locus Gr

2g−2(α) parametrizing pairs [C, p, L] where

[C, p] ∈ Mg−1,1 and L is a gr
2g−2 having vanishing orders greater or equal to a at the point

p. Then the locus of Prym limit gr
2g−2 over Im(π) is birationally isomorphic to Gr

2g−2(α).

We know from [8, Lemma 3.6] that Gr
2g−2(α) has a unique irreducible component

dominating Mg−1,1. Moreover,

deg(Gr
2g−2(α) → Mg−1,1) = 2

r(r−1)
2 · (g − 1)! ·

r

i=1

(i − 1)!

(2i − 1)!
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as stated on the second page of [11]. On the other hand, we have from [4, Theorem 9] that

deg(Vr
g → Rg) = 2

r(r−1)
2 · (g − 1)! ·

r

i=1

(i − 1)!

(2i − 1)!
.

We conclude that all dominant irreducible components of Vr
g contain Gr

2g−2(α) in

their closure. From this we get that each such component map to Rg with degree at least

2
r(r−1)

2 · (g − 1)! · r
i=1

(i−1)!
(2i−1)! , implying unicity. �
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