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Zusammenfassung

Um die Eigenschaften eines Materials zu beschreiben oder vorherzusagen ist es notwendig, die Elek-
tronen in dem Material zu beschreiben. Das Verhalten der Elektronen wird mithilfe von Quanten-
mechanik beschrieben. Dies geschieht mathematisch durch das Lösen der Schrödingergleichung. Für
idealisierte nicht-wechselwirkende Elektronen ist die Lösung der Schrödingergleichung gegeben durch
eine Slater-Determinate der Einteilchenzustände. Die Einteilchenzustände ergeben sich aus der Lösung
der entsprechenden Einteilchen-Schrödingergleichung. Aufgrund des Bloch-Theorems haben die Einteil-
chenzustände die Form von Bloch-Funktionen. Die dazugehörigen Einteilchenenergie führen dann zum
sogenannten Bändermodell von Festkörpern. In Materialien in denen die Effekte der Elektron-Elektron-
Wechselwirkung schwach ist oder in denen die Elektron-Elektron-Wechselwirkung in einer Molekularfeld
(englisch mean-field) Näherung behandelt werden kann, können gut mit dem Bändermodell beschrie-
ben werden. Numerisch können solche Materialien daher oft erfolgreich mit Dichtefunktionaltheorie
beschrieben werden.

Wenn Wechselwirkungen jedoch stark werden und die Elektronen korreliert werden, dann bricht
dieses einfache Bild zusammen. Unter dem Begriff elektronische Korrelation sind all jene Effekte zu-
sammengefasst, die sich nicht mehr mit einer Slater-Determinante aus Einteilchenzuständen beschreiben
lassen. Diese Effekte sind numerisch und analytisch schwierig zu beschreiben. Jedoch sind sie für einige
interessante physikalische Phänomene in Materialien verantwortlich. Beispiele sind Supraleitung, Ma-
gnetismus, Mott-Isolatoren oder der fraktionale Quanten-Hall-Effekt. Viele dieser Zustände sind immer
noch nicht gut theoretisch verstanden. Gerade deshalb sind elektronische Korrelation jedoch seit vielen
Jahren ein aktives Forschungsfeld.

Um solche Materialien und Zustände zu beschreiben ist es jedoch notwendig mehr als nur die Stan-
dard ab inition Methoden, wie die Dichtefunktionaltheorie, zu verwenden. Eine Art korrelierte Ma-
terialien zu beschreiben ist das Hubbard-Modell welches 1963 simultan von Hubbard, Kanamori und
Gutzweiler eingeführt wurde. Das Hubbard-Modell ist ein Gittermodell, in welchem die Elektronen von
Gitterplatz zu Gitterplatz hüpfen können. Zwei Elektronen am selben Gitterplatz wechselwirken mit der
sogenannten Hubbard-Wechselwirkung. Die Hubbard-Wechselwirkung ist eine drastische Vereinfachung
der in Realität langreichweitigen Coulomb-Wechselwirkung der Elektronen. Physikalisch lässt sich die
Näherung, die Wechselwirkung als lokal zu beschreiben, jedoch in manchen Fällen dadurch rechtfertigen,
dass die Präsenz anderer Elektronen die Wechselwirkung zweier weit entfernter Elektronen abschirmt.

Das Hubbard-Model mit einem Band auf dem Quadratgitter ist ein viel studiertes Modell. Es wird oft
zur Modellierung von Hochtemperatursupraleitern, die auf Kupfer basieren, den sogenannten Cupraten,
verwendet. Cuprate haben ein schmales Band an der Fermienergie, welches hauptsächlich den Charak-
ter eines Kupfer d-Orbitals und eines Sauerstoff p-Orbitals besitzt. Gerade wegen der elektronischen
Korrelation besitzen Cuprate ein Phasendiagramm mit vielen verschieden Phases. Durch veränderung
der Temperatur oder Dotierung lassen sich supraleitende Phasen, ein Antiferromagnet, ein Metall, das
sich durch eine Fermi-Flüssigkeit beschreiben lässt oder es lässt sich eine Pseudobandlücke realisieren.
Das Hubbard-Modell wurde auch auf anderen Gittern wie die Kagome-Gitter, dem hexagonale Gitter
oder dem Dreiecksgitter studiert. Das Hubbard-Modell auf dem Dreiecksgitter spielt eine zentrale Rol-
le in der Modellierung von organischen Supraleitern und das hexagonale Gitter hat Ähnlichkeiten mit
Graphen.

Trotz seiner Einfachheit ist das Hubbard-Modell in der Praxis schwierig zu lösen. Exakte Lösungen
sind nur für wenige Grenzfälle, wie in einer Dimension, in unendlich vielen Dimensionen oder für kleine
Systemgrößen, in welchen sich das Hubbard-Modell mit exakter Diagonalisierung lösen lässt, bekannt.



Um trotzdem approximative Lösungen für das Hubbard-Modell zu finden, wurden mit der Zeit einige
Methoden entwickelt um Näherungslösungen zu erhalten. Ein Beispiel für eine solche Methode ist die
Zweiteilchen Selbstkonsistenz Methode (englisch Two-Particle Self-Consistent approach, TPSC). Jede
dieser Methoden hat ihre eigenen Stärken, Schwächen und numerischen Rechenaufwand.

Ein relativ junges Teilgebiet der Festkörperphysik ist das Teilgebiet der Topologie, welches sich mit
der topologischen Klassifikation von Phasen und Materialien beschäftigt. Topologie ist ursprünglich ein
Teilgebiet der Mathematik, das sich unter anderen mit invarianten Eigenschaften von Objekten unter
stetigen Verformungen beschäftigt. Seit den 1980er Jahren hat Topologie jedoch viele Anwendungen in
der Festkörperphysik gefunden. Im Jahr 2016 wurde Nobelpreis für Physik an Kosterlitz, Thouless und
Haldane verliehen

”
für theoretische Entdeckungen topologischer Phasenübergänge und topologischer

Materiephasen“.
In dem idealisierten Bild der wechselwirkungsfreien Elektronen können Bandstrukturen mithilfe der

Theorie der Bandtopologie klassifiziert werden. Die Idee ist, die Bloch-Funktionen selbst als eine Funk-
tion der Wellenzahl aufzufassen, welche Werte in der ersten Brillouin-Zone annimmt. Mathematisch
betrachtet ist die erste Brillouin-Zone nichts anderes als ein in d-Torus. Die Aufgabe besteht nun darin,
die Abbildung vom d-Torus auf die Bloch-Funktionen topologisch zu klassifizieren. Die entsprechende
mathematische Struktur wird Faserbündel genannt.

In der Festkörperphysik sind topologische Invarianten für topologische Isolatoren Größen die in-
variant unter stetigen Deformierungen des Hamiltonian sind während die Bandlücke geöffnet bleibt.
Mathematisch betrachtet ist eine solche stetige Deformation eine Homotopie. Die Chernzahl ist das
bekannteste Beispiel einer solchen topologischen Invarianten. Die Chernzahl ist direkt proportional
zu der Hall-Leitfähigkeit beim Quanten-Hall-Effekt bei welchem die Hall-Leitfähigkeit immer ein ganz-

zahliges vielfaches von e2

h
. Damit ist der Wert der Hall Leitfähigkeit allein durch Naturkonstanten

und die Chernzahl bestimmt. Andere Beispiele, in denen physikalische Observablen direkt mit ei-
ner topologischen Klassifizierung der Bänder zusammenhängen, sind elektrische Polarisation und der
Quanten-Spin-Hall-Effekt.

Ein physikalischer Effekt, der oft die Ursache dafür ist, dass ein Material topologisch nichttrivial
ist, das bedeutet eine nichttriviale topologische Invariante besitzt ist, ist die Spin-Bahn-Kopplung. Die
Spin-Bahn-Kopplung ist ein relativistischer Effekt, der in einem vereinfachten Bild daher kommt, dass
im Ruhesystem eines Elektrons es so aussieht, als würde sich die Atomkerne bewegen. Das resultierende
Magnetfeld der bewegten Atomkerne koppelt an das magnetische Moment des Elektrons und daher an
den Spin des Elektrons. Die Spin-Bahn Kopplung ist stärker für Elemente mit einer hohen Ordnungs-
zahl. Für Elemente mit kleiner Ordnungszahl ist die Spin-Bahn-Kopplung schwach und wird daher oft
vernachlässigt. Spin-Bahn-Kopplung ist verantwortlich für eine Reihe interessanter Phänomene in Ma-
terialien. Beispiele sind der Spin-Hall-Effekt, Spin-Texturen in Cupraten, kollektive Spin-Anregungen
in Graphen oder sie können auch generell wichtig sein um, die elektronische Struktur eines Materials zu
beschreiben, wie zum Beispiel in dem unkonventionellen Supraleiter Sr2RuO4.

Diese Arbeit beschäftigt sich mit mehreren Teilaspekten, welche durch das Zusammenspiel von Spin-
Bahn-Kopplung, Topologie und elektronischer Korrelation entstehen. Diese Arbeit ist folgendermaßen
aufgebaut. Kapitel 1 ist eine Einführung in die oben genannten Konzepte, Spin-Bahn-Kopplung, To-
pologie, elektronischer Korrelation und deren Zusammenspiel. Dort ist auch eine Übersicht über die
Struktur dieser Arbeit gegeben.

Kapitel 2 ist eine Einführung in das Hubbard-Modell und den Formalismus der Greenschen Funk-
tionen, um es zu beschreiben. In diesem Kapitel werden die Konzepte der retardierten Greenschen
Funktion, der Matsubara Greenschen Funkftion, der Spektraldarstellung, der Selbstenergie und das
Konzept eines erzeugenden Funktionals, um Korrelationsfunktionen zu erhalten, besprochen. Diese
Konzepte sind essenziell für den Rest dieser Arbeit.

In Kapitel 3 wird untersucht, wie sich das Konzept der elementaren Banddarstellungen (englisch
elementary band representation, EBR) auf Greensche Funktionen anwenden lässt, um topologische
Isolatoren mit Wechselwirkungen zu identifizieren.

Ein wichtiges Konzept in der topologischen Klassifikation von Festkörpern ist die das Schützen einer
topologischen Phase mit einer Symmetrie. Die Idee hier ist, dass man unter den stetigen Deformierun-
gen des Hamiltonoperators kein Brechen dieser Symmetrie zulässt. Hierfür kommen die Symmetrien
der Cartan-Altland-Zirnbauer-Klassen, die da wären Zeitumkehr, Teilchen-Loch Symmetrie und chirale



Symmetrie, sowie räumliche Symmetrien, infrage. In dieser Arbeit wird der Formalismus der topolo-
gische Quantenchemie (englisch topological quantum chemistry, TQC) verwendet. Dieser Formalismus
nutzt räumliche Symmetrien und die daraus resultierenden EBRs, um topologische Phasen zu iden-
tifizieren. Dieses Konzept funktioniert jedoch nur für Systeme ohne Wechselwirkungen, in denen das
Bändermodell anwendbar ist. Wenn wir jedoch wechselwirkende Systeme betrachten, dann ist das
Bändermodell und damit Bandtopologie nicht mehr anwendbar und die topologische Klassifizierung von
Festkörpern wird sehr viel komplizierter und ist ein aktives Forschungsfeld. Eine Möglichkeit Konzep-
te aus der Topologie auf wechselwirkende System zu übertragen ist die Matusbara Green’s Funktion
topologisch zu charakterisieren.

Um EBRs für die Greensche Funktion in einem Isolator zu definieren, untersuchen wir zunächst die
analytischen Eigenschaften einer Greenschen Funktion in einem Isolator und welche Konsequenzen sich
daraus für den sogenannten topologischen Hamiltonian, einem effektiven nicht wechselwirkenden Hamil-
tonian, ergeben. Wir geben einen Überblick über Darstellungen räumlicher Symmetrien in Festkörpern,
EBRs und TQC. Wir zeigen dann, wie die Greensche Funktion unter den Darstellungen der räumlichen
Symmetrien transformiert. Diese Eigenschaften können dann genutzt werden um EBRs für die Green-
sche Funktion zu definieren. Dies geschieht über den sogenannten topologischen Hamiltonian. Somit
können räumliche Symmetrien genutzt werden, um die Greensche Funktion topologisch zu klassifizieren.

Wir finden, dass sich diese Klassifizierung nur dann ändern kann, wenn sich die Lücke in der Spek-
tralfunktion bei Frequenz null schließt, die Greensche Funktion einen Eigenwert mit dem Wert null
bei Frequenz null besitzt oder die Greensche Funktionen eine der schützenden Symmetrien bricht. Ei-
ne genaue Korrespondenz zwischen der topologische Klassifizierung der Greenschen Funktion und dem
Konzept der Symmetrie geschützte topologische (englisch symmetry protected topological, SPT) Phasen
bleibt jedoch eine offene Frage.

Als Beispiel demonstrieren wir EBRs für die Greensche Funktion anhand des Su-Schriefer-Heeger-
Modells mit Hubbard-Wechselwirkung, für welches wir mithilfe exakter Diagonalisierung die Greensche
Funktion berechnen. Dieses Modell besitzt einen topologischen Phasenübergang welcher sich durch
einen null Eigenwert der Greenschen Funktion bei Frequenz null auszeichnet. Obwohl wir den Forma-
lismus in nur einer Dimension demonstrieren, lässt sich das Vorgehen mit dem Formalismus der TQC
direkt auf höhere Dimensionen übertragen. Der entwickelte Formalismus ermöglicht unter gewissen Be-
dingungen topologische Zustände anhand räumlicher Symmetrien zu erkennen, auch in der Präsenz von
Wechselwirkungen. Die Ergebnisse dieses Kapitels sind in Referenz [1] veröffentlicht.

Kapitel 4 beschäftigt sich mit der Erweiterung von TPSC, so dass sich Spin-Bahn-Kopplung be-
schreiben lässt. Die erweiterte Methode wird dann genutzt, um das Zusammenspiel von Hubbard-
Wechselwirkung und Spin-Bahn-Kopplung exemplarisch im Kane-Mele-Hubbard-Modell zu untersuchen.
Dies ermöglicht weiterhin in Kapitel 5 den Spin-Hall-Effekt im Kane-Mele-Hubbard-Modell zu untersu-
chen.

TPSC ist eine Methode, die gut zur Beschreibung von schwachen und mittelstarken elektronischen
Korrelationseffekten geeignet ist. TPSC berechnet eine approximative Selbstenergie für das Hubbard-
Model aus den Ladungs- und Spin-Fluktuationen. Die Idee von TPSC ist, Spin- und Ladungs-Vertices,
welche als lokal und konstant angenommenen werden, selbstkonsistent mit Hilfe von Summenregeln
zu bestimmen. TPSC ist so konstruiert, dass es das Pauliprinzip, das Mermin-Wagner-Theorem und
Erhaltungsgesetze für Ladung und Spin erfüllt. Die Methode hat einen geringen Rechenaufwand und
ist konzeptionell einfach, was ein transparentes Verständnis der zugrunde liegeneden Physik erlaubt.
Ein Nachteil der Methode ist, dass sie nicht dazu geeignet ist, starke Wechselwirkungen zu beschreiben,
außer bei hohen Temperaturen.

Zunächst erklären wir in diesem Kapitel, was Spin-Bahn-Kopplung ist und wann und in welchen
Materialien sie relevant ist. Wir geben auch eine Übersicht über die Methode TPSC und erklären
ihre Funktionsweise. Der Effekt der Spin-Bahn-Kopplung lässt sich nicht direkt in TPSC einbauen,
da der Effekt die Spinrotationssysmmetrie bricht. Die ursprüngliche Formulierung von TPSC basiert
auf dieser Symmetrie. In diesem Kapitel leiten wir daher neue TPSC Selbstkonsistenzgleichungen für
den Fall mit Spin-Bahn-Kopplung her. Eine Symmetrie, die in der Präsenz von Spin-Bahn-Kopplung
erhalten ist und welche notwendig ist um die neuen Selbstkonsistenzgleichungen herzuleiten, ist Zeitum-
kehrsymmetrie. Wir zeigen daher, wie sich Zeitumkehrsymmetrie in der zweiten Quantisierung einbauen
lässt und welche Konsequenzen sie für verschiedene Korrelationsfunktionen und Erwartungswerte hat.



Mithilfe einer Ansatzgleichung für einen der Spin-Vertices und den Summenregeln lässt sich nun ein
Selbstkonistenzproblem für die nun drei verschiedene Spin-Vertices und einen Ladungs-Vertex herleiten.
Spin-Bahn-Kopplung sorgt dafür, dass Spin und Ladung nun aneinander Koppeln. Die neuen TSCP
Selbstkonistenzgleichungen sind daher ein gekoppeltes System an Gleichungen. Die insgesamt vier Ver-
tices sind die Lösungen dieses Selbstkonsistenzproblems. Nachdem dieses Problem gelöst ist, lässt sich
aus der Lösung eine Selbstenergie konstruieren. Ohne Spin-Bahn-Kopplung reduzieren sich die hergelei-
teten Gleichungen wieder auf die ursprünglichen TPSC Selbstkonsistenz Gleichungen. Numerisch wird
all dies mithilfe eines im Rahmen dieser Arbeit entwickelten Python Codes erreicht.

Als Testmodell wird in dieser Arbeit das Kane-Mele-Hubbard-Modell mit TPSC studiert, um besser
das Wechselspiel zwischen Hubbard-Wechselwirkung und Spin-Bahn-Kopplung zu verstehen. TPSC
findet die Instabilität zu einem XY-Antiferromagnet bei hinreichend großer Hubbard-Wechselwirkung
in welchem die Spins in der x-y-Ebene orientiert sind. Gemischte Ladung-Spin-Fluktuationen sind klein
im Vergleich zu reinen Spin- und Ladungsfluktuationen. Weiterhin sind die zwei transversalen Spin-
Vertices stärker renormiert als der longitudinale Spin-Vertex. Eine stärkere Spin-Bahn-Kopplung sorgt
dafür, dass Spin-Fluktuationen kleiner werden und sich der Übergang zu einem XY-Antiferromagnet
zu größeren Werten der Hubbard-Wechselwirkung verschiebt. In der Nähe des Phasenübergangs zeigt
die Selbstenergie eine starke Impulsabhängigkeit, welche von den starken Spinfluctuationen stammt.
Ein Konsistenz-Check für die Selbstenergie zeigt, dass TPSC am Phasenübergang oder bei zu starker
Hubbard-Wechselwirkung seine Gültigkeit verliert.

Kapitel 5 beschäftigt sich mit dem Spin-Hall-Effekt in Abhängigkeit von Temperatur, Hubbard-
Wechselwirkung und Spin-Bahn-Kopplung. Hierfür wird das Kane-Mele-Hubbard-Modell mit TPSC
studiert. Insbesondere wird die Bedeutung von Vertexkorrekturen im Spin-Hall-Effekt bzw. der dazu-
gehörigen Leitfähigkeit untersucht.

Zunächst wird ein Überblick darüber gegeben, wie das zu einem elektrischen Feld dazugehörige
Vektorpotenzial an ein Gittermodell koppelt. Dies wird benutzt, um einen Ausdruck für die Spin-Hall-
Leitfähigkeit für endliche Temperaturen herzuleiten. Dafür wird wieder den Formalismus der Greenschen
Funktionen verwendet. Es wird analytisch gezeigt, dass im Limes unendlich kleiner Temperaturen die
Spin-Hall-Leitfähigkeit proportional zu einer topologischen Invarianten der Greenschen Funktion ist. Es
wird beschrieben, wie der Ausdruck für die Spin-Hall-Leitfähigkeit für endliche Temperaturen numisch
mit TPSC ausgewertet wird.

Wir studieren wieder das Kane-Mele-Hubbard-Modell welches am absoluten Temperaturnullpunkt
einen Phasenübergang zwischen dem Quanten-Spin-Hall-Isolator und dem XY-Antiferromagnet hat.
In unseren Simulationen identifizieren wir den Punkt des Phasenübergangs durch eine Divergenz der
antiferromagnetischen Korrelationslänge. Dies erlaubt es uns mit Hilfe von TPSC ein Phasendiagram
in Abhängigkeit der Hubbard-Wechselwirkung und der Stärke der Spin-Bahn-Kopplung zu berechnen.

Wir berechnen die Spin-Hall-Leitfähigkeit einmal mit impulsabhängigen Vertexkorrekturen und ein-
mal ohne. Die Vertexkorrektoren in TPSC für den Spin-Hall Effekt können als Maki-Thompson Beiträge
identifiziert werden. Die Vertexkorrekturen in TPSC können physikalisch als Anregung und anschließen-
de Reabsorbtion einer Spin-, Ladungs- oder gemischten Spin-Ladungs-Anregung interpretiert werden.
Es zeigt sich, dass für alle Temperaturen die Vertexkorrekturen einen hohen Beitrag zu der Spin-Hall-
Leitfähigkeit haben. In der Nähe des Phasenübergangs verdoppeln sie den Wert der Spin-Hall-Leitfähig-
keit sogar. Die Vertexkorrekturen sind notwendig, um den quantisierten Wert von −2e2/h im Limes
unendlich kleiner Temperaturen zu erhalten. Weiterhin, sinkt bei nichtverschwindener Temperatur
der Wert der Spin-Hall-Leitfähigkeit durch Erhöhen der Hubbard Wechselwirkung. Unsere Ergebnis-
se deuten darauf hin, dass der Grund hierfür die Streuung von Elektronen an antiferromagnetischen
Spin-Fluktuationen ist, welche stärker werden, je näher das System am Phasenübergang ist. Diese anti-
ferromagnetischen Spin-Fluktuationen sorgen für eine Renormierung der Bandlücke im System. Dieses
Verkleinern der Bandlücke kann effektiv auch als eine Erhöhung der Temperatur betrachten werden
und einer damit einhergehenden stärkeren Besetzung des Leitungsbandes, was wiederum den Wert der
Spin-Hall-Leitfähigkeit verkleinert. Es folgt, dass wenn antiferromagnetische Spin-Fluktuationen groß
sind, niedrigere Temperaturen erforderlich sind, um den Quanten-Spin-Hall-Effekt zu beobachten.

Auch, wenn das Kane-Mele-Hubbard-Modell ein stark vereinfachtes Modell ist, erlaubt es syste-
matisch das Wechselspiel zwischen elektronischen Korrelationen, hier modelliert durch die Hubbard-
Wechselwirkung, die zu einem Phasenübergang zu einer magnetisch geordneten Phase führt und einer



topologischen Transportgröße, die hier durch die Spin-Hall-Leitfähigkeit gegeben ist. Dieses Verständ-
nis kann eventuell nützlich sein bei Spintronikanwendungen basierend auf dem Spin-Hall-Effekt. Die
Ergebnisse dieses Kapitels wurden in Referenz [2] veröffentlicht.

In Kapitel 6 sind die Ergebnisse dieser Arbeit zusammengefasst und es wird ein Ausblick auf mögliche
künftige Forschungsprojekte gegeben.

Die in dieser Arbeit gewonnen Erkenntnisse und entwickelten Methoden bieten zahlreiche weitere
Anwendungen. Die Anwendung von EBRs auf Greensche Funktionen kann hilfreich sein bei der Suche
nach weiteren topologisch nichttrivialen Materialien. Insbesondere deshalb, weil es nur notwendig ist,
die Greensche Funktion an einigen wenigen Hochsymmetriepunkten zu berechnen, anstatt auf einem
dichten Gitter im Impulsraum. Auch wenn der Formalismus nur in einer Dimension mit exakter Dia-
gonalisirung demonstriert wurde, ist die Anwendung prinzipiell auch in höheren Dimensionen mit jeder
Vielteilchenmethode denkbar, die eine Berechnung der Matsubara Greenschen Funktion ermöglicht.

Auch die Erweiterung von TPSC so, dass sie Spin-Bahn-Kopplung beinhaltet, bietet viele weite-
re Anwendungsmöglichkeiten außer dem Spin-Hall-Effekt, die durch das Wechselspiel der Spin-Bahn-
Kopplung und der Hubbard-Wechselwirkung verursacht werden. Einige Beispiele sind die oben genann-
ten Spin-Texturen in Cupraten, kollektive Spin-Anregungen in Graphen, magnetische Anisotropie oder
die Realisierung eines p-Wellen-Supraleiters an der Grenzfläche eines Supraleiters und eines topologi-
schen Isolators. Auch in verschiedene Materialien wie zum Beispiel dem unkonventionelle Supraleiter
Sr2RuO4 muss die Spin-Bahn-Kopplung berücksichtigt werden, um die elektronische Struktur zu be-
schreiben. Viele dieser Anwendungen erfordern auch weitere Methodenentwicklungen, wie zum Beispiel
die Kombination der Multi-Orbital-Erweiterung von TPSC mit Spin-Bahn-Kopplung. Auch hier leistet
diese Arbeit einen wichtigen Schritt.

Das Fazit dieser Arbeit ist, dass das Zusammenspiel von elektronischer Korrelation, Spin-Bahn-
Kopplung und Topologie eine Fülle von interessanten Phänomenen hervorbringt. TPSC ist eine gute
Methode für schwache bis mittelstarke Wechselwirkungen diese Phänomene zu studieren.
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Chapter 1

Introduction

The field of condensed matter physics is concerned with the description and prediction of properties of
condensed matter, which especially includes liquid and solid phases of matter. To describe the phys-
ical properties of condensed matter or of a certain material it is necessary to describe the behavior
of electrons. Electrons are described quantum mechanically by the Schrödinger equation. For non-
interacting electron systems, the solution of the Schödinger equation is given by a Slater determinant
of single-particle states. In the case of a crystal, that in an idealized picture is described as a periodic
arrangement of atoms, Bloch’s theorem tells us that the single-particle states are given by Bloch func-
tions. This then leads to the band theory for solids. Materials in which the electron-electron interaction,
i.e. the Coulomb interaction, has a small effect or in which the interactions can be successfully treated
in a mean-field way, are well described within band theory. Such systems can be studied numerically
with density functional theory (DFT).

1.1 Electronic correlations

When interaction effects such between the electrons become significant and the electrons in the system
become correlated, this simple picture breaks down. Electronic correlation effect are all those effects that
cannot be described with a Slater determinant of single-particle states. Although difficult to describe
analytically and numerically, electronic correlation effects can lead to many interesting phenomena such
as magnetism, superconductivity, the Mott transition or interacting topological phases such as the
fractional quantum Hall state. Many of these phases are not well characterized yet and their study is
one of the most active research areas in condensed matter physics.

1.1.1 The Hubbard model

To model systems with electronic correlations, it is necessary to go beyond standard ab initio techniques.
One way to model such systems is the Hubbard model that was introduced simultaneously in 1963 by
Hubbard, Kanamori and Gutzwiller [7–9]. A recent review can be found in Ref. [10]. The Hubbard model
is a lattice model in which the electrons can hop from site to site with a certain hopping amplitude. Two
electrons on the same site interact via the Hubbard interaction U . The Hubbard model is a simplified
way of modeling the Coulomb interaction that in reality is long range. The physical justification of
modeling the Coulomb interaction by a short range interaction is that the Coulomb interaction for
further apart electrons is screened due to the presence of other electrons.

The single-band Hubbard model on a 2D square lattice has often been applied to model cuprate
high-temperature superconductors. These cuprates have a single narrow band at the Fermi level with
copper d and oxygen p orbital character. In this narrow band, correlation effects are large. Due
to electronic correlations, cuprates possess a rich phase diagram. Varying doping and temperature,
it is possible to realize regions in which the system is either a superconductor, an antiferromagnet,
possesses a pseudogap, shows strange metal behavior (linear in temperature resistivity) or Fermi liquid
behavior. The Hubbard model has also been studied on other lattices such as the honeycomb lattice
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due to its connection to graphene [11]. It also has been studied on the Kagome lattice, which is
used to model several candidate materials to observe a spin liquid [12–16]. The Hubbard model also
has been studied on the triangular lattice to model organic superconductors [13, 17–19]. Similar to
cuprates, organic superconductors possess a rich phase diagram with regions of antiferromagnetism and
superconductivity. Multi-orbital extensions of the Hubbard model also include interorbital interactions
U ′ and Hund’s coupling J [8]. In this way, materials with more then one band near the Fermi level can
be modeled such as ruthenates or iron-based superconductors [20].

Although the Hubbard model is a simplified model, exact solutions are only known for special cases
such as in one dimension [21], in infinite dimensions with dynamical mean-field theory (DMFT) [22–24] or
for limited cluster sizes with exact diagonalization. The reason is that the size of the Hilbert space grows
exponentially with the number of orbitals considered. To approximately solve the Hubbard model, many
different many-body methods have been developed over the years such as density matrix renormalization
group (DMRG) [25, 26], DMFT [22–24, 27], the two-particle self-consistent approach (TPSC) [28–30],
the dynamical vertex approximation (DΓA) [31] or the dual Fermion approach (DF) [32]. Each of them
comes with their own strengths, weaknesses and computational costs.

1.1.2 The Two-Particle Self-Consistent approach

In this thesis, we focus on TPSC which we extend to include spin-orbit coupling (SOC). TPSC is a
weak to intermediate coupling approach to the Hubbard model capable of calculating a frequency- and
momentum-dependent self-energy from spin and charge fluctuations. The idea of TPSC is to determine
spin and charge vertices, which are assumed to be local and constant, in a self-consistent way with the
help of sum rules. TPSC satisfies conservation laws for spin and charge, the Pauli principle and the
Mermin-Wagner theorem. It is computationally inexpensive and conceptually simple, which often allows
for a transparent understanding of the underlying physics of the studied phenomena. For a review of
TPSC see Refs. [30, 33, 34]. TPSC has been used to study a variety of systems and phenomena
that can be described by the Hubbard model such as the antiferromagnetic pseudogap in electron-
doped cuprates [30, 35], optical conductivity in the Hubbard model [36] and resilience of Fermi liquid
quasiparticles on cold parts of the Fermi surface [37]. The main limitation of TPSC is that it is not valid
in the strong coupling limit, except at very high temperature [38] or deep in the renormalized classical
regime, where the energy of the characteristic spin fluctuations becomes smaller than the characteristic
energy scale given by the temperature and the spin correlation length grows exponentially [28, 30].

1.2 Topological classification of phases of matter

A relatively young and branch of condensed matter physics is the topological classification of solids.
Topology is a branch of mathematics that since the 1980s has found many applications in the description
physical phenomena and characterization of solids. In 2016, Haldane, Kosterlitz and Thouless were
awarded the Nobel prize in physics ’for theoretical discoveries of topological phase transitions and
topological phases of matter’ [39].

In the simplified case of non-interacting electrons, solids can be classified topologically in terms of
band topology [40–44]. The fundamental idea of the topological classification of band structures is to
understand the Bloch states as a function of the wave vector which takes values in the first Brillouin
zone. Mathematically, the first Brillouin zone is a d-torus. So the problem one is concerned with is
the topological characterization of a map from a d-torus to a set of orthonormal Bloch states. The
corresponding mathematical structure is called a fiber bundle.

Topological invariants in the condensed matter contexts are characteristics of a band structure that
are invariant under continuous changes of the Hamiltonian while maintaining the gap. In mathematics,
such a deformation is called a homotopy. The Chern number is the most common example for such
a topological invariant [45]. In the quantum Hall effect, the Hall conductivity is an integer multiple

of e2

h
. The integer the conductivity is proportional to is given by the Chern number of the occupied

band space. Other notable examples for physical observables and phenomena that are directly related
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to topological characterization of the bands are the electric polarization [46, 47], the quantum spin Hall
effect [48, 49] and the orbital magnetization [50, 51].

Another important concept is the protection of topological phases due to symmetries. All non-
interacting topological phases protected by combinations of time reversal symmetry, particle-hole sym-
metry and chiral symmetry, that are enumerated in the Cartan-Altland-Zirnbauer (CAZ) symmetry
classes [52], have been classified by K-theory [53, 54]. Another important class of topological insu-
lators are topological crystalline insulators which are protected by spatial symmetries [55]. In three
dimensions non-interacting topological crystalline insulators have been systematically investigated in
the formalism of topological quantum chemistry (TQC) [56, 57] in terms of elementary band representa-
tions (EBRs) [58–60] or equivalently in the formalism of symmetry indicators [61, 62] or the algorithm
in Ref. [63].

When interactions are introduced, the simple picture of a band structure breaks down and the
topological classification of a solid becomes more complicated. A phenomenon that is only possible with
interactions is the fractional quantum Hall state [64]. The fractional quantum Hall state is an example for
topological order [65]. Investigating the interplay of electronic correlation effects and topology is topic of
active research. A minimal generalization of the topological characterization to interacting systems are
so called symmetry protected topological (SPT) phases [66–72]. Another way to generalize topological
concepts to interacting system is to topologically characterize the Matsubara Green’s function [73–80].

1.3 Spin-orbit coupling

Often, the driving effect that makes a system become topologically nontrivial is spin-orbit coupling
(SOC). This usually happens by the SOC causing a band inversion making the bands to become topo-
logical. Spin-orbit coupling (SOC) is a relativistic effect that originates from the movement of an
electron around the ionic cores in a material. In a simplified picture, one can imagine that in the rest
frame of the electron the atom core moves around the electron. The electrons magnetic dipole moment
associated to the spin couples to the resulting magnetic field. For elements with a small atomic num-
ber, SOC is small and hence is often neglected. However, SOC can lead to a number of interesting
phenomena in materials, where interplay with electronic correlations can become important. Notable
phenomena in materials caused by SOC are spin textures in cuprates [81, 82], collective spin excitations
in graphene [83–88] or the (quantum) spin Hall effect [48, 49, 89–91]. Generally the electronic structure
determining a material’s properties can become crucially influenced by SOC such as for example in
Sr2RuO4 [92–99]. To appropriately describe such a material and its properties SOC has to be taken
into account.

1.4 Outline of this thesis

In this thesis, we are concerned with certain aspects of the interplay of electronic correlation effects,
topological properties and spin-orbit coupling. The model we consider is the Hubbard model, once
in one dimension for the Su-Schriefer-Heeger model with Hubbard interactions (SSH+U) and once in
two dimensions for the Kane-Mele model with Hubbard interactions (KMH). The SSH+U model we
solve numerically exactly with exact diagonalization (ED) for a limited number of 12 sites. We then
investigate how the formalism of EBRs can be applied to interacting systems via the Matsubara Green’s
function and demonstrate it on the example of the SSH+U model. The KMH model we investigate
with TPSC which we extend to the case with SOC. In the KMH we are interested in two aspects. First
we study systematically the interplay of SOC and Hubbard interaction. Second we study the spin Hall
effect that is caused by SOC in the presence of Hubbard interaction at finite temperature. Here, TPSC
allows us to study the effect of vertex corrections on the spin Hall conductivity, that are linked to the
momentum dependence of the self-energy. Hence, the outline of this thesis is the following.

In Chap. 2 review the Hubbard model and the Green’s function formalism we use throughout this
thesis. Therefore, we first explain our notation and conventions. Then, we define the Hubbard model
and review important concepts such as the Green’s function, spectral representation and self-energy that
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we use study the Hubbard model in this thesis. We then present a formalism which allows to calculate
correlation functions as functional derivatives of a generating functional.

In Chap. 3 we investigate how the formalism of elementary band representations can be applied to
the Matsubara Green’s function to study interacting topological insulators and demonstrate it at the
example of the SSH+U model. Therefore, we first investigate the analytical properties of the Matsubara
Green’s function in an insulator that allow us to define an effective non-interacting Hamiltonian, namely
the topological Hamiltonian. We then review band representations for spatial symmetries and the
concept of an EBR for the non-interacting case. We then show that the Green’s function transforms
under spatial symmetries with the band representations. This then allows us to define EBRs for the
Matsubara Green’s function via the topological Hamiltonian. We discuss the meaning and the limitations
of applying the concept EBRs to the Green’s function. We demonstrate the formalism at the simplest
possible example, namely the SSH+U model which we solve numerically exactly with ED.

In Chap. 4 we extend TPSC to include SOC, which we then use to investigate the interplay of
SOC and Hubbard interaction in the KMH model. We first derive the self-consistency equations in
the presence of SOC including the ansatz equation and the sum rules. Throughout the derivation
we make use of time reversal symmetry, a symmetry that is preserved in the presence of SOC. We
hence explain how TR is incorporated in the second quantization formalism and which consequences
TR has for correlation functions and expectation values. In the second level approximation we derive
an expression for the self-energy. We show that our derived equations reduce to the original TPSC
equations when SOC vanishes. We then define the KMH model. In this model the SOC is proportional
to the Sz component of the spins. This makes it a simple example to study the interplay of SOC and
the Hubbard interaction. We do so by studying the dependence of the renormalized vertices, double
occupation, correlation function, Green’s function and self-energy for different values of the Hubbard
interaction strength of SOC and temperature.

In Chap. 5 we study the effect of vertex corrections on the spin Hall conductivity at finite temperature
in the KMH model. Therefore, we first derive an exact expression for the spin Hall conductivity in the
presence of interactions in terms of the Matsubara Green’s function for finite temperature that takes
vertex corrections into account. We explain that in the zero temperature limit the derived expression
becomes a topological invariant of the Green’s function, which allows the spin Hall conductivity in that
limit only to take quantized values. We explain how the finite temperature expression for the spin Hall
can be evaluated with TPSC. We then present results for the spin Hall conductivity as a function of
Hubbard U strength of SOC and temperature. Further, we calculate a phase diagram as a function of
SOC and Hubbard U , the correlation length for the antiferromagnetic spin fluctuations and the band
gap renormalization. We also explain how the antiferromagnetic spin fluctuations renormalize the band
gap when increasing Hubbard U .

In Chap. 6 we conclude this thesis with the summary of the findings and an give an outlook on
possible future research avenues.
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Chapter 2

The Hubbard model

In this thesis we will be concerned with finding approximate solutions to the Hubbard model to analyse
its properties. In this chapter we will hence first give the definition of the Hubbard model and also
the definition of the correlation functions such as the Green’s function that we use to investigate the
properties of the Hubbard model. We will also review the spectral representation of the Green’s function,
the self-energy and the Bethe-Salpeter equation.

In Sec. 2.1 we give the notation and conventions we use throughout this thesis. In Sec. 2.2 we give
the definition of the Hubbard model we are concerned with in this thesis. In Sec. 2.3 we discuss the
retarded Green’s function and its properties. In Sec. 2.4 we discuss the Matsubara Green’s function
and its relation to the retarded Green’s function. In Sec. 2.5 we review how correlation functions can
be obtained from functional derivatives of a generating functional. We use them to derive the Bethe-
Salpeter equation for susceptibilities and an expression for the self-energy in terms of a four-point
correlation function.

This chapter is based on Refs. [100–103] that offer a good introductions into the Green’s functions
formalism.

2.1 Notation and conventions

In this theses we use the following notations and conventions listed in this section.

• We set ℏ = kB = 1 unless stated otherwise.

• e = |e| is the elementary charge.

• We use β = 1
T

where T is the temperature.

• ωn = (2n+ 1)πT with n being an integer, are the Fermionic Matsubara frequencies.

• qm = 2mπT with m being an integer, are the Bosonic Matsubara frequencies.

• k = (iωn,k) for Fermions and q = (iqm, q) for Bosons, where k and q are k-points inside the first
Brillouin zone.

• 1 = (τ1,Ri1 , a1, σ1) where τ1 is imaginary time, Ri1 is the lattice vector of the unit cell i1, a1
labels the orbitals in the unit cell and σ1 is the spin index.

• We use the following shorthand notation for summation and integration

ϕ(1̄)ψ(1̄) =
∑

Ri1

∑

a1

∑

σ1

∫ β

0

dτ1ϕRi1
a1σ1

(τ1)ψRi1
a1σ1

(τ1). (2.1)

• We denote infinitesimal time shifts by 1+ = (τ1+ϵ,Ri1 , a1, σ1) and 1− = (τ1−ϵ,Ri1 , a1, σ1) where
ϵ > 0 is an infinitesimal small number.
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• The (discrete) Fourier transform and the inverse Fourier transform from the lattice to k-space for
the single-particle states i.e. from Wannier functions WRiaσ(r) to Bloch-like functions ψkaσ(r)
from is given by

ψkaσ(r) =
1√
N

∑

Ri

e−ik·RiWRiaσ(r), (2.2)

WRiaσ(r) =
1√
N

∑

k

eik·Riψkaσ(r). (2.3)

• The Fourier transform and the inverse Fourier transform from imaginary times to Matsubara
frequencies of the Matsubara Green’s function is given by

Gab
σσ′(iωn,k) =

∫ β

0

dτeiωnτGab
σσ′(τ,k), (2.4)

Gab
σσ′(τ,k) = T

∑

ωn

e−iωnτGab
σσ′(iωn,k). (2.5)

2.2 Definition of the Hubbard model

The Hubbard model was introduced simultaneously by Hubbard, Kanamori and Gutzwiller in 1963 [7–
9]. A recent review can be found in Ref. [10]. The Hubbard model is a model to describe interacting
electrons on a lattice. The Hubbard model for a single orbital in the unit cell is defined as

H =
∑

ijσσ′

tiσjσ′c†iσcjσ′ + U
∑

i

ni↑ni↓. (2.6)

The creation and annihilation operators create or annihilate an electron in a state located in unitcell i
with lattice vector Ri and spin index σ. These state are periodically placed, localized and orthonormal
and can be regarded as corresponding to Wannier functions. The hopping matrix elements tiσjσ′ describe
the hopping from one orbital to another one. The interaction term with the interaction strength U is
local. The model is often used to describe cuprate high-temperature superconductors. Electrons in
a material also interact via the coulomb interactions with electrons in other orbitals but this effect is
reduced due to screening and hence often neglected. Placing multiple orbitals in the unit cell the model
becomes

H =
∑

ijabσσ′

tiaσjbσ′c†iaσcjbσ′ + U
∑

ia

nia↑nia↓, (2.7)

where the indices a and b label the orbitals. The model can be further extended to also include
interorbital interactions U ′ and Hunds coupling J . In the noninteracting case U = 0 the model can be
solved analytically via the discrete Fourier transformation

c†iaσ =
1√
N

∑

k

eik·Ric†kaσ, (2.8)

ciaσ =
1√
N

∑

k

e−ik·Rickaσ. (2.9)

The inverse transformation is given by

c†kaσ =
1√
N

∑

j

e−ik·Rjc†jaσ, (2.10)

ckaσ =
1√
N

∑

j

eik·Rjcjaσ. (2.11)



2.3. The Green’s function 11

c†kaσ ( ckaσ ) creates (annihilates) an electron in a Bloch-like basis state. With this transformation the
model becomes diagonal in k

H0 =
∑

k

Hk
0 =

∑

k

∑

abσσ′

c†kaσ
(

H(k)
)

aσbσ′ckbσ′ , (2.12)

where H(k) is the Bloch-Hamiltonian matrix whose matrix elements are given by

Haσ,bσ′(k) =
∑

Rij

tiaσjbσ′ exp (−ik ·Rij). (2.13)

where Rij = Ri −Rj . H(k) needs to be diagonalized to obtain the band energies ϵn(k). In the case
of a single (spinless) band one directly obtains the band energy ϵ(k). For a square lattice with unit cell
length a and only nearest neighbor hopping t one obtains

ϵ(k) = 2t (cos(kxa) + cos(kya)) . (2.14)

2.3 The Green’s function

In a solid with of the order 1023 electrons a wave function often becomes an unfeasible concept to do
numerical calculations. The reason is that the many-body wave function of such a system depends on all
the electron position coordinates as an argument. Hence, the wave function requires too much memory
to store on a computer.

A feasible approach to describe such systems instead is to use correlation functions that measure
how electrons propagate through the system. Many physical observables can be expressed through
these correlation functions. One example of such a correlation function is the single-particle Green’s
function which we will discuss in the following. This section is based on Refs. [100–103] that offer a
good introductions into the Green’s functions formalism.

2.3.1 Definition

The retarded one-particle Green’s function for fermions on a lattice is defined as

GRab
σσ′ (t, t′,Ri,Rj) = −i ⟨

{

ciaσ(t), c
†
jbσ′(t

′)
}

⟩Θ(t− t′) (2.15)

where {A,B} is the anticommutator of two operators. The expectation value is with respect to the
equilibrium density matrix in the grand canonical ensemble

⟨O⟩ = Tr(e−β(H−µN̂)O)

Tr(e−β(H−µN̂))
. (2.16)

where here N̂ is the particle number operator. The creation and annihilation operators are written in
the Heisenberg picture

ciaσ(t) = ei(H−µN̂)tciaσe
−i(H−µN̂)t, (2.17)

c†iaσ(t) = ei(H−µN̂)tc†iaσe
−i(H−µN̂)t. (2.18)

The single particle Green’s function can be interpreted as measuring how a single electron or hole
propagates trough the system. The situation is sketched if Fig. 2.1. Note the Green’s function we
defined above is not necessarily a Green’s function in the mathematical sense i.e. that they solve a
differential equation, which in our case would be the Schrödinger equation. Although, in the case
without interactions both coincide.

Later, we will encounter special cases of higher order correlation functions, such as the spin and the
charge susceptibility.
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(t, r)
(t′, r′)

System

Figure 2.1: Sketch of the physical interpretation of the Green’s function. The Green’s function, here depicted
as a line with an arrow, is a correlation function that measures how an electron or hole enters the system at
(t′, r′) and then leaves the system at (t, r). This way the properties of the system are probed by letting electrons
or holes propagate through it.

2.3.2 Fourier transforms

In a system in which the Hamiltonian does not explicitly depend on time, the Green’s function only
depends on one time argument. Also, in a periodic system the Green’s function only depends on the
distance between the lattice sites. Both are true for the Hubbard model Eq. 2.7 we are interested in.
Hence, we can simply write

GR(t− t′,Ri −Rj) = GR(t− t′, 0,Ri −Rj , 0) = GR(t, t′,Ri,Rj) (2.19)

Taking advantage of the periodicity we can define the retarded one-particle Green’s function in k-space
as

GRab
σσ′ (t,k) = −i ⟨

{

ckaσ(t), c
†
kbσ′(t

′)
}

⟩Θ(t− t′) (2.20)

The basis transformation is done via a discrete Fourier transformation

GRab
σσ′ (t,k) =

1

N

∑

R

eik·RGRab
σσ′ (t,R) (2.21)

With a Fourier transform in time we can go to real frequencies. To obtain a well defined expression we
insert an infinitisimal damping part e−ηt with η > 0 an infinitesimal real number, to make the integral
convergent

GR(ω,k) =

∫ ∞

−∞

dteiωte−ηtGR(t,k). (2.22)

2.3.3 Example: Single-band without interactions

In a noninteracting (spinless) system with one band with energies ϵ(k) we can easily calculate the time
dependence of the annihilatation operator in the Heisenberg picture

−i∂tck(t) =
[

H − µN̂, ck(t)
]

= −(ϵ(k)− µ)ck(t). (2.23)

Hence, we get

ck(t) = e−i(ϵ(k)−µ)tck (2.24)

The Green’s function is then given by

GR
0 (t,k) = −ie−iϵ(k)t ⟨

{

ck, c
†
k

}

⟩Θ(t) = −ie−iϵ(k)tΘ(t). (2.25)

Going to frequency space we get
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GR
0 (k, ω) =

∫ ∞

−∞

dteiωte−ηt(−i)e−i(ϵ(k)−µ)tΘ(t) =
1

ω + iη − ϵ(k) + µ
. (2.26)

In the case for several bands this expression generalizes to

GR
0 (k, ω) = ((ω + iη)1−H(k) + µ1)

−1
, (2.27)

where 1 is the unit matrix, so that the Green’s function now becomes a matrix.

2.3.4 Spectral representation

In this section we want to derive the Lehmann representation or spectral representation of the retarded
Green’s function

GRab
σσ′ (ω,k) =

∫ ∞

−∞

dω′A
ab
σσ′(ω′,k)

ω + iη − ω′
. (2.28)

with the spectral function given by

Aab
σσ′(ω,k) =

1

Z

∑

m,n

e−β(En−µNn)
(

⟨n|ckaσ|m⟩ ⟨m|c†kbσ′ |n⟩ δ
(

ω − (Em − En − µ)
)

+ ⟨n|c†kbσ′ |m⟩ ⟨m|ckaσ|n⟩ δ
(

ω − (En − Em − µ)
)

)

, (2.29)

where Z = Tr
(

e−β(H−µN)
)

, {|n⟩} is a complete set of the many-body eigenstates of H −µN̂ , Nn is the
number of particles in state |n⟩ and En its energy. The trace of the spectral function is a observable
and can be observed in angle-resolved photon emission spectroscopy (APRES) experiments.

The spectral representation can be derived from

GRab
σσ′ (ω,k) =

∫ ∞

−∞

dteiωtGR(t,k) (2.30)

= −i
∫ ∞

0

dteiωte−ηt ⟨
{

ckaσ(t), c
†
kbσ′(0)

}

⟩ . (2.31)

We now rewrite the anticommutator by inserting a complete set of the many-body eigenstates of H−µN̂

⟨
{

ckaσ(t), c
†
kbσ′

}

⟩ = 1

Z

∑

m,n

(

⟨n|e−β(H−µN̂)ei(H−µN̂)tckaσe
−i(H−µN̂)t|m⟩ ⟨m|c†kbσ′ |n⟩

+ ⟨n|e−β(H−µN̂)c†kbσ′ |m⟩ ⟨m|ei(H−µN̂)tckaσe
−i(H−µN̂)t|n⟩

)

. (2.32)

We now use e−i(H−µN̂)t |n⟩ = e−i(En−Nn)t |n⟩. In the first term |n⟩ has one less particle than |m⟩. In
the second term it is the other way around. So we get (Em − µNm)− (En − µNn) = Em − En − µ for
the first term and (En − µNn)− (Em − µNm) = En − Em − µ in the second term. We get

⟨
{

ckaσ(t), c
†
kbσ′

}

⟩ = 1

Z

∑

m,n

(

e−β(En−µNn)e−i(Em−En−µ)t ⟨n|ckaσ|m⟩ ⟨m|c†kbσ′ |n⟩

+ e−β(En−µNn)e−i(En−Em−µ)t ⟨n|c†kbσ′ |m⟩ ⟨m|ckaσ|n⟩
)

. (2.33)

Plugging the expression into Eq. 2.31 and performing the integral, we obtain
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GR(ω,k) =
1

Z

∑

m,n

(

e−β(En−µNn)
1

ω + iη − (Em − En − µ)
⟨n|ckaσ|m⟩ ⟨m|c†kbσ′ |n⟩

+ e−β(En−µNn)
1

ω + iη − (En − Em − µ)
⟨n|c†kbσ′ |m⟩ ⟨m|ckaσ|n⟩

)

(2.34)

Comparing with Eq. 2.28 we can identify the spectral function Eq. 2.29.
The spectral function can easily be recovered from the retarded Green’s function. Using the

Sokhatsky–Weierstrass theorem

lim
η→0+

1

ω + iη
= P 1

ω
− iπδ(ω), (2.35)

where P is the principal part, one can show that the spectral function is obtained from the antihermitian
part of the Green’s function

Aab
σσ′(ω,k) = − 1

2πi

(

GRab
σσ′ (ω,k)−

(

GRba
σ′σ (ω,k)

)∗
)

, (2.36)

where ∗ denotes complex conjugation. In the case of a (spinless) noninteractiong system with a single
band we get for the spectral function

A(k, ω) = − 1

π
Im
(

GR(ω,k)
)

= δ(ω − (ϵ(k)− µ)). (2.37)

This expression coincides with the k-point resolved density of states.

2.3.5 Self-energy

In an interacting system it is very difficult to calculate the exact Green’s function. This is only possible
for a limited number of cases. Hence, one often tries to find approximate expressions for the Green’s
function. The self-energy can be defined via the Dyson equation

ΣR(ω,k) = GR
0 (ω,k)

−1 −GR(ω,k)−1. (2.38)

The self-energy can be understand as a correction to the noninteracting Green’s function on how electrons
propagate through the interacting system. Reordering the last equation we can write the interacting
Green’s function in terms of the self-energy as

GR(ω,k) =
(

ω + iη −H(k) + µ− ΣR(ω,k)
)−1

. (2.39)

Numerous many-body methods are concerned with calculating an approximate expression for the self-
energy. In DMFT the self-energy is assumed to be constant in k-space and obtained by calculating
the self-energy by mapping the lattice problem to an auxiliary system, the Anderson impurity model.
In TPSC a frequency and k-dependent self-energy is calculated from spin and charge fluctuations. An
approximate expression for the self-energy can also be obtained via perturbation theory or a number of
other approximations, mentioned in the introduction.

2.4 The Matsubara Green’s function

2.4.1 Definition

The Matsubara Green’s function for fermions on a lattice is defined as

Gab
σσ′(τ,Ri −Rj) = −⟨Tτ ciaσ(τ)c†jbσ′⟩

= −⟨ciaσ(τ)c†jbσ′⟩+ ⟨c†jbσ′ciaσ(τ)⟩ (2.40)
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where τ ∈ [−β, β] with β = 1
T

is imaginary time, and Tτ is time ordering in imaginary time. In this
definition we again took advantage of periodicity in real space and time translation invariance due to
the Hamiltonian being time-independent. Time evolution in imaginary time is defined as

ciaσ(τ) = e(H−µN̂)τ ciaσe
−(H−µN̂)τ , (2.41)

c†iaσ(τ) = e(H−µN̂)τ c†iaσe
−(H−µN̂)τ . (2.42)

A discrete Fourier transform yields the Matsubara Green’s function in k-space

Gab
σσ′(τ,k) = −⟨Tτ ckaσ(τ)c†kbσ′⟩ . (2.43)

It can be shown that the Matsubara Green’s function is antiperiodic in imaginary time i.e. for T ∈ [−β, 0]
it holds

Gab
σσ′(τ,k) = −Gab

σσ′(τ + β,k). (2.44)

Proof. Let τ ∈ [−β, 0]. From the cyclic property of the trace we get

Gab
σσ′(τ,k) =

1

Z
Tr
(

e−β(H−µN̂)c†kbσ′ckaσ(τ)
)

=
1

Z
Tr
(

e−β(H−µN̂)eβ(H−µN̂))e(H−µN̂)τ ckaσe
−(H−µN̂)τe−β(H−µN̂)c†kbσ′

)

= ⟨ckaσ(τ + β)c†kbσ′⟩
= −Gab

σσ′(τ + β,k). (2.45)

By a Fourier transform we can go to Matsubara frequencies. Taking advantage of the antiperiodicity
we can write

Gab
σσ′(iωn,k) =

∫ β

0

dτeiωnτGab
σσ′(τ,k), (2.46)

where the fermionic Matsubara frequencies are defined as

ωn = (2n+ 1)πT. (2.47)

The inverse transformation is given by

Gab
σσ′(τ,k) =

1

β

∑

ωn

eiωnτGab
σσ′(iωn,k). (2.48)

Analogous to the case for the retarded Green’s function one can obtain with the Heisenberg equation
of motion for the noninteracting case of a single (spinless) band

Gab
0σσ′(τ,k) = −e−(ϵ(k)−µ)τ ((1− fT (ϵ(k)))Θ(τ)− fT (ϵ(k))Θ(−τ) (2.49)

where fT (ϵ) is the Fermi-Dirac distribution

fT (ϵ) =
1

1 + eβϵ
. (2.50)

In Matsubara frequencies this equation becomes

G0(iωn,k) =
1

iωn − ϵ(k) + µ
. (2.51)
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For multiple orbitals in the unit cell the last equation generalizes to

G0(iωn,k) = (iωn1−H(k) + µ1)
−1
, (2.52)

where 1 is the unit matrix.

2.4.2 Spectral representation and analytic continuation

Similarly to the retarded Green’s function the Matsubara Green’s function has a spectral representation.
A similar calculation yields

Gab
σσ′(iωn,k) =

∫ ∞

−∞

dω′A
ab
σσ′(ω′,k)

iωn − ω′
. (2.53)

with the spectral function A(ω,k) given by Eq. 2.29. The spectral representation can also be used to
define a function G(z,k) with z ∈ C that is holomorphic everywhere except the real axis where it has
poles. In the limit of an infinite size lattice the poles merge and form a branch cut. It is apparent from
that expression the retarded Green’s function can be obtained from the Matsubara Green’s function by
analytic continuation iωn → ω + iη i.e.

G(iωn,k)
iωn→ω+iη→ GR(ω,k). (2.54)

2.5 Correlation functions from functional derivatives

In the following we present a source field formalism developed by Martin and Schwinger with which one
can obtain correlation functions as functional derivatives of a generating functional [104, 105]. With
this formalism we can also find an expression for the self-energy. The obtained expressions will be used
later in Chap. 4 to derive the TPSC self-consistency equations.

2.5.1 Generating functional

We define a partition function Z [ϕ] with a source field ϕ

Z [ϕ] = ⟨Tτ exp
(

−c†(1̄)ϕ(1̄, 2̄)c(2̄)
)

⟩ . (2.55)

The thermal expectation value is again given by Eq. 2.16. In the above expression one has to think of
the exponential function as being defined through its Taylor series. We used the shorthand notation

(1) = (τ1,Ri1 , a1, σ1). (2.56)

The overbar indicates summation over indices and integration over complex time. Explicitly one has

c†(1̄)ϕ(1̄, 2̄)c(2̄) =
∑

Ri1
Ri2

∑

a1a2

∑

σ1σ2

∫ β

0

dτ1

∫ β

0

dτ2c
†
Ri1

a1σ1
(τ1)ϕRi1

a1σ1,Ri2
a2σ2

(τ1, τ2)cRi2
a2σ2

(τ2)

(2.57)
Defining

S [ϕ] = exp
(

−c†(1̄)ϕ(1̄, 2̄)c(2̄)
)

(2.58)

the Matsubara Greens function in the presence of a source field can now be obtained as a functional
derivative of the generating functional ln (Z [ϕ])

G(1, 2)ϕ = −δ lnZ [ϕ]

δϕ(2, 1)
= −⟨TτS [ϕ] c(1)c†(2)⟩

⟨TτS [ϕ]⟩ = −⟨Tτ c(1)c†(2)⟩ϕ . (2.59)

Setting ϕ = 0 one obtains the original expression for the Matsubara Green’s function
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G(1, 2) = G(1, 2)ϕ=0. (2.60)

Note that it holds

δϕ(1, 2)

δϕ(3, 4)
= δ(1− 3)δ(2− 4). (2.61)

Higher order correlation functions can be obtained by taking further functional derivatives. We define
the generalized susceptibility as

χ(1, 2; 3, 4)ϕ = −δG(1, 2)ϕ
δϕ(3, 4)

=
δ

δϕ(3, 4)

⟨TτS [ϕ] c(1)c†(2)⟩
⟨TτS [ϕ]⟩

= −⟨Tτ c(1)c†(2)c†(3)c(4)⟩ϕ −G(1, 2)ϕG(4, 3)ϕ. (2.62)

The first term in this expression is a four point correlation function. As special cases we obtain the
occupation number correlation functions defined by

χ(1, 2) = χ(1, 1+; 2+, 2) = ⟨Tτn(1)n(2)⟩ − ⟨n(1)⟩ ⟨n(2)⟩ . (2.63)

Similar to the Matsubara Green’s function we can take advantage of time translation invariance and
periodicity of the system to show that the function only depends on the differences τ = τ1 − τ2 and
R = Ri1 −Ri2 . Further, one can prove that for τ ∈ [−β, 0] it holds χ(τ,R) = χ(τ + β,R). With that
we can define the Fourier transforms as

∫ β

0

dτeiqmτ
∑

R

e−iq·Rχa1a2

σ1σ2
(τ,R) = χa1a2

σ1σ2
(iqm, q), (2.64)

with the Bosonic Matsubara frequencies defined by

qm = 2mπT. (2.65)

From these expressions spin susceptibilities for the spin z-direction and charge susceptibilities can be
constructed (see also Chap. 4).

2.5.2 Self-energy in the Hubbard model

In this section we derive an expression for the self-energy in the Hubbard model given by Eq. 2.6. We
will do so by deriving the equation of motion for the Green’s function, from which we can identify the
self-energy. The Heisenberg equation of motion in imaginary time for the annihilation operator is

∂τ ciaσ(τ) =

[

H − µ
∑

ia

nia, ciaσ(τ)

]

. (2.66)

where nia = nia↑ + nia↓. We can use the following identity to evaluate the commutator

[AB,C] = A{B,C} − {A,C}B. (2.67)

From this identity we get an expression that will be helpful in the following, namely

[

c†iaσcjbσ′ , cldσ′′

]

= −δadδσσ′′δilcjbσ′ . (2.68)

With the help of this expression one can calculate the above commutator for the individual terms of the
Hamiltonian in Eq. 2.6. We get
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∑

ijabσσ′

tiaσjbσ′c†iaσcjbσ′ , cldσ′′



 = −
∑

jbσ′

tldσ′′jbσ′cjbσ′ (2.69)

[

U
∑

ia

nia↑nia↓, cldσ′′

]

= −Unld−σ′′cldσ′′ (2.70)

[

−µ
∑

ia

nia, cldσ′′

]

= µcldσ′′ (2.71)

Taking these terms together we obtain

∂τ cldσ′′(τ) = −
∑

jbσ′

tldσ′′jbσ′cjbσ′(τ)− Unld−σ′′(τ)cldσ′′(τ) + µcldσ′′(τ) (2.72)

Taking the time-derivative of the first time argument of the Green’s function the derivative acts on the
annihilation operator. Hence, we get

∂τ1G
a1a2

σ1σ2
(τ1,Ri1 , τ2,Ri2)ϕ = δa1a2

δσ1σ2
δi1i2δ(τ1 − τ2)− ti1a1σ1 ī3ā3σ̄3

Gā3a2

σ̄3σ2
(τ1,Rī3 , τ2,Ri2)ϕ

− ϕa1ā3

σ1σ̄3
(τ1,Ri1 , τ̄3,Rī3)G

ā3a2

σ̄3σ2
(τ̄3,Rī3 , τ2,Ri2)ϕ

+ µGa1a2

σ1σ2
(τ1,Ri1 , τ2,Ri2)ϕ

− U ⟨Tτ c†i1a1−σ1
(τ1)ci1a1−σ1

(τ1)ci1a1σ1
(τ1)c

†
i2a2σ2

(τ2)⟩ϕ . (2.73)

The delta distribution is obtained from the time derivative of the time ordering. The ϕ is obtained by
differentiating the time ordered product in the exponential in ⟨·⟩ϕ. One can identify the non-interacting
Green’s function as

G0(1, 2̄)
−1 = −

(

δσ1σ̄2
δa1ā2

δi1 ī2∂τ1 + ti1a1σ1 ī2ā2σ̄2
− µδσ1σ̄2

δa1ā2
δi1 ī2

)

δ(τ1 − τ̄2) (2.74)

Note that the −1 is with respect to convolution. Hence, Eq. 2.73 can be written as

G0(1, 3̄)
−1G(3̄, 2)ϕ = δa1a2

δσ1σ2
δi1i2δ(τ1 − τ2) + ϕa1ā3

σ1σ̄3
(τ1,Ri1 , τ̄3,Rī3)G

ā3a2

σ̄3σ2
(τ̄3,Rī3 , τ2,Ri2)ϕ

+ U ⟨Tτ c†i1a1−σ1
(τ1)ci1a1−σ1

(τ1)ci1a1σ1
(τ1)c

†
i2a2σ2

(τ2)⟩ϕ . (2.75)

Comparing to the Dyson equation we can identify

Σ(1, 3̄)ϕG(3̄, 2)ϕ = U ⟨Tτ c†i1a1−σ1
(τ1)ci1a1−σ1

(τ1)ci1a1σ1
(τ1)c

†
i2a2σ2

(τ2)⟩ϕ . (2.76)

Solving this expression explicitly for the self-energy we get

Σ(1, 2)ϕ = U ⟨Tτ c†i1a1−σ1
(τ1)ci1a1−σ1

(τ1)ci1a1σ1
(τ1)c

†
ī3ā3σ̄3

(τ̄3)⟩
ϕ
(G−1)ā3a2

σ̄3σ2
(τ̄3,Rī3 , τ2,Ri2)ϕ. (2.77)

With the self-energy the Green’s function can be written as

G(1, 2)−1
ϕ = G0(1, 2)

−1 − ϕ(1, 2)− Σ(1, 2)ϕ. (2.78)

2.5.3 Bethe-Salpeter equation for the susceptibilities

In the following we derive an integral equation for the generalized susceptibilities, namely the Bethe-
Salpeter equation expanded in one of the two particle-hole channels. From functionally differentiating
the identity
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G(1, 3̄)ϕG
−1(3̄, 2)ϕ = δ(1− 2) (2.79)

we get the following expression

δG(1, 2)ϕ
δϕ(3, 4)

= −G(1, 5̄)ϕ
δG−1(5̄, 6̄)ϕ
δϕ(3, 4)

G(6̄, 2)ϕ. (2.80)

Inserting Eq. 2.78 one obtains

χϕ(1, 2; 3, 4) = −δG(1, 2)ϕ
δϕ(3, 4)

= −G(1, 5̄)ϕδ(3− 5̄)δ(4− 6̄)G(6̄, 2)ϕ −G(1, 5̄)ϕ
δΣ(5̄, 6̄)ϕ
δϕ(3, 4)

G(6̄, 2)ϕ

= −G(1, 3)ϕG(4, 2)ϕ −G(1, 5̄)ϕ
δΣ(5̄, 6̄)ϕ
δϕ(3, 4)

G(6̄, 2)ϕ. (2.81)

The last equation shows that Σ only depends on ϕ via the Green’s function and does not have an explicit
dependence on ϕ. Hence we can use the chain rule

χϕ(1, 2; 3, 4) = −G(1, 3)ϕG(4, 2)ϕ −G(1, 5̄)ϕ
δΣ(5̄, 6̄)ϕ
δG(7̄, 8̄)ϕ

δG(7̄, 8̄)ϕ
δϕ(3, 4)

G(6̄, 2)ϕ. (2.82)

We can again identify the functional derivative of G with minus the generalized susceptibility. Further,
we define the vertex function as

Γ(5, 6; 7, 8)ϕ =
δΣ(5, 6)ϕ
δG(7, 8)ϕ

. (2.83)

This function is irreducible in a particle hole-channel. That means diagrams contributing to it cannot be
cut in two by cutting two Green’s function lines that go in opposite directions. The irreducible vertex
function describes the interaction between two particles. Further, setting ϕ = 0 the Bethe-Salpeter
equation (in one of the two particle-hole channels) can be written as

χ(1, 2; 3, 4) = −G(1, 3)G(4, 2) +G(1, 5̄)Γ(5̄, 6̄; 7̄, 8̄)χ(7̄, 8̄; 3, 4)G(6̄, 2). (2.84)

This equation includes both the longitudinal and the transversal particle-hole channel. Since we also do
not assume spin rotation symmetry here the longitudinal and the transversal channel can be coupled.
In fact spin-orbit coupling breaks spin rotation symmetry.
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Chapter 3

Elementary band representations for

the Matsubara Green’s function

In this chapter we discuss the applicability of elementary band representations (EBRs) to diagnose
spatial- and time-reversal-symmetry protected topological phases in interacting insulators in terms of
their single-particle Matsubara Green’s functions. We do so by considering an auxiliary non-interacting
system HT(k) = −G−1(0,k), known as the topological Hamiltonian, whose bands can, as for any
non-interacting periodic system, be labeled by EBRs. We restrict ourselves to zero temperature and
assume that the groundstate of the considered system is non-degenerate. We find that the labeling of
the bands of the topological Hamiltonian by EBRs cannot change under continous variations of the
parameters of the Hamiltonian if neither (i) the gap in the spectral function at zero frequency closes,
(ii) the Green’s function has a zero eigenvalue at zero frequency or (iii) the Green’s function breaks a
protecting symmetry. We demonstrate the use of EBRs applied to the Green’s function on the one-
dimensional Su-Schrieffer-Heeger model with Hubbard interactions (SSH+U model), which we solve
by exact diagonalization for a finite number of unit cells. The use of EBRs for the Green’s function
to diagnose so-called symmetry protected topological (SPT) phases is discussed, but remains an open
question.

This chapter is organized as follows. In Sec. 3.1 we give an overview over the topological classification
of solids without interactions and with interactions. We also discuss the relation to physical observables.
In this context we also discuss the protection of topological invariants due to symmetries including spatial
symmetries. In Sec. 3.3 we establish the conditions that G(iω,k) needs to fulfill to define topological
invariants in terms of G(iω,k) and, we review the concept of a topological Hamiltonian. This analysis
sets the framework for the EBR classification of Green’s functions. In Sec. 3.4 we show how Bloch-
like wave functions and the corresponding creation and annihilation operators transform under spatial
symmetries. In Sec. 3.5 we give a brief introduction on EBRs and how they can be used to diagnose
if a system is topological. In Sec. 3.6 we investigate the implications that the spatial symmetries of
the many-body Hamiltonian have on G(iω,k). In Sec. 3.7 we discuss the EBR-based classification of
the topological Hamiltonian and discuss its use and limitations. In Sec. 3.8 we analyze the interacting
Green’s function of the one-dimensional Su-Schrieffer-Heeger model [106] with Hubbard interactions
(SSH+U) within the framework of TQC, diagnosing its topological phases by making use of the spatial
inversion symmetry present in the model. In Sec. 3.9 we summarize our findings. Unless stated otherwise
this chapter is based on Ref. [1]. Additional sections are added to make the discussion self-contained.
The ED solver to calculate the exact eigenstates of the SSH+U model was written by Steve Winter.

3.1 Introduction on the topological classification of solids

Non-interacting topological insulators are well understood in terms of band topology [40–44]. An in-
sulator is called topologically trivial if it is possible to continuously deform its band structure and
corresponding eigenstates to those of an atomic insulator without closing the energy gap or breaking
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a symmetry. If such a continuous deformation is not possible the system is called nontrivial or topo-
logical. Topological phases can be characterized by topological invariants that indicate an obstruction
to such a continuous deformation to an atomic insulator, if the invariant has a nontrivial value. The
Chern number, first proposed for the integer quantum Hall effect, is the most common example for a
topological invariant [45]. Other notable examples for physical observables and phenomena that are
directly related to topological characterization of the bands are the electric polarization [46, 47], the
quantum spin Hall effect [48, 49] and the orbital magnetization [50, 51].

Another important concept is the protection of topological phases due to symmetries. Actually, all
non-interacting topological phases protected by combinations of time reversal symmetry (TR), particle-
hole symmetry (PH) and chiral symmetry (CS), i.e. which belong to one of the ten Cartan-Altland-
Zirnbauer (CAZ) symmetry classes [52], have been classified by K-theory [53, 54].

Another important class of topological insulators are topological crystalline insulators which are pro-
tected by spatial symmetries [55]. In three dimensions non-interacting topological crystalline insulators
have been systematically investigated in all 230 space groups, with and without TR present, in the for-
malism of topological quantum chemistry (TQC) [56, 57] in terms of elementary band representations
(EBRs) [58–60] or equivalently in the formalism of symmetry indicators [61, 62] or the algorithm in
Ref. [63]. These formalisms are based on the fact that Bloch wave functions at high symmetry k-points
can be classified by irreducible representations (irreps) of the little group of these k-points. In this way
spatial symmetries place constraints on the connectivity of the bands in the Brillouin zone, which can
be used to identify those band structures that are compatible with an atomic insulator.

The topological classification and the extension to the above concepts of interacting systems is
much more involved compared to noninteracting ones. In principle, non-interacting insulators have a
very simple structure. Their ground state wave function is given by a Slater determinant of all single-
particle states below the Fermi level. Thus, the gap in the single-particle spectrum makes the ground
state wave function unique. To decide if two non-interacting insulators are topologically equivalent is
the same as investigating whether the corresponding Hamiltonians can be smoothly connected while
maintaining symmetries and maintaining the gap. The gap manifests in terms of (i) the many-body
ground state staying gapped, or (ii) the presence of a gap in the single-particle excitations. Both features
are equivalent in the absence of interactions. Hence it is sufficient to analyze the topological properties
of the map k 7→ H(k), where k is a reciprocal wavevector in the Brilloun zone (a d-torus, where d is
the dimension) and H(k) is the Bloch Hamiltonian. Hence it is equivalent for noninteracting systems
to investigate the topological properties of the (zero temperature) single-particle Matsubara Green’s
function G(iω,k), which for the non-interacting case is given as:

G0(iω,k) =
(

iω −H(k)
)−1

(3.1)

where iω denotes the Matsubara frequency, which at zero temperature becomes continuous. In the
presence of interactions investigating the adiabatic connectivity of Hamiltonians while the ground state
stays gapped and investigating the Green’s function is a priori not equivalent anymore.

In a more general context, the concept of symmetry protected topological (SPT) phases [66–72] has
been introduced to investigate the smooth connectivity of gapped, short range entangled phases while
maintaining symmetries. Alternatively, the topological characterization of the full interacting single-
particle Matsubara Green’s function G(iω,k) was put forward in efs. [73–80]. For the CAZ symmetry
classes it was shown that one obtains the same topological classification for the Green’s function as
for non-interacting Hamiltonians i.e. Z, Z2 or 0 [76]. A similar Green’s functions-based framework
for identifying spatial-symmetry-protected topological phases in interacting systems is investigated in
Ref. [1], on which this chapter is based on. Topological invariants of the Green’s function can in some
cases related to physical observables. One example is the Hall conductivity which can be written as [107]

σH
αβ(T = 0) = −e

2

h

ϵρηζ
24π2

∫

dkTr
(

∂ρG
−1(k)G(k)∂ηG

−1(k)G(k)∂ζG
−1(k)G(k)

)

, (3.2)

where ρηζ are summed over and stand for iωn, kα, kβ . ϵρηζ is the fully antisymmetric tensor. For a
derivation and why this expression is a topological invariant of the Green’s function see chap. 5. The
same holds for the spin Hall conductivity.
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3.2 Analytical properties of the Matsubara Green’s Function

In this section we investigate analytic properties of the Green’s function, necessary to apply EBRs to
interacting systems in terms of the Green’s function. For completeness and to avoid misunderstandings
we again give the definition of the zero-temperature Matsubara Green’s function and specify the basis
we work with in this chapter. We then define the conditions the Matsubara Green’s functions has to
fulfill to define topological invariants. We then proof that, for a Green’s function fulfilling the first two
GNSC-conditions, the corresponding topological Hamiltonian is Hermitian with finite eigenvalues whose
absolute value is bounded from below.

We consider a lattice model defined on a basis of exponentially localized, orthonormal Wannier
functions Wia(r) consistent with the symmetries of our system, where the index i labels the unit cell
with lattice vector Ri to which Wia(r) belongs to. The Wannier function in that cell is specified by
the index a which here can also include spin. From the Wannier functions Wia(r) one can construct
Bloch-like wave functions ψka(r) by a Fourier transform. In the basis of Bloch-like wave functions the
single-particle Matsubara Green’s function in the zero-temperature limit is defined as

Gab(τ,k) = −⟨0| T cka(τ)c†kb |0⟩ , (3.3)

where c†ka (cka) creates (annihilates) an electron in the Bloch-like state with crystal momentum k and
orbital index a. The time evolution is in imaginary time τ . T denotes time ordering in imaginary time
and |0⟩ denotes the ground state, which in the following we assume to be non-degenerate. We include
the chemical potential µ in the Hamiltonian. Note that naively the chemical potential in an interacting
insulator can be placed anywhere inside the gap of the spectral function at zero temperature. This may
lead to ambiguities in the topological classification of G near phase boundaries where the single-particle
gap does not close and the change instead happens through an eigenvalue being zero. However the
chemical potential in the zero temperature limit µ(T → 0) is unique and can be calculated by ensuring
fixed particle density as a function of T and then taking the zero temperature limit. See also the
discussion in Ref. [108]. With a Fourier transform one can go to imaginary frequencies iω, where here in
the zero temperature limit the discrete Matsubara frequencies iωn become continuous iωn → iω. The
Lehmann representation of the zero temperature Matsubara Green’s function is

Gab(iω,k) =
∑

m

[

⟨0| cka |m⟩ ⟨m| c†kb |0⟩
iω − (Em − E0)

+
⟨m| cka |0⟩ ⟨0| c†kb |m⟩
iω + (Em − E0)

]

. (3.4)

For the ground state having N particles the sum runs over the exact eigenstates |m⟩ of the many-body
Hamiltonian with N + 1 and N − 1 particles. The Em are the corresponding exact energy eigenvalues.
E0 is the ground state energy. For the special case of a non-interacting Hamiltonian the Matsubara
Green’s function can be simply written in terms of the corresponding Bloch Hamiltonian, see Eq. (3.1).

The Matsubara Green’s function G(iω,k) has an analytical extension from the imaginary axis to
the whole complex plane except the real axis, i.e. G(z,k) with z ∈ C \ R. The spectral representation
of G(z,k) is

G(z,k) =

∫ ∞

−∞

dω′

2π

A(ω′,k)

z − ω′
(3.5)

with the matrix elements Aab(ω,k) of the spectral function given by

Aab(ω,k) =
∑

n

⟨0| cka |n⟩ ⟨n| c†kb |0⟩ 2πδ
(

ω − (En − E0)
)

+
∑

n

⟨n| cka |0⟩ ⟨0| c†kb |n⟩ 2πδ
(

ω − (E0 − En)
)

, (3.6)

where ω ∈ R. Inserting Eq. (3.6) into Eq. (3.5) reproduces the Lehmann representation in Eq. (3.4).
From Eq. 3.5 one can directly see that G(z,k) has poles on the real axis. For the case of an infinite
crystal the poles of G(z,k) become dense and form a branch cut [109]. It can be shown from its definition
that the spectral function is Hermitian and positive semi-definite for all k and ω. For a vector v with
the same dimension as the spectral function and ||v|| = 1 we have
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∑

a,b

v∗aAa,b(ω,k)vb

=
∑

ab

(

∑

n

v∗a ⟨0| cka |n⟩ ⟨n| c†kb |0⟩ vb2πδ
(

ω − (En − E0)
)

)

+
∑

ab

(

∑

n

v∗a ⟨n| cka |0⟩ ⟨0| c†kb |n⟩ vb2πδ
(

ω − (E0 − En)
)

)

=
∑

n

| ⟨n|
(

∑

b

vbc
†
kb

)

|0⟩ |22πδ
(

ω − (En − E0)
)

+
∑

n

| ⟨0|
(

∑

b

vbc
†
kb

)

|n⟩ |22πδ
(

ω − (E0 − En)
)

≥ 0. (3.7)

where ∗ denotes complex conjugation. Further, taking again a vector v with the same dimension as the
spectral function and ||v|| = 1 the spectral function is normalized in the following sense

∫ ∞

−∞

dω

2π

∑

a,b

v∗aAa,b(ω,k)vb

=
∑

ab

v∗a ⟨0| {cka, c†kb} |0⟩ vb

=
∑

a,b

v∗avbδab

= 1, (3.8)

Every complex matrix can be decomposed into a Hermitian and an antihermitian part. Since A(ω,k)
is Hermitian and with z = x+ iy with x, y ∈ R we can write the Green’s function as

G(z,k) =

∫ ∞

−∞

dω′

2π
A(ω′,k)

(x− ω′)

(x− ω′)2 + y2
− i

∫ ∞

−∞

dω′

2π
A(ω′,k)

y

(x− ω′)2 + y2
, (3.9)

which defines a decomposition into an Hermitian and an antihermitian part G = G1 + iG2 with both
G1 and G2 being Hermitian. Evaluating the limit of z approaching the real axis we must distinguish
between taking the limit coming from the upper or the lower complex plane. For η > 0 and ω ∈ R one
obtains

lim
η→0

G(ω ± iη,k) = P
∫ ∞

−∞

dω′

2π

A(ω′,k)

(ω − ω′)
∓ i

2
A(ω,k), (3.10)

where P denotes the Cauchy principal value.
For the analysis of symmetry-protected topological invariants in terms of the zero temperature Mat-

subara Green’s function [73–80] it is assumed that the exact ground state of the many-body Hamiltonian
is unique and the chemical potential is included in the many-body Hamiltonian. In this case, the topo-
logical invariants are well defined and cannot change under continuous changes of the Green’s function as
long as the GNSC-conditions (gapped, non-singular, symmetries preserved, continuously differentiable)
which we define below, are fulfilled.

Definition 1. A Matsubara Green’s function G(iω,k) with associated spectral function A(ω,k) together
with a set of protecting symmetries fulfills the GNSC-conditions if all following conditions hold:

1. There is a non-zero gap in A(ω,k) at zero frequency, i.e. there exists an ϵ > 0 such that A(ω,k) =
0 for all ω ∈ [−ϵ, ϵ] for all k.

2. G(0,k) is non-singular for all k.
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3. G does not break a symmetry contained in the set of protecting symmetries.

4. G(iω,k) is continuously differentiable in k for all iω.

G(0,k) being nonsingular implies that all eigenvalues are non-zero for all k. The intuition between
such a continuous deformation is to continuously change the parameters of the many-body Hamiltonian.
The Green’s function then also changes continuously if there is no phase transition. It may be noted
that G does not break a spatial symmetry means that G(iω,k) commutes with the band representation
matrices as we will discussed in Sec. 3.6. For the implications of TR, PH and CS on G, see Ref. [76].

We now focus on the case where the spectral function has a non-zero gap at zero frequency for every
k-point, i.e. the first condition in Definition 1. This causes both limits limη→0G(ω ± iη,k) to coincide
within the gap and as a consequence G(iω,k) is analytic in iω. Further in this case G(0,k) is Hermitian,
because the antihermitian part iG2(0,k) is directly proportional to the spectral function A(0,k) and
hence vanishes, as can be seen from Eq. (3.10).

We now show that for a gapped spectral function the absolute values of the eigenvalues of G(0,k)
are bounded from above. To our knowledge this has not been shown before Ref. [1]. Since the gap is
non-zero, there exists an ϵ > 0 such that the interval [−ϵ, ϵ] lies inside the gap. For a vector v with the
same number of elements as G has rows (or columns) and ||v|| = 1 we can make the following estimate

|
∑

ab

v∗aGab(0,k)vb|

≤
∑

ab

∫ ∞

−∞

dω′

2π
v∗aAab(ω

′,k)vb
1

|ω′|

=
∑

ab

∫

R\[−ϵ,ϵ]

dω′

2π
v∗aAab(ω

′,k)vb
1

|ω′|

≤ 1

ϵ

∑

ab

∫

R\[−ϵ,ϵ]

dω′

2π
v∗aAab(ω

′,k)vb

=
1

ϵ
. (3.11)

Going from the first to the second line we have used that the spectral function A(ω,k) is positive semi-
definite. Using these properties it follows that the eigenvalues of G(0,k) are real and and their absolute
value is bounded from above.

3.3 Topological Hamiltonian

In Ref. [79] it was shown that it is sufficient to focus on the Green’s function at zero frequency to
obtain the topological invariants for the CAZ symmetry classes. Equivalently it is possible to define
an auxiliary non-interacting Hamiltonian [80] – the topological Hamiltonian – which has the same
topological invariants as the full interacting single-particle Green’s function

HT(k) = −G−1(0,k). (3.12)

In Sec. 3.2 we showed that for a gap in the spectral weight around zero frequency the eigenvalues
of G(0,k) are real and and their absolute value is bounded from above. It follows that the topological
Hamiltonian, which for G(0,k) non-singular (i.e. det

(

G(0,k)
)

̸= 0) can be defined by Eq. (3.12), is a
Hermitian matrix and has real eigenvalues with their absolute value being bounded from below for all
k-points.

The analysis of topological invariants in terms of the Green’s function has been applied to a variety
of model systems in which the topology is protected by symmetries in the CAZ symmetry classes [110–
119] and it has been shown that, if at least one of the GNSC-conditions is violated, the respective CAZ
invariant is not well defined anymore [76, 110].
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3.4 Spatial symmetry representations

In this section we show how Bloch-like wave functions and the corresponding creation and annihilation
operators transform under spatial symmetries. Generally a crystal is a periodic arrangement of atoms
in a certain dimension. Additionally, a crystal can have spatial symmetries. These spatial symmetries
form a group. In three dimensions all possibilities are enumareted in the 230 space groups.

The Matsubara Green’s function G(iωn,k) is expressed in the basis of Bloch-like states ψka(r) that
are the Fourier transforms of Wannier functions Wia(r), where R is the lattice vector or the unit cell i
and a the orbital index. To see how the Matsubara Green’s function transforms under spatial symmetries
we need to see first how Bloch-like basis functions transform.

In Sec. 3.4.1 we give some background on representation theory of groups. In Sec. 3.4.2 we discuss
the distinction between reducible and irreducible representations of a group. In Sec. 3.4.3 we derive
representations for spatial symmetries under which Bloch-like wavefunctions transform. In Sec. 3.4.4
we show how the corresponding creation and annihilation operators transform.

3.4.1 Group representations

Generally, if we consider an n-dimensional vector space V that is spanned by the basis functions
{ψ1, .., ψn}, then a representation is a homomorphism ρ : G → GL(V ). The action of a group ele-
ment h ∈ G in this basis can be represented by n× n-dimensional matrices ρG

ρG(h) =











ρG(h)11 ρG(h)12 · · · ρG(h)1n
ρG(h)21 ρG(h)22 · · · ρG(h)2n

...
...

. . .
...

ρG(h)n1 ρG(h)n2 · · · ρG(h)nn











(3.13)

Acting h on ψ ∈ V translates to a matrix multiplication ρG(h)ψ. The group product of two elements
g, h ∈ G is translated into a matrix multiplication

ρG(gh) = ρG(g)ρG(h). (3.14)

3.4.2 Reducible and irreducible representations

A representation is called reducible if there is a subspace W ⊂ V that is invariant under each h ∈ G.
That means ∀h ∈ G and ϕ ∈W it holds

ρG(h)ϕ ∈W. (3.15)

If a representation is not reducible it is called irreducible representation (irrep).
In our context we will deal with an orthonormal basis and symmetry operations that have unitary

representation matrices i.e.

ρG(g
−1) = ρ†G(g), (3.16)

where here † denotes the adjoint of a matrix. In this case each reducible representation can be brought
into block diagonal form via a unitary basis transformation U that is the same for every h ∈ G

ρG(h) = UρG(gh)U
† =













ρ
(1)
G (h) 0 · · · 0

0 ρ
(2)
G (h) · · · 0

...
...

. . .
...

0 0 · · · ρ
(m)
G (h)













= ρ
(1)
G (h)⊕ ρ

(2)
G (h)⊕ · · · ⊕ ρ

(n)
G (h) (3.17)

where each block corresponds to a irreducible representation with the dimension of the respective in-
variant subspace.
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Proof. Let ψ ∈ W and ϕ ∈ W⊥ with W invariant under any symmetry transformation h ∈ G. By
construction ϕ and ψ are orthogonal i.e. ⟨ϕ|ψ⟩ = 0 and ρG(h)ψ ∈ G. We have for all h ∈ G

0 = ⟨ϕ|ρG(h)ψ⟩ = ⟨ρ†G(h)ϕ|ψ⟩ = ⟨ρG(h−1)ϕ|ψ⟩ . (3.18)

Since h runs over all elements in G it holds

⟨ψ|ρG(h)ϕ⟩ = 0 (3.19)

Hence, ρG(h)ϕ ∈ W⊥ and the offdiagonal matrix elements of ρG(h) between the subspaces W and W⊥

must vanish. Repeating the argument for all invariant subspaces yields that ρG(h) must be blockdiago-
nal.

3.4.3 Spatial symmetry representation for Bloch-like functions

In the following we show how the Bloch-like basis states transform under spatial symmetries. We
consider Bloch like-wave functions that are constructed from Wannier functions that are consistent with
the symmetries of the respective spacegroup of the crystal. First, we show how Wannier functions
transform under spatial symmetries. This section is based on Refs. [56, 57], although to be consistent
with the rest of this thesis the notation differs.

In a given space group G the spatial symmetries h ∈ G can be denoted as h = {R|v} ∈ G acting in
real space as r → Rr+v. Here, v is a shift and R is the part of h that leaves at least one point invariant,
i.e. R is a rotation, reflection, inversion or a combination of those. Here and in the following we set
k′ ≡ Rk, with k′ being the corresponding k-point in the first Brillouin zone. A crystal can be thought
of as a collection of periodically placed Wannier functions that are consistent with the symmetries of
the space group the crystal belongs to. Under the symmetry operations these Wannier functions have
to transform into each other. The action of a spatial symmetry h = {R|v} ∈ G is given by

ρG({R|v})Wia(r) = ρG({R|0})ρG({E|v})Wia(r)

= ρG({E|Rv})ρG({R|0})Wia(r)

= ρG({E|Rv})Wia(R
−1r)

=Wia(R
−1r −Rv), (3.20)

where here E is the identity. It is possible to express the transformed Wannier function on the right side
through the basis of the original Wannier functions. This will give us the explicit form of the symmetry
representations ρG(h).

To do so we decompose the orbital index a into two indices a = (ra, qa), where ra is the site in the
unit cell and which belongs to a Wyckoff position and qa labels the orbital.

For simplicity we consider a set of Wannier functions in a single Wyckoff position of some multiplicity.
In this case ra just labels the sites in one Wyckoff position. The site symmetry group Gra of a site at
ra is defined by those symmetry operations that leave that site invariant

Gra = {g ∈ G|grra = rra} (3.21)

This group is isomorphic to a crystallographic point group. If h ∈ G1 , then the Wannier functions
transform under some representation

ρG(h)W01qa(r) =
∑

qb

D(h)qbqaW01qb(r). (3.22)

Different sites in a unitcell in the same Wyckoff position are related by symmetry operations gra ∈ G

grar1 = rra . (3.23)

If h ∈ Gra , then
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g = g−1
ra
hgra ∈ G1. (3.24)

This means the Gra for the same Wyckoff position are isomorphic. Hence, we get

ρG(h)W0raqa(r) = ρG(gragg
−1
ra

)W0raqa(r)

= ρG(gra)ρG(g)ρG(g
−1
ra

)W0raqa(r)

= ρG(gra)ρG(g)W01qa(r)

= ρG(gra)
∑

qb

D(g)qbqaW01qb(r)

=
∑

qb

D(g)qbqaW0raqb(r).

(3.25)

So, Wannier functions in the same unit cell in the same Wyckoff position transform under the same
representations.

Now in a next step we consider h ∈ G that takes a site at rra to a site at rrb +Rab in a different
unitcell, where Rab is a lattice vector

hrra = rrb +Rab. (3.26)

It follows that

{E| −Rab}hgrar1 = grbr1. (3.27)

and consequently

grarb = g−1
rb

{E| −Rab}hgra ∈ G1. (3.28)

Since grarb ∈ G1 we know its representation namely D(grarb). We can write this last equation as

h = {E|Rab}grbgrarbg−1
ra
. (3.29)

With that we get the representation for any Wannier function Wiraqa(r) for h = {R|v} ∈ G

ρG(h)Wiraqa(r) = ρG(h)ρG({E|Ri})W0raqa(r)

= ρG({E|RRi})ρG(h)W0raqa(r)

= ρG({E|RRi})ρG({E|Rab})ρG(grb)ρG(grarb)ρG(g−1
ra

)Wiraqa(r)

= ρG({E|RRi +Rab})ρG(grb)ρG(grarb)ρG(g−1
ra

)ρG(gra)Wi1qa(r)

= ρG({E|RRi +Rab})
∑

qb

D(grarb)qbqaW0rbqb(r)

=
∑

qb

D(grarb)qbqaW0rbqb(r −RRi −Rab). (3.30)

Note that for a given h ∈ G the corresponding Rab is uniquely defined by Eq. 3.26.

From the representation for the Wannier functions Eq. 3.30 we can get the representations for the
Bloch-like functions
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ρkG(h)ψkraqa(r) = ρkG(h)
∑

Ri

eik·RiWiraqa(r)

=
∑

Ri

eik·Ri

∑

qb

D(grarb)qbqaW0rbqb(r −RRi −Rab)

=
∑

qb

e−i(Rk)·RabD(grarb)qbqa
∑

Ri

ei(Rk)·(RRi+Rab)W0rbqb(r −RRi −Rab)

=
∑

qb

e−i(Rk)·RabD(grarb)qbqaψ(Rk)rbqb(r). (3.31)

Going from the second to the third line we have used that R is orthogonal. So the Bloch-like wave
functions transform with the band-representations that are given by

(

ρkG(h)
)

rbqb,raqa
= e−i(Rk)·RabD(grarb)qbqa . (3.32)

Writing the index for the site and the orbital index as one combined orbital index we can simply write

ρG(h)ψka =
∑

b

ρkG(h)baψk′a. (3.33)

where k′ is the corresponding k-point in the first Brillouin zone i.e. k′ = Rk+K with a reciprocal lattice
vector K. For sets of Wannier functions in other Wyckoff positions one can construct the corresponding
band representations in similar fashion and then take the direct sum and the form of Eq. 3.33 stays
unchanged. The band representations ρkG(h) are sets of unitary matrices with the dimension given by
the number of orbitals in the unit cell (including spin).

3.4.4 Spatial symmetry operations for creation and annihilation operators

Now we want to see how the spatial symmetries act on creation and annihilation operators. In this way
we see can see later how the Bloch Hamiltonian transforms under spatial symmetries and it will also
become important later on when we investigate how the Matsubara Green’s function transforms. We
associate a unitary operator Uh with the spatial symmetry operation h ∈ G. From the transformation
of the Bloch-like single particle states Eq. 3.33 it follows that Uh acts on creation and annihilation
operators as

Uhc
†
kaU

†
h =

∑

b

ρkG(h)bac
†
k′b, (3.34)

UhckaU
†
h =

∑

b

(

ρkG(h)
†
)

ab
ck′b, (3.35)

where (†) denotes the conjugate transpose of a matrix. a and b again labels the orbital indices that
here can include spin and k′ = Rk+K, with a reciprocal lattice vector K such that k′ lies in the first
Brillouin zone. So creation and annihilation operators for the Bloch like basis states also transform with
the band representations.

To conclude this section we have seen that a Bloch-like function ψak and the associated creation and
annihilation operatores c†ka and cka in a crystal with space group G for h ∈ G transform under the so
called band representations ρkG(h) by Eq. 3.33, 3.34 and 3.35.

3.5 Elementary Band representations

In this section we will see which consequences spatial symmetries have for the Bloch Hamiltonian. We
will see that the bands at high symmetry k-points can be labeled by irrpes of the respective little
group. This labeling implies certain compatibility relations on how the bands connect in k-space. These
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relations can be used to construct EBRs. EBRs can then be used to identify non-trivial topology in a
system. A large parts of this section is based on Refs. [56, 57] and is a brief summary of the central
ideas of these works.

A general Hamilton operator H is invariant under the action of h ∈ G if it commutes with the
associated operator Uh or equivalently

H = U†
hHUh. (3.36)

Now we investigate the implications of spatial symmetries for the Bloch Hamiltonian. A noninteracting
Hamiltonian in a periodic system has the form

H0 =
∑

k

Hk
0 =

∑

k

∑

ab

c†ka
(

H(k)
)

ab
ckb. (3.37)

where H(k) is the Bloch Hamiltonian matrix. The Hamiltonian transforms under symmetries as

H0 = UhH0U
†
h

=
∑

kab

Uhc
†
ka

(

H(k)
)

ab
ckbU

†
h

=
∑

kabcd

c†k′cρ
k
G(h)ca

(

H(k)
)

ab
ρkG(h)

†
bdck′d, (3.38)

So for the Bloch Hamiltonian it holds

(

H(k′)
)

cd
=
∑

ab

ρkG(h)ca
(

H(k)
)

ab
ρkG(h)

†
bd. (3.39)

where again k′ = Rk +K with a reciprocal lattice vector K such that k′ is in the first Brillouin zone.
The little group of a k-point k is defined as

Gk = {h = {R|v} ∈ G|k = k′}, (3.40)

If H0 is invariant under a spatial symmetry h, then from the above relation it follows that at all k-points
with h ∈ Gk the Bloch Hamiltonian matrix H(k) commutes with the band representation matrix ρkG(h).
From this commutative property it follows that eigenstates of H(k) transform as irreps of Gk. Hence, at
each k the bands that correspond to the eigenstates can be labeled by the irreps of the corresponding
little group Gk.

Labeling bands at each k-point by irreps of the respective little group places conditions on how bands
in the Brillouin zone are connected. In particular, if one considers a high-symmetry line starting from a
high-symmetry point in k-space then, the little group of the line must be a subgroup of the little group
of a point. So, each irrep at the high-symmetry point becomes a sum of irreps that appear on the line.
The irreps along the line are completely determined by the irreps that appear at the point. The same
applies to high symmetry lines and and planes. This decomposition of irrepes is called compatibility
relations.

In Sec. 3.4.3 we have seen that placing a set of Wannier functions in a Wyckoff induces a band
representation. Band representations can be decomposed into its elementary building blocks the so
called elementary band representations (EBRs). A band representation, is elementary if and only if
it can be induced from an irreducible representation of a maximal site-symmetry group and if it is
not an exception (see Ref. [57] for a list of exceptions). A site-symmetry group Gra is non-maximal if
there exists a finite group G′ ̸= Gra , such that Gra ⊂ G′ ⊂ G. A site-symmetry group that is not non-
maximal is maximal. All possible EBRs for all space groups are tabulated on the Bilbao crystallographic
Server [120, 121].

Now we will see how EBRs can help to decide if a set of bands is topological. A set of bands is in the
atomic limit if they originate from a set of Wannier functions that are consistent with the symmetries
of the crystal. Any set of bands that is in an atomic limit can be written as a direct sum of EBRs,
because EBRs are constructed in such a way that they are the elementary building blocks of all band
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structures that correspond to a symmetry preserving atomic limit. An isolated group of bands that
stems not from such an atomic limit is topological. In this case the topological set of bands correspond
to a so-called quasiband representation, i.e. any solution of the compatibility relations. This is the case
if we have a disconnected EBR at the Fermi level with the chemical potential lying in the gap.

The reason why the occupied bands of such a disconnected EBR at the Fermi level must be topological
is the following. The multiplicity of the irreps at high symmetry k-points of the occupied bands must
be maintained under continuous deformations of the Hamiltonian as long as symmetries and the gap
is maintained. It follows that if there is a disconnected EBR with the gap at zero energy then it has
to stay disconnected under continuous changes while maintaining the gap. So one cannot continuously
deform such a system into an atomic limit without closing the gap or breaking the symmetries. Hence
the system is topological. Labeling bands by irreps at the high symmetry k-points and identifying the
EBRs is hence a way to identify a topologically non-trivial system.

Note aslo the possibility of a so called obstructed atomic limit. Such a system is topologically trivial,
but the position of the Wannier functions that induce the EBR does not coincide with the original atom
position and it is not possible to continuously deform the system without breaking the symmetries into
one where the position of the Wannier function coincides with original position of the atoms.

For more details such as how to identify the irreps of a given band, the inclusion of time reversal
symmetry and examples, see Refs. [56, 57].

3.6 Spatial symmetries of the Matsubara Green’s function

In this section, we recall the action of spatial symmetries on the Green’s function and consequently
the topological Hamiltonian HT(k). We show that these always transform in the same way as non-
interacting Bloch Hamiltonians. We assume a non-degenerate many-body ground state |0⟩. It directly
follows that the ground state is an eigenstate of every Uh, elsewise H expressed in the basis of the exact
eigenstates would not commute with the spatial symmetries. Since Uh is unitary the eigenvalues must
have modulus one and we can write for h ∈ G

Uh |0⟩ = eiϕh |0⟩ , (3.41)

with ϕh ∈ [0, 2π). For imaginary time τ > 0 we have

Gab(τ,k) = −⟨0| cka(τ)c†kb |0⟩
= −⟨0| eHτ ckae

−Hτ c†kb |0⟩
= −⟨0| eU

†

h
HUhτ ckae

−U
†

h
HUhτ c†kb |0⟩

= −⟨0|U †
he

HτUhckaU
†
he

−HτUhc
†
kbU

†
hUh |0⟩

= −
∑

cd

ρkG(h)
†
ac ⟨0| ck′c(τ)c

†
k′d |0⟩ ρkG(h)db

=
∑

cd

ρkG(h)
†
acGcd(τ,k

′)ρkG(h)db. (3.42)

A similar calculation holds for τ < 0. Fourier transforming to go to Matsubara frequencies i.e.G(iω,k)
yields the same result for each value of iω. The above result shows, that for a unique many-body
ground state the Green’s function transforms under the band representations in the same way as a
(non-interacting) Bloch Hamiltonian. This makes sense because we express the Green’s function in the
same basis states as the Bloch Hamiltian.

Note that for a degenerate ground state the physical system at T = 0 has a freedom in the choice of
the ground state. This freedom can result in the spontaneous breaking of a symmetry of the Hamiltonian.
In this case there is also an ambiguity in the Green’s function in Eq. (3.3). This can lead to the Green’s
function not fulfilling the above symmetry relations. For non-spatial symmetries this possibility was
already observed in Ref. [110]. However, taking the zero-temperature limit from the finite temperature
Matsubara Green’s function in the case of a degenerate ground state, the only remaining states are the
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degenerate groundstates. The resulting Green’s function turns out to be an average over orthonormal
basis states spanning the degenerate ground state space. Since the symmetry operators Uh are unitary,
the space of ground states is invariant under their action. Hence, when taking the zero temperature limit,
the Matsubara Green’s function still commutes with the band representations of the spatial symmetries
even for a degenerate ground state.

Similarly, provided the GNSC-conditions are fulfilled, a topological Hamiltonian HT(k) may be
defined according to HT(k) = −G−1(0,k). From Eq. 3.42 it follows that the topological Hamiltonian
transforms in the same way as the Green’s function

(

HT(k)
)

ab
=
∑

cd

ρkG(h)
†
ac

(

HT(k
′)
)

cd
ρkG(h)db. (3.43)

Also, if G(iω,k) is continuously differentiable in k, HT(k) is also continuously differentiable in k. It
follows that the eigenvalues of HT(k) form continuous bands in k-space that can be labeled by irreps of
the little group of the respective k-points. Analogous to the non-interacting case, compatibility relations
yield restrictions on the connectivity of the bands. Again one can then write symmetry representations
of bands as linear combinations of EBRs. Also in the case of TR present in the interacting system the
resulting irreps of the little groups and EBRs have been classified and can be applied the same way as
in the noninteracting case [56, 57]. One might have guessed from the beginning that the topological
Hamiltonian as an effective non-interacting Hamiltonian transforms with the band representations.
However, our detailed derivation also shows at which places subtleties regarding the zero temperature
limit and possible degenerate groundstates, that are only possible with interactions in an insulator, come
in. In the following we clarify the meaning of assigning EBRs to the bands of a topological Hamiltonian
in an interacting system.

3.7 EBR-based analysis of the topological Hamiltonian: Use

and limitations

In this section, we discuss the interpretation of EBR-based analysis of the topological Hamiltonian in the
spirit of TQC. Analogous arguments hold for the application of a symmetry indicator analysis [61, 62]
or the application of the algorithm described in Ref. [63]. For gapped non-interacting Hamiltonians,
topological indices are invariant under unitary transformations of occupied (unoccupied) single-particle
states. As a result, in terms of an EBR analysis we are concerned usually with the combined transforma-
tion properties of occupied single-particle states, independent of their energy ordering [56, 57]. To apply
non-interacting classifications to HT(k), an equivalent distinction is required. Following Refs. [78, 79],
for a Green’s function fulfilling the GNSC-conditions, the eigenvalues of HT(k) can be classified as
either an L-zero or an R-zero. Note that, originally the classification of R-zeros and L-zeros was used
to discuss the eigenvalues of G(0,k). This is equivalent to HT(k), because both share the same eigen-
vectors. An eigenvalue of the topological Hamiltonian µn(k) is called an R-zero if µn(k) < 0 and an
L-zero if µn(k) > 0. Regarding the topological Hamiltonian as an effective noninteracting Hamiltonian
these correspond to the occupied and the unoccupied single-particle states respectively if there is a gap
at zero energy. Analogous to a non-interacting system the R-zeros and L-zeros can then each be written
as a linear combination of EBRs with positive integer coefficients if they each correspond to a trivial
set of bands or as a quasiband representation if they each correspond to a topological set of bands. In
the case of a lattice model this means that there is a disconnected EBR with the gap at zero energy.
For interacting systems, the eigenvalues can give some indication how the spectral weight is distributed
on the real frequency axis. However there meaning will become clear now when we investigate what
happens under continuous changes of the Green’s function.

Let us consider continuously changing the parameters of the many-body Hamiltonian, while main-
taining symmetries and the ground state staying non-degenerate. If the groundstate stays nondegenerate
then G(iω,k) and hence G(0,k) also changes continuously on the path. As long as there are no zero
eigenvalues of G(0,k) the topological Hamiltonian is well defined and also changes continuously on the
path. For each point on this continuous path we can label the eigenvalues of the topological Hamilto-
nian at high symmetry k-points by the respective little group irreps, see also Fig. 3.1. As long as the
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ϵ0

Eigenvalue of HT(k)
labeled by irrep

Moves continu-
ously as parameters
of H are varied

Figure 3.1: Eigenvalues of the topological Hamiltonian at high symmetry k-points can be labeled by irreps
of the little group of the k-point. The gap in the spectral function at ω = 0 causes the eigenvalues to be real.
Depending on the sign of the eigenvalue it is either an R-zero or an L-zero. As the parameters in the many-body
Hamiltonian are varied, the eigenvalues move on the real axis as long as the gap is maintained. The gap further
prevents the eigenvalues from crossing zero. By assumption we excluded a zero eigenvalue of G(0,k), so that all
eigenvalues of the topological Hamiltonian are finite. If also the Green’s function does not break a symmetry
while the parameters of the many body Hamiltonian are varied, the multiplicity of irreps of R-zeros cannot
change.

gap in the spectral function at zero frequency remains non-zero, as it must as long as the ground state
is non-degenerate, then G(0,k) remains Hermitian and the eigenvalues of the topological Hamiltonian
move continuously on the real axis. Additionally, the eigenvalues cannot cross over zero, because their
absolute value is bounded from below if the gap in the spectral function remains non-zero as we showed
in Sec. 3.2. Further, with the condition that G(0,k) never has a zero eigenvalue on the path makes the
inverse of G(0,k) well defined and finite. Hence the eigenvalues of the topological Hamiltonian also stay
finite. Taking the above considerations together, at a high symmetry k-point the multiplicity of irreps
of R-zeros (L-zeros) must be maintained under the above assumptions. The classification with respect
to the EBR approach is therefore robust under continuous changes of the Green’s function.

The above considerations provide an interpretation to the labeling of the bands of the topological
Hamiltonian by irreps and EBRs. For any ground state of an interacting Hamiltonian that can be
adiabatically connected to a non-interacting Hamiltonian without the corresponding Green’s function
violating the GNSC-conditions, topological invariants of the Green’s function must match the non-
interacting invariants obtained in the limit and can be diagnosed by an EBR analysis. Similarly, along
any path on which the ground state is unique and whose endpoints are non-interacting models with
ground states of different non-interacting topological indices, there must be at least one point where an
L-zero becomes an R-zero and/or vice-versa. This requires at least one of the GNSC-conditions to be
violated, which occur the scenarios which we again list in the following:

(i) A gap closing in the spectral function at ω = 0, which corresponds to a zero-energy excitation
with finite quasiparticle weight. This is analogous to a change of a topological invariant by a gap
closing in the non-interacting limit. For fixed filling, the L-zero and R-zero of different irreps must
exchange at ω = 0 in this scenario.

(ii) A zero eigenvalue in G(0,k), corresponds to a divergence in the self-energy Σ(iω,k) at zero fre-
quency, defined according to:

G(iω,k) =
(

iω −H(k)− Σ(iω,k)
)−1

. (3.44)

This is only possible with interactions, as a non-interacting G(0,k) cannot have zeros provided the
energy spectrum is bounded. For the invariants defined previously in Refs. [73–80] the possibility
of a change by a zero in the Green’s function was recognized in Ref. [76] and is discussed in
Refs. [110, 111, 122, 123]. In the present context, this corresponds to an L-zero and R-zero of
different irreps exchanging at infinity.

(iii) A change in the symmetry of the many-body Hamiltonian or ground state. The latter case may
occur via spontaneous symmetry breaking, which lowers the symmetry of both the ground state
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and Green’s function. As a result, any Green’s function invariants associated with the broken
symmetries become ill-defined. See also the discussion Ref. [110] for the case of a chiral symmetry.
However, since the many-body Hamiltonian is invariant under the spontaneously broken symmetry
this implies that the ground state must be degenerate. We have excluded the possibility of a
degenerate ground state by assumption in our analysis.

At this point, we should note three caveats related to the above discussion and a possible correspon-
dence of the Green’s function invariants to SPT phases in the presence of interactions.

The first caveat, also discussed in Ref. [124], is that there exist uniquely interacting SPT phases,
which cannot be adiabatically connected to non-interacting limits provided certain symmetries are pre-
served. Within these phases, Green’s function invariants obtained from the topological Hamiltonian
are not constrained by the requirement of non-interacting correspondence. A priori, they could take
either any value when the GNSC-conditions are fulfilled, or they may not be well-defined. An example
of the latter case was recently demonstrated in Ref. [4] for a 1D model exhibiting two gapped phases
adiabatically connected to non-interacting limits, in addition to an interacting SPT phase. The latter
was characterized by a divergence in the self-energy at zero frequency, i.e. a zero eigenvalue in G(0,k)
over the entire phase, so the topological Hamiltonian is ill defined in that phases.

The second caveat is that the Green’s function only probes single-particle excitations. As a result,
the spectrum of HT(k) may remain gapped with finite eigenvalues even as the spectrum of the many-
body Hamiltonian becomes gapless with respect to a multi-particle excitation. This allows, in principle,
for a transition between distinct SPT phases where the single-particle Green’s function invariants do not
change. On the other hand it is also possible that a transition with a gap closing of the spectral function
gets replaced by a zero eigenvalue of G(0,k) as discussed in Refs. [110, 123]. This then corresponds to
the divergence of an eigenvalue of the toplogical Hamiltonian.

The third caveat is that the Green’s function invariants may also change without a phase transition,
i.e. while the ground state remains non-degenerate. This applies to cases where the topological classi-
fication breaks down upon including interactions, as explicitly demonstrated in Ref. [68] for the CAZ
symmetry class BDI where the Z classification breaks down to a Z4 classification (Z8 without particle
number conservation). For the model in Ref. [68] it was argued in Ref. [110] that the Green’s function
invariant changes by a zero eigenvalue in the Green’s function. The same holds for an application of
EBRs to the Green’s function, in particular for cases where EBRs and invariants may be explicitly
related. However the situation changes if the Green’s function invariant is related to a physical observ-
able as for example the Hall conductivity [107]. In this case the change of the invariant necessitates a
quantum phase transition.

So we find that a precise statement in which cases there is a correspondence between SPT phases and
an EBR analysis of the Green’s function remains an open question. The main problem is the occurrence
of zero eigenvalues in the Green’s function, which is only possible with interactions.

In Ref. [110] shows that in a system with interactions in with non zero Green’s function topological
invariant there now can be edge zeros of the Green’s function instead of the poles corresponding to
gapless (single-particle) edgestates. Ref. [125] suggests an experimental protocol of revealing these
boundary zeros that are elsewise invisible in experiments.

3.8 An example: EBRs for the Green’s function in the SSH+U

model

In this section we give a detailed demonstration of the above extension of EBRs for the Green’s function
on the SSH+U model. The model posses inversion symmetry which we use together with the topological
Hamiltonian to determine the different topological phases in the system. The system also possesses time
reversal (TR), particle-hole (PH) and chiral symmetries (CS) and thus it belongs to the CAZ symmetry
class BDI with a Z classification for the Greens function [76]. As we will show the EBR classification
determines if the corresponding topological invariant N1 is twice an even or twice an odd integer. The
factor of two is because of spin. Due to its simplicity the model is well suited to demonstrate the use of
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1a1b 1b2c 2c

I II

Figure 3.2: a) The SSH model with the unit cell, sites and hoppings shown, b) Unit cell of the SSH model
with Wyckoff positions 1a,1b and 2c. The centers of the inversion symmetry I are located in 1a and 1b. See
the text for the description of the model.

the formalism. Also, due to its simplicity, it is possible to solve the model numerically exactly with ED
for a finite number of unitcells. We thus do not have to rely on approximations.

3.8.1 The SSH+U model

The SSH+U model is defined by

H =t1
∑

jσ

(c†j2σcj1σ + c†j1σcj2σ) + t2
∑

jσ

(c†j+1,1σcj2σ + c†j2σcj+1,1σ) + U
∑

ja

(nja↑ −
1

2
)(nja↓ −

1

2
).

(3.45)

where c†jaσ (cjaσ) creates (annihilates) an electron in unit cell j, site a ∈ {1, 2} and with spin σ. We
consider the SSH+U model at half-filling. The form of the interaction term is such that the chemical
potential is zero and thus can be regarded as being included in the Hamiltonian. Fig. 3.2 a) shows the
unit cell with hopping parameters. Fig. 3.2 b) shows the Wyckoff positions and the centers of inversion
symmetry.

The model belongs to the CAZ symmetry class BDI, which implies a Z classification for the Green’s
function, with the corresponding topological invariant N1 [76]. A DMRG study on a finite system [110]
investigated the case t1 + t2 > 0 and found the system to be trivial with N1 = 0 for t1 − t2 > 0 while
for t1 − t2 < 0 the system is in a topological phase with N1 = 2 for all values of U > 0 [110]. At the
transition at t1 = t2 the model reduces to the usual 1D Hubbard model. In this case for U = 0 the
system is metallic and possesses band crossing at k = π. Then for any U > 0 the system becomes a
Mott insulator with a charge gap and gapless spin excitations [21]. Collective excitations that are not
single particle excitations, such as spin excitations, are not visible in the single-particle Green’s function.
Hence, the transition in the bulk Green’s function topological invariant N1 happens by a zero in the
Green’s function at k = π [111]. In the following, we investigate how this transition at finite U is related
to an EBR classification that makes use of inversion symmetry.

3.8.2 Symmetry analysis

The model possesses time reversal (TR), particle-hole (PH) and chiral symmetries (CS). We do not have
to include spin in our discussion since the model possesses spin rotation symmetry. We thus suppressed
the spin indices throughout the following. CS has the following representation for the Green’s function
in k-space [110]:

UCS =

(

1 0
0 −1

)

= σ3. (3.46)

Hence, CS places the following restriction on the topological Hamiltonian:
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HT(k) = −σ3HT(k)σ3. (3.47)

We now expand the topological Hamiltonian into Pauli matrices. Because of Eq. (3.47) only terms
proportional to σ1 and σ2 are allowed. We can hence write

HT(k) = q1(k)σ1 + q2(k)σ2. (3.48)

q1(k) and q2(k) are real, k-dependent coefficients. Setting q(k) = q1(k) + iq2(k), the Green’s function
topological invariant N1 can then be written in terms of the topological Hamiltonian as [76, 110]

N1 = 2 Tr

∫

dk

4πi
UCSHT(k)∂kH−1

T (k)

= 2

∫

dk

2πi
q(k)∂kq

−1(k). (3.49)

The factor of two in front of the integral comes from the spin degeneracy in the model. The trace goes
over the matrix indices of the topological Hamiltonian. The invariant just measures how often q(k)
winds around the origin in the complex plane.

We consider the inversion centered in the Wyckoff position 1a of the unit cell. The corresponding
high-symmetry k-points are κ = 0 and κ = π, whose little groups contain inversion and the identity.
For these k-points, the electron operators transform under inversion as

Ic†κaσI† =
∑

b

(

ρκG(I)
)

ba
c†κbσ (3.50)

with the band representation of the inversion operator ρkG(I) explicitly given by

ρkG(I) =
(

0 1
1 0

)

= σ1. (3.51)

At these high-symmetry k-points, the eigenvectors of the topological Hamiltonian can be labeled by the
eigenvalue of the inversion symmetry, i.e. +1 or −1. In this simple case working with the inversion
eigenvalues is equivalent to work with irreps, because with only inversion symmetry there are only two
irreps that can be distinguished by the eigenvalue of inversion. With only inversion symmetry there
exist four possible EBRs each containing one band (actually two degenerate bands upon including the
degeneracy in spin space). This provides four cases for the Green’s function, defined by the EBR of the
lower band. In the 1D group P 1̄, the EBRs are induced by either an s-like (even under inversion) or a
p-like Wannier function (odd under inversion) in the 1a or the 1b Wyckoff position. We label the EBR
by the orbital type in the respective Wyckoff position which induces the EBR.

We summarize these four cases in Tab. 3.1. Note that all these phases are topologically trivial in
the sense that they can be adiabatically connected to an atomic limit. However they are topologically
distinct in the sense that they are obstructed atomic limits that cannot be deformed into each other
without closing the gap and breaking or breaking a symmetry.

In the SSH+U model both chiral and inversion symmetry are present at the same time. In Sec.3.8.3
whe show that the index N1 can be directly related to the inversion eigenvalues at k = 0, π: N1 = 4n+2
with n ∈ Z if both inversion eigenvalues have opposite sign and N1 = 4n if the signs are equal.

3.8.3 Relationship between Green’s function topological invariants and EBRs

for the SSH+U Model

As a consequence of inversion symmetry, we have get with Eq. (3.43)

HT(k) = σ1HT(−k)σ1. (3.52)

For the Pauli matrix expansion coefficients in Eq. (3.48) this equation implies
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Table 3.1: Four possibilities to label the bands of the topological Hamiltonian by EBRs in the SSH+U
model. The inversion eigenvalues at k = 0 and k = π fully determine the irreps. The EBR is labeled
by the orbital type which induces the EBR. The inversion eigenvalues are also indicated in the band
structure sketches.

Lower irrep
at k = 0

Lower irrep
at k = π

Lower
EBR

N1
Band structure

sketch

Γ+ X+ s1a 0

− −
+ +
0 π

Γ− X− p1a 0

+ +
− −
0 π

Γ+ X− s1b 2

− +
+ −
0 π

Γ− X+ p1b 2

+ −
− +
0 π

q1(k) = q1(−k), (3.53)

q2(k) = −q2(−k). (3.54)

So inversion symmetry further restricts the form of the topological Hamiltonian. The eigenvalues of the
topological Hamiltonian can be expressed as

µ±(k) = ±
√

(

q1(k)
)2

+
(

q2(k)
)2

(3.55)

The eigenvectors of the lower and the upper band v−(k) and v+(k) are

v−(k) =
1√
2

(

1
−q(k)
|q(k)|

)

, (3.56)

v+(k) =
1√
2

(

1
q(k)
|q(k)|

)

. (3.57)

Of special interest are the high symmetry k-points κ = 0, π, where inversion symmetry i.e. Eq. 3.54
implies that q2(κ) must vanish, so that q(κ) = q1(κ). The inversion eigenvalues can simply be calculated
by multiplying the representation of the inversion operator with the eigenvectors. We get for the upper
and the lower band

ρκG(I)v−(κ) = −sign
(

q1(κ)
)

v−(κ), (3.58)

ρκG(I)v+(κ) = sign
(

q1(κ)
)

v+(κ). (3.59)

The evolution of the spectrum, the expansion coefficients q1 and q2 and inversion eigenvalues of
the topological Hamiltonian for different parameters for the non-interacting limit U = 0 are shown in
Fig. 3.3. If the inversion eigenvalues have the same sign at both κ = 0 and κ = π, it follows from
Eq. (3.58) that q(0) and q(π) also have the same sign. From Eq. (3.53) and Eq. (3.54) we get that the
q(k) curve must be mirror symmetric with respect to the q1 axis. Now it is easy to see that the winding
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Figure 3.3: Illustration of the topological invariant N1 for the (non-interacting) SSH model with t1 = 1 fixed.
The respective left plot shows the winding of the Pauli matrix expansion coefficients q1(k) and q2(k) around the
origin when k sweeps the Brillouin zone (see Eq. (3.48)). The respective right plot shows the band structure
with inversion eigenvalues of the eigenstates at the high-symmetry k-points, denoted by + or −. The inversion
eigenvalues fully determine the irreps. The value of N1 can already be read of from looking at the inversion
eigenvalues. In the N1 = 0 phase the inversion values within the same band have the same sign, in the N1 = 2
phase they have opposite signs. In Fig. (a) for t1 > t2 one finds N1 = 0 except for the point of the transition at
t1 = t2 = 1 where the gap closes. In Fig. (b) for t2 > t1 one finds N1 = 2.
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t1

t2

t1 = t2t1 = −t2

s1a

N1 = 0

p1a

N1 = 0

p1b

N1 = 2

s1b

N1 = 2

Figure 3.4: Phase diagram obtained from an EBR analysis for the Green’s function of the SSH+U model. The
phases are labeled by the EBR lowest in energy, derived from the inversion eigenvalues (see Table 3.1). The
respective value of N1 is also shown. We find the classification of the Green’s function is independent of the
value of the Hubbard interaction U , hence yielding the same phase diagram for any value of U .

number must be 2n in this case. Suppose the contrary would be true and we would wind 2n+ 1 times
around the origin. In this case in the interval [0, π] q(k) winds exactly an integer and a half times around
the origin, because of q1(k) = q1(−k) and q2(k) = −q2(−k). The latter also implies q2(π) = 0. One can
imagine winding in the exact opposite direction while k goes backwards form 2π to π. However, this
would mean q1(0) and q1(π) have different signs. Hence, the one must wind 2n times around the origin.

With the same symmetry arguments it follows that if at both high symmetry k-points the inversion
eigenvalues have the opposite sign and hence the signs of q1(0) and q1(π) are opposite, then the winding
number must be 2n+ 1. Note, that if q2(k) = 0 for all k and q1(0) and q1(π) have different signs then
then there must be a k-point for which both q1 and q2 either vanish or become infinite at the same time.
But this case is excluded by the assumptions that we have a gap in the spectral function and G(0,k)
being nonsingular. So we really have to wind 2n+1 times around the origin and cannot circumvent the
wind by going through the origin or infinity.

We can summarize our findings in the following way. If in the SSH+U model the inversion eigenvalues
of the lower band at the high-symmetry k-points have the same sign, then N1 = 2n with n ∈ Z. If they
have opposite signs, then N1 = 2n+ 1 with n ∈ Z. Spin degeneracy gives a further factor of two. This
means N1 = 4n+ 2 if both inversion eigenvalues have opposite sign and N1 = 4n if the signs are equal.

3.8.4 Exact diagonalization results

To compute HT (k) at finite U , we employ exact diagonalization (ED) calculations with six unit cells
and periodic boundary conditions (PBC). A higher number of unitcells would be possible in principle,
but is unnecessary for our demonstration of the formalism. In this context, a significant advantage of
employing the irreps at high-symmetry k-points to characterize the topology of the Green’s function is
that they are well-defined in finite-size calculations without extrapolation as long as the high symmetry
k-points are included in the k-point grid. Also, a previous DMRG study that considered systems
consisting up to 125 unit cells also did not find any indication for a finite size effect for the invariant
N1 [110].

With ED we calculate the Green’s function by evaluating the Lehmann representation Eq. (3.4).
Therefore we calculate the exact ground state in the N particle sector (N corresponding to half-filling)
and the mmax lowest in energy exact eigenstates in the N +1 and N −1 particle sector of the full many-
body Hamiltonian with Lanczos method. The number mmax is determined such that we at least take
into account 99% of the spectral function in the respective Green’s function entry. Remember in this
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Figure 3.5: Exact diagonalization results for the topological Hamiltonian as a function of U . Each figure
corresponds to a representative choice of the hopping parameters t1 and t2 for each phase. Labeled by the EBR
of the lower band the phases shown are (a) p1a, (b) p1b. The respective left plot shows the winding around the
origin of the Pauli matrix expansion coefficients q1(k) and q2(k) (see Eq. (3.48)) when k sweeps the Brillouin
zone. The respective right plot shows the eigenvalues of the topological Hamiltonian together with the inversion
eigenvalues of the respective eigenstates of the topological Hamiltonian at the high-symmetry k-points denoted
by + or −. The inversion eigenvalues fully determine the irreps. Increasing the Hubbard interaction U enlarges
the expansion coefficients q1(k) and q2(k) without changing the topology.

context that the spectral function is normalized to one (see Eq. 3.8). We are interested only in G(0, k)
and in our case the Lehmann representation is a finite pole expansion, this small neglect of spectral
function has no influence on the EBR classification in the present system. In principle it is possible
to include all energy eigenvalues and states from the N ± 1 particle sectors, but 99% of the spectral
weight is sufficient for our purposes. From G(0, k) the topological Hamiltonian is simply obtained by
the definition of the topological Hamiltonian Eq. (3.12). The topological Hamiltonian is then analyzed
in terms of EBRs and the invariant N1. The latter can just be determined visually by plotting the
expansion coefficients q1 and q2 as a function of k. The resulting phase diagram from this analysis is
shown in Fig. 3.4. Depending on the choice of t1 and t2 all four cases listed in Tab. 3.1 can be realized.
We find the classification of the Green’s function is independent of the value of the Hubbard interaction
U .

Let us focus on the cases where t1, t2 > 0, which yields two phases: t1 > t2 corresponds to a
lower band with EBR p1a, while t1 < t2 corresponds to a lower band with EBR p1b. The topological
Hamiltonian and its eigenvalues together with the inversion eigenvalues are shown in Fig. 3.5. For
each phase we chose representative parameters t1 and t2, while increasing U . The ED results shown
in Fig. 3.5 a) illustrate that a winding of the topological Hamiltonian in the q1-q2-plane around the
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Figure 3.6: Exact diagonalization results for the topological Hamiltonian near the phase transition line t1 = t2
for a) t2 < 1, b) t2 > 1. In each case, t1 = 1 and U = 1 are fixed. The respective left figure shows the winding
around the origin of the Pauli matrix expansion coefficients q1(k) and q2(k) (see Eq. (3.48)) when k sweeps
the Brillouin zone. The respective right plot shows the eigenvalues of the topological Hamiltonian together
with the inversion eigenvalues of the respective eigenstates of the topological Hamiltonian at the high-symmetry
k-points denoted by + or −. The inversion eigenvalues fully determine the irreps. The results indicate that
the transition happens by a swap over infinity of the eigenvalues of the topological Hamiltonian labeled by the
inversion eigenvalues.

origin i.e. N1 = 2 corresponds to the inversion eigenvalues of the lower band having opposite sign at
k = 0 and k = π. Fig. 3.5 b) illustrates that if the eigenvalues of the lower band have the same sign
then N1 = 0. This is consistent with what we showed in Sec. 3.8.3 from symmetry considerations alone.
Increasing U enlarges the matrix elements of the topological Hamiltonian and hence also its eigenvalues.
Intuitively this occurs because enlarging U enlarges the gap in the spectral function. From the spectral
representation, one expects that the matrix elements of G(0,k) become smaller. In the present system
U has no influence on the inversion eigenvalues or N1, because enlarging the circle does not change the
winding number N1.

We now investigate what happens at the transition t1 = t2. In the noninteracting case i.e. U = 0,
this transition occurs via gap closure at k = π. At this point in parameter space the eigenvalues labeled
+ and − swap by crossing over zero. At finite U this behavior changes as can be seen in Fig. 3.6.
Approaching the phase transition line at t1 = t2, we find that the topological Hamiltonian and hence
the self-energy at zero frequency starts to diverge at k = π. This implies that the Green’s function at
zero frequency becomes zero as we can confirm from our calculation.

At the transition the eigenvalues of the topological Hamiltonian labeled by + and − swap by crossing
over infinity. Thus the Green’s function EBR classification changes by violating the condition that
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G(0,k) must be non-singular i.e. condition two in Definition 1. This confirms that the simultaneous
transition of N1 at t1 = t2 happens by a divergence in Σ(0, π) [111]. Note that one has to tune t2 very
close to the transition to observe the divergent behavior in the eigenvalues of the topological Hamiltonian.
Initially, for not small enough t2 it might look like the eigenvalues swap by crossing over zero, implying
a gap closing in the spectral function at zero frequency (violating condition one in Definition 1) like in
the corresponding non-interacting system.

3.9 Summary

In this chapter we investigated the applicability of elementary band representations in the spirit of TQC
and symmetry indicators to diagnose spatial- and time-reversal-symmetry protected topological phases
in interacting insulators in terms of their single-particle Green’s functions.

Assuming that there exists only a unique ground state of the interacting system we illustrated that
it is possible to define EBRs for the Matsubara Green’s function in the zero temperature limit via
the topological Hamiltonian in Eq. (3.12). This is analogous to previously defined Green’s function
invariants for the CAZ symmetry classes protected by TR, PH and CS [73–80]. We found that the
Green’s function EBR classification can only change by (i) a gap closing in the spectral function at
zero frequency, (ii) the Green’s function becoming singular at zero frequency (i.e. det

(

G(0,k)
)

= 0
or equivalently G(0,k) possesses a zero eigenvalue) or (iii) the Green’s function breaking a protecting
symmetry.

However, the question in which cases there is a strict correspondence between an EBR classification
of Green’s functions and SPT phases is left unanswered in the general case. However, in the case where
the Green’s function topological invariant corresponds to a physical observable, as for example the Hall
conductivity (Eq. 3.2) the EBR analysis coincided with the SPT classification.

As an example, we demonstrated the use of the EBRs for Green’s functions in one dimension on the
SSH+U model which we solved via exact diagonalization on a finite number of sites. The SSH+U model
is in the CAZ symmetry class BDI and has spatial inversion symmetry. The model posses topological
invariant N1 that including spin is related to the inversion eigenvalues at the high symmetry k-points
k = 0 and k = π. We argued and demonstrated that N1 = 4n + 2 if both inversion eigenvalues have
opposite sign and N1 = 4n if the signs are equal.

In the case U > 0 this model features a transition where the Green’s function becomes singular at
zero frequency, which allows the eigenvalues of the topological Hamiltonian at high-symmetry k-points
labeled by the inversion symmetry to swap by simultaneously becoming infinite. This is in contrast to
the non-interacting system where the eigenvalues labeled by the inversion eigenvalues swap by becoming
zero. Although we demonstrated the usage of EBRs for the Green’s function only in one dimension,
a similar analysis can also be applied in higher dimensions with respect to an arbitrary set of spatial
symmetries.

For numerical calculations on interacting models and materials in which interaction effects are rele-
vant, the EBR analysis can prove valuable as it requires only the calculation of irreps of the topological
Hamiltonian at a few high-symmetry k-points. Thus this analysis does not require integration over
k-space which often necessitates a much more dense k-point grid which for many methods is very costly
in higher dimensions.
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Chapter 4

Two-Particle Self-Consistent

approach with spin-orbit coupling

In this chapter we present the extension of the Two-Particle Self-Consistent approach (TPSC) [28–30]
to the case with spin-orbit coupling (SOC). We consider the multi-band case with multiple orbitals in
the unit cell on which electrons interact via the Hubbard interaction. However, we restrict ourselves
to the case where the orbitals within the unit cell are symmetry related. For a discussion on how
to include the change of orbital occupations in TPSC when interactions are turned on in the case of
orbitals that are not symmetry related see Ref. [6, 126]. The original formulation of TPSC does not
allow for the inclusion of SOC, because spin rotation symmetry is assumed and subsequently used in
many steps of the derivation of the TPSC self-consistency equations [30]. However, SOC explicitly
breaks spin rotation symmetry. So the corresponding self-consistency equations including SOC need
to be rederived. Instead of spin rotation symmetry we will take advantage of time reversal symmetry
(TR) which is still preserved. TR is chosen instead of any other, for example spatial symmetry, because
its preservation in the presence of SOC makes it the natural choice independent of the space group.
We will see that the inclusion of SOC leads to new terms in the self-consistency equations and in the
self-energy, which describe the coupling of spin and charge.

Many of our considerations, especially regarding time reversal symmetry are very general. We also
expect them to be helpful including SOC in other diagrammatic methods at the two-particle level such
as the dynamical vertex approximation (DΓA) [31] or the dual Fermion approach (DF) [32] which to
our best knowledge has not been done yet.

This chapter is organized as follows. We begin with general consideration about SOC in Sec. 4.1. We
also motivate when and why its inclusion becomes important in modeling correlated electronic systems
and give examples for phenomena caused by SOC and the interplay with electronic correlation effects.
In Sec. 4.2 we give an overview of the general ideas of TPSC and its strengths and weaknesses.

We then present a derivation of the TPSC self-consistency equations in the presence of SOC. The
overall strategy will be the following. In Sec. 4.3 we give definitions for Green’s functions and suscep-
tibilities to clarify our notation. In Sec. 4.4 we find, assuming a vertex that is local in space, time
and orbital, expressions from the Bethe-Salpeter equation for these susceptibilities. In Sec. 4.5 we then
employ TR to reduce the number of independent vertex elements to four. In Sec. 4.6 we derive an
ansatz equation to give a relation between double occupancies and one of the spin vertices. In Sec. 4.7
we derive sum rules for spin and charge susceptibilities to determine these vertex elements. In Sec. 4.8
we derive an expression for the self-energy. We do so by expanding the four-point function once in the
longitudinal and once in the transversal channel and then taking the average of both results. We show
that time reversal symmetry needs to explicitly be restored in the self-energy expression. In Sec. 4.9
we show that the Tr(GΣ) consistency check holds in the presence of SOC. In Sec. 4.10 we summarize
all TPSC self-consistency equations and describe the algorithm. In Sec. 4.11 we show for consistency
that the derived equations reduce to the usual TPSC self-consistency equations in the absence of SOC.
In Sec. 4.12 we then build some intuition in the most simple case with SOC present, namely where
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Figure 4.1: Sketch of the origin of spin-orbit coupling. In the rest frame of the electron the atom core moves
around the electron. The resulting current produces a magnetic field to which the electrons magnetic dipole
moment associated to the spin couples.

additionally Sz is conserved. We also give the TPSC algorithm for this case which is then implemented
in a python code. In Sec. 4.13 we give details about our implementation.

In Sec. 4.14 we apply TPSC with SOC to the Kane-Mele-Hubbard model. We first introduce the
Kane-Mele-Hubbard model and summarize previous findings. We then present obtained numerical
results for the double occupancy, the renormalized TPSC spin and charge vertices, maxima of the
spin, charge and mixed spin-charge susceptibilities, the Matsubara Green’s function and the self-energy.
Physical observables such as the spin-Hall conductivity, correlation lengths for antiferromagnetic spin
fluctuations and the band renormalization are discussed separately in chapter 5.

4.1 Spin-orbit coupling

Spin-orbit coupling (SOC) is a relativistic effect that originates from the movement of an electron around
the atom core. The SOC term can be derived from the Dirac equation. However, in a simplified picture
one can imagine that in the rest frame of the electron the atom core moves around the electron. The
resulting current produces a magnetic field to which the electrons magnetic dipole moment associated
to the spin couples. A sketch can be seen in Fig. 4.1.

For an electron moving around an atom core the resulting spin-orbit potential in an atom can be
written as

HSOC = ζSOC(r)L · S, (4.1)

where ζSOC(r) is a function that only depends on the radius, L is the angular momentum operator of
the electron and S the spin operator of the electron. In the case of a single electron moving around the
atom core the SOC scales as ∼ Z4, where Z is the atomic number. So, SOC becomes more important
for heavier elements where as for lighter elements it can often be neglected. In a crystal environment the
situation is more complicated, however, one can still imagine that from the perspective of the rest frame
of the electron the surrounding ions move. The resulting current then again couples to the electrons
magnetic dipole moment. Tab. 4.1 gives the size of the (effective) SOC in several commonly studied
materials.

We again see that in systems with heavy elements SOC becomes more important. Spin-orbit coupling
can lead to a number of interesting phenomena in materials. The interplay with electronic correlations
can also become important. In the following we name a few examples.

SOC can lead to so called spin textures in cuprates [81, 82]. The SOC can be thought of a magnetic
field in momentum space along which spins can align. The resulting spin texture can be measured with
spin- and angle-resolved photoemission spectroscopy as done so in Bi2212 [81]. Cuprates are materials
that are also well known for having strong electronic correlations.
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Material Size of the (effective) SOC

Graphene 42.2 µeV [127] (exp.)
Germanene 23, 9 meV [128, 129] (theory)
Sr2RuO4 130± 30 meV [95] (exp.)
Sr2IrO4 ∼ 0.4 eV [130] (theory)
BiTeI ∼ 0.4 eV (exp.) [131]

Table 4.1: Size of the (effective) SOC in several commonly studied materials.

SOC can have a large effect on the electronic structure of a material. A good example is the
unconventional superconductor Sr2RuO4 [92–99] where SOC leads to splittings in the band structure
and in the Fermi surface. The inclusion of SOC is thus necessary to describe the electronic structure
and derived properties such as the superconducting order parameter in the material.

In the isostructural analogue Sr2IrO4 the SOC is even larger, because Ir is more heavy. The 5d
orbitals are rather extended and one would expect them to lead to bands with a rather large band
width where correlation effects do not play a large role. However, the SOC and crystal field splitting
combined lead to a rather narrow (double degenerate) jeff = 1/2 band. This narrow band is very
susceptible to the Hubbard interaction [130, 132]. Sr2IrO4 was found to be insulating with small
ferromagnetic moments [133, 134]. There are hopes of realizing exotic topological states in this or
similar systems [135, 136].

In graphene it has been shown that an interplay of SOC of Rashba type and electron-electron
interactions can lead to collective spin excitations [83–88]. Rashba SOC arises when there is a gradient
in the electrical potential in the material, which from the rest frame of the electron looks like a magnetic
field. This can be achieved by placing the material on a substrate or in hetero structures. This resonances
can be measured in electron-spin resonance experiments [127].

The heavy-fermion superconductor CeCoIn5/YbCoIn5 is another example where both strong Rashba
SOC as well as electron correlations exist [137, 138]. In this material the strength of the Rashba SOC
can be tuned by varying the number of layers in the YbCoIn5 blocks. Also, Rashba SOC can be tuned
via the application of an electric field as demonstrated at LaAlO3/SrTiO3 interfaces. [139]

Another phenomenon caused by SOC is magnetic anisotropy (see e.g. Refs. [140–142]). The coupling
of spin and orbital degrees of freedom leads to a preferred direction for the spins to align in momentum
space causing them to be easier to be polarized in certain directions then in others.

Another prominent example is the so called spin Hall effect, first proposed in 1971 by Dyakonov and
Perel [89], in which electrons travel perpendicular to an applied electric field, but in opposite directions
depending on their spin. The spin Hall effect has been realized in a variety of systems, including the
semiconductors GaAs and InGaAs where the phenomenon is driven by spin orbit coupling [143, 144].
In the quantum spin Hall (QSH) effect the spin Hall conductivity is quantized. The QSH was originally
proposed by Kane and Mele [48, 49] for a single layer of graphene, where the intrinsic spin-orbit coupling
(SOC) opens a band gap and causes a band inversion making the bands topological [49]. An observable
QSH was first successfully predicted and measured in HgTe quantum wells [90, 91]. The spin Hall is
discussed in more detail in chap. 5.

Further, it was suggested that with the gapless edgestates at the surface of a topological insulator
it is possible to realize a p-wave superconductor [145, 146] or Majorana fermions [145] via proximity
effects.

Hence, we see that understanding the interplay of SOC and electronic correlation lead to many
interesting phenomena that are not fully understood yet. Studying the Hubbard model in the presence
of SOC has thus gained interest in the past [147–153].

In TPSC we will see that SOC leads to a coupling of spin and charge channels in the form of spin-
charge correlation functions. This spin-charge correlation functions appear also in other contexts, see
e.g. Ref. [86] or Ref. [154]. Also spin fluctuations for the different directions will in general be different.

A symmetry that will be crucial to include SOC in TPSC is time reversal symmetry (TR). Intuitively
the preservation of TR in the presence of SOC can be understood in the atomic case i.e. Eq. 4.1. Here,
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the scalar product of angular momentum and spin is left invariant under the action of TR

L · S TR→ (−L) · (−S) = L · S. (4.2)

In a material the electron can be thought of having an angular momentum and hence a SOC with
respect to every ion. Hence, TR is a preserved symmetry in the presence of SOC. The most impotant
consequence of TR for TPSC is that it will allow us to reduce the number of independent vertex elements
in TPSC to 4 that can be found with the help of spin and charge sum rules.

4.2 The Two-Particle Self-Consistent approach

The Two-Particle Self-Consistent (TPSC) approach is a weak to intermediate coupling approach to the
Hubbard model capable of calculating a frequency- and momentum-dependent self-energy from spin and
charge fluctuations. TPSC is constructed such that it satisfies conservation laws for spin and charge, the
Pauli principle and the Mermin-Wagner theorem. TPSC is computationally inexpensive making it pos-
sible to study a variety of different physical systems. Further, TPSC is conceptually simple, which often
allows for a transparent understanding of the underlying physics of the studied phenomena. Originally,
TPSC has been developed for the single-band Hubbard model [28–30]. For reviews see Ref. [30, 33, 34].
TPSC has been benchmarked against DiagMC [155] and Quantum Monte Carlo [28–30, 156–158]. There
are a number of extensions of TPSC including combinations with DMFT [5, 159, 160], TPSC+ [155, 161],
disorder [37], TPSC+GG [155, 162], multi-site case [163–166], mulit-orbital case (to include interorbital
interaction U ′ and Hund’s coupling J) [6, 167–169], non-equilibrium [160, 162] and nearest neighbor
interaction [170–172]. Further, the attractive Hubbard model (U < 0) has been studied [158, 173].
TPSC has been used to study a variety of systems that can be described by the Hubbard model such as
the antiferromagnetic pseudo gap in cuprates [30, 35], optical conductivity [36], ferromagnetism [174],
the crossover of antiferromagnetic spin fluctuations from two to three dimensions [175], magnetic prop-
erties of the three-dimensional Hubbard model[176] adiabatic cooling in cold atoms [38], unconventional
superconductivity [166, 177–180] and resilience of Fermi liquid quasiparticles on cold parts of the Fermi
surface [37].

The main limitations of TPSC are that it is not valid in the strong coupling limit, except at very
high temperature [38]. TPSC is also not valid deep in the renormalized classical regime, where the
energy of the characteristic spin fluctuations becomes smaller than the temperature kBT and the spin
correlation length grows exponentially [28, 30]. Further TPSC overestimates spin fluctuations at low
temperatures, which also leads to deviations from benchmarks in other derived quantities such as the
double occupancy and the self-energy [155, 159]. TPSC works well in two or more dimensions but not
in one dimension [181].

The general idea of TPSC is the following. We consider the single-band Hubbard model. We consider
RPA-like expressions for spin and charge susceptibilities i.e.

χsp(q) =
χ(1)(q)

1− 1
2Uspχ(1)(q)

, (4.3)

χch(q) =
χ(1)(q)

1 + 1
2Uchχ(1)(q)

, (4.4)

where q = (iqm, q) and χ
(1)(q) is an effective noninteracting susceptibility given by

χ(1)(q) = −2
T

N

∑

k

G(1)(k + q)G(1)(k), (4.5)

where in the single-band case G(1) = G0. The spin and charge vertices Usp and Uch are then determined
such that spin and charge sum rules are fulfilled
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T

N

∑

q

χch(q) = ⟨n⟩+ 2 ⟨n↑n↓⟩ − ⟨n⟩2 , (4.6)

T

N

∑

q

χsp(q) = ⟨n⟩ − 2 ⟨n↑n↓⟩ . (4.7)

In RPA one sets Usp = Uch = U without any renormalization. Adding Eq. 4.96 and Eq. 4.97 together
in RPA it is easy to see that RPA violates these sum rules and consequently violates the Pauli principle
in the form ⟨n2

↑⟩ = ⟨n↑⟩. The ansatz equation, derived from a Hartree-Fock decoupling, is used to relate
the double occupancy to the spin vertex. For ⟨n⟩ ≤ 1 the ansatz equation is

Usp = U
⟨n↑n↓⟩
⟨n↑⟩ ⟨n↓⟩

= 4U
⟨n↑n↓⟩
⟨n⟩2

. (4.8)

For ⟨n⟩ > 1 a particle-hole transformation has to be used to map it to the case ⟨n⟩ ≤ 1 [30]. So we have
three equations for Usp, Uch and ⟨n↑n↓⟩ that need to be solved self-consistently.

In a second level approximation the self-energy is calculated by

Σ(2)(k) = U
⟨n⟩
2

+
U

8

∑

q

G(1)(k + q) (3Uspχsp(q) + Uchχch(q)) . (4.9)

This expression is obtained by expanding the four-point correlator in the Schwinger-Dyson equation
once in the longitudinal and once in the transversal channel and then averaging both results [33, 157].
Note that TPSC is not conserving anymore at the second level and there is no correspondence to a
Luttinger-Ward functional. From the Dyson the Green’s function is calculated by

G(2)(iωn,k) =
(

iωn −H(k) + µ− Σ(2)(iωn,k)
)−1

. (4.10)

The chemical potential needs to be adjusted here to match the given filling.

4.3 Definitions

In this section we give a number of definitions that are important for the following derivation of the
TPSC self-consistency equations. We discuss the distinction between first and second level quantities in
TPSC. Then we define the correlation functions we are searching expressions for in TPSC. Further, we
give the form of the irreducible particle-hole vertex, which in TPSC is assumed local in time and space.

4.3.1 First and second level quantities

We distinguish between first level (1) and second level (2) quantities. First level quantities can be
derived from a Luttinger-Ward functional [182–185] and are hence conserving. Second level quantities,
such as G(2) and Σ(2) later on, are constructed from first level ones but are not conserving and they do
not correspond to a Luttinger Ward functional. The first level Green’s function is given by

G
(1)ab
σσ′ (iωn,k) =

(

(

iωn −H(k) + µ(1) − Σ(1)
)−1

)ab

σσ′

. (4.11)

The first level self-energy Σ(1) in TPSC is a frequency and k-independent constant (matrix) that is
diagonal in orbital space. So G(1) is an effective non-interacting Green’s function. If all orbitals in the
unit cell are identical i.e. when they are mapped into each other by symmetry (as for example in the
KMH model), the self-energy can just be absorbed in the chemical potential. With that one has in fact
G(1) = G0. The first level susceptibility (an effective non-interacting susceptibility) is given by
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χ(1)a1a2

σ1σ2,σ3σ4
(q) = − T

N

∑

k

G(1)a1a2

σ2σ3
(k + q)G(1)a2a1

σ4σ1
(k). (4.12)

So for symmetry related orbitals again it holds χ(1) = χ(0).

4.3.2 Susceptibilities

Now let us look at the interacting susceptibilities. We are interested in correlation functions of the
density and spin operators that are given by

nia = c†ia↑cia↑ + c†ia↓cia↓ = nia↑ + nia↓, (4.13)

Sz
ia = c†ia↑cia↑ − c†ia↓cia↓ = nia↑ − nia↓, (4.14)

Sx
ia = c†ia↑cia↓ + c†ia↓cia↑ = S+

ia + S−
ia, (4.15)

Sy
ia = −ic†ia↑cia↓ + ic†ia↓cia↑ = −iS+

ia + iS−
ia. (4.16)

The inverse transformation is

S+
ia =

1

2
(Sx

ia + iSy
ia), (4.17)

S−
ia =

1

2
(Sx

ia − iSy
ia), (4.18)

nia↑ =
1

2
(nia + Sz

ia), (4.19)

nia↓ =
1

2
(nia − Sz

ia). (4.20)

Note that (S+
ia)

† = S−
ia. In the case of general SOC there is no conserved spin direction. Hence,

transversal and longitudinal spin fluctuations can couple to each other. We now investigate all possible
spin and charge susceptibilities, because they will show up in the self-energy. Susceptibilities have the
general form

χab
αβ(τ,Ri −Rj) = ⟨TτOα

ia(τ)O
β
jb(0)⟩ − ⟨Oα

ia⟩ ⟨Oβ
jb⟩ , (4.21)

where the operators Oα can either be Sx, Sy, Sz or n corresponding to the labels x, y, z or c. Alterna-
tively, one can go to the original basis and use the original operators i.e. Oα being n↑, n↓, S+ or S−

corresponding to the labels ↑, ↓, + or −. Ri is the lattice vector to the unit cell with the index i and a
and b are site indices labeling the sites in the unit cell. With Fourier transform one can go to frequency
momentum space q = (iqm, q). Note that with TR symmetry it always holds ⟨Sα

a ⟩ = 0 as we will show
later. For example the spin correlation function for two spins in x-direction is given by

χab
xx(τ,Ri −Rj) = ⟨TτSx

ia(τ)S
x
jb(0)⟩ . (4.22)

This correlation function can be expressed in the original basis by the following linear combination

χxx = χ++ + χ+− + χ−+ + χ−−. (4.23)

Appendix A gives a complete list of all spin correlation functions and their relation to each other.
Conveniently we can define the matrices

χ =









χ↑↑ χ↑↓ χ↑+ χ↑−
χ↓↑ χ↓↓ χ↓+ χ↓−
χ+↑ χ+↓ χ++ χ+−
χ−↑ χ−↓ χ−+ χ−−









(4.24)
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and

χ′ =









χcc χcz χcx iχcy

χzc χzz χzx iχzy

χxc χxz χxx iχxy

iχyc iχxz iχyx −χyy









. (4.25)

With the matrix M given by

M =









1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1









, (4.26)

one can relate χ and χ′ by a simple basis transformation

χ′ =MχM. (4.27)

Note that 1
2MM = 1

2MM−1 = 1.

4.3.3 Local irreducible two-particle vertex

Generally, the irreducible two-particle particle-hole vertex is defined as

Γa1a2a3a4

σ1σ2σ3σ4
(1, 2; 3, 4) =

δΣa1a2
σ1σ2

(1, 2)

δGa3a4
σ3σ4

(3, 4)
. (4.28)

In TPSC we assume a irreducible vertex that is local in space and time. Hence in frequency momentum
space the irreducible vertex is a constant. It follows that in TPSC the local vertex takes the following
form

Γ(1, 2; 3, 4) = δRi1
Ri2

δRi1
Ri3

δRi1
Ri4

δa1a2
δa1a3

δa1a4
δ(τ1 − τ+2 )δ(τ1 − τ+3 )δ(τ1 − τ4)Γ

a1

σ1σ2σ3σ4
. (4.29)

The elements of the local in space time and orbital vertex elements are defined by

Γa1

σ1σ2,σ4σ3
:= Γa1

σ1σ2σ3σ4
=
δΣa1a1

σ1σ2

δGa1a1
σ3σ4

. (4.30)

The reason for the switch of the last two indices is that in this way we get a proper matrix notation in
the Bethe-Salpeter-equation. To do so we introduce a combined spin index ρ = (σ1, σ2). We combine
the first two and the last two spin indices, that are separated by a comma, so that we can write Γρη,
with ρ and η taking the values ↑, ↓,+,−.

At the level of the susceptibilities TPSC is conserving and one can derive the irreducible vertex from
a Luttinger-Ward functional Φ [G]. Hence we get the following symmetry for the TPSC vertex

Γa
σ1σ2σ3σ4

=
δΣaa

σ1σ2

δGaa
σ3σ4

=
δΦ [G]

δGaa
σ2σ1

δGaa
σ3σ4

=
δΣaa

σ4σ3

δGaa
σ2σ1

= Γa
σ4σ3σ2σ1

. (4.31)

In matrix notation this equation reads

Γρζ = Γζρ. (4.32)

Analogous to the susceptibility we can write the vertex as a matrix

Γ =









Γ↑↑ Γ↑↓ Γ↑+ Γ↑−
Γ↓↑ Γ↓↓ Γ↓+ Γ↓−
Γ+↑ Γ+↓ Γ++ Γ+−
Γ−↑ Γ−↓ Γ−+ Γ−−









. (4.33)
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Similarly to χ we can make a basis transformation for Γ. We define

Γ′ =
1

2
MΓM (4.34)

Later on we will show that with TR symmetry Γ′ has the following form

Γ′ =









Γcc 0 0 0
0 −Γzz 0 0
0 0 −Γxx 0
0 0 0 +Γyy









. (4.35)

The rest of the matrix elements vanish with TR as we will show later. Hence in the end one is left with
four independent constants, a charge vertex Γcc and three spin vertices Γxx,Γyy,Γzz, one for each spin
direction, that now can be independent. Note that in RPA one would just have Γcc = Γαα = U .

4.4 Bethe-Salpeter equation

The goal of this section is to get something like the following equation for the susceptibilities

χ′ = χ(1)′ − 1

2
χ(1)′Γ′χ′, (4.36)

where we enforce TR symmetry on Γ′ so that it only has four real independent matrix elements (see
Eq. 4.35). More explicitly one can write this equation as









χcc χcz χcx iχcy

χzc χzz χzx iχzy

χxc χxz χxx iχxy

iχyc iχxz iχyx −χyy









=











χ
(1)
cc χ

(1)
cz χ

(1)
cx iχ

(1)
cy

χ
(1)
zc χ

(1)
zz χ

(1)
zx iχ

(1)
zy

χ
(1)
xc χ

(1)
xz χ

(1)
xx iχ

(1)
xy

iχ
(1)
yc iχ

(1)
xz iχ

(1)
yx −χ(1)

yy











− 1

2











χ
(1)
cc χ

(1)
cz χ

(1)
cx iχ

(1)
cy

χ
(1)
zc χ

(1)
zz χ

(1)
zx iχ

(1)
zy

χ
(1)
xc χ

(1)
xz χ

(1)
xx iχ

(1)
xy

iχ
(1)
yc iχ

(1)
xz iχ

(1)
yx −χ(1)

yy



















Γcc 0 0 0
0 −Γzz 0 0
0 0 −Γxx 0
0 0 0 +Γyy

















χcc χcz χcx iχcy

χzc χzz χzx iχzy

χxc χxz χxx iχxy

iχyc iχxz iχyx −χyy.









(4.37)

We can bring the last equation in a more symmetrical form by getting rid of factors of i. We get









χcc χcz χcx χcy

χzc χzz χzx χzy

χxc χxz χxx χxy

χyc χxz χyx χyy









=











χ
(1)
cc χ

(1)
cz χ

(1)
cx χ

(1)
cy

χ
(1)
zc χ

(1)
zz χ

(1)
zx χ

(1)
zy

χ
(1)
xc χ

(1)
xz χ

(1)
xx χ

(1)
xy

χ
(1)
yc χ

(1)
xz χ

(1)
yx χ

(1)
yy











− 1

2











χ
(1)
cc χ

(1)
cz χ

(1)
cx χ

(1)
cy

χ
(1)
zc χ

(1)
zz χ

(1)
zx χ

(1)
zy

χ
(1)
xc χ

(1)
xz χ

(1)
xx χ

(1)
xy

χ
(1)
yc χ

(1)
xz χ

(1)
yx χ

(1)
yy



















Γcc 0 0 0
0 −Γzz 0 0
0 0 −Γxx 0
0 0 0 −Γyy

















χcc χcz χcx χcy

χzc χzz χzx χzy

χxc χxz χxx χxy

χyc χxz χyx χyy









. (4.38)

This equation is the generalization of Eq. 4.3 and Eq. 4.4, only that now with SOC spin and charge are
coupled.

To derive the above equation we start from the BSE expanded in one of the particle-hole channels
Eq. 2.84
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χ(1, 2; 3, 4) = −G(1, 3)G(4, 2) +G(1, 5̄)Γ(5̄, 6̄; 7̄, 8̄)χ(7̄, 8̄; 3, 4)G(6̄, 2), (4.39)

where 1 := (τ1,Ri1 , a1, σ1). Restoring all orbital indices the equation reads

χa1a2a3a4

σ1σ2σ3σ4
(1, 2; 3, 4) = −Ga1a3

σ1σ3
(1, 3)Ga4a2

σ4σ2
(4, 2)

+Ga1ā5

σ1σ̄5
(1, 5̄)Γā5ā6ā7ā8

σ̄5σ̄6σ̄7σ̄8
(5̄, 6̄; 7̄, 8̄)χā7ā8a3a4

σ̄7σ̄8σ3σ4
(7̄, 8̄; 3, 4)Gā6a2

σ̄6σ2
(6̄, 2). (4.40)

Inserting the local TPSC vertex (Eq. 4.29 ) and setting G→ G(1) we get for the susceptibilities we are
interested in

χa1a1a2a2

σ1σ2σ3σ4
(1, 1+; 2+, 2) = −G(1)a1a2

σ1σ3
(1, 2+)G(1)a2a1

σ4σ2
(2, 1+)

+G
(1)a1ā6

σ1σ̄5
(1, 6̄+)Γā6

σ̄5σ̄6σ̄7σ̄8
χā6ā6a3a4

σ̄7σ̄8σ3σ4
(6̄, 6̄+; 2+, 2)G

(1)ā6a1

σ̄6σ2
(6̄, 1+). (4.41)

Again using the combined spin index ρ1 = (σ11, σ12), we define χa1a2
ρ1ρ2

(1, 2) := χa1a1a2a2
σ12σ11σ21σ22

(1, 1+; 2+, 2).

As before we have Γa
σ12σ11σ21σ22

= Γa
ρ1ρ2

. Further we can identify G(1)G(1) as χ(1) the susceptibility of
an effective non-interacting system. With that we can write the BSE with matrix multiplications, i.e.

χa1a2

ρ1ρ2
(1, 2) = χ(1)a1a2

ρ1ρ2
(1, 2)− χ

(1)a1ā5

ρ1ρ̄5
(1, 5̄)Γᾱ5

ρ̄5ρ̄7
χā5a2

ρ̄7ρ2
(5̄, 2). (4.42)

Going to frequency momentum space one gets

χa1a2

ρ1ρ2
(q) = χ(1)a1a2

ρ1ρ2
(q)− χ

(1)a1ā5

ρ1ρ̄5
(q)Γā5

ρ̄5ρ̄7
χā5a2

ρ̄7ρ2
(q). (4.43)

In matrix notation we indeed get

χ = χ(1) − χ(1)Γχ. (4.44)

Doing the basis transformation and inserting 1 = 1
2MM one can write

χ′ = χ(1)′ − 1

2
χ(1)′Γ′χ′. (4.45)

So we arrive at the desired result. What is now left to do is, that we have to argue with TR symmetry
that the vertex has the desired form with only four independent constants.

4.5 Time reversal symmetry

In this section we investigate the consequences of time reversal symmetry (TR). TR is used instead of spin
rotation symmetry to simplify the equations and reduce the number of independent vertex elements.
We start by explaining how TR symmetry is implemented in the second quantization formalism in
terms of an antiunitary operator. Note, that the antiunitarity of TR makes it more involved to deal
with TR compared to unitary symmetries. Then, we investigate the consequences of TR symmetry for
certain expectation values, susceptibilities, irreducible vertex, Green’s function and self-energy. A list
of implications following from TR is given in Appendix C.

4.5.1 Time reversal general definition

The time reversed single particle Schrödinger equation without spin takes the form

(

p2

2m
+ V (r)

)

ψ(r, t) = i
∂ψ(r, t)

∂(−t) . (4.46)

where V (r) is the crystal potential. If ψ′(r, t) is a solution of the Schrödinger equation (without time
reversal), then ψ′∗(r, t) is a solution of the time reversed Schrödinger equation above. This means in
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the single particle case without spin, time reversal is just given by complex conjugation K. Spin, as any
other angular momentum, changes sign under time reversal. Hence, time reversal in the spinfull case
has a matrix representation namely iσyK.

Within second quantization TR is implemented via a anti-unitary operator ÛT. That means it is
a unitary operator combined with complex conjugation K. Since ÛT is anti-unitary it must act on a
complex number by complex conjugation i.e. for z ∈ C we have

ÛTzÛ
−1
T = z∗. (4.47)

Note that due to the complex conjugation it is important that ÛT acts strictly to the right. ÛT acts
directly on the space of the many-body states i.e. the Fock space. We do not need to write how ÛT

looks explicitly. It is sufficient to specify how ÛT transforms creation and annihilation operators, which
essentially specifies how it acts on the single particle basis. We assume that c†iaσ and ciaσ create and
annihilate electrons in real and orthonormal orbitals on a lattice, where as usual i is the unit cell index,
a the orbital index and σ the spin index. The transformation is

ÛTc
†
iaσÛ

−1
T =

∑

σ′

(iσy)σσ′ c
†
iaσ′ = −σc†ia−σ, (4.48)

ÛTciaσÛ
−1
T =

∑

σ′

(

(iσy)
†)

σ′σ
ciaσ′ = −σcia−σ, (4.49)

where here by A† with A a matrix we mean the adjoint of that matrix. The action on a many-body
state |ψ⟩, that corresponds to a Slater determinant, can always be obtained by

ÛT |ψ⟩ = ÛT

∏

j

c†j |0⟩ =
∏

j

(ÛTc
†
jÛ

−1
T )ÛT |0⟩ . (4.50)

Here j can be any set of indices. The vacuum |0⟩ is invariant under any symmetry. With linear
combinations of Slater determinants the action on an arbitrary many-body state is determined. A
many-body Hamiltonian in second quantization is invariant under TR if

ÛTHÛ
−1
T = H. (4.51)

Mathematical side note: Also for anti-unitary operators Û it holds Û†Û = Û Û† = 1, because for
anti-unitary operators the mathematical definition of the adjoint of an operator is changed to

⟨ϕ|Ûψ⟩ =
(

⟨Û†ϕ|ψ⟩
)∗

(4.52)

to compensate for the complex conjugation. As an example take Û to be just the complex conjugation
(on the Hilbert space L2). Û † is also anti-unitary and it holds Û† = Û−1.

4.5.2 Time reversal symmetry for a non-interacting Hamiltonian

As an example for the implications of TR let us consider a non-interacting Hamiltonian that in second
quantization is given by

H0 =
∑

ijabσσ′

Habσσ′

ij c†iaσcjbσ′ . (4.53)

TR symmetry implies
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H = ÛTHÛ
−1
T

=
∑

ijabσ1σ2

(

Habσ1σ2

ij

)∗
ÛTc

†
iaσ1

Û−1
T ÛTcjbσ2

Û−1
T

=
∑

ijabσ1σ2

σ1σ2

(

Habσ1σ2

ij

)∗
c†ia−σ1

cjb−σ2

=
∑

ijabσ1σ2

σ1σ2

(

Hab−σ1−σ2

ij

)∗
c†iaσ1

cjbσ2
. (4.54)

So the hopping elements of a TR invariant Hamiltonian must fulfill

Habσ1σ2

ij = σ1σ2

(

Hab−σ1−σ2

ij

)∗
. (4.55)

Going to k-space by a Fourier transform we see that TR has the following consequences for a Bloch
Hamiltonian

Habσ1σ2(k) =
∑

i

eik·Rijσ1σ2Habσ1σ2

ij

TR
=
∑

i

eik·Rijσ1σ2

(

Hab−σ1−σ2

ij

)∗

=

(

∑

i

e−ik·Rijσ1σ2Hab−σ1−σ2

ij

)∗

= σ1σ2
(

Hab−σ1−σ2(−k)
)∗
. (4.56)

where Rij = Ri −Rj .

4.5.3 Time reversal symmetry implications for expectation values

Time reversal acts on the operators we are interested in as

ÛTnia↑Û
−1
T = nia↓, (4.57)

ÛTnia↓Û
−1
T = nia↑, (4.58)

ÛTS
+
iaÛ

−1
T = −S−

ia, (4.59)

ÛTS
−
iaÛ

−1
T = −S+

ia. (4.60)

Hence one also has

ÛTS
α
iaÛ

−1
T = −Sα

ia, (4.61)

ÛTniaÛ
−1
T = nia. (4.62)

From TR one can derive the following relations

⟨S+
ia⟩ = 0, (4.63)

⟨S−
ia⟩ = 0, (4.64)

⟨nia↑⟩ = ⟨nia↓⟩ . (4.65)

From these relations it directly follows that ⟨Sα
a ⟩ = 0.
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Proof. For the densities we get

⟨niaσ⟩ =
1

Z
Tr
(

e−βHniaσ

)

TR
=

1

Z
Tr
(

e−βÛ
−1

T
HÛTniaσ

)

=
1

Z

∑

n

⟨n|Û−1
T e−βH ÛTniaσÛ

−1
T ÛT|n⟩

=
1

Z

∑

n

(

⟨ÛTn|e−βHnia−σ|ÛTn⟩
)∗

= ⟨nia−σ⟩ . (4.66)

Going from the third to the fourth line we use Û−1
T = Û†

T and the definition of the adjoint of an

antiunitary operator Eq. 4.52. Further, for antiunitary operators (Û†
T)

† = ÛT. Note that there is no
cyclic property of the trace in case of an antiunitary operator. Going from the fourth to the fifth line the
sum over all basis states stays invariant under TR. The complex conjugate has no effect because ⟨niaσ⟩
is real. This can be easily seen by just considering complex conjugation as the antiunitary operator.

For S+
ia one gets

⟨S+
ia⟩ =

1

Z
Tr
(

e−βHc†ia↑cia↓
)

TR
=

1

Z
Tr
(

e−βÛ
−1

T
HÛTc†ia↑cia↓

)

=
1

Z

∑

n

⟨n|Û−1
T e−βH ÛTc

†
ia↑Û

−1
T ÛTcia↓Û

−1
T ÛT|n⟩

= − 1

Z

∑

n

(

⟨ÛTn|e−βHc†ia↓cia↑|ÛTn⟩
)∗

= − 1

Z

∑

n

⟨n|
(

e−βHc†ia↓cia↑
)†

|n⟩

= − 1

Z

∑

n

⟨n|c†ia↑cia↓e−βH |n⟩

= −⟨S+
ia⟩ . (4.67)

Hence it must hold ⟨S+
ia⟩ = 0. Flipping spins it also follows ⟨S−

ia⟩ = 0.

4.5.4 Time reversal of the susceptibilities

We will now show that for the susceptibilities it holds

χab
ρζ(iqm, q) = ηρζχ

ba
−ζ−ρ(iqm,−q). (4.68)

where ηρζ gives a factor of −1 for each + or − in ρ and ζ. In matrix notation this equation reads

χ(iqm, q) =WχT (iqm,−q)W. (4.69)

where W is explicitly given by

W =









0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0









. (4.70)
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So, W flips ↑ to ↓ and + to − and gives the minus signs for the appropriate indices.

Proof. As shown before it follows from TR that ⟨n↑⟩ = ⟨n↓⟩ and ⟨S+⟩ = ⟨S−⟩ = 0. So for the
susceptibilities one only needs to focus on the first term. We calculate for τ > 0 1

⟨Oiaρ(τ)Ojbζ⟩ =
1

Z
Tr
(

e−βHeHτOiaρe
−HτOjbζ

)

TR
=

1

Z
Tr
(

e−βÛ
−1

T
HÛTeÛ

−1

T
HÛTτOiaρe

−Û
−1

T
HÛTτOjbζ

)

=
1

Z

∑

m

⟨m|Û−1
T e−βHeHτ ÛTOiaρÛ

−1
T e−Hτ ÛTOjbζÛ

−1
T ÛT|m⟩

= ηρζ
1

Z

∑

m

(

⟨ÛTm|e−βHeHτOia−ρe
−HτOjb−ζ |ÛTm⟩

)∗

= ηρζ
1

Z

∑

m

(

⟨m|e−βHeHτOia−ρe
−HτOjb−ζ |m⟩

)∗

= ηρζ
1

Z

∑

m

⟨m|
(

e−βHeHτOia−ρe
−HτOjb−ζ

)† |m⟩

= ηρζ
1

Z

∑

m

⟨m|Ojb−ζe
−HτOia−ρe

Hτe−βH |m⟩

= ηρζ
1

Z

∑

m

⟨m|e−βHeHτOjb−ζe
−HτOia−ρ|m⟩

= ηρζ ⟨Ojb−ζ(τ)Oia−ρ⟩ . (4.71)

Similar for τ < 0. So in the end we get

χab
ρζ(τ,−r) = ηρζχ

ba
−ζ−ρ(τ,−r). (4.72)

Going to frequency momentum space we get the claimed identity.

4.5.5 Time reversal of the vertex

In the following we use TR to motivate the following identity for the TPSC vertex

Γa
ρζ = ηρζΓ

a
−ζ−ρ. (4.73)

This relation is analogous to the one for the susceptibility 4.68. We do so by enforcing TR on the BSE.
Let us first iterate the BSE

χ(iqm, q) = χ(1)(iqm, q)− χ(1)(iqm, q)Γχ
(1)(iqm, q) + χ(1)(iqm, q)Γχ

(1)(iqm, q)Γχ
(1)(iqm, q)− . . . .

(4.74)
It must hold

χ(iqm, q)
TR
= Wχ(iqm,−q)TW

=Wχ(1)(iqm,−q)TW −W
(

χ(1)(iqm,−q)Γχ(1)(iqm,−q)W
)T

+ . . .

=Wχ(1)(iqm,−q)TW −Wχ(1)(iqm,−q)TWWΓTWWχ(1)(iqm,−q)TW + . . .

TR
= χ(1)(iqm, q)− χ(1)(iqm, q)WΓTWχ(1)(iqm, q) + . . . (4.75)

1Despite the name imaginary time the complex conjugate has no effect on τ . τ is considered as a real number in the
interval [−β, β] .
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Hence for the vertex it must hold

Γ =WΓTW. (4.76)

Component wise one obtains the above identity.

4.5.6 Form of the TPSC vertex

We now motivate that in the presence of TR the TPSC vertex has only four independent elements out
of the original 16. The independent elements are charge vertex Γcc and the three spin vertices Γxx, Γyy

and Γzz.
Among other identities we get from Eq. 4.32 i.e. Γρζ = Γζρ that

Γ↑↓ = Γ↓↑, (4.77)

Γ+− = Γ−+. (4.78)

From TR one has the identity Γρζ = ηρζΓ−ζ−ρ. Among other identities we get

Γ↑↑ = Γ↓↓, (4.79)

Γ++ = Γ−−. (4.80)

Combining the above identities we see that (see the definitions in appendix A and B)

Γcz = Γzc = 0, (4.81)

Γxy = Γyx = 0. (4.82)

Note that this is analogous to χaa
cz (τ = 0, r = 0) = 0 and χaa

xy(τ = 0, r = 0) = 0 in the presence of time
reversal symmetry as we will see for the sum rules. Since the choice of coordinate system is in principle
arbitrary, this means that only the diagonal i.e. Γch, Γxx, Γyy and Γzz survive. Also note that with that
all elements of the vertex which flip one spin such as Γ↑+ = Γ↑↑,↑↓ are zero. This make sense because
the Hubbard interaction also conserves spin. 2 So as claimed before there are only four independent
vertices and with that the BSE reads

χ′ = χ(1)′ − 1

2
χ(1)′Γ′χ′. (4.83)

4.5.7 Time reversal symmetry of the Green’s function and the self-energy

We also need the implications of TR symmetry for the Green’s function and the self-energy, because we
want the corresponding TPSC expression to also fulfill TR. For the Green’s function TR implies

Gab
σσ′(iωn,k) = σσ′Gba

−σ′−σ(iωn,−k), (4.84)

Similarly for the self-energy one has

Σab
σσ′(iωn,k) = σσ′Σba

−σ′−σ(iωn,−k). (4.85)

Proof. With time reversal invariance we get for the Matsubara Green’s function for τ > 0

2What about Γ++ that flips two spins and it can still be nonzero now in TPSC? The situation is similar to Γ↑↑, which
can be thought of in order having processes/diagrams involving Γ↑↓ and Γ↓↑. The situation is similar here with Γ+− and
Γ−+. The same is not possible with flipping just one spin.
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Gab
σσ′(τ,Ri −Rj) = − 1

Z
Tr
(

e−βHeHτ ciaσe
−Hτ c†jbσ′

)

= − 1

Z
Tr
(

e−βÛ
−1

T
HÛTeÛ

−1

T
HÛTτ ciaσe

−Û
−1

T
HÛTτ c†jbσ′

)

= − 1

Z

∑

n

⟨n|Û−1
T e−βHeHτ ÛTciaσÛ

−1
T e−Hτ ÛTc

†
jbσ′Û

−1
T ÛT|n⟩

= − 1

Z

∑

n

(

⟨ÛTn|e−βHeHτ ÛTciaσÛ
−1
T e−Hτ ÛTc

†
jbσÛ

−1
T |ÛTn⟩

)∗

= −σσ′ 1

Z

∑

n

(

⟨n|e−βHeHτ cia−σe
−Hτ c†jb−σ|n⟩

)∗

= −σσ′ 1

Z

∑

n

⟨n|(e−βHeHτ ciae
−Hτ c†jb)

†|n⟩

= −σσ′ 1

Z

∑

n

⟨n|cjbe−Hτ c†iae
Hτe−βH |n⟩

= −σσ′ 1

Z

∑

n

⟨n|e−βHeHτ cjbe
−Hτ c†ia|n⟩

= σσ′Gba
−σ−σ′ (τ,−(Ri −Rj)) . (4.86)

A similar calculation holds for τ < 0. Going to Frequency momentum space yields Eq. 4.84.
For the self-energy the same relation must hold, because the self-energy can be written with the

Dyson equation as a difference of two inverses of Green’s functions

Σab
σσ′(iωn,k) =

(

G−1
0 (iωn,k)

)ab

σσ′ −
(

G−1(iωn,k)
)ab

σσ′ (4.87)

Since a matrix inverse is unique the self-energy must obey the same relation as the Green’s function
and the above identity Eq. 4.85 holds.

4.6 Ansatz equation for the spin vertex

In the following we will derive a relation between one of the spin vertices and the double occupancy.
This equation is commonly referred to as ansatz equation. The ansatz equation can be motivated from a
Hartree-Fock decoupling. The presence of SOC complicates the derivation, but invoking TR symmetry
yields the same result as without SOC. We start from the exact expression for the self-energy in Eq. 2.77
(here 1 := (τ1,Ri1) ), which with just Hubbard interaction at each site reads

Σa1ā4

σ1σ̄4
(1, 4̄)ϕG

ā4a2

σ̄4σ2
(4̄, 2)ϕ = −U ⟨Tτ c†a1−σ1

(1++)ca1−σ1
(1+)ca1σ1

(1)c†a2σ2
(2)⟩

ϕ
. (4.88)

At 2 = 1+, a1 = a2, σ1 = σ2 one has exactly

Σa1ā4

σ1σ̄4
(1, 4̄)ϕG

ā4a1

σ̄4σ1
(4̄, 1+)ϕ = U ⟨Tτna1−σ1

(1)na1σ1
(1)⟩ϕ . (4.89)

When the label 1 does not coincide with 2 it becomes more reasonable to do a Hartree-Fock factorization

Σ
(1)a1ā4

σ1σ̄4
(1, 4̄)ϕG

(1)ā4a2

σ̄4σ2
(4̄, 2)ϕ = Aa1

ϕ

(

G
(1)a1a1

−σ1−σ1
(1+, 1++)ϕG

(1)a1a2

σ1σ2
(1, 2)ϕ

−G
(1)a1a1

σ1−σ1
(1, 1++)ϕG

(1)a1a2

−σ1σ2
(1+, 2)ϕ

)

, (4.90)

where Aa
ϕ is a constant. The (1) superscript denotes that these are our first order expressions. Later

we will find an improved expression for the self-energy Σ(2). Again setting 2 = 1++, a1 = a2, σ1 = σ2
we get



58 Chapter 4. Two-Particle Self-Consistent approach with spin-orbit coupling

Σ
(1)a1ā4

σ1σ̄4
(1, 4̄)ϕG

(1)ā4a2

σ̄4σ2
(4̄, 1++)ϕ = Aa1

ϕ

(

⟨na1−σ1
⟩ϕ ⟨na1σ1

⟩ϕ − ⟨c†a1−σ1
ca1σ1

⟩
ϕ
⟨c†a1σ1

ca1−σ1
⟩
ϕ

)

. (4.91)

Comparing the two results we get

Aa1

ϕ = U
⟨na1−σ1

na1σ1
⟩ϕ

⟨na1−σ1
⟩ϕ ⟨na1σ1

⟩ϕ − ⟨c†a1−σ1
ca1σ1

⟩
ϕ
⟨c†a1σ1

ca1−σ1
⟩ϕ
. (4.92)

If we multiply Eq. 4.90 from the right side with G
(1)ā2a2

σ̄2σ2
(2̄, 2)−1

ϕ , we get the first order expression for
the self-energy

Σ(1)a1a2

σ1σ2
(1, 2)ϕ = Aa1

ϕ ⟨na1−σ1
⟩ϕ δa1a2

δσ1σ2
δ(1− 2)

−Aa1

ϕ ⟨c†a1−σ1
ca1σ1

⟩
ϕ
δa1a2

δ−σ1σ2
δ(1+ − 2). (4.93)

From this expression one can calculate the spin vertex

Γzz(1, 2; 3, 4)ϕ =
1

2

(

δΣ
(1)a1a2

↑↑ (1, 2)ϕ

δG
(1)a3a4

↓↓ (3, 4)ϕ
+
δΣ

(1)a1a2

↓↓ (1, 2)ϕ

δG
(1)a3a4

↑↑ (3, 4)ϕ
−
δΣ

(1)a1a2

↑↑ (1, 2)ϕ

δG
(1)a3a4

↑↑ (3, 4)ϕ
−
δΣ

(1)a1a2

↓↓ (1, 2)ϕ

δG
(1)a3a4

↓↓ (3, 4)ϕ

)

= Aa1

ϕ δa1a2
δa1a3

δa1a4
δ(1− 2)δ(1− 3)δ(1+ − 4). (4.94)

The functional derivatives of Aϕ cancel each other. Setting ϕ to zero we see that Γa1
zz = Aa1

ϕ=0. With
that we get the ansatz equation for Γzz

Γa1

zz = U
⟨na1−σ1

na1σ1
⟩

⟨na1−σ1
⟩ ⟨na1σ1

⟩ . (4.95)

Note that ⟨c†a1σ1
ca1−σ1

⟩ = 0 due to time reversal symmetry (see Eq. 4.63).
Interestingly one can do the same calculation with the spin quantization axis along the x or y-axis.

One would obtain Γa1
xx = U

⟨na1↑na1↓⟩
⟨na1↑⟩⟨na1↓⟩ and Γa1

yy = U
⟨na1↑na1↓⟩
⟨na1↑⟩⟨na1↓⟩ respectively. If one would use these

ansatz equations in the respective spin sum rules one would arrive at an inconsistency, because one
would get different double occupancies from the sum rules if the vertices have different values. Hence
we suggest to use the ansatz equation in the channel where the spin fluctuations are strongest, to have
feedback on the double occupations in that channel. In the KMH model this means to use the ansatz
equation in the transversal channel i.e. for α = x. This procedure is then also consistent with the
Tr(G(1)Σ(2)) check.

Note, that the above Hartree-Fock decoupling is only good at low filling where the electrons are less
likely to see each other [159]. In the case of ⟨na⟩ > 1 it is hence better to carry out a particle-hole
transformation of the Hamiltonian so that ⟨na⟩ → 1− ⟨na⟩ in the ansatz equation [36].

4.7 Sum rules for the susceptibilities

We can derive sum rules for the susceptibilities. Note that unlike the Green’s function the susceptibilities
are all continuous at τ = 0, because either the commutators vanish or in the case of the mixed spin
susceptibilities both the left side limit τ → 0+ and the right side limit τ → 0− give zero as we show
below. In the presence of TR the sum rules take the following form

T

N

∑

q

χaa
cc (q) = ⟨na⟩+ 2 ⟨na↑na↓⟩ − ⟨na⟩2 , (4.96)

T

N

∑

q

χaa
αα(q) = ⟨na⟩ − 2 ⟨na↑na↓⟩ , (4.97)
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where α = x, y, z. The sum over all other mixed susceptibilities are zero, because of TR symmetry.
Hence, they can not be used to determine matrix elements of the TPSC vertices. In conclusion, invoking
TR symmetry results in four sum rules for four vertex elements, which is consistent.

Proof. For the charge sum rule we get

χaa
cc (τ = 0, r = 0) = ⟨na↑na↑⟩+ ⟨na↑na↓⟩+ ⟨na↓na↑⟩+ ⟨na↓na↓⟩ − ⟨na⟩2

= ⟨na⟩+ 2 ⟨na↑na↓⟩ − ⟨na⟩2

(4.98)

For the spin sum rule for the z-direction we get (note that ⟨Sα
a ⟩

TR
= 0):

χaa
zz (τ = 0, r = 0)

TR
= ⟨na↑na↑⟩ − ⟨na↑na↓⟩ − ⟨na↓na↑⟩+ ⟨na↓na↓⟩
= ⟨na⟩ − 2 ⟨na↑na↓⟩ . (4.99)

for the x direction one gets similarly

χaa
xx(τ = 0, r = 0)

TR
= ⟨(c†a↑ca↓ + c†a↓ca↑)(c

†
a↑ca↓ + c†a↓ca↑)⟩

= ⟨c†a↓ca↑c
†
a↑ca↓ + c†a↓ca↑c

†
a↑ca↓⟩

= ⟨c†a↓ca↓(1− c†a↑ca↑) + c†a↑ca↑(1− c†a↓ca↓)⟩
= ⟨na⟩ − 2 ⟨na↑na↓⟩ . (4.100)

and for the y-direction

χaa
yy(τ = 0, r = 0)

TR
= ⟨(−ic†a↑ca↓ + ic†a↓ca↑)(−ic

†
a↑ca↓ + ic†a↓ca↑)⟩

= ⟨(c†a↑ca↓ − c†a↓ca↑)(−c
†
a↑ca↓ + c†a↓ca↑)⟩

= ⟨c†a↓ca↑c
†
a↑ca↓ + c†a↑ca↓c

†
a↑ca↓)⟩

= ⟨na⟩ − 2 ⟨na↑na↓⟩ . (4.101)

As expected one gets the same result for all spin directions. Actually, this already follows from the
arbitrariness of choice of coordinate system for the spin direction. For the sum rules of the mixed
spin-charge susceptibilities χcz and χzc one has

χaa
cz (τ = 0, r = 0)

TR
= ⟨na↑na↑⟩ − ⟨na↓na↓⟩ − ⟨na↑na↓⟩+ ⟨na↓na↑⟩ TR

= 0 (4.102)

χaa
zc (τ = 0, r = 0)

TR
= ⟨na↑na↑⟩ − ⟨na↓na↓⟩+ ⟨na↑na↓⟩ − ⟨na↓na↑⟩ TR

= 0 (4.103)

Also, the mixed spin susceptibilities vanish in the presence of TR. For example one has

χaa
yx(τ = 0−, r = 0)

TR
= ⟨(c†a↑ca↓ + c†a↓ca↑)(−ic

†
a↑ca↓ + ic†a↓ca↑)⟩

= −i ⟨c†a↓ca↑c
†
a↑ca↓ − c†a↑ca↓c

†
a↓ca↑⟩

= −i(⟨na↓⟩ − ⟨na↑⟩)
TR
= 0. (4.104)

Since the choice of coordinate system is arbitrary the same must hold for all other χαβ with α ̸= β.
Further, since χaa

yx(τ = 0−, r = 0) = χaa
xy(τ = 0+, r = 0) = 0 the above also means that the mixed spin

susceptibilities are continuous at τ = 0.
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4.8 Self-energy

We now derive an expression for the self-energy in TPSC. The TPSC vertex is known to violate crossing
symmetry[33, 157]. Hence to restore crossing symmetry in the self-energy expression one commonly
expands the four-point correlation function once in the longitudinal and once in the transversal channel
and then takes the average. We follow the same strategy here. Additionally, in the presence of spin-orbit
coupling we also have to restore TR symmetry, which we do by averaging over the TPSC self-energy and
its time reversed partner. We also explain that the necessity of this last step originates, from the fact
that the position of the bare and the renormalized vertex in general cannot be interchanged anymore
when they are matrices.

4.8.1 Self-energy expanded in the longitudinal channel

A local constant irreducible vertex violates crossing symmetry [33, 157]. Hence, our strategy is, following
Refs. [33, 157], to expand the four-point correlator for the self-energy once in the longitudinal and once
in the transversal channel and average both results.

We start from exact expression for the self-energy in the Hubbard model Eq. 2.77 which with the
shorthand notation U31 = Uδ(τ1 − τ3)δRi1

Ri3
δa1a3

δσ1−σ3
can be written as

Σ(1, 2)ϕ = −U3̄1 ⟨Tτ c†(3̄++)c(3̄+)c(1)c†(4̄)⟩ϕG−1(4̄, 2)ϕ. (4.105)

The Four-point function we can get in the particle-hole channel from a functional derivative i.e.

⟨Tτ c(1)c†(2)c†(3)c(4)⟩ϕ =
δG(1, 2)ϕ
δϕ(3, 4)

−G(1, 2)ϕG(4, 3)ϕ, (4.106)

where we recognize the generalized susceptibility, which we expand in the particle-hole channel yielding
the Bethe-Saltpeter equation

χ(1, 2; 3, 4) = −δG(1, 2)ϕ
δϕ(3, 4)

|ϕ=0 = −G(1, 3)G(4, 2) +G(1, 5̄)Γ(5̄, 6̄; 7̄, 8̄)χ(7̄, 8̄; 3, 4)G(6̄, 2). (4.107)

In the longitudinal channel we have to set 3 → 3̄++ and 4 → 3+ so that in functional derivative has
only two times a 3 as argument. Also, we set 1 → 1, 2 → 4̄ so that one cancels the G−1 in the end. We
get no overall minus sign because the number of permutations is even. We get

Σl(1, 2)ϕ = −U3̄1

(

δG(1, 4̄)ϕ
δϕ(3̄++, 3̄+)

−G(1, 3̄++)ϕG(3̄
+, 4̄)ϕ

)

G−1(4̄, 2)ϕ

= −U3̄1

(

G(3̄+, 3̄++)G(1, 4̄)−G(1, 5̄)Γ(5̄, 6̄; 7̄, 8̄)χ(7̄, 8̄; 3̄++, 3̄+)G(6̄, 4̄)

−G(1, 3̄++)ϕG(3̄
+, 4̄)ϕ

)

G−1(4̄, 2)ϕ

= U3̄1

(

G(3̄+, 3̄++)ϕδ(1, 2) +G(1, 5̄)Γ(5̄, 2; 7̄, 8̄)χ(7̄, 8̄; 3̄++, 3̄+)

−G(1, 3̄++)δ(3̄+ − 2)
)

= U3̄1G(1, 3̄
++)ϕδ(1, 2)− U21+G(1, 2

+) + U3̄1G(1, 5̄)Γ(5̄, 2; 7̄, 8̄)χ(7̄, 8̄; 3̄
++, 3̄+). (4.108)

Plugging in the Hubbard interaction, setting the source filed ϕ = 0 and restoring spin and orbital indices
we get

Σla1a2

σ1σ2
(1, 2) = UGa1a1

−σ1−σ1
(1, 1+)δ(τ1 − τ2)δRi1

Ri2
δa1a2

δσ1σ2
− Uδ(τ1 − τ2)δRi1

Ri2
δa1a2

δσ1−σ2
Ga1a1

σ1−σ1
(1, 2+)

+ UGa1ā5

σ1σ̄5
(1, 5̄)Γā5a2ā7ā8

σ̄5σ2σ̄7σ̄8
(5̄, 2; 7̄, 8̄)χā7ā8a1a1

σ̄7σ̄8−σ1−σ1
(7̄, 8̄; 1+, 1). (4.109)
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The first term is the Hartree term and the second term is the Fock term. As one can see, the delta
function makes the Fock term proportional to ⟨S+

a ⟩ or ⟨S−
a ⟩, which vanish in the presence of TR. We

now insert the local TPSC vertex Eq. 4.29 in the above equation. We get

Σla1a2

σ1σ2
(1, 2) = UGa1a1

−σ1−σ1
(1, 1+)δ(τ1 − τ2)δRi1

Ri2
δa1a2

δσ1σ2

+ UGa1a2

σ1σ̄4
(1, 2+)Γa2

σ̄4σ2σ̄6σ̄7
χa2a1

σ̄6σ̄7−σ1−σ1
(2, 2+, 1+, 1). (4.110)

Going to frequency momentum space, setting G = G(1) and using the matrix notation we get

Σla1a2

σ1σ2
(k) = U

⟨n⟩
2
δa1a2

δσ1σ2
+ U

T

N

∑

q

G
(1)a1a2

σ1σ̄4
(k + q) (Γχ(q))

a2a1

σ̄4σ2;−σ1−σ1
. (4.111)

Note that Γ can be regarded as a diagonal matrix in the site space. Using the basis transformation M
one can write the expression in terms of Γ′ and χ′

Σla1a2

σ1σ2
(k) = U

⟨n⟩
2
δa1a2

δσ1σ2
+
U

4

T

N

∑

q

G
(1)a1a2

σ1σ̄4
(k + q) (MΓ′χ′(q)M)

a2a1

σ̄4σ2;−σ1−σ1
. (4.112)

4.8.2 Self-energy expanded in the transversal channel

Now, we want to expand the four-point correlator in the expression for the self-energy in the transversal
particle-hole channel. Again we start from the following exact expression for the self-energy in the
Hubbard model (Eq. 4.105

Σ(1, 2)ϕ = −U3̄1 ⟨Tτ c†(3̄++)c(3̄+)c(1)c†(4̄)⟩ϕG−1(4̄, 2)ϕ. (4.113)

Similar to the expansion in the longitudinal we express the four point correlation function in terms of
a functional derivative i.e.

⟨Tτ c(1)c†(2)c†(3)c(4)⟩ϕ =
δG(1, 2)ϕ
δϕ(3, 4)

−G(1, 2)ϕG(4, 3)ϕ, (4.114)

and then use the BSE in the particle-hole channel. Expanding in the transversal channel means that
the four point correlator is generated by a functional derivative with a field that is offdiagonal in spin
(because of the Hubbard interaction) i.e. here we have to set 3 → 3̄++ and 4 → 1. Also, we set 1 → 3+,
2 → 4̄. We obtain

Σt(1, 2)ϕ = −U3̄1

(

δG(3̄+, 4̄)ϕ
δϕ(3̄++, 1)

−G(3̄+, 3̄++)ϕG(1, 4̄)ϕ

)

G−1(4̄, 2)ϕ

= −U3̄1

(

G(1, 3̄++)G(3̄+, 4̄)−G(3̄+, 5̄)Γ(5̄, 6̄; 7̄, 8̄)χ(7̄, 8̄; 3̄++, 1)G(6̄, 4̄)

−G(3̄+, 3̄++)ϕG(1, 4̄)ϕ

)

G−1(4̄, 2)ϕ

= −U3̄1

(

G(1, 3̄++)ϕδ(3̄
+ − 2) +G(3̄+, 5̄)Γ(5̄, 2; 7̄, 8̄)χ(7̄, 8̄; 3̄++, 1)

−G(3̄+, 3̄++)δ(1− 2)
)

= U3̄1G(3̄
+, 3̄++)ϕδ(1, 2)− U21+G(1, 2

+)− U3̄1G(3̄
+, 5̄)Γ(5̄, 2; 7̄, 8̄)χ(7̄, 8̄; 3̄++, 1). (4.115)

Plugging in the Hubbard interaction, setting the source filed ϕ = 0 and restoring spin and orbital indices
we get

Σta1a2

σ1σ2
(1, 2) = UGa1a1

−σ1−σ1
(1, 1+)δ(τ1 − τ2)δRi1

Ri2
δa1a2

δσ1σ2

− UGa1ā5

−σ1σ̄5
(1+, 5̄)Γā5ā2ā7ā8

σ̄5σ2σ̄7σ̄8
(5̄, 2; 7̄, 8̄)χā7ā8a1a1

σ̄7σ̄8−σ1σ1
(7̄, 8̄; 1++, 1). (4.116)
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The Fock term vanishes due to TR. Plugging in the local TPSC vertex we get

Σta1a2

σ1σ2
(1, 2) = Uδ(τ1 − τ2)δRi1

Ri2
δa1a2

δσ1σ2
Ga1a1

−σ1−σ1
(1, 1+)

− UGa1a2

−σ1σ̄5
(1+, 2−)Γa2

σ̄5σ2σ̄7σ̄8
χa2a1

σ̄7σ̄8−σ1σ1
(2, 2+, 1+, 1) (4.117)

Going to frequency momentum space, setting G = G(1) and using the matrix notation we get

Σta1a2

σ1σ2
(1, 2) = U

⟨n⟩
2
δa1a2

δσ1σ2
− U

T

N

∑

q

G
(1)a1a2

−σ1σ̄5
(k + q) (Γχ(q))

a2a1

σ̄5σ2,−σ1σ1
. (4.118)

Expressed by Γ′ and χ′ one gets

Σta1a2

σ1σ2
(1, 2) = U

⟨n⟩
2
δa1a2

δσ1σ2
− U

4

T

N

∑

q

G
(1)a1a2

−σ1σ̄5
(k + q) (MΓ′χ′(q)M)

a2a1

σ̄5σ2,−σ1σ1
. (4.119)

4.8.3 Time reversal of the TPSC self-energy

We now investigate time reversal symmetry in the TPSC expression for the self-energy derived above,
first in the longitudinal channel, then in the transversal channel. As shown before, the exact self-energy
must fulfill TR in the following form

Σab
σσ′(iωn,k) = σσ′Σba

−σ′−σ(iωn,−k). (4.120)

Further, for Green’s function, susceptibility and vertex it must hold

Gab
σσ′(iωn,k) = σσ′Gba

−σ′−σ(iωn,−k) (4.121)

χab
ρζ(iqm, q) = ηρζχ

ba
−ζ−ρ(iqm,−q) (4.122)

Γa
ρζ = ηρζΓ

a
−ζ−ρ, (4.123)

where ηρζ gives a factor of −1 for each + or −. The last two equations can also be written as

Γa
σ1σ2,σ3σ4

= σ1σ2σ3σ4Γ
a
−σ3−σ4,−σ1−σ2

, (4.124)

χab
σ1σ2,σ3σ4

(iqm, q) = σ1σ2σ3σ4χ
ba
−σ3−σ4,−σ1−σ2

(iqm,−q). (4.125)

We repeat the TPSC self-energy in the longitudinal channel for convenience here

Σla1a2

σ1σ2
(k) = U

⟨n⟩
2
δa1a2

δσ1σ2
+ U

T

N

∑

q

G
(1)a1a2

σ1σ̄4
(k + q) (Γχ(q))

a2a1

σ̄4σ2,−σ1−σ1
. (4.126)

We only focus on the part with the vertex, because it is trivial that the Hartree term fulfills TR. We
calculate for the TPSC self-energy in the longitudinal channel

σ1σ2Σ
la2a1

−σ2−σ1
(iωn,−k) = U

T

N

∑

iqmq

G
(1)a2a1

−σ2σ̄4
(iωn + iqm,−k + q) (Γχ(iqm, q))

a1a2

σ̄4−σ1,σ2σ2

= U
T

N

∑

iqmq

G
(1)a1a2

−σ̄4σ2
(iωn + iqm,k + q)Γa1

σ̄4−σ1,σ̄5σ̄6
χa1a2

σ̄5σ̄6,σ2σ2
(iqm,−q)

= U
T

N

∑

iqmq

G
(1)a1a2

−σ̄4σ2
(iωn + iqm,k + q)χa2a1

−σ2−σ2,σ̄5σ̄6
(iqm, q)Γ

a1

σ̄5σ̄6,−σ̄4σ1

= U
T

N

∑

iqmq

G
(1)a1a2

σ̄4σ2
(iωn + iqm,k + q) (χ(iqm, q)Γ)

a2a1

−σ2−σ2,σ̄4σ1
. (4.127)
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Going from the first to the second row we used TR of the Green’s function. Going from the second to
the thrid row we used TR of χ and Γ.

In the transversal channel we can do a similar calculation. For the self-energy expanded in the
transversal channel we found the following expression

Σta1a2

σ1σ2
(1, 2) = U

⟨n⟩
2
δa1a2

δσ1σ2
− U

T

N

∑

q

G
(1)a1a2

−σ1σ̄4
(k + q) (Γχ(q))

a2a1

σ̄4σ2,−σ1σ1
. (4.128)

Focussing again on the part with the vertex we get for the time reversed expression

σ1σ2Σ
ta2a1

−σ2−σ1
(iωn,−k) = −U T

N

∑

iqmq

G
(1)a2a1

σ̄4σ2
(iωn + iqm,−k + q) (Γχ(iqm, q))

a1a2

σ̄4−σ1,σ2−σ2

= −U T

N

∑

iqmq

G
(1)a1a2

−σ2−σ̄4
(iωn + iqm,k + q)

(

Γa1

σ̄4−σ1,σ̄5σ̄6
χa1a2

σ̄5σ̄6,σ2−σ2
(iqm,−q)

)

= −U T

N

∑

iqmq

G
(1)a1a2

−σ2−σ̄4
(iωn + iqm,k + q)χa2a1

−σ2σ2,σ̄5σ̄6
(iqm, q)Γ

a1

σ̄5σ̄6,−σ̄4σ1

= −U T

N

∑

iqmq

G
(1)a1a2

−σ2σ̄4
(iωn + iqm,k + q) (χ(iqm, q)Γ)

a2a1

−σ2σ2,σ̄4σ1
(4.129)

As we can see the above expressions do not fulfill TR symmetry, because the TPSC vertex switches
from one side of the susceptibility to the other. Graphically the action of TR can be represented as
follows for terms contributing to the self-energy

Σ(1− 2) ∼

1 2

TR⇒

1 2

. (4.130)

The wiggled line represents the bare Hubbard interaction, the straight line the first level Green’s function
G(1), the ellipse one of the susceptibilities and the wiggled line with a square represents a renormalized
vertex (spin or charge). Unlike to the single-band case with spin-rotation symmetry, where the TPSC
vertices are just numbers, it does matter now on which site the bare vertex U and on which site the
renormalized vertex Γ is placed, because Γ is a matrix now.

Note that it is possible to obtain the time reversed expressions also from the equation of motion for
the Green’s function G(1, 2), but then acting the time derivative ∂τ on the second argument instead of
the first one. Doing so one obtains the following starting point which then has to be expanded in the
longitudinal or transversal channel

G(1, 3̄)ϕΣ(3̄, 2)ϕ = −U23̄ ⟨Tτ c(1)c†(3̄++)c(3̄+)c†(2)⟩ϕ . (4.131)

We conclude that, since TPSC is not an exact theory, it does matter how and which four-point correlation
function we expand for the self-energy. The obtained result is linked to the breaking of symmetries,
namely crossing symmetry and TR symmetry. We suggest to average the self-energy with its time
reversed partner to restore TR symmetry.

4.8.4 Final expression for the self-energy

We now present the final self-energy expression in TPSC with SOC. We suggest averaging the self-
energy expressions with its time reversed partners to restore time reversal symmetry. This is analogues
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to averaging of the expression obtained by expanding in the transversal and in the longitudinal channel,
which we also adopt [33, 157]. The final TPSC self-energy expression then reads:

Σ(2)a1a2

σ1σ2
(k) = Uδa1a2

δσ1σ2

⟨na⟩
2

+
U

16

T

N

∑

q

(

G
(1)a1a2

σ1σ̄4
(k + q) (MΓ′χ′(q)M)

a2a1

σ̄4σ2,−σ1−σ1

+G
(1)a1a2

σ̄4σ2
(k + q) (Mχ′(q)Γ′M)

a2a1

−σ2−σ2,σ̄4σ1

+G
(1)a1a2

−σ1σ̄4
(k + q) (MΓ′χ′(q)M)

a2a1

σ̄4σ2,−σ1σ1

+G
(1)a1a2

−σ2σ̄4
(k + q) (Mχ′(q)Γ′M)

a2a1

−σ2σ2,σ̄4σ1

)

. (4.132)

The second level Green’s function can be constructed from the Dyson equation

G
(2)ab
σσ′ (iωn,k) =

(

(

iωn −H(k) + µ− Σ(2)(iωn,k)
)−1

)ab

σσ′

. (4.133)

However, note that the chemical potential needs to be adjusted to match the initially given particle
number.

4.9 Tr(ΣG) consistency check

In this section we want to prove the following equation

1

2

T

N

∑

ωnk

Tr
(

Σ(2)(iωn,k)G
(1)(iωn,k)e

−iωn0
−
)

= U
∑

a

⟨na↑na↓⟩ , (4.134)

where the trace runs over spin and orbital indices. Using G(2) instead of G(1) the expression is not
fulfilled exactly anymore, but it can be used as a consistency check between one-particle and two-
particle quantities. This test gives a strong indication if TPSC is still valid in the parameter regime of
interest, see also Ref. [159].

Proof. First, we consider the self-energy expanded in the longitudinal channel

Σla1a2

σ1σ2
(k) = U

⟨n⟩
2
δa1a2

δσ1σ2
+ U

T

N

∑

q

G
(1)a1a2

σ1σ̄4
(k + q) (Γχ(q))

a2a1

σ̄4σ2,−σ1−σ1
. (4.135)

Recall that the effective non-interacting susceptibility χ(1) is defined as

χ(1)a1a2

σ1σ2,σ3σ4
(q) = −

∑

k

G(1)a1a2

σ2σ3
(k + q)G(1)a2a1

σ4σ1
(k). (4.136)

For the Hartree part Σ(2)Hab we get

1

2

T

N

∑

k

∑

abσ1σ2

Σ(2)Hab
σ1σ2

(k)G(1)ba
σ2σ1

(k)e−ikn0
−

=
1

2

∑

aσ1σ2

U
⟨na⟩
2

⟨naσ1
⟩ δσ1σ2

=
∑

a

U

4
⟨na⟩2 . (4.137)

Now we can check what happens to the vertex part ΣlV



4.9. Tr(ΣG) consistency check 65

1

2

T

N

∑

k

∑

a1a2σ1σ2

Σ(2)lV a1a2

σ1σ2
(k)G(1)a2a1

σ2σ1
(k)e−ikn0

−

=
U

2

(

T

N

)2
∑

kq

∑

a1a2σ1σ2σ4

G(1)a1a2

σ1σ4
(k + q) (Γχ(q))

a2a1

σ4σ2,−σ1−σ1
G(1)a2a1

σ2σ1
(k)

= −U
2

T

N

∑

q

∑

a1a2σ1σ2σ4

χ(1)a1a2

σ1σ1,σ4σ2
(q) (Γχ(q))

a2a1

σ4σ2,−σ1−σ1

=
U

2

T

N

∑

q

∑

a1σ1

(

χa1a1

σ1σ1,−σ1−σ1
(q)− χ

(1)a1a1

σ1σ1,−σ1−σ1
(q)
)

=
U

4

T

N

∑

q

∑

a1

(

χa1a1

cc (q)− χa1a1

zz (q)−
(

χ(1)a1a1

cc (q)− χ(1)a1a1

zz (q)
))

TR
=
∑

a1

(

−U
4
⟨na1

⟩2 + U ⟨n↑a1
n↓a1

⟩
)

. (4.138)

Note the minus sign in going from the second to the third row. The convergence factor can be dropped
because of the ∼ 1

ω2
n
in the convolution. Going from the third to the fourth row we inserted the BSE.

Going from the fourth to the fifth row we notice that the expression can be written as a difference

between χcc and χzz. The sums over χ
(1)aa
zz (q) and χ

(1)aa
cc (q) cancel each other. This can be seen by

making use of the sum rules in the corresponding non-interacting case, where one has

T

N

∑

q

χ(1)aa
zz (q) = ⟨na⟩(1) − 2 ⟨na↑na↓⟩(1)

TR
= ⟨na⟩(1) − 2 ⟨na↑⟩(1) ⟨na↓⟩(1)

TR
= ⟨na⟩(1) −

⟨na⟩2(1)
2

, (4.139)

T

N

∑

q

χ
(1)aa
ch (q) = ⟨na⟩(1) + 2 ⟨na↑na↓⟩(1) − ⟨na⟩2(1)

TR
= ⟨na⟩(1) + 2 ⟨na↑⟩(1) ⟨na↓⟩(1) − ⟨na⟩2(1)

TR
= ⟨na⟩(1) −

⟨na⟩2(1)
2

. (4.140)

We used that in a non-interacting system we can use Wick’s theorem to do a decoupling of the double-
occupancies. However, because of TR symmetry terms such as ⟨c†a↑ca↓⟩ vanish. Taking the results for
the Hartree term and the vertex term together, one obtains the result claimed above.

A similar calculation can be done for the self-energy expanded in the transversal channel. The
transversal channel self-energy reads

Σta1a2

σ1σ2
(1, 2) = U

⟨n⟩
2
δa1a2

δσ1σ2
− U

T

N

∑

q

G
(1)a1a2

−σ1σ̄5
(k + q) (Γχ(q))

a2a1

σ̄5σ2,−σ1σ1
. (4.141)

We get for the vertex part ΣtV
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1

2

T

N

∑

k

∑

a1a2σ1σ2

Σ(2)tV a1a2

σ1σ2
(k)G(1)a2a1

σ2σ1
(k)e−ikn0

−

= −U
2

(

T

N

)2
∑

kq

∑

a1a2σ1σ2σ4

G
(1)a1a2

−σ1σ̄5
(k + q) (Γχ(q))

a2a1

σ̄5σ2,−σ1σ1
G(1)a2a1

σ2σ1
(k)

=
U

2

T

N

∑

q

∑

a1a2σ1σ2σ5

χ
(1)a1a2

σ1−σ1,σ5σ2
(q) (Γχ(q))

a2a1

σ5σ2,−σ1σ1

= −U
2

T

N

∑

q

∑

a1σ1

(

χa1a1

σ1−σ1,−σ1σ1
(q)− χ

(1)a1a1

σ1−σ1,−σ1σ1
(q)
)

= −U
4

T

N

∑

q

∑

a1

(

χa1a1

xx (q) + χa1a1

yy (q)−
(

χ(1)a1a1

xx (q) + χ(1)a1a1

yy (q)
))

TR
=
∑

a1

(

−U
4
⟨na1

⟩2 + U ⟨n↑a1
n↓a1

⟩
)

(4.142)

The calculations for the time reversed expressions work analogously. So with the averaging of the above
expressions we get the claimed result.

4.10 TPSC+SOC algorithm

We now summarize all necessary equations and then describe the algorithm for TPSC with SOC in the
case of symmetry related orbitals. We define the following susceptibilities

χab
αβ(τ,Ri −Rj) = ⟨TτOα

ia(τ)O
β
jb(0)⟩ − ⟨Oα

ia⟩ ⟨Oβ
jb⟩ , (4.143)

where the operators Oα can either be Sx, Sy, Sz or n corresponding to the labels x, y, z or c or in a
different basis n↑, n↓, S+ or S− represented by the labels ↑, ↓, + or −. Ri is the lattice vector to the
unit cell with the index i and a and b are site indices labeling the sites in the unit cell. With Fourier
transform one can go to frequency momentum space q = (iqm, q). The susceptibilities can be written
in a useful matrix notation

χ′ =









χcc χcz χcx iχcy

χzc χzz χzx iχzy

χxc χxz χxx iχxy

iχyc iχxz iχyx −χyy









, (4.144)

χ =









χ↑↑ χ↑↓ χ↑+ χ↑−
χ↓↑ χ↓↓ χ↓+ χ↓−
χ+↑ χ+↓ χ++ χ+−
χ−↑ χ−↓ χ−+ χ−−









. (4.145)

Both bases can be related by a basis transformation

χ′ =MχM, (4.146)

where

M =









1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1









. (4.147)

The first level susceptibility is defined as
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χ(1)a1a2

σ1σ2,σ3σ4
(q) = −

∑

k

G(1)a1a2

σ2σ3
(k + q)G(1)a2a1

σ4σ1
(k), (4.148)

where the first two and last two spin indices can be grouped together to the labels ↑, ↓, + or −. G(1) is
the Green’s function of an effective noninteracting system. For symmetry related orbitals this Green’s
function is equivalent to the noninteraction one i.e G(1) = G0. Invoking time reversal symmetry the
TPSC vertex takes the form

Γ′ =









Γcc 0 0 0
0 −Γzz 0 0
0 0 −Γxx 0
0 0 0 Γyy









. (4.149)

The interacting expressions for the susceptibility obtained from the BSE is given by

χ′(q) =

(

1 +
1

2
Γ′χ′(1)(q)

)−1

χ′(1)(q). (4.150)

The spin and charge sum rules are given by

T

N

∑

q

χaa
cc (q) = ⟨na⟩+ 2 ⟨na↑na↓⟩ − ⟨na⟩2 , (4.151)

T

N

∑

q

χaa
αα(q) = ⟨na⟩ − 2 ⟨na↑na↓⟩ , (4.152)

where α = x, y, z. The ansatz equation, relating one vertex element to the double occupancies, is given
by

Γa
αα = U

⟨na↑na↓⟩
⟨na↑⟩ ⟨na↓⟩

. (4.153)

We suggest using the ansatz equation in the spin direction that reaches an instability first. Sum rules and
ansatz equation yield four equations for four unknown vertex elements (for symmetry related orbitals),
that have to be found self-consistently. The second level self-energy is calculated via

Σ(2)a1a2

σ1σ2
(k) = Uδa1a2

δσ1σ2

⟨na⟩
2

+
U

16

T

N

∑

q

(

G
(1)a1a2

σ1σ̄4
(k + q) (MΓ′χ′(q)M)

a2a1

σ̄4σ2,−σ1−σ1

+G
(1)a1a2

σ̄4σ2
(k + q) (Mχ′(q)Γ′M)

a2a1

−σ2−σ2,σ̄4σ1

+G
(1)a1a2

−σ1σ̄4
(k + q) (MΓ′χ′(q)M)

a2a1

σ̄4σ2,−σ1σ1

+G
(1)a1a2

−σ2σ̄4
(k + q) (Mχ′(q)Γ′M)

a2a1

−σ2σ2,σ̄4σ1

)

. (4.154)

The Matsubara Green’s G(2) function is calculated from the Dyson equation

G(2)a1a2

σ1σ2
(iωn,k) =

(

(

iωn −Hσ(k) + µ− Σ(2)
σ (iωn,k)

)−1
)(2)a1a2

σ1σ2

, (4.155)

where the trace runs over spin and orbital indices. The chemical potential µ needs to adjusted here to
match the given filling n, because the self-energy can cause differences from the chemical potential at
the first level µ(1). The Tr(GΣ) check can be used as a consistency check between first level and second
level quantities
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1

2

T

N

∑

iωnk

Tr
(

Σ(2)(iωn,k)G
(1)(iωn,k)e

−iωn0
−
)

= U
∑

a

⟨na↑na↓⟩ . (4.156)

The error with respect to replacing G(1) by G(2) gives a good indication if TPSC is still valid in the
current parameter regime.

For given hopping parameters, Hubbard interaction, temperature and filling the TPSC algorithm
now works as follows. First, the effective noninteracting Green’s function G(1) and susceptibility χ(1)

(Eq. 4.148) are calculated. Then a basis rotation to the more physical χ′(1) (Eq. 4.146) is carried
out. The definition of the interacting susceptibilities in Eq. 4.150, the sum rules in Eq. 4.151 and
Eq. 4.152 and the ansatz equation in Eq. 4.153 used for the spin direction, where the spin fluctuations
are strongest, are a set of coupled equations for the four matrix elements of the TPSC vertex that
need to be solved self-consistently. Numerically, the TPSC vertex is the solution of a multidimensional
root-finding problem. A reasonable starting guess can be obtained by first solving the corresponding

uncoupled problem i.e. the one where χ
(1)
αβ = 0 for α ̸= β. The second level self-energy Σ(2) can be

calculated by Eq. 4.154. Using the Dyson equation (Eq. 4.155) yields G(2). Generally, the chemical
potential needs to be adjusted. The Tr(GΣ) check in Eq. 4.156 with G(2) instead of G(1) can be used
as a consistency check. A relative error of < 10% we find to be acceptable.

4.11 Consistency check: Without spin-orbit coupling

We now show that the equations for TPSC with SOC, summarized in Sec. 4.10, reduce to the original
TPSC equations, summarized in Sec. 4.2, in the case of a single band without SOC. Vanishing SOC
corresponds to restoring spin rotation symmetry.

First note, that the self-energy as well as the Green’s function become proportional to the unit
matrix in spin space. That means we can write

Gab
σσ′(iωn,k) → G(iωn,k) (4.157)

Σab
σσ′(iωn,k) → Σ(iωn,k) (4.158)

The first level quantities such as G(1) are equal to the non-interacting ones in the single-band case i.e.
G(1) = G0, because Σ(1) can always be absorbed in the chemical potential. For the susceptibility χ′ all
coupling terms such as χcz or χxy vanish. Further, one has with spin rotation symmetry

χxx = χyy = χzz → χsp, (4.159)

Γxx = Γyy = Γzz → Usp. (4.160)

We also identify

χcc → χch, (4.161)

Γcc → Uch. (4.162)

As we can see, the TPSC vertices just become numbers. Further, at the first level (here equal to the

non-interacting case) we get defining χ(1) := 2χ
(1)
↑↑

χ(1)
sp = χ

(1)
ch = χ(1) (4.163)

With the vanishing of all mixed susceptibilities we simply get from the BSE
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χsp(q) =
χ(1)(q)

1− 1
2Uspχ(1)(q)

, (4.164)

χch(q) =
χ(1)(q)

1 + 1
2Uchχ(1)(q)

. (4.165)

(4.166)

The sum rules stay unchanged, because the spin sum rule is the same for any spin component in any
case. The ansatz equation simply becomes

Usp = U
⟨n↑n↓⟩
⟨n↑⟩ ⟨n↓⟩

= 4U
⟨n↑n↓⟩
⟨n⟩2

. (4.167)

For the self-energy one retrieves the original expression

Σ(2)(k) = U
⟨n⟩
2

+
U

8

∑

q

G(1)(k + q) (3Uspχsp(q) + Uchχch(q)) , (4.168)

where as usual one obtains the terms proportional to U
4 (Uchχch + Uspχsp) for the longitudinal channel

and U
4 (2Uspχsp) for the transversal channel. The averaging to restore time reversal is not needed

anymore, because the verices are just numbers. The Dyson equation remains unchanged. The Tr(GΣ)
check becomes

T

N

∑

iωnk

Σ(2)(iωn,k)G
(1)(iωn,k)e

−iωn0
−

= U ⟨n↑n↓⟩ . (4.169)

The factor of 1
2 vanishes, because there is no sum over spin indices here.

4.12 Spin-orbit coupling simplest case: S
z conserved

We now study the simplest case of SOC, namely the case where the SOC is proportional to Sz. Con-
cretely, we mean that [Sz

ia, H] = 0 at each site. Hence, there cannot be a term in the Hamiltonian that
flips the spin. In this way we can build intuition what changes in the presence of SOC.

4.12.1 TPSC algorithm simplified through S
z conservation

The conservation of Sz
ia at each site, leads to the absence of terms that flip a spin from up to down or

vice versa. Hence, Green’s function and self-energy only depend of one spin index

Gab
σσ′(iωn,k) → Gab

σ (iωn,k) (4.170)

Σab
σσ′(iωn,k) → Σab

σ (iωn,k) (4.171)

(4.172)

Also, all susceptibilities that involve one or even two spin flips must be zero. Hence, we are left with
only six nonzero susceptibilities χ↑↑, χ↑↓, χ↓↑, χ↓↓, χ+− and χ−+. For the more physical spin, charge
or mixed spin-charge susceptibilities this means, that only χcc, χzc, χcz, χzz, χxx and χyy are nonzero.
From [Sz

ia, H] = 0 it also follows that the system possesses a rotation symmetry around the z-axis.
Hence, χxx = χyy and also Γxx = Γyy. In the BSE we see that the longitudinal channel and the
transversal channel decouple In the transversal channel one has
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χxx(q) =

(

1− 1

2
Γxxχ

(1)
xx (q)

)−1

χ(1)
xx (q) (4.173)

χyy(q) =

(

1− 1

2
Γyyχ

(1)
yy (q)

)−1

χ(1)
yy (q) (4.174)

In the longitudinal channel one has four equations that can be written elegantly in terms of matrices

(

χcc χcz

χzc χzz

)

=

(

(

1 0
0 1

)

+
1

2

(

χ
(1)
cc χ

(1)
cz

χ
(1)
zc χ

(1)
zz

)

(

Γcc 0
0 −Γzz

)

)−1(

χ
(1)
cc χ

(1)
cz

χ
(1)
zc χ

(1)
zz

)

. (4.175)

Note that the basis transformation to the physical susceptibilities in the longitudinal channel is

(

χcc χcz

χzc χzz

)

=

(

1 1
1 −1

)(

χ↑↑ χ↑↓
χ↓↑ χ↓↓

)(

1 1
1 −1

)

. (4.176)

In matrix form we can also write

χl(q) =

(

1 +
1

2
Γlχl(1)(q)

)−1

χl(1)(q), (4.177)

where we defined

χl(q) =

(

χcc(q) χcz(q)
χzc(q) χzz(q)

)

, (4.178)

Γl =

(

Γcc 0
0 −Γzz

)

. (4.179)

The spin and charge sum rules

T

N

∑

q

χaa
cc (q) = ⟨na⟩+ 2 ⟨na↑na↓⟩ − ⟨na⟩2 , (4.180)

T

N

∑

q

χaa
αα(q) = ⟨na⟩ − 2 ⟨na↑na↓⟩ , (4.181)

where α = x, y, z, stay unchanged. The ansatz equation stays unchanged and is used in the channel
were the instability in the spin susceptibility is reached first i.e.

Γa
αα = U

⟨na↑na↓⟩
⟨na↑⟩ ⟨na↓⟩

= 4U
⟨na↑na↓⟩
⟨na⟩2

. (4.182)

The expression for the self-energy simplifies to

Σ(2)ab
σ (k) = Uδab ⟨na−σ⟩+

U

8

T

N

∑

q

G(1)ab
σ (k + q)V ab

lσ (q) +
U

8

T

N

∑

q

G
(1)ab
−σ (k + q)V ab

tσ (q) (4.183)

with

V ab
lσ (q) = Γb

ccχ
ba
cc (q) + Γb

zzχ
ba
zz(q)− σ

1

2

(

Γb
zzχ

ba
zc(q) + Γb

chχ
ba
cz(q) + χba

zc(q)Γ
a
ch + χba

cz(q)Γ
a
zz

)

, (4.184)

V ab
tσ (q) = Γb

xxχ
ba
xx(q) + Γb

yyχ
ba
yy(q). (4.185)

The Dyson equation stays unchanged. The Tr(GΣ) check also stays unchanged i.e.
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1

2

T

N

∑

iωnk

Tr
(

Σ(2)(iωn,k)G
(1)(iωn,k)e

−iωn0
−
)

= U
∑

a

⟨na↑na↓⟩ , (4.186)

where the trace runs over orbital and spin indices. The algorithm essentially stays the same as for general
SOC. The only difference is though that the vertices in the longitudinal and in the transversal channel
can be found consecutively. Also note that since Γxx = Γyy one only needs to solve one one-diminsional
root-finding problem for Γxx.

4.12.2 Graphical representation for the Bethe-Salpeter-equation

The BSE equation in the longitudinal channel can be written as

(

χcc χcz

χzc χzz

)

=

(

χ
(1)
cc χ

(1)
cz

χ
(1)
zc χ

(1)
zz

)

− 1

2

(

χ
(1)
cc χ

(1)
cz

χ
(1)
zc χ

(1)
zz

)

(

Γcc 0
0 −Γzz

)(

χcc χcz

χzc χzz

)

. (4.187)

These four equations can be represented graphically in the following way

c c = c c − 1

2
c c cc c c +

1

2
c z zz z c ,

(4.188)

z c = z c − 1

2
z c cc c c +

1

2
z z zz z c ,

(4.189)

z z = z z +
1

2
z z zz z z − 1

2
z c cc c z ,

(4.190)

c z = c z +
1

2
c z zz z z − 1

2
c c cc c z .

(4.191)

The susceptibilities are depicted as bubbles with label corresponding to the operators. Susceptibilities
with a thick boundary correspond to the full interacting susceptibility χαβ . Susceptibilities with a

thin boundary correspond to the effective noninteracting ones χ
(1)
αβ . The TPSC vertices are depicted as

squares with double wiggled lines attached to them. The point of these diagrams is that spins always
interact via the spin vertex and charges via the charge vertex. The new thing with SOC is that a coupling
of Sz to Sz is now also possible via the charge vertex, because χcz and χzc are nonzero now. Without
SOC the this mechanism is not possible anymore. One has to keep in mind though that each quantity is
a matrix whose individual elements correspond to individual spins and charges that couple to each other.
Also one has to keep in mind that each susceptibility carries a frequency and a momentum. One can
plug this coupled equations into each other and iterate them. The factors of 1

2 ensure convergence (for
small enough product of vertex elements and maximum values of the susceptibilities) like in a geometric
series. For example up to second order one gets the following diagrams for the Sz spin susceptibility
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z z

n=2

= z z

+
1

2
z z zz z z

− 1

2
z c cc c z

+
1

4
z z zz z z zz z z

− 1

4
z z zz z c cc c z

− 1

4
z c cc c z zz z z

+
1

4
z c cc c c cc c z

In the transversal channel we recover the ordinary expressions for χxx and χyy, where the coupling
of the spin x-components is mediated by the vertex element Γxx and analogous for the y-components.
This is similar to the original TPSC. Analogous consideration, apply to the general case SOC. There,
longitudinal and transversal channel are coupled and all possible couplings involving susceptibilities
with Sx, Sy, Sz and n are allowed, following the same logic outlined above.

4.12.3 Graphical representation for the self-energy

Contribution to the self-energy can graphically be represented as

Σ(1− 2) =

1 2

(4.192)

The wiggled line represents the bare Hubbard interaction, the straight line the first level Green’s function
G(1), the ellipse one of the susceptibilities and the wiggled line with a square represents a renormalized
vertex (spin or charge). As can be seen from Eq. 4.183, 4.184 and 4.185, at one side of the interacting
susceptibility there is always a renormalized TPSC vertex attached, namely the one corresponding to
the operator at that side of the susceptibility.

4.13 Implementation of TPSC with SOC

We implemented TPSC with SOC in a Python code for the Kane-Mele-Hubbard model (KMH). The
code is based on a TPSC code for the Hubbard model on a square lattice [161, 186], that in parts
is based on the TPSC sparse-ir tutorial [187]. The implemented algorithm follows the one explained
in Sec. 4.10. Since the KMH model possesses conservation of Sz the implemented equations simplify
to those given in Sec. 4.12. The code assumes particle-hole symmetry for n > 1 (more than half
filling). The code also assumes symmetry related orbitals so that the first level self-energy Σ(1) is
a constant that can be absorbed in the chemical potential. We use the sparse-ir library [187–189]
to represent Green’s functions and susceptibilities in an efficient manner. The sparse-ir library also
allows for efficient Fourier transforms between imaginary times and Matsubara frequencies, as well as
an efficient calculation of the sum rules 4.180 and 4.181. Convolutions can be efficiently evaluated using
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Figure 4.2: (a) The Kane-Mele-Hubbard model with next neighbor hopping t, spin-orbit coupling λ and onsite
Hubbard interaction U . The basis vectors are a1 = (1, 0)a and a2 = (1/2,

√
3/2)a with lattice constant a. (b)

The hexagonal Brillouin zone of the model.

fast Fourier transforms, see appendix D. Green’s functions, susceptibilities, self-energies are implemented
as numpy arrays. The antiperiodicity of the Green’s function in imaginary time is used so that only
positive imaginary times need to be stored. The antiperiodicity of the Green’s function is also used to
simplify the calculation of the noninteracting susceptibility. The matrix notation in Eq. 4.177 allows for
an efficient implementation. Since in the Kane-Mele-Hubbard model the spin fluctuations are stronger
for the Sx and Sy spin components the ansatz equation is used in the transversal channel i.e. the
spin x-direction. Eq. 4.177, 4.180 and 4.181 presents a multi-dimensional root-finding problem for Γcc

and Γzz, that is solved using the scipy optimize root hybr function that uses MINPACK’s hybrd and
hybrj routines (modified Powell method). A good starting guess can be obtained by first neglecting the
spin-charge coupling χcz and χzc and solving the resulting one dimensional root-finding problems. For
the one-dimensional root-finding problems for the spin vertices it is possible to give a search interval to
avoid numerical instabilities associated with the pole in the expression for the spin susceptibility e.g. in
Eq. 4.173 (see appendix E).

The code would be easily generalizeabe to the case without particle-hole symmetry. Generalizing to
the case of general SOC requires the implementation of the algorithm in Sec. 4.10. Generalization to
the case where the sites are not symmetry related anymore i.e. ⟨na⟩ ≠ ⟨nb⟩ requires more changes to the
code and the input of the densities ⟨na⟩ from a different method (see Ref. [6]). The Bloch Hamiltonian
can be adapted in the respective file.

4.14 Numerical results for the Kane-Mele Hubbard model

In the following we first introduce the Kane-Mele-Hubbard model, which will then serve as a test bed
to demonstrate the TPSC method with SOC included. Our focus is to study the interplay of Hubbard
interaction and spin-orbit coupling. We consider the weak to intermediate coupling regime, i.e. U values
that are reasonable within TPSC. Further we only consider relatively small values of spin-orbit coupling,
because usually it is a small effect. We only consider the half filled case. We put a special focus on low
temperatures i.e. smaller than the band gap, where thermal excitation effects play a smaller role. We
present numerical results for the double occupancy, renormalized TPSC spin and charge vertices, spin
susceptibility, charge susceptibility mixed spin charge susceptibility, Green’s function and self-energy.
All calculations in this chapter are performed on a 120 × 120 k-point grid and at half filling. These
calculations can be performed on a laptop.

4.14.1 The Kane-Mele-Hubbard model

In this section we describe the Kane-Mele-Hubbard model. Further results for the model can also be
found in Chap. 5. The Kane-Mele model was originally proposed by Kane and Mele [48, 49] for a
single layer of graphene, where the intrinsic spin-orbit coupling (SOC) opens a band gap and causes a
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band inversion making the bands topological. The model host a so called quantum spin Hall (QSH)
phase. The spin Hall effect is a physical phenomenon in which electrons move perpendicular to the
direction of an applied electrical field, but in opposite directions depending on the spin orientation. In
the QSH phase the corresponding spin Hall conductivity SHC is quantized, because it can be written as
a Brillouin zone integral over the Berry curvature of the occupied bands. However, in graphene the size
of the intrinsic SOC was found to be of the order of a few microelectronvolt, so that the QSH would
only be observable at unrealistically low temperatures [127, 190–192]. Note, that the Kane-Mele model
introduced in Ref. [48] can be thought of two time reversed copies of the Haldane model on top of each
other [193].

Later on onsite Hubbard interactions where added to study the effect of interactions yielding the
Kane-Mele-Hubbard model. So far, the KMH model has been investigated in Refs. [194–207] and
reviewed in Refs. [208–210]. The Kane-Mele-Hubbard model is defined by the following Hamiltonian

H = −t
∑

⟨i,j⟩
c†i cj + iλ

∑

⟨⟨i,j⟩⟩
νijc

†
iσzcj + U

∑

i

ni↑ni↓. (4.193)

The indices i and j run over all lattice sites of which there are two in the unit cell, c†i (ci ) is a row

(column) vector of creation (annihilation) operators i.e. (c†i↑, c
†
i↓) and νij = ±1 depending on if going

from i to j is clockwise or counterclockwise. In the model t is a nearest neighbor hopping, U the strength
of the Hubbard interaction and λ the strength of the SOC coupling that is consistent with the symmetries
of graphene [48, 49]. The SOC term breaks spin rotation symmetry, but time reversal symmetry and
the conservation of the spin z-components Sz are preserved. The model and the reciprocal space are
depicted in Fig. 4.2. We consider the model at half-filling.

We now describe our concrete choice of lattice parameters and orbital positions that are also necessary
for the implementation. We take the lattice of our model to be

a1 =

(

1
0

)

a, a2 =

( 1
2√
3
2

)

a. (4.194)

The volume of the elementary cell is

Vez =

√
3

2
a2. (4.195)

For simplicity we set a = 1. The positions of the orbitals are at

r1 = 0 · a1 + 0 · a2 (4.196)

r2 =
1

3
· a1 +

1

3
· a2 (4.197)

The lattice vectors in the reciprocal space are

K1 =
2π

a

(

1
− 1√

3

)

, K2 =
2π

a

(

0
2√
3
.

)

(4.198)

I holds Ki · aj = 2πδij . With this basis we can write every k-point k in reduced units as

k = k1K1 + k2K2, (4.199)

where k1, k2 ∈ [0, 1]. Reduced units allow us to effectively map the model on a square lattice simplifying
the implementation. The spin indices can be included in the orbital indices to simplify the implemen-
tation. Here and in the following we use the convention that each 2× 2 block describes the spin indices.
In the periodic gauge (the orbital positions are not included in the Fourier transform) the Hamiltonian
is given by
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Figure 4.3: Band structure of the Kane-Mele model for different values of spin orbit coupling. At zero spin-
orbit coupling the model possesses Dirac cones at K and K

′. Turning on spin-orbit coupling the Dirac cones
are gaped out. Spin up and spin down bands are degenerate due to time reversal symmetry.
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H11
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↓↑(k) H12
↓↓(k)

H21
↑↑(k) H21

↑↓(k) H22
↑↑(k) H22

↑↓(k)
H21

↓↑(k) H21
↓↓(k) H22

↓↑(k) H22
↓↓(k)









=









γ(k) 0 h(k) 0
0 −γ(k) 0 h(k)

h∗(k) 0 −γ(k) 0
0 h∗(k) 0 γ(k)









(4.200)

with

h(k) = −t (1 + exp(ik · a1) + exp(ik · a2)) , (4.201)

γ(k) = 2λ (sin(k · a1)− sin(k · a2) + sin(k · (−a1 + a2))) (4.202)

or in reduced units (using Eq. 4.199)

h(k) = −t (1 + exp(2πik1) + exp(2πik2)) , (4.203)

γ(k) = 2λ (sin(2πk1)− sin(2πk2) + sin(2π(−k1 + k2))) . (4.204)

For small SOC the band gap is the smallest at the k-points K = (2/3, 1/3) and K ′ = (1/3, 2/3) in
reduced units, the location of the Dirac points in the absence of SOC. Note that the orbitals in the
unitcell are related to each other by inversion symmetry. Hence, their the expectation values for the

orbital resolved fillings are identical i.e. ⟨n1⟩ = ⟨n2⟩ = ⟨n⟩
2 where ⟨n⟩ is the total filling. This will

later allow us to simplify the TPSC self-consistency equations. Most impotently the TPSC two-particle
irreducible vertex will be identical for both orbitals and the orbital resolved fillings in the sum rules are

simply given by ⟨n⟩
2 .

A plot of the band structure for different values of SOC can be seen in Fig. 4.3. In the noninteracting
case the SOC gaps out the Dirac cones at K and K ′. The band gap at K and K ′ is ∆ = 6

√
3λ. Spin

up and spin down bands are degenerate due to time reversal symmetry. In the gapped phase at zero

temperature the spin Hall conductivity takes the quntized value of σSH = −2 e2

h
. The quantization is due

to the Chern theorem which can be independently applied to spin-up and spin-down subspaces [48, 49].
At T = 0 the SOC-U -phase diagram consists of a QSH insulating phase at small U values and a XY
antiferromagnet at larger U values. An intermediate spin liquid phase suggested in Refs. [194, 197, 198,
201] could not be found by large scale QMC simulations [11]. The X-Y antiferromagnet at high U values
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Figure 4.4: ⟨n↑n↓⟩ as a function of the SOC strength λ for different values of U for T/t = 0.01.

occurs because the SOC proportional to σz makes the x-y-plane the easy plane for the spins. This can
be seen in the strong coupling limit where the Hamiltonian becomes [199]:

HU→∞ =
4t2

U

∑

⟨i,j⟩
Si · Sj +

4λ2

U

∑

⟨⟨i,j⟩⟩
(Sz

i S
z
j − Sx

i S
x
j − Sy

i S
y
j ) (4.205)

Metallic edge states were found numerically to be gapped out by large enough interactions [211, 212] or
spontaneously break time reversal symmetry and acquire magnetic order [202].

4.14.2 Double occupancy

Since both sites in the unit cell are related by inversion symmetry one has for the double occupancy
⟨n1↑n1↓⟩ = ⟨n2↑n2↓⟩ which we define as ⟨n↑n↓⟩. Fig. 4.4 shows ⟨n↑n↓⟩ as a function of U for different
temperatures and SOC of λ/t = 0.01. For U = 0 the double occupancy factors into the product
of the noninteracting densities ⟨n↑n↓⟩ = ⟨n↑⟩ ⟨n↓⟩ = 0.25. Increasing the interaction strength makes it
energetically more costly for two electrons to occupy the same orbital so the double occupancy decreases.
Note that after the transition to the XY antiferromagnet at U/t ≈ 4 TPSC looses its validity, because it
is a weak to intermediate coupling approach. The temperature dependence is very small. This behavior
was already observed in on the honeycomb lattice without SOC [163].

In Fig. 4.5 shows ⟨n↑n↓⟩ as a function of the SOC strength λ for different values of U for T/t = 0.01.
We see that for all values of U ̸= 0 the double occupancy increases with increasing SOC. The reason is
that SOC lowers the spin fluctuations in χ(1) i.e. in the non-interacting case (see Sec. 4.14.5). Lower
spin fluctuations lead to a less strongly renormalized spin vertex. Through the ansatz equation, that
we choose to use in the transversal channel, the spin vertex in the transversal channel i.e. Γa

xx is
proportional to the double occupancies, which are then increased.

4.14.3 Spin vertices

Fig. 4.6 shows the spin vertices Γa
xx (solid) and Γa

zz (dashed) as a function of U for different temperatures
and SOC of λ/t = 0.01. Note that again, because of inversion symmetry, one has Γ1

αα = Γ2
αα, hence we

neglect the orbital label.
Spin rotation symmetry around the spin z-axis leads to Γxx = Γyy. Γxx and Γzz increase with

increasing U for all temperatures. The spin vertex in the longitudinal channel i.e. Γzz is always larger
than Γxx, because the x-y plane is the easy plane for the spins (see also Sec.4.14.5). Consequently, the
spin fluctuations in that plane are stronger leading to a stronger renormalization for Γxx. At low values
of U , Γxx and Γzz are almost equal to U , showing that in the low U limit TPSC recovers RPA. With
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Figure 4.5: ⟨n↑n↓⟩ as a function of the SOC strength λ for different values of U for T/t = 0.01.
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78 Chapter 4. Two-Particle Self-Consistent approach with spin-orbit coupling

0.00 0.05 0.10 0.15 0.20 0.25
/t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

U/t = 0.0
U/t = 1.0
U/t = 2.0
U/t = 3.0
U/t = 4.0

Figure 4.7: Spin vertices Γxx (solid) and Γzz (dashed) as a function of the SOC strength λ for different values
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increasing U the vertices have the tendency to saturate. This reflects the physics of Kanamori-Brückner
screening included in the ansatz equation [8, 28, 30]. When increasing U the two-body wave function
becomes smaller when two electrons are on the same site. Thereby the effective interaction between
electrons is reduced. The maximum energy this can cost is the bandwidth. Hence, the spin vertex
saturates to a value of the order of the bandwidth. [30] Around U/t = 4 the transversal spin vertex

Γxx converges to the critical value of 2/χ
(1)nmax

xx , where χ
(1)nmax

xx is the maximum eigenvalue of χ
(1)
xx (q).

Increasing Γxx further would lead to a pole in the spin susceptibility χxx i.e. an instability to the XY
antiferromagnet. The start of this plateau thus marks the transition to the XY antiferromagnet. TPSC
is not valid anymore after reaching the plateau. This confirms that TPSC is a weak to intermediate
coupling approach that cannot be used to investigate the strong coupling physics after the phase tran-
sition. We find the temperature dependence of the spin vertices to be very small, as already observed
in on the honneycomb lattice without SOC [163].

In Fig. 4.7 shows the spin vertices Γxx (solid) and Γzz (dashed) as a function of the SOC strength
λ for different values of U for T/t = 0.01. We see that both Γxx and Γzz increase slightly as a function
of SOC strength. The reason is that SOC lowers the spin fluctuations in χ(1) (see Sec. 4.14.5). Lower
spin fluctuations lead to a less strongly renormalized spin vertex. Again we see that the longitudinal
spin vertex Γzz is always larger then the transversal one Γxx. The difference is larger at higher U where
spin fluctuations are larger.

4.14.4 Charge vertex

Fig. 4.8 shows the charge vertices Γcc as a function of U for different temperatures and SOC of λ/t = 0.01.
Again we neglect the orbital label, because the orbitals are related by inversion symmetry. At low values
of U the charge vertex Γcc is almost equal to U , showing that in the low U limit TPSC recovers RPA. At
high values of U the charge vertex Γcc increases rapidly. The charge vertex thus suppresses the charge
fluctuations compared to their non-interacting values and charge correlation legths become small and
ill defined [163]. Note that after the transition to the XY antiferromagnet at U/t ≈ 4 TPSC looses its
validity. Below U/t = 4 the charge vertex is almost temperature independent.

In Fig.4.9 shows the charge vertices Γcc as a function of the SOC strength λ for different values of U
for T/t = 0.01. We see that Γcc with the strength of SOC. This behavior is similar to the one observed
for the spin vertex in the sense that increasing SOC lowers the fluctuations in the system thus making
it less strongly renormalized. Since the renormalization for the charge vertex leads to a higher value,
increasing SOC leads to a smaller charge vertex.
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Figure 4.8: Charge vertices Γcc as a function of U for different temperatures and SOC of λ/t = 0.01.
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Figure 4.10: Maximum of the antiferromagnetic spin susceptibilities for spins aligned in the x direction and
spins aligned in the z-direction i.e. χxx (solid) and χzz (dashed) as a function of U for different temperatures
and SOC of λ/t = 0.01.

4.14.5 Maxima of antiferromagnetic and ferromagnetic spin susceptibilities

We define the antiferromagnetic and the ferromagnetic spin susceptibility for spins aligned in direction
α as

χafm
αα (q) = χ11

αα(q)− χ12
αα(q)− χ21

αα(q) + χ22
αα(q), (4.206)

χfm
αα(q) = χ11

αα(q) + χ12
αα(q) + χ21

αα(q) + χ22
αα(q), (4.207)

where α = x, y, z. Note that χxx = χyy in the Kane-Mele-Hubbard model due to rotation symmetry
around the spin z-axis. Fig. 4.10 shows the maximum of the antiferromagnetic spin susceptibilities for
spins aligned in the x direction and spins aligned in the z-direction i.e. χxx (solid) and χzz (dashed) as
a function of U for different temperatures and SOC of λ/t = 0.01. The maxima are located it iqm = 0
and q = (0, 0). Note that contrary to the single-band Hubbard model the maximum at q = (0, 0) still
corresponds to antiferromagnetic spin fluctuations, because there are two orbitals in the unit cell. With
increasing U the maxima of the spin susceptibilities increase and diverge. For lower temperatures the
divergence is at lower value of U . The curves for the maximum of χxx always lie above the curves for
χzz, although the difference gets smaller for higher temperatures. At low temperatures the maximum
of the spin susceptibility is independent of temperature. The reason is that at temperatures that are
small compared to the gap ∆ = 6

√
3λ thermal excitation effects play a vanishing role. Note that the

two curves with the lowest temperatures overlap. We conclude that the divergence of the maximum of
χxx marks the transition to the XY antiferromagnetic phase.

Fig. 4.11 shows the maximum of the antiferromagnetic spin susceptibilities for spins aligned in the
x direction and spins aligned in the z-direction i.e. χxx (solid) and χzz (dashed) as a function of SOC
for different values of U and T/t = 0.01. Increasing SOC leads to a decrease of the maxima of χxx and
χzz for all values of U . At finite U this property is inherited from χ(1) i.e. in the non-interacting case.
Except at vanishing SOC the curves for χxx lie above the curves for χzz. Increasing SOC decreases the
strength of spin fluctuations. This indicates that at higher values of SOC the critical U value for the
transition to the XY antiferromagnet increases.

Fig. 4.12 shows the maximum of the ferromagnetic spin susceptibilities for spins aligned in the x
direction and spins aligned in the z-direction i.e. χxx (solid) and χzz (dashed) as a function of U for
different temperatures and SOC of λ/t = 0.01. With increasing U ferromagnetic spin fluctuations in-
crease. For low temperatures they reach a plateau. Note that the curves for the two lowest temperatures
lie on top of each other. Transversal ferromagnetic spin fluctuations are smaller then the longitudinal
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Figure 4.11: Maximum of the antiferromagnetic spin susceptibilities for spins aligned in the x direction and
spins aligned in the z-direction i.e. χxx (solid) and χzz (dashed) as a function of SOC for different values of U
and T/t = 0.01.
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Figure 4.12: Maximum of the ferromagnetic spin susceptibilities for spins aligned in the x direction and spins
aligned in the z-direction i.e. χxx (solid) and χzz (dashed) as a function of U for different temperatures and
SOC of λ/t = 0.01.
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and SOC of λ/t = 0.01.

ferromagnetic ones at low temperature. The ferromagnetic spin fluctuations are generally much smaller
then the antiferromagnetic ones, so antiferromagnetic spin fluctuations dominate.

Fig. 4.13 shows the maximum of the ferromagnetic spin susceptibilities for spins aligned in the x
direction and spins aligned in the z-direction i.e. χxx (solid) and χzz (dashed) as a function of U for
different temperatures and SOC of λ/t = 0.01. With increasing SOC the transversal ferromagnetic
fluctuations decrease while for the longitudinal ones there is no clear trend. The longitudinal curves lie
lie above the transversal curves for non-vanishing SOC.

We conclude this section with that the maximum for ferromagnetic spin fluctuation is very small
compared to the antiferromagentic ones. So antiferromagnetic spin fluctuations dominate in the model.
Comparing the maxima of χxx and χzz, we see that the spin fluctuation are stronger in the x-y plane.
This is consistent with the Hamiltonian in the strong coupling limit Eq. 4.205 whose ground state is a
XY antiferromagnet.

We conclude that antiferromagnetic spin fluctuations dominate over ferromagnetic ones. They in-
crease with higher U and decrease with higher SOC. Transversal spin fluctuations are larger then longi-
tudinal ones at finite SOC. The x-y plane is hence the easy plane for the spins and at zero temperature
the system becomes an XY antiferromagnet at sufficiently high U .

4.14.6 Maxima of antiferromagnetic and ferromagnetic charge susceptibili-

ties

Analogous the spin susceptibilities we define the antiferromagnetic and the ferromagnetic charge sus-
ceptibility as

χafm
cc (q) = χ11

αα(q)− χ12
cc (q)− χ21

cc (q) + χ22
cc (q), (4.208)

χfm
cc (q) = χ11

cc (q) + χ12
cc (q) + χ21

cc (q) + χ22
cc (q). (4.209)

Fig. 4.14 shows the maximum of the antiferromagnetic (solid) and ferromagnetic (dashed) charge
susceptibilities as a function of U for different temperatures and SOC of λ/t = 0.01. The maxima for
the antiferromagnetic charge fluctuations are located it iqm = 0 and q = (0, 0) for the ferromagnetic ones
they are located at q = (1/3, 2/3) and q = (2/3, 1/3) in reduced units. With increasing U the maxima
decrease. So increasing U leads to a damping of charge fluctuations. The maxima only weakly depend
on temperature. Antiferromagnetic spin fluctuations are larger then ferromagnetic ones although the
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Figure 4.14: Maximum of the antiferromagnetic (solid) and ferromagnetic charge susceptibilities as a function
of U for different temperatures and SOC of λ/t = 0.01.
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Figure 4.15: Maximum of the antiferromagnetic (solid) and ferromagnetic (dashed) charge susceptibilities as
a function of the SOC strength λ for different values of U for T/t = 0.01.

difference almost vanishes for higher U values. Charge fluctuations are also much smaller then the
antiferromagnetic spin fluctuations.

Fig. 4.15 shows the maximum of the antiferromagnetic (solid) and ferromagnetic (dashed) charge
susceptibilities as a function of the SOC strength λ for different values of U for T/t = 0.01. At low
U values increasing SOC leads to a decrease of the antiferromagnetic charge fluctuations. Similar to
the spin fluctuations this behavior stems from χ(1). At higher U values they stay almost constant.
Ferromagnetic charge fluctuations are almost independent of SOC. We conclude this section with that
charge fluctuations are small and are dominated by antiferromagnetic spin fluctuations.

4.14.7 Spin-charge susceptibility

The spin-charge susceptibilities describe the coupling of spin and charge. With spin rotation they must
vanish. However SOC breaks spin rotation symmetry so they can be non-zero. In the Kane-Mele-
Hubbard model the only non-vanishing spin-charge susceptibilities are χcz and χzc. All other mixed
susceptibilities (including between different spin directions) vanish due to the conservation of spin in
the z-direction. Because of TR symmetry (Eq. 4.68) it holds χab

cz(iqm, q) = −χba
zc(iqm,−q). Further, in
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Figure 4.17: Maximal modulus of the eigenvalues of χcz as a function of the SOC strength λ for different
values of U for T/t = 0.01.

TPSC we find χcz(0, q) = 0.

Fig. 4.16 shows the maximal modulus of the eigenvalues of χzc (regarded as a matrix in orbital space)
as a function of U for different temperatures and SOC of λ/t = 0.01. The maxima of the eigenvalues
of the spin charge susceptibility we find to be at q = (1/3, 2/3) and q = (2/3, 1/3) in reduced units.
This is the location of the Dirac cones that are gaped out by the SOC. We see that the spin-charge
susceptibility is much smaller as the spin susceptibilities and the charge susceptibility. With increasing
U the maximum modulus of the χcz eigenvalue decreases. Lower temperatures lead to an increase until
convergence at low enough temperatures. Note, that the curves with the two lowest temperatures lie
on top of each other.

Fig. 4.15 shows the maximal modulus of the eigenvalues of χcz as a function of the SOC strength λ
for different values of U for T/t = 0.01. Increasing the SOC the modulus of the maximum eigenvalue
of χcz increases up to a maximum around λ/t = 0.11 after which it decreases again at all U values.
At vanishing SOC χcz vanishes. The occurrence of a maximum is in so far surprising, that one could
expect that mixed spin charge fluctuations would increase the larger the term is that explicitly breaks
spin rotation symmetry. For all values of SOC higher U leads to a decrease of the maximal eigenvalue.
However, we find mixed spin charge fluctuation to be much lower then spin or charge fluctuations in
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the KMH model. However, it is not clear if this is a general property of every model with SOC.

4.14.8 Self-energy

Fig. 4.18 shows the dispersion of the TPSC self-energy in momentum space at the lowest Matsubara
frequency iω0 for U/t = 4, T/t = 0.01 and for λ/t = 0.01 as a typical self-energy plot. The Hartree part
is not included, because it can be absorbed in the chemical potential. For these choices of parameters
the system is close to the transition to the XY AFM, so antiferromagnetic spin fluctuations are strong.
The top 2×2 plots show the real part of all orbital index combinations and the bottom 2×2 plots show

the imaginary part. Only Σ
(2)
↑ is shown, because of TR symmetry implies Σab

σ (iωn,k) = Σba
−σ(iωn,−k).

The self-energy shows dispersion in momentum space, for diagonal and offdiagonal elements. Especially
note the sharp features on the diagonals around q = (1/3, 2/3) and q = (2/3, 1/3) (reduced units).

Fig. 4.19 shows the imaginary part of the self-energy Σ
(2)11
↑ (iωn,k) as a function of iωn at high

symmetry k-points for T/t = 0.01, λ/t = 0.01 and U/t = 4 in a) and λ/t = 0.1 and U/t = 5.7 in b). We
find that the imaginary part of the offdiagonal elements of the self-energy vanishes at the high symmetry
k-points. Both parameter choices are in the vicinity of the phase transition (compare Sec. 5.4.2). The
self-energy at k = K is most negative. The effect is strongest at low frequencies. Also note the difference
in the slope at low frequencies. This indicates, that correlation effects are strongest where the band gap
is smallest. At higher frequencies the self-energies at different k-points converge to each other and show
the same ∼ 1/ωn tail. Higher U values cause the modulus of the self-energy to increase.

In Fig. 4.20 the real part of the TPSC self-energy as a function of iωn at high symmetry k-points for

T/t = 0.01, λ/t = 0.01 and U/t = 4, a) Σ
(2)11
↑ (iωn,k) without the Hartree part, b) Σ

(2)12
↑ (iωn,k). The

diagonal parts of the real part are very small. Only the curve at k = K is nonzero. However the curve
converges to zero for large Matsubara frequencies relatively quickly. The real parts of the offdiagonal
self-energy are relatively large except at k = K where it vanishes. They also converge to zero for large
frequencies. The imaginary parts of the offdiagonals at the high symmetry k-points are found to be
zero. This also means, that at k = K the self-energy diagonal and purely imaginary.

Generally we find that dispersion and sharp features become stronger the closer the system is to the
phase transition to the XY antiferromagnet. This is reasonable since in TPSC the largest contribution
to the self-energy come from antiferromagnetic spin fluctuations.

4.14.9 Matsubara Green’s function

Fig. 4.21 shows the imaginary part of the Green’s function G11
↑ (iωn,k) as a function of iωn at high

symmetry k-points for T/t = 0.01, λ/t = 0.01 and U/t = 4 in a) and λ/t = 0.1 and U/t = 5.7 in b). For
the Green’s function time reversal symmetry implies Gab

σ (iωn,k) = Gba
−σ(iωn,−k). At low frequencies

there is a large difference between the high-symmetry k-points. However, all curves converge to a 1/ωn

behavior at high frequencies. For small SOC in a) the Green’s function at k = K seems to diverge, but
in fact the band gap is very small, so that the Green’s function is large, but does not have a pole. The
behavior becomes more clear in b) where SOC and hence also the gap is larger. The self-energy enters
in the denominator of the self-energy. If the denominator is very small, as is the case for a small band
gap, even small changes in the self-energy can have a large effect on the Green’s function.

4.14.10 Tr(GΣ) consistency check

For the TPSC self-energy Σ(2) it must hold exactly (Eq. 4.156)

1

2
Tr

(

Σ(2)G(1)
)

=
1

2

T

N

∑

kabσ

Σ(2)ab
σ (k)G(1)ba

σ (k)e−iωn0
−

=
∑

a

U ⟨na↑na↓⟩ , (4.210)



86 Chapter 4. Two-Particle Self-Consistent approach with spin-orbit coupling

0.0 0.2 0.4 0.6 0.8 1.0
k1

0.0

0.2

0.4

0.6

0.8

1.0
k 2

Re 11(i 0, k)

0.0 0.2 0.4 0.6 0.8 1.0
k1

0.0

0.2

0.4

0.6

0.8

1.0

k 2

Re 12(i 0, k)

0.0 0.2 0.4 0.6 0.8 1.0
k1

0.0

0.2

0.4

0.6

0.8

1.0

k 2

Re 21(i 0, k)

0.0 0.2 0.4 0.6 0.8 1.0
k1

0.0

0.2

0.4

0.6

0.8

1.0

k 2

Re 22(i 0, k)

0.0 0.2 0.4 0.6 0.8 1.0
k1

0.0

0.2

0.4

0.6

0.8

1.0

k 2

Im (2)11(i 0, k)

0.0 0.2 0.4 0.6 0.8 1.0
k1

0.0

0.2

0.4

0.6

0.8

1.0

k 2

Im (2)12(i 0, k)

0.0 0.2 0.4 0.6 0.8 1.0
k1

0.0

0.2

0.4

0.6

0.8

1.0

k 2

Im (2)21(i 0, k)

0.0 0.2 0.4 0.6 0.8 1.0
k1

0.0

0.2

0.4

0.6

0.8

1.0

k 2

Im (2)22(i 0, k)

0.0180
0.0135
0.0090
0.0045

0.0000
0.0045
0.0090
0.0135
0.0180

0.32
0.24
0.16
0.08

0.00
0.08
0.16
0.24

0.32
0.24
0.16
0.08

0.00
0.08
0.16
0.24

0.0180
0.0135
0.0090
0.0045

0.0000
0.0045
0.0090
0.0135
0.0180

0.0540
0.0495
0.0450
0.0405
0.0360
0.0315
0.0270
0.0225

0.24
0.16
0.08

0.00
0.08
0.16
0.24

0.24
0.16
0.08

0.00
0.08
0.16
0.24

0.0540
0.0495
0.0450
0.0405
0.0360
0.0315
0.0270
0.0225

Figure 4.18: Dispersion of the TPSC self-energy Σ
(2)
↑ (iω0,k) in momentum space at the lowest Matsubara

frequency for U/t = 4, T/t = 0.01 and for λ/t = 0.01. Real and imaginary part are shown. The Hartree part is
not included.
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Figure 4.19: Imaginary part of the TPSC self-energy Σ
(2)11
↑ (iωn,k) as a function of iωn at high symmetry

k-points for T/t = 0.01. a) λ/t = 0.01 and U/t = 4, b) λ/t = 0.1 and U/t = 5.7.
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Figure 4.20: Real part of the TPSC self-energy as a function of iωn at high symmetry k-points for T/t = 0.01,

λ/t = 0.01 and U/t = 4, a) Σ
(2)11
↑ (iωn,k) without the Hartree part, b) Σ

(2)12
↑ (iωn,k).
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Figure 4.21: Imaginary part of the Matsubara Green’s function G
(2)11
↑ (iωn,k) as a function of iωn at high

symmetry k-points for T/t = 0.01. a) λ/t = 0.01 and U/t = 4, b) λ/t = 0.1 and U/t = 5.7.
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Figure 4.22: Tr (ΣG) consistency check as a function of U/t for different values of SOC and T/t = 0.001. Solid
lines are the interacting Green’s function G = G(2) and dashed lines the noninteracting one G = G(1). Upper
panel: Absolute values of 1

2
Tr (ΣG). Lower panel: Relative error ∆ (see Eq. 4.211). The deviation is modest up

to the phase transition or U/t ≈ 5 where TPSC starts losing its validity.

where here the trace runs over orbital and spin indices. Using G(2) instead of G(1) the relation can
be used as a consistency test between one-particle and two-particle quantities. In Fig. 4.22 we show
this test for different values of SOC. In the upper panel the absolute values and in the lower panel the
relative derivation

∆ =
Tr

(

Σ(2)G(2)
)

− Tr
(

Σ(2)G(1)
)

Tr
(

Σ(2)G(1)
) (4.211)

can be seen. The error in general gets worse for higher values of U . For low SOC the deviation is
relatively small up to the phase transition, then it starts to diverge rapidly. For larger values of SOC
where the phase transition is at higher U values, the error can already be large at the point of the phase
transition. This indicates that TPSC not valid anymore after the phase transition or high enough U
values in general. The reason is that TPSC is a weak to intermediate coupling method that cannot
describe strong coupling physics. The plateau in the dashed curves involving G(1) corresponds to the
vertex Γxx converging to a value, where the spin susceptibility elsewise would have a pole if Γxx would
become larger. This is another indication that TPSC is not valid anymore beyond the phase transition.

4.15 Summary

In this chapter we extended the TPSC approach to include SOC. Therefore, we derived new TPSC self-
consistency equations including SOC. SOC breaks spin rotation symmetry which leads to a coupling of
spin and charge sectors. However, SOC preserves time reversal symmetry. We introduced an efficient
matrix notation for susceptibilities and vertices. Invoking time reversal symmetry we showed that a
local and constant two-particle vertex in the particle-hole channel consists of three spin vertices and one
charge vertex. The vertices can be determined with the help of spin and charge sum rules and an ansatz
equation that relates the double occupancy to one of the vertices. The derived self-consistency equations
constitute a multidimensional root-finding problem for the vertices that needs to be solved numerically.
The self-energy is constructed from spin, charge and mixed spin-charge susceptibilities. Time reversal
symmetry has to be explicitly restored in the self-energy, whenever the renormalized vertex is a matrix,
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as is the case in the presence of SOC. If SOC is absent, we recover the orginal TPSC self-consistency
equations from the self-consistency equations we derived.

As a test case we study the Kane-Mele-Hubbard model in which the SOC is proportional to the spin
z-component. With TPSC we confirm that in the Kane-Mele-Hubbard model antiferromagnetic spin
fluctuations dominate of ferromagnetic spin fluctuations and charge fluctuations. Mixed spin charge
fluctuations are found to be very small compared to spin and charge fluctuations. Spin fluctuations in
the x-y plane are stronger than in z direction and diverge first as Hubbard U is increased. This confirms
that the Kane-Mele-Hubbard model is a XY antiferromagnet at zero temperature. The transversal
spin vertices are more strongly renormalized then the longitudinal spin vertex. Higher SOC leads to a
decrease of antiferromagnetic spin fluctuations, so that the phase transition is shifted to higher U values.
The self-energy shows dispersion and sharp features in momentum space that become especially large
close to the phase transition. The Tr(GΣ) check show that TPSC loses validity at the phase transition
or if U gets to high.
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Chapter 5

Spin Hall conductivity in the

Kane-Mele Hubbard model at finite

temperature

In this chapter we apply the TPSC method which we extended to include SOC in Chap. 4 to study
the spin Hall conductivity in the Kane-Mele-Hubbard model at finite temperature. However, to make
this chapter more self-contained we start by giving some background on the spin Hall effect and how to
calculate conductivities in a tight binding mdoel.

In Sec. 5.1 we give a brief overview over the spin Hall effect and its history. In Sec. 5.2 we explain
how to include a vector potential in a tight-binding model. We give an expression for the current and the
current operator in a tight binding model and define the conductivity tensor and subsequently the Hall
conductivity. In Sec. 5.3 we derive an expression for the spin Hall conductivity in terms of the Matsubara
Green’s function that is valid in the presence of interactions at finite temperature. We also show
that this expression is topological invariant of the Matsubara Green’s function. In Sec. 5.4 we present
results obtained with TPSC for antiferromagnetic spin correlation lengths, spin Hall conductivity, phase
diagram and band renormalization in the Kane-Mele-Hubbard model.

In this chapter we restore physical units. The results presented in this chapter are published in
Ref. [2].

5.1 The spin Hall effect

The spin Hall effect is a physical phenomenon in which particles experience forces perpendicular to
their flow direction, but of opposite directions depending on the spin orientation. The spin Hall effect
was first proposed in 1971 [89]. Since its proposal, the spin Hall effect has been realized in a variety
of systems, including the semiconductors GaAs and InGaAs where the phenomenon is driven by spin-
orbit coupling [143, 144], in laser light traversing dielectric junctions [213] or in cold atom systems in
optical lattices [214, 215]. A large spin Hall effect due to spin-orbit coupling has also been observed in
AB-stacked MoTe2/WSe2 moiré bilayers (see Fig. 5.1) [216].

Likewise, the quantum spin Hall effect (QSH) is a spin selective version of the quantum Hall effect
and describes a time reversal invariant electronic state with a bulk electronic band gap which hosts a
quantized spin Hall conductivity. The state was originally proposed by Kane and Mele [48, 49] for a
single layer of graphene, where the intrinsic spin-orbit coupling (SOC) opens a band gap and causes a
band inversion making the bands topological [49]. The Kane-Mele model introduced in Ref. [48] can
be thought of two time reversed copies of the Haldane model [193]. The Kane-Mele model introduced
in Ref. [48] resembles graphene and consists of a honeycomb lattice with nearest neighbor hopping and
SOC. The spin Hall conductivity in this case is quantized at zero temperature since it corresponds to a
Brillouin zone integral over the Berry curvature of the occupied bands. However, in graphene the size
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Figure 5.1: Accumulation of opposite sign spins at the edges of MoTe2/WSe2 due to a large spin Hall effect
measured via magnetic circular dichroism (MCD) imaging for 1.6K with zero bias current (left panel), 6K with
zero bias current (middle panel) and 6K with bias current equals 3.3µA. Black dashed lines mark the sample
boundaries and arrows show the bias current direction. The figure is reprinted from Ref. [216].

of the intrinsic SOC was found to be of the order of a few microelectronvolt, so that the QSH would
only be observable at unrealistically low temperatures [127, 190–192]. An observable QSH was first
successfully predicted and measured in HgTe quantum wells (see Fig. 5.2) [90, 91].

The observation in other systems followed [129, 217–227], notably, for example, in recent measure-
ments in the graphene analog germanene [129]. Other possible avenues to observe this effect have been
pursued by tuning the SOC through proximity effects to engineer topological phases [224].

5.2 Currents and conductivities

In this section we discuss currents and conductivities in the context of a tight binding model with a
vector potential. First, we derive a general expression for the current and the current operator in the
presence of a vector potential. Then we explain how a vector potential is included in a tight-binding
model. We then give an expression for the current and the current operator in a tight-binding model
with a vector potential. We work in imaginary time and frequency space, because this is simpler. Then
we perform analytic continuation to real frequencies to obtain an expression for the conductivity tensor.
In the end we are interested in the DC limit ν → 0. The Hall conductivity can be obtained as the
antisymmetric part of the conductivity tensor. The whole discussion is semi-classical, i.e. we assume
a vector potential with many photons, so that one photon more or less does not matter. This section
follows Refs. [100, 228].

5.2.1 Current operator and coupling to the vector potential

We now derive a general expression for the current operator in the presence of a vector potential. We
describe an uniform electric field by a position independent vector potential in imaginary time A(τ).
The electric field in imaginary time is obtained by

E(τ) = −∂τA(τ) (5.1)

In real time one has E(t) = −∂tA(t). Going to imaginary frequencies iνn we have

E(iqm) = iqmA(iqm) (5.2)

Classically, the vector potential enters the Hamilton function H in the following way

HA =
∑

n

(pn + eA)2

2m
− eϕ, (5.3)
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Figure 5.2: The longitudinal four-terminal resistance in HgTe quantum well structures of different sample sizes
measured as a function of the gate voltage. For sample III and IV the measured value is close to the predicted

quantized value of the longitudinal conductivity of 2 e2

h
due to the gapless edge states that must be present in a

QSH insulator. The figure is reprinted from Ref. [90].

where n is the particle index of the electrons. In quantum mechanics the replacement p → p − eA is
called Peierls substitution. We now choose a gauge where ϕ is zero. This is always possible. Classically,
the current is obtained by the expression

JA

α = −

(

∂H

∂Aα

)

p,r

, (5.4)

where JA
α is the total current in direction α in the presence of a vector potential and H the Hamil-

ton function. The current operator can be obtained from the correspondence principle. In quantum
mechanics both j and H become operators. The current density is given by a functional derivatives

jAα (τ, r) = −
δHA(τ)

δAα(τ, r)
. (5.5)

Here, the functional derivative is only with respect to the spacial coordinates, but not with respect to
time. Note, that despite the time dependence jAa is in the Schrödinger representation. In a gauge with
ϕ = 0 the Hamiltonian becomes

HA(τ) =
∑

n

p2
n

2m
−

e

2m
(pnA(τ, rn) +A(τ, rn)pn) +

e2

2m
A(τ, rn)

2. (5.6)

So with Eq. 5.5 we get for the current operator

jAα (τ, r) =
∑

n

e

2m
(pnδ(r − rn) + δ(r − rn)pn)−

e2

m
A(τ ′, rn)δ(r − rn). (5.7)

Up to linear order in A the coupling between the system and the vector potential is

H∆A(τ) = −

∫

drjA=0
α (τ, r)A(τ, r), (5.8)
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where jA=0
α is the first term in Eq. 5.7. Note the equivalence of a source field ϕ(1, 2) and the vector

potential A when one expresses the current operator with creation and annihilation operators. However,
the vector potential has only one position and one time argument and there is no integration over τ .
Integrating Eq. 5.7 over r we get for the total current

JA

α (τ) =
∑

n

e
pn

m
−
e2

m
A(τ, rn). (5.9)

Note that the integration over a derivative of a delta distribution yields zero in a periodic system.

5.2.2 Vector potential in a tight-binding model

In this section we explain how to incorporate a vector potential in a tight binding model. We then also
show that partial derivatives of the Bloch Hamiltonian H(k) by the vector potential can be replaced
by partial derivatives with respect to k. The Hamiltonian we consider is given by as a sum of a
noninteracting Hamiltonian and the Hubbard interaction

HA = HA
0 +HU . (5.10)

In a non-interacting periodic tight-binding model the vector potential can be included in the Hamiltonian
in the following way. For each hopping element

tabRj+ra,Ri+rb
= ⟨wRj+ra,a|H|wRi+rb,b⟩ = ⟨wRj−Ri+ra,a|H|w0+rb,b⟩ = Hab(Rj −Ri), (5.11)

where wRi+rb,b is a Wannier function localized at Ri + rb, where Ri is the lattice vector for the unit
cell, rb the position in the unit cell and b a site/orbital index that also includes spin. Hab(Rj −Ri) are
the matrix elements of the Bloch Hamiltonian in real space, that are essentially given by the hopping
elements. Including a vector potential each hopping term in the Hamiltonian becomes

tabRj+ra,Ri+rb
c†
Rj+raa

cRi+rbb → tabRj+ra,Ri+rb
exp (−i

e

ℏ

∫ Rj+ra

Ri+rb

A(τ, r) · dr)c†
Rj+raa

cRi+rbb. (5.12)

Only in this way expectation values of H are invariant under gauge transformations of the vector
potential A(τ, r) → A(τ, r)+∇rΛ(r), because under such a gauge transformation creation (and similar
annihilation) operators transform as

c†
Rj+raa

(τ) → exp (−i
e

ℏ
Λ(τ,Rj + ra))c

†
Rj+raa

(τ). (5.13)

This is the lattice version of the change of a wave function under a gauge transformation

ψ(τ, r) → exp (−i
e

ℏ
Λ(τ, r))ψ(τ, r), (5.14)

as follows from the Schrödinger equation with vector potential. Note that here e is the elementary
charge. Assuming an uniform vector potential, Eq. 5.12 becomes

tabRj+ra,Ri+rb
c†
Rj+raa

cRi+rbb → tabRj+ra,Ri+rb
exp

(

−i
e

ℏ
A(τ) · (Rj −Ri + ra − rb)

)

c†
Rj+ra

cRi+rb
.

(5.15)
The Hubbard interaction consists of creation-annihilation operator pairs and hence the gauge factors
acquired through the vector potential cancel. Hence, the Hubbard part stays unchanged.

The Bloch Hamiltonian can be obtained by the following discrete Fourier transformation. We include
the orbital positions in the Fourier transform. This corresponds to a specific gauge choice. We get
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HA

ab(k) =
∑

R

HA

ab(R) exp (−ik · (R+ ra − rb))

=
∑

R

HA=0
ab (R) exp (−ik · (R+ ra − rb)) exp−

(

i
e

ℏ
A(τ) · (R+ ra − rb)

)

=
∑

R

HA=0
ab (R) exp

(

−i(k +
e

ℏ
A(τ)) · (R+ ra − rb)

)

= HA=0
ab (k +

e

ℏ
A(τ)). (5.16)

The Fourier transformation for the annihilation (and respectively creation) operators is

cRi+rbb =
1

N

∑

k

exp (ik · (Ri + rb))ckb. (5.17)

This corresponds to a gauge choice, which is not periodic in k-space. This gauge choice is important,
when there are multiple sites in the unit cell, so that one can replace derivatives by A at A = 0 by a
derivative by k. Explicitly, we have

∂Aα(τ)H
A(τ)
ab (k)|A=0 =

e

ℏ
∂kα

HA=0
ab (k). (5.18)

Note, that in the case of a uniform vector potential, i.e. zero magnetic field, k is still a good quantum
number.

5.2.3 Current and current operator in a tight-binding model

In this section we give an expression for the current and the current operator in a vector potential. We
follow Ref. [228]. Writing the Hamiltonian in a basis of Bloch-like basis functions we have (including
spin in the orbital indices)

HA(τ) =
∑

kab

H
A(τ)
ab (k)c†

kackb +HU (5.19)

Now we show that the total current operator in the presence of a uniform vector potential A is given
by

JA

α (τ) = −
∂HA(τ)

∂Aα(τ)
. (5.20)

We start from Eq. 5.5. On a lattice the functional derivative with respect to the r dependence of A
becomes a sum of partial derivatives at the orbital positions Ri + ra. For the total current operator we
have sum over all unit cells i and site/orbital indices a. Hence the current on a lattice is given by

JA

α (τ) = −
∑

ia

∂HA(τ)

∂Aα(τ,Ri + ra)
. (5.21)

Formally, for uniform field A(τ,Ri + ra) = A(τ) for all i, a we can write with the chain rule

JA

α (τ) = −
∑

ia

∂HA(τ)

∂Aα(τ,Ri + ra)

= −
∑

ia

∂HA(τ)

∂Aα(τ,Ri + ra)

∂Aα(τ,Ri + ra)

∂Aα(τ)

= −
∂HA(τ)

∂Aα(τ)
(5.22)



96 Chapter 5. Spin Hall conductivity in the Kane-Mele Hubbard model at finite temperature

Hence, one can replace the functional derivative by just one partial derivative. So in the Bloch basis
one has for the current operator in the Schrödinger picture

JA

α (τ) = −
∑

kab

∂H
A(τ)
ab (k)

∂Aα(τ)
c†
kackb. (5.23)

To obtain the current density one has do devide by the volume of the system. The time-dependent
expectation value of this operator can be expressed by a single-particle non-equilibrium Green’s function

⟨JA

H,α(τ)⟩A = −
∑

kab

∂H
A(τ)
ab (k)

∂Aα(τ)
GA

ba(τ, τ
+,k). (5.24)

where here ⟨·⟩
A

= Tr(ρA·) and ρA is the non-equilibrium density matrix of the system with the states
in the Heisenberg representation. The subscript H of J indicates that the operator is now also in
the (imaginary time) Heisenberg picture to get a time dependent expectation value. The time-ordered
non-equilibrium Matsubara Green’s function is given by

GA

ab(τ1, τ2,k) = −⟨Tτ cka(τ1)c
†
kb(τ2)⟩A . (5.25)

Later, we expand up to linear order in the vector potential to obtain the conductivity. The result will
be expressed in terms of equilibrium quantities. Hence, we do not need to specify here how the non-
equilibrium time evolution and density matrix looks like in detail. The total current can also be seen
as the q = 0 current density.

5.2.4 Definition of the conductivity

To linear order the current density in Matsubara frequency space is given by

jAα (iqm) =
∑

β

(

Παβ(iqm)−
1

V

∑

kab

e2

ℏ2

∂2HA=0
ab (k)

∂kα∂kβ
⟨c†

kbcka⟩A=0

)

Aβ(iqm) +O(A2), (5.26)

where V is the volume of the system. The linear coefficient Π in the first term is called polarization. The
second term is the diamagnetic term in a lattice model. The second derivative of the Bloch Hamiltonian
with prefactor 1

ℏ2 is the generalization of the inverse mass in a lattice model. ⟨c†
kbcka⟩A=0

is in some
sense the generalization of the density, that now depends on k and orbital indices. We can now perform
analytic continuation on Παβ(iqm) to infinitesimally over the real frequency axis i.e. iqm → ν + iη to
obtain the retarded polarization ΠR

αβ(ν) = Παβ(ν+iη). In an alternative derivation the polarization can
be derived from the current-current correlation function. The current-current correlation function has
a spectral representation. Hence, there is a unique analytical continuation from Matsubara frequencies
to real frequencies as usual for correlation functions. In real frequencies we have

jAα (ν) =
∑

β

(

Παβ(ν + iη)−
1

V

∑

ka

e2

ℏ2

∂2HA=0
aa (k)

∂kα∂kβ
⟨c†

kacka⟩A=0

)

Aβ(ν) +O(A2). (5.27)

From E(t) = −∂tA(t) we get

E(ν + iη) = i(ν + iη)A(ν + iη). (5.28)

So that we can identify the optical conductivity from Eq. 5.27 to be

σαβ(ν) =
Παβ(ν + iη)

i(ν + iη)
. (5.29)

Gauge invariance implies that one cannot have a response of a time and space independent vector
potential, because in this case the electric and magnetic field are zero. Hence, one must have
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Παβ(0 + iη)) =
1

V

∑

ka

e2

ℏ2

∂2HA=0
aa (k)

∂kα∂kβ
⟨c†

kacka⟩A=0
. (5.30)

In the DC limit we must calculate

σDC
αβ = lim

ν→0

Παβ(ν + iη)−Παβ(0 + iη)

iν

= lim
ν→0

Παβ(ν + iη)−Παβ(0 + iη)

i(ν + iη)− i(0 + iη)

= −i lim
ν→0

∂νΠαβ(ν + iη). (5.31)

We are interested in the real part of the DC conductivity i.e.

ReσDC
αβ = lim

ν→0
∂νImΠαβ(ν + iη). (5.32)

If we want to work with Matsubara frequencies, we can take advantage of analytic continuation. The
Cauchy-Riemann equations for a complex differentiable function f(z) = u(x, y)+iv(x, y) with z = x+iy,
where u, v are real functions, are given by ∂xu = ∂yv and ∂yu = −∂xv. We get

Re(σDC
αβ ) = lim

ν→0
∂νIm (Παβ(ν + iη)) = − lim

qm→0
∂qmRe (Παβ(iqm)) = lim

iqm→0
∂iqmIm (Παβ(iqm)) . (5.33)

The small imaginary part iη causes the function to be analytical, so the Cauchy-Riemann equations
can be applied. The DC dissipationless intrinsic (in the absence of a magnetic field) Hall conductivity
is given by the anti-symmetric part. We get

σH
αβ =

1

2
(σDC

αβ − σDC
βα ). (5.34)

5.3 Spin Hall conductivity expression for the interacting case

If there is a difference between Hall conductivity for up electrons and for down electrons, then there is
a net spin Hall current in the system. The corresponding spin Hall conductivity (SHC) is defined as

σSH
xy = σH↑

xy − σH↓
yx =

1

2
(σDC↑

xy − σDC↑
yx )−

1

2
(σDC↓

xy − σDC↓
yx ). (5.35)

In the following we will consider a system in which the spin z-component is conserved. In Sec. 5.3.1
We first derive an expression for the interacting spin Hall conductivity in terms of Matsubara Green’s
functions. In Sec. 5.3.2 we show that in the non-interacting case the Green’s function expression reduces
to a Brillouin zone integral over a Berry curvature. In Sec. 5.3.3 then we will show that at zero
temperature the expression is a topological invariant in terms of the Matsubara Green’s function. It

follows that at zero temperature the SHC must be quantized to integer multiples of 2 e2

h
also in the

presence of interactions. In Sec. 5.3.4 we discuss vertex corrections for the interacting case and how
they can be calculated within TPSC. In Sec. 5.3.5 we give some details about our implementation.

5.3.1 Derivation of the spin Hall conductivity at finite temperature

In the following we derive an expression for the spin Hall conductivity at finite temperature in terms
of the Matsubara Green’s function in two dimensions that is valid in the presence of interactions.
Ref. [107] gives a derivation for the zero temperature Hall conductivity starting from the current current
correlator. Here, we derive the Hall conductivity from a linear expansion in the vector potential of the
current density expectation value. Our strategy will be the following. For simplicity we consider spinless
electrons, so that in fact we derive an expression for the Hall conductivity. The spin Hall conductivity for
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a system, where the z components of the electrons are conserved, can be obtained by adding spin indices
and then taking the difference of conductivities for spin up and down. To obtain the Hall conductivity
we write the expectation value of the current density in terms of a non-equilibrium Green’s function. We
then expand linearly in terms of the vector potential. The linear coefficient (minus the diamagnetic term)
can be identified as the polarization and from its frequency derivative the conductivity. The obtained
expression for the Hall conductivity only depends on equilibrium quantities, because expanding linearly
implies that in the linear coefficient one sets A = 0 after doing the functional derivative with respect
to the vector potential. We finally discuss the zero-temperature limit and bring the expression for the
Hall conductivity in a more symmetrical form. Throughout this section we work in a gauge where the
orbital positions in the unit cell are included in the Fourier transform as in Eq. 5.16. The derivation
presented in this section is based on Ref. [229].

Previously we found, that the expectation value for the current can be written in terms of a Green’s
functions as (Eq. 5.24)

⟨JA

H,α(τ)⟩A = −
∑

kab

∂H
A(τ)
ab (k)

∂Aα(τ)
GA

ba(τ, τ
+,k). (5.36)

Now we want to expand to linear order in the vector potential. For simplicity we will not write momen-
tum and use a matrix notation for orbital indices. As discussed in Sec. 5.2.3 the functional derivative
with respect to the vector potential on a lattice becomes a partial derivative with respect to the vector
potential. The Green’s function depends on the vector potential at different times, hence we need a
functional derivative with respect to the vector potential in imaginary time. Expanding the current up
to linear order in the vector potential we get

jAα = −
1

V

∑

β

∫

dτ ′Tr

(

∂HA(τ)

∂Aα(τ)

δGA(τ, τ+)

δAβ(τ ′)

)

A=0

Aβ(τ
′)

−
1

V

∑

β

∫

dτ ′Tr

(

∂HA(τ)

∂Aα(τ)∂Aβ(τ ′)
δ(τ − τ ′)GA(τ, τ+)

)

A=0

Aβ(τ
′) +O(A2). (5.37)

Here the trace also includes the sum over k-points. The dependence of the interacting Green’s function
on the vector potential is nontrivial. One can think of the interacting Green’s function in terms of
a perturbation series written in terms of the non-interacting Green’s function. Each non-interacting
Green’s function now couples to the vector potential. For example whenever there is a process in which
a particle-hole pair is created and destroyed after, both the hole and the electron couple to the external
vector potential. Differentiating the identity GAGA−1 = 1 we get the identity

δGA(τ, τ+)

δAβ(τ ′)
= −GA(τ, τ̄1)

δ(GA)−1(τ̄1, τ̄2)

δAβ(τ ′)
GA(τ̄2, τ

+). (5.38)

The first term in Eq. 5.37 corresponds to the polarization, which we can write as

Παβ(τ − τ ′) =
1

V
Tr

(

∂HA(τ)

∂Aα(τ)
GA(τ, τ̄1)

δ(GA)−1(τ̄1, τ̄2)

δAβ(τ ′)
GA(τ̄2, τ

+)

)

A=0

. (5.39)

The polarization only depends on one time argument, because of time translation invariance. The
second term is the diamagnetic term

It is symmetric with respect to the exchange of α and β, so the term does not contribute to the Hall
conductivity. Hence, we neglect the second term. The first term contains is a functional derivative of
an inverse Green’s function i.e. a renormalized vertex. The renormalized vertex can be written as a
sum of a bare vertex and a vertex correction. In Matsubara frequencies one has the expressions

Λβ(iqm; iωn,k) =

(

∂(GA(iωn,k))
−1

∂Aβ(iqm)

)

A=0

=

(

∂(GA
0 (iωn,k))

−1

∂Aβ(iqm)

)

A=0

−

(

∂(ΣA(iωn,k))
−1

∂Aβ(iqm)

)

A=0

.

(5.40)
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iωn

iω′
n

iω′′
n

iωn + iqm
iω′

n + iqm
iω′′

n + iqm

Figure 5.3: Diagram with vertex corrections contributing to the polarization. Thick lines represent Green’s
functions, wiggled lines represent vertex corrections, dots with dashed line attached represent the bare current
vertices. We do not write momenta or orbital and spin indices. The vertex corrections stem from the right
vertex. The frequency derivative with respect to iqm acts everywhere a Green’s function depends on iqm.
Vertex corrections on left side of the derivative can be absorbed in the left vertex that now becomes dressed.

The bare vertex is defined as

λα(iqm; iωn,k) =

(

∂(GA
0 (iωn,k))

−1

∂Aβ(iqm)

)

A=0

= −

(

∂HA(k)

∂Aβ(iqm)

)

A=0

= −
e

ℏ
∂kα

Hab(k). (5.41)

The last equality only holds, because we work in the gauge where the orbital position is included in the
Fourier transform (see Eq. 5.16). Note that the bare vertex does not explicitly depend on iqm and iωn

and hence it is constant in frequency. Writing the polarization in frequency- and momentum-space we
get

Παβ(iqm) =
T

V

∑

ωnk

Tr (λα(iqm; iωn,k)G(iωn + iqm,k)Λβ(iqm; iωn,k)G(iωn,k)) , (5.42)

where the trace runs over orbital indices and the multiplications are matrix multiplications. To obtain
the DC conductivity one needs to do a frequency derivative (Eq. 5.33). The frequency derivative acts on
two places in G and in Λ. Graphically, this can be seen in Fig. 5.3. The frequency derivative causes the
bare vertex to become dressed. The reason is, that inserting the frequency derivative between vertex
corrections in the dressed vertex allows to absorb the vertex corrections into the vertex at the respective
side of the insertion point of the derivative. We get

∂Παβ(iqm)

∂iqm
=
T

V

∑

ωnk

Tr

(

Λα(iqm; iωn,k)
∂G(iωn + iqm,k)

∂iqm
Λβ(iqm; iωn,k)G(iωn,k)

)

= −
T

V

∑

ωnk

Tr
(

Λα(iqm; iωn,k)G(iωn + iqm,k)
∂G−1(iωn + iqm,k)

∂iqm
G(iωn + iqm,k)

× Λβ(iqm; iωn,k)G(iωn,k)
)

.

(5.43)

For the Hall conductivity we take the zero frequency limit of the imaginary part and antisymmetrize
over α and β
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σH
αβ = lim

iqm→0
Im

∂Παβ(iqm)

∂iqm

= −Im
T

2V

∑

ωnk

Tr
(

Λα(0; iωn,k)G(iωn,k)
∂G−1(iωn,k)

∂iωn

G(iωn,k)Λβ(0; iωn,k)G(iωn,k)

− Λβ(0; iωn,k)G(iωn,k)
∂G−1(iωn,k)

∂iωn

G(iωn,k)Λα(0; iωn,k)G(iωn,k)
)

.

(5.44)

There are two types of vertex corrections. Expanding the Self-energy ΣA in terms of a perturbation
series in terms of the noninteracting Green’s functionG0,A we see that the vector potential enters Green’s
functions that depend on the outer momentum as well as Green’s function that only depend on inner
momenta that are integrated over. The second type of diagrams cancel, because of the antisymmetry
of the Hall conductivity expression when exchanging α and β. The reason is that in the corresponding
diagrams the vector potentials are attached to two different momentum loops that are integrated over.
Hence, it is always possible possible to switch the integration variable for the momenta and find the
corresponding diagram with α ↔ β that cancels it. This means that only diagrams of the first type
survive and because of Eq. 5.18 we can replace the dressed vertices by derivatives of the Green’s function

Λα(0; iωn,k) → −
e

ℏ
∂kα

G−1(iωn,k). (5.45)

Alternatively, this identity can be justified from the Ward identity [107]. Note, that this can only be
done for the Hall conductivity and not for the longitudinal conductivity. Hence, we get the following
expression

σH
αβ = −

e2

ℏ2

T

2V
Im
∑

ωnk

Tr
(∂G−1(iωn,k)

∂kα
G(iωn,k)

∂G−1(iωn,k)

∂iωn

G(iωn,k)
∂G−1(iωn,k)

∂kβ
G(iωn,k)

−
∂G−1(iωn,k)

∂kβ
G(iωn,k)

∂G−1(iωn,k)

∂iωn

G(iωn,k)
∂G−1(iωn,k)

∂kα
G(iωn,k)

)

. (5.46)

We can now rewrite this expression into a more symmetrical form in which it is easier to see later that it
becomes a topological invariant in terms of the Green’s function at zero temperature. Taking advantage
of the cyclic property of the trace and with the totally antisymmetric tensor ϵρηζ we can write

σH
αβ =

e2

ℏ2

T

6V
ϵρηζIm

∑

ωnk

Tr
(

∂ρG
−1(iωn,k)G(iωn,k)∂ηG

−1(iωn,k)G(iωn,k)∂ζG
−1(iωn,k)G(iωn,k)

)

.

(5.47)

where ρ, η, ζ are summed over and stand for iωn, kα, kβ . In the continuum limit the sum over k-points
is replaced by an integral

σH
αβ =

e2

ℏ2

T

24π2
ϵρηζIm

∫

dk
∑

ωn

Tr
(

∂ρG
−1(iωn,k)G(iωn,k)∂ηG

−1(iωn,k)

×G(iωn,k)∂ζG
−1(iωn,k)G(iωn,k)

)

. (5.48)

In the zero-temperature limit the Matsubara frequencies become continuous iωn → iω. Hence, the sum
over Matsubara frequencies becomes an integral 1

1The transition from the discrete sum to the integral can be shown in the following way. We have ∆ωn = 2πT
ℏ

= 2πT
ℏ

∆n

with ∆n = 1. With that we get T
∑

ωn
f(ωn)∆n = ℏ

2π

∑
ωn

f(ωn)∆ωn
T→0
→

ℏ

2π

∫
dω.
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σH
αβ = −

e2

ℏ

ϵρηζ
48π3

Imi

∫

dk

∫ ∞

−∞
diωTr

(

∂ρG
−1(iω,k)G(iω,k)∂ηG

−1(iω,k)G(iω,k)∂ζG
−1(iω,k)G(iω,k)

)

= −
e2

h

ϵρηζ
24π2

Re

∫

dk

∫ ∞

−∞
diωTr

(

∂ρG
−1(iω,k)G(iω,k)∂ηG

−1(iω,k)G(iω,k)∂ζG
−1(iω,k)G(iω,k)

)

.

(5.49)

Note that the expression is only well defined when G and G−1 are not singular, that means their deter-
minant is non-zero. Also note, that the chemical potential for fixed filling goes to its zero temperature
limit µ(T → 0). Doing this limit is crucial in an insulator, where naively the chemical potential could
be placed anywhere inside the gap. Later, we will show that the real part is unnecessary, because
the integral is real. Making use of the short form notation k = (iω,k) the Hall conductivity at zero
temperature can be written as

σH
αβ(T = 0) = −

e2

h

ϵρηζ
24π2

∫

dkTr
(

∂ρG
−1(k)G(k)∂ηG

−1(k)G(k)∂ζG
−1(k)G(k)

)

. (5.50)

This expression coincides with the one derived in Ref. [107] and it corresponds to the Adler-Bell-Jackiw
anomaly of the coefficient of the current correlator [230]. For the spin Hall conductivity for the case
where Sz is conserved i.e. for the case σ is a good quantum number one has to take the difference
between between spin up and spin down. At finite temperature one obtains

σSH
αβ (T ) =

e2

ℏ2

Tϵρηζ
24π2

Im

∫

dk
∑

ωnσ

sign(σ)Tr
(

∂ρG
−1
σ (iωn,k)Gσ(iωn,k)∂ηG

−1
σ (iωn,k)

×Gσ(iωn,k)∂ζG
−1
σ (iωn,k)Gσ(iωn,k)

)

. (5.51)

At zero temperature one obtains

σSH
αβ (T = 0) = −

e2

h

ϵρηζ
24π2

∑

σ

∫

dk sign(σ)Tr
(

∂ρG
−1
σ (k)Gσ(k)∂ηG

−1
σ (k)Gσ(k)∂ζG

−1
σ (k)Gσ(k)

)

. (5.52)

Note that all the above expression are in a gauge where the orbital positions in the unit cell are included
in the Fourier transform (see Sec. 5.3.5).

5.3.2 Spin Hall conductivity in the non-interacting case

In this section we show that the expression for the Hall conductivity in the non-interacting case in an
insulator at zero temperature reduces to the well know expression in terms of an Brillouin zone integral
over the Berry curvature. The same must hold for the spin Hall conductivity when Sz is conserved. We
start with the non-zero temperature expression for the Hall conductivity in Eq. 5.46, which we repeat
here for convenience

σH
αβ = −

e2

ℏ2

T

2V
Im
∑

ωnk

Tr
(∂G−1(iωn,k)

∂kα
G(iωn,k)

∂G−1(iωn,k)

∂iωn

G(iωn,k)
∂G−1(iωn,k)

∂kβ

G(iωn,k)

−
∂G−1(iωn,k)

∂kβ
G(iωn,k)

∂G−1(iωn,k)

∂iωn

G(iωn,k)
∂G−1(iωn,k)

∂kα
G(iωn,k)

)

. (5.53)

Later we will perform the zero temperature limit. Note that the Bloch Hamiltonian H(k) and hence
the Green’s function are expressed in a gauge where the orbital positions in the unit cell are included in
the Fourier transform (see e.g. Eq. 5.16). For the derivatives of the inverse Green’s functions one has
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∂(G0)
−1(iωn,k)

∂iωn

= ℏ, (5.54)

∂(G0)
−1(iωn,k)

∂kα
= −

∂H(k)

∂kα
. (5.55)

Eq. 5.53 can be evaluated in the eigenbasis of the H(k) i.e. |nk⟩, where n is a band index. Here, the
ket denotes a vector in the orbital basis. We have in that basis

(G0)
′
n1n2

(iωn,k) =
1

(iℏωn − ϵn1
(k) + µ)

δn1n2
, (5.56)

(∂kα
H(k))

′
n1n2

=
∑

ab

⟨n1k|ak⟩ (∂kα
Hab(k)) ⟨bk|n2k⟩ . (5.57)

Here the prime indicates that we are in the eigenbasis of H(k). ϵn(k) are the band energies. Inserting
the above expressions one obtains

σH
αβ = −

e2

ℏ

T

2V
Im
∑

ωnk

∑

n1n2

(

(∂kα
H(k))

′
n1n2

1

(iℏωn − ϵn2
(k) + µ)

2

(

∂kβ
H(k)

)′
n2n1

1

(iℏωn − ϵn1
(k) + µ)

−
(

∂kβ
H(k)

)′
n1n2

1

(iℏωn − ϵn2
(k) + µ)

2 (∂kα
H(k))

′
n2n1

1

(iℏωn − ϵn1
(k) + µ)

)

. (5.58)

For the nominators we can make a partial fraction decomposition. The chemical potential µ can be
included in the band energies. Terms with ϵn1

(k) = ϵn2
(k) give no contribution, because in that case

the first and the second term cancel each other. For ϵn1
̸= ϵn2

one has

T
∑

ωm

1

(iℏωm − ϵn2
(k))

2

1

iℏωm − ϵn1
(k)

= T
∑

ωm

1

(iℏωm − ϵn2
(k))

2

e−iωm0−

iℏωm − ϵn1
(k)

= T
∑

ωm

1

iℏωm − ϵn2
(k)

(

e−iωm0−

iℏωm − ϵn1
(k)

−
e−iωm0−

iℏωm − ϵn2
(k)

)

1

ϵn1
(k)− ϵn2

(k)

= T
∑

ωm

(

e−iωm0−

iℏωm − ϵn1
(k)

−
e−iωm0−

iℏωm − ϵn2
(k)

)

1

(ϵn1
(k)− ϵn2

(k))
2 −

e−iωm0−

(iℏωm − ϵn2
(k))2

1

ϵn1
(k)− ϵn2

(k)

=
fT (ϵn1

(k))− fT (ϵn2
(k))

(ϵn1
(k)− ϵn2

(k))
2 + T

∑

ωm

1

ϵn1
(k)− ϵn2

(k)

∂

∂ϵn2
(k)

e−iωm0−

(iℏωm − ϵn2
(k))

=
fT (ϵn1

(k))− fT (ϵn2
(k))

(ϵn1
(k)− ϵn2

(k))
2 +

1

ϵn1
(k)− ϵn2

(k)

∂fT (ϵn2
(k))

∂ϵn2
(k)

. (5.59)

where fT is the Fermi-Dirac distribution

fT (ϵ) =
1

1 + exp( ϵ
kBT

)
. (5.60)

In the zero temperature limit the Fermi-Dirac distributions become a heavyside functions Θ(−ϵ) and
its derivative a delta distribution
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lim
T→0

(

fT (ϵn1
(k))− fT (ϵn2

(k))

(ϵn1
(k)− ϵn2

(k))
2 +

1

ϵn1
(k)− ϵn2

(k)

∂fT (ϵn2
(k))

∂ϵn2
(k)

)

=
Θ(−ϵn1

(k))−Θ(−ϵn2
(k))

(ϵn1
(k)− ϵn2

(k))
2 −

δ(ϵn2
(k))

ϵn1
(k)− ϵn2

(k)
. (5.61)

The second term gives no contribution to the Hall conductivity in an insulator, because there are no
single-particle states at zero energy. The expression for the Hall conductivity becomes

σH
αβ = −

e2

ℏ

1

2V
Im
∑

k

∑

n1n2

(

(∂kα
H(k))

′
n1n2

(

∂kβ
H(k)

)′
n2n1

(ϵn1
(k)− ϵn2

(k))
2 −

(∂kα
H(k))

′
n2n1

(

∂kβ
H(k)

)′
n1n2

(ϵn2
(k)− ϵn1

(k))
2

)

× (Θ(−ϵn1
(k))−Θ(−ϵn2

(k))) . (5.62)

The first bracket is antisymmetric under the exchange of summation indices n1 and n2. Hence we can
write

σH
αβ = −

e2

ℏ

1

V
Im

∑

kn1n2

(

(∂kα
H(k))

′
n1n2

(

∂kβ
H(k)

)′
n2n1

(ϵn1
(k)− ϵn2

(k))
2 −

(∂kα
H(k))

′
n2n1

(

∂kβ
H(k)

)′
n1n2

(ϵn2
(k)− ϵn1

(k))
2

)

Θ(−ϵn1
(k)).

(5.63)

Using that the (∂kα
H(k))

′
n1n2

are hermitian we can write

σH
αβ = −

e2

ℏ

1

V

∑

k

∑

n1n2

(

2Im (∂kα
H(k))

′
n1n2

(

∂kβ
H(k)

)′
n2n1

(ϵn1
(k)− ϵn2

(k))
2

)

Θ(−ϵn1
(k)). (5.64)

In the continuum limit one obtains

σH
αβ = −

e2

2πh

∫

dk
∑

n1n2

(

2Im (∂kα
H(k))

′
n1n2

(

∂kβ
H(k)

)′
n2n1

(ϵn1
(k)− ϵn2

(k))
2

)

Θ(−ϵn1
(k)). (5.65)

We now make it more explicit that this expression is an integral over the Berry curvature. To avoid
subtleties about the parameterization of the bands when there is a crossing we assume isolated bands
for simplicity here. For the more general case with band crossings see Ref. [231]. Terms with n1 = n2

give a zero contribution as discussed above. For n1 ̸= n2 we have

ϵn1
(k) ⟨n2k|∂kα

|n1k⟩ = ⟨n2k|(∂kα
H(k)|n1k⟩) = ⟨n2k|(∂kα

H(k))|n1k⟩+ ⟨n2k|ϵn2
(k)∂kα

|n1k⟩ , (5.66)

where we used ⟨n1k|(∂kα
ϵn2

(k))|n2k⟩ = 0. So we get

⟨n2k|∂kα
n1k⟩ =

(∂kα
H(k))n2n1

ϵn1
(k)− ϵn2

(k)
. (5.67)

Complex conjugating gives

⟨∂kα
n1k|n2k⟩ =

(∂kα
H(k))n1n2

ϵn1
(k)− ϵn2

(k)
. (5.68)

So that we have
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σH
αβ =

e2

2πh

∑

n1n2

∫

dk2Im
(

⟨∂kα
n1k|n2k⟩ ⟨n2k|∂kβ

n1k⟩
)

Θ(−ϵn1
(k)). (5.69)

Since the sum over n2 is the identity at that k-point we can write

σH
αβ =

e2

2πh

∑

n1occ

∫

dk2Im
(

⟨∂kα
n1k|∂kβ

n1k⟩
)

, (5.70)

where we can identify the Berry curvature of band n1

Ωn1,αβ(k) = 2Im
(

⟨∂kα
n1k|∂kβ

n1k⟩
)

. (5.71)

So the Hall conductivity can be written as a Brillouin zone integral over the Berry curvature over all
occupied bands. According to the Chern theorem [232] the integral over the Berry curvature over a
closed manifold (the Brillouin zone is a torus) must be equal to 2π times an integer, i.e.

∫

dkΩαβ(k) = 2πn, n ∈ Z, (5.72)

Here, n is the Chern index. For a simplified proof of the Chern theorem see Ref. [231]. At zero
temperature the Dirac distribution becomes a step function so that the Hall conductivity is quantized

σH
αβ =

e2

h
n, n ∈ Z. (5.73)

For a time reversal invariant system where the z-direction of the spins is conserved the Hall conductivities
for spin up and spin down have opposite signs. Hence, the spin Hall conductivity in such a noninteracting
system is quantized to

σSH
αβ = 2

e2

h
n, n ∈ Z. (5.74)

5.3.3 The spin Hall conductivity at zero temperature as a topological in-

variant

In this section we will show that the interacting expression at zero temperature for the Hall conductivity
in Eq. 5.50 and consequently for the spin Hall conductivity in Eq. 5.52 can be regarded as a topological
invariant expressed in terms of the Matsubara Green’s function. To do so, we introduce a parameter
γ that parameterizes a continuous deformation of the Matsubara Green’s function G → Gγ . During
this deformation G and G−1 remain nonsingular (no poles and no zeros) and differentiable so that the
expression for the Hall conductivity stays well defined. The physical picture behind this deformation
is to continuously changes the parameters of the Hamiltonian without the system undergoing a phase
transition. To show that the Hall conductivity is a topological invariant we then need to show that

∂γσ
H(T = 0, γ) = 0. (5.75)

Proof. Previously we found the following expression for the Hall conductivity at zero temperature

σH
αβ(T = 0) = −

e2

h

ϵρηζ
24π2

∫

dkTr
(

∂ρG
−1(k)G(k)∂ηG

−1(k)G(k)∂ζG
−1(k)G(k)

)

, (5.76)

where ρηζ are summed over and stand for iωn, kα, kβ . Letting G depend on a parameter i.e. G → Gγ

the partial derivative with respect of this parameter can be pulled inside the integral. The expression
under the integral becomes, not writing the argument of the Green’s function
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∂γϵρηζTr
(

∂ρG
−1
γ Gγ∂ηG

−1
γ Gγ∂ζG

−1
γ Gγ

)

= 3ϵρηζTr
(

∂γ∂ρG
−1
γ Gγ∂ηG

−1
γ Gγ∂ζG

−1
γ Gγ

)

+ 3ϵρηζTr
(

∂ρG
−1
γ ∂γGγ∂ηG

−1
γ Gγ∂ζG

−1
γ Gγ

)

= 3ϵρηζTr
(

∂γ∂ρG
−1
γ Gγ∂ηG

−1
γ Gγ∂ζG

−1
γ Gγ

)

− 3ϵρηζTr
(

∂ρG
−1
γ Gγ∂γG

−1
γ Gγ∂ηG

−1
γ Gγ∂ζG

−1
γ Gγ

)

= 3ϵρηζTr
(

Gγ∂γ∂ρG
−1
γ Gγ∂ηG

−1
γ Gγ∂ζG

−1
γ

)

+ 3ϵρηζTr
(

∂ρGγ∂γG
−1
γ Gγ∂ηG

−1
γ Gγ∂ζG

−1
γ

)

= 3∂ρϵρηζTr
(

Gγ∂γG
−1
γ Gγ∂ηG

−1
γ Gγ∂ζG

−1
γ

)

− 3ϵρηζTr
(

Gγ∂γG
−1
γ ∂ρ

(

Gγ∂ηG
−1
γ Gγ∂ζG

−1
γ

)

)

. (5.77)

where made use of the cyclic property of the trace going from line 3 to 4 and for partial derivatives we
used the identity

∂ξGγ = −Gγ∂ξG
−1
γ Gγ , (5.78)

when going from line two to three and in going from line three to four for ∂ρ. Going from line four
to five we use the product rule backwards. The integral over the first term in the last row of Eq. 5.77
vanishes, because the integral over a total derivative over frequency momentum space vanishes. In the
second term the terms with ∂ρ∂ηG

−1
γ and ∂ρ∂ζG

−1
γ vanish because of ϵρηζ and the theorem of Schwarz.

One is left with the terms

− 3ϵρηζTr
(

Gγ∂γG
−1
γ

(

∂ρGγ∂ηG
−1
γ Gγ∂ζG

−1
γ

)

)

− 3ϵρηζTr
(

Gγ∂γG
−1
γ

(

Gγ∂ηG
−1
γ ∂ρGγ∂ζG

−1
γ

)

)

= +3ϵρηζTr
(

Gγ∂γG
−1
γ

(

Gγ∂ρG
−1
γ Gγ∂ηG

−1
γ Gγ∂ζG

−1
γ

)

)

+ 3ϵρηζTr
(

Gγ∂γG
−1
γ

(

Gγ∂ηG
−1
γ Gγ∂ρG

−1
γ Gγ∂ζG

−1
γ

)

)

= 0. (5.79)

Taking everything together we have indeed shown that the frequency momentum integral over Eq. 5.77
vanishes. With that it follows

∂γσ
H(T = 0, γ) = 0. (5.80)

Hence, the Hall conductivity at zero temperature is proportional to a topological invariant of the Green’s
function.

The same calculations holds for the spin Hall conductivity in the case of time reversal symmetry and
conservation of Sz, because when Sz is conserved each Green’s function just acquires a spin label that is
summed over with the corresponding sign (see Eq. 5.52). During the deformation the symmetries need
to be preserved.

It follows that even with interactions the Hall conductivity as well as the spin Hall conductivity
are quantized as long as one can adiabatically connect to the noninteracting system i.e. continuously
changing the parameters of the Hamiltonian without the system undergoing a phase transition. In
case of the spin Hall conductivity additionally time reversal symmetry and conservation of Sz need
to be conserved during the adiabatic evolution. During this process the Green’s function is deformed
continuously and as shown above the topological invariant cannot change. Since we have shown that in
the noninteracting case the Hall and the spin Hall conductivities are quantized (see Sec. 5.3.2) it follows
they remain quantized during an adiabatic evolution.

Note that at zero temperature there is a simplified way of calculating the above topological invariant
via the so called topological Hamiltonian [233] which is defined as

T(k) = −G−1(0,k). (5.81)
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Figure 5.4: a) Graphical representation of the expression for the spin Hall conductivity. The thick lines
represent the interacting Green’s function, which in TPSC is G(2) given in Eq. 5.87. The triangles with attached
dashed lines represent the renormalized vertices ∂µG

−1(k) with µ standing for either iωn, kx or ky. b) TPSC
expression for the renormalized vertex. The thin lines here represent the (here noninteracting) Green’s function
G(1). A dot with attached dashed line represents a bare vertex ∂µG

(1)−1(k). The wiggled line represents either
a spin, a charge or a mixed spin-charge excitation.

T(k) is an effective non-interacting Hamiltonian whose Chern index of the corresponding eigenstates
can be calculated via its Berry curvature. The reason is the following. Above we showed that the
invariant stays unchanged under continuous changes of G as long as there is no phase transition where
the invariant changes via a zero or a pole of the Green’s function. Defining GT(iω,k) = (iω −HT(k))

−1
,

one can do the deformation Gγ = (1− γ)G+ γGT with γ ∈ [0, 1] during which, as shown in Ref. [233],
Gγ has neither poles nor zeros. Hence the topological invariant stays unchanged during the deformation
and the (spin) Hall conductivity can just be calculated from HT(k).

5.3.4 Vertex corrections to the spin Hall conductivity in TPSC

The vertex corrections to the electrical conductivity in TPSC correspond to the analogues of the Maki-
Thompson and Aslamasov–Larkin contributions [36]. However, for the (spin) Hall conductivity the
Aslamasov–Larkin contributions cancel, because of the antisymmetrization in x ↔ y. A graphical
representation of the expression to calculate σSH

xy is shown in Fig. 5.4. Vertex correction to the SHC in
TPSC arise from the excitation and reabsorption of spin, charge or mixed spin-charge excitations.

5.3.5 Evaluating the spin Hall conductivity expression with TPSC

In this section we explain how to calculate the SHC in TPSC with and without vertex corrections. We
especially focus on the case of the Kane-Mele-Hubbard model. Since in our implementation we work in
reduced units where ℏ = kB = 1 it is easiest to work with the spin Hall conductivity expression in the
following form

σSH
xy =

e2

h

πT

NVez
Im

∑

ωnkσ

sign(σ)Tr
(∂G̃−1

σ (iωn,k)

∂iωn

G̃σ(iωn,k)
∂G̃−1

σ (iωn,k)

∂kx
G̃σ(iωn,k)

∂G̃−1
σ (iωn,k)

∂ky
G̃σ(iωn,k)

−
∂G̃−1

σ (iωn,k)

∂iωn

G̃σ(iωn,k)
∂G̃−1

σ (iωn,k)

∂ky
G̃σ(iωn,k)

∂G̃−1
σ (iωn,k)

∂kx
G̃σ(iωn,k)

)

. (5.82)

This expression was adapted from Eq. 5.46. One factor of 1
ℏ
was absorbed in the frequency derivative,

when switching to reduced units. V = VezN , where Vez is the volume of the unit cell and N is the

number of k-points. In the Kane-Mele model V KM
ez =

√
3
2 a

2, where a is the lattice constant that is set

to a = 1. To evaluate this equation with TPSC we replace every G̃ by G̃(2). We changed G→ G̃ in this
section to emphasize that we work in a gauge where the orbital positions in the unit cell are included in
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the Fourier transforms (see Sec. 5.16). In the TPSC calculations are done in the gauge without a tilde,
where all quantities are periodic in k-space. The gauge change can be performed by

G̃(2)(k) = U †(k)G(2)(k)U(k). (5.83)

U(k) is a k-dependent matrix that in the Kane-Mele model is given by

U(k) =









1 0 0 0
0 1 0 0
0 0 ϕ(k) 0
0 0 0 ϕ(k)









, (5.84)

with ϕ(k) is given by

ϕ(k) = exp(ik · r2) = exp(i2π(
1

3
k1 +

1

3
k2)). (5.85)

The derivatives act as

∂kα
G̃(2)(k) = U †(k)

(

∂kα
G(2)(k)

)

U(k) +
(

∂kα
U†(k)

)

G(2)(k)U(k) + U †(k)G(2)(k) (∂kα
U(k)) . (5.86)

G(2) is given by the Dyson equation

G(2)
σ (iωn,k) =

(

iωn −Hσ(k) + µ− Σ(2)
σ (iωn,k)

)−1

. (5.87)

The TPSC self-energy Σ(2) in the Kane-Mele-Hubbard model where Sz is conserved simplifies to

Σ(2)ab
σ (k) = Uδab ⟨na−σ⟩+

U

8

T

N

∑

q

G(1)ab
σ (k + q)V ab

lσ (q) +
U

8

T

N

∑

q

G
(1)ab
−σ (k + q)V ab

tσ (q) (5.88)

with k = ((iωn,k), q = (iqm,k) and

V ab
lσ (q) = Γb

ccχ
ba
cc (q) + Γb

zzχ
ba
zz(q)− σ

1

2

(

Γb
zzχ

ba
zc(q) + Γb

chχ
ba
cz(q) + χba

zc(q)Γ
a
ch + χba

cz(q)Γ
a
zz

)

, (5.89)

V ab
tσ (q) = Γb

xxχ
ba
xx(q) + Γb

yyχ
ba
yy(q). (5.90)

The derivatives of the Green’s function can be evaluated from the corresponding TPSC expressions

∂iωn
G(2)−1

σ (k) = 1− ∂iωn
Σ(2)(k),

∂kα
G(2)−1

σ (k) = −∂kα
H(k)− ∂kα

Σ(2)(k).

(5.91)

Note that in the approximation of the conductivity bubble one only takes into account the frequency
derivative of the self-energy, but not the momentum derivatives of the self-energy. From TPSC self-
energy expression in Eq. 5.88 we notice that derivatives of the argument of the self-energy act only on
G(1). We have

∂kα
Σ(2)ab

σ (k) =
1

2

T

N

∑

q

(

∂kα
G(1)ab

σ (k + q)V lab
σ (q) + ∂kα

G
(1)ab
−σ (k + q)V tab

σ (q)
)

.

=
1

2

T

N

∑

q

(

G(1)ac̄
σ (k + q)∂kα

Hc̄d̄
σ (k + q)G(1)d̄b

σ (k + q)V lab
σ (q)

+G
(1)ac̄
−σ (k + q)∂kα

Hc̄d̄
−σ(k + q)G

(1)d̄b
−σ (k + q)V tab

σ (q)
)

(5.92)



108 Chapter 5. Spin Hall conductivity in the Kane-Mele Hubbard model at finite temperature

and similarly

∂iωn
Σ(2)ab

σ (k) = −
1

2

T

N

∑

q

(

G(1)ac̄
σ (k + q)G(1)c̄b

σ (k + q)V lab
σ (q) +G

(1)ac̄
−σ (k + q)G

(1)c̄b
−σ (k + q)V tab

σ (q)
)

.

(5.93)
The bare vertices can be evaluated analytically and are given by

∂kα
H(k) =









∂kα
γ(k) 0 ∂kα

h(k) 0
0 −∂kα

γ(k) 0 ∂kα
h(k)

∂kα
h∗(k) 0 −∂kα

γ(k) 0
0 ∂kα

h∗(k) 0 ∂kα
γ(k)









(5.94)

where

∂kα
h(k) = −t (ia1α exp(ik · a1) + ia2α exp(ik · a2)) , (5.95)

∂kα
γ(k) = 2λ (a1α cos(k · a1)− a2α cos(k · a2) + (−a1α + a2α) cos(k · (−a1 + a2))) . (5.96)

The derivative of the gauge matrix is given by

∂kα
U(k) =









0 0 0 0
0 0 0 0
0 0 ∂kα

ϕ(k) 0
0 0 0 ∂kα

ϕ(k)









, (5.97)

where

∂kα
ϕ(k) = ir2α exp(ik · r2). (5.98)

In the implementation we take advantage of fast Fourier transformations and the sparse-ir library [187–
189].

5.4 TPSC results for the Kane-Mele-Hubbard model

In the following we present results for the antiferromagnetic spin correlation length, the SHC with and
without vertex corrections and the band gap renormalization for the Kane-Mele-Hubbard model. We
consider different values for the Hubbard interaction, spin-orbit coupling strength and temperature. We
also compute a phase diagram as a function of spin-orbit coupling and Hubbard interaction from the anti-
ferromagnetic spin correlation length for transversal (spin direction in the x-y plane) spin fluctuations.
All results are obtained for half-filling. The calculations are performed on a 300× 300 k-point grid.

5.4.1 Correlation lengths

The correlation length is a measure for the distance in real space on which spins are correlated. Generally
the correlation between spins is expected to drop of exponentially with the distance between the spins.
Approaching a phase transition the spin correlation length diverges.

In the Kane-Mele Hubbard model with increasing U antiferromagnetic spin fluctuations are larger
than the ferromagnetic fluctuations or charge fluctuations (see Sec. 4.14.5 and 4.14.6). Hence, we focus
on the antiferromagnetic spin susceptibilities which are defined as

χafm
αα (q) = χ11

αα(q)− χ12
αα(q)− χ21

αα(q) + χ22
αα(q), (5.99)

where α = x, y, z labels the components of the spin. Exponential decay in real space corresponds to a
Lorenzian in momentum space. Hence, we calculate the antiferromagnetic spin correlation length by
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Figure 5.5: Antiferromagnetic spin correlation length ξafmα as a function of U/t for spins aligned in the x-y
plane (solid lines) and in the z-direction (dashed lines) at T/t = 0.001 and various values of SOC λ/t.

ξafmα =
1

|qHM
α |

, (5.100)

where qHM
α is determined from the condition

χafm
αα (0, qmax + qHM

α ) = χafm
αα (0, qmax)/2. (5.101)

Here, qmax is the momentum at which χαα is largest. For the antiferromagnetic spin fluctuations in the
Kane-Mele Hubbard model it holds qmax = (0, 0). Note that ξafmx = ξafmy in the Kane-Mele-Hubbard
model due to spin rotation symmetry around the z-axis.

The results for the spin correlation lengths are shown in Fig. 5.5. The transversal spin correlation
lengths ξafmx and ξafmy diverge at lower U values than the longitudinal one ξafmz . Hence, the system un-
dergoes a transition to an X-Y antiferromagnet. The corresponding divergence of the spin susceptibility
indicates that the transition is of second order in TPSC. We can also observe that increasing SOC shifts
the transition to higher values of U by decreasing the spin fluctuations.

Further, we find that the spin correlation lengths in TPSC as a function of temperature saturate
at temperatures lower than T/t = 0.01. This is the case except very close to the phase transition, as
already observed in Ref. [163].

5.4.2 Phase diagram

In Fig. 5.6, we show the U − λ phase diagram for the KMH model obtained by estimating the critical
value Uc(λ) of the phase transition for various λ values as the linear extrapolation of 1/ξafmx to 0
at the lowest temperature we considered T/t = 0.001. Since the correlation lengths saturate at low
temperatures this is a reasonable approximation for the T = 0 case. The phase transition line shown in
the phase diagram is obtained from a quadratic fit. We only show critical U values for up to λ/t = 0.05,
because for U/t > 5 TPSC loses its validity (see Sec. 4.14.10). The phase diagram also shows the
phase transition between the semimetal and the antiferromagnet at zero SOC, where there is no easy
plane for the spins. The exact location of the phase transition line is not known to the best of our
knowledge. Refs. [197, 198, 201, 203] calculate the U − λ phase diagram from quantum Monte Carlo
(QMC) simulations, but they show an intermediate spin liquid phase, that could not be found by large
scale QMC simulations [11].

Without SOC we obtain Uc(λ = 0)/t = 3.72 which agrees well with the previous TPSC result Uc/t =
3.79±0.01 [163] obtained from the zero temperature extrapolation for the crossover to the renormalized
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Figure 5.6: Phase diagram for the KMH model. Critical Uc(λ) values (black crosses) are obtained from the
linear extrapolation of the inverse antiferromagnetic correlation length 1/ξafmx to 0 when U is increased at
T/t = 0.001. The phase transition line is obtained from a quadratic fit. We also show the critical Uc (red cross)
at zero spin-orbit coupling (λ = 0) for the transition between the semimetal and the antiferromagnet obtained
by QMC in Ref. [11].

classical regime. Our result is also in reasonable good agreement with Uc/t = 3.869 ± 0.013 [11] from
Quantum Monte Carlo simulations.

5.4.3 Spin Hall conductivity

We calculate the spin Hall conductivity by evaluating the following expression valid in the presence of
interactions and at finite temperature

σSH =
e2

h

ϵµνρT

12π
Im

(

∑

ωnσ

sign(σ)

∫

dkTr
(

Gσ(k)∂µG
−1
σ (k)Gσ(k)∂νG

−1
σ (k)Gσ(k)∂ρG

−1
σ (k)

)

)

, (5.102)

where ϵµνρ is the totally antisymmetric tensor. The µ, ν and ρ indices are summed over and stand for
iωn, kx, ky. The trace runs over the orbital indices. All matrices in the above equations are expressed in
the gauge in momentum space which includes the site positions in the unit cell [228]. The expression is
evaluated numerically as described in detail in Sec. 5.3.5. We note that the momentum-dependent vertex
corrections show sharp point-like features at K and K ′ near (and beyond) the critical Uc which require
a dense k-point grid to resolve. This procedure is similar to Ref. [234] where the finite temperature SHC
is calculated from DMFT. In DMFT however there are no vertex corrections to the SHC, because the
DMFT self-energy is constant in momentum space.

As explained in Sec. 5.3 the sum over Matsubara frequencies becomes an integral in the zero tem-
perature limit. The resulting expression is a topological invariant expressed in terms of the Matsubara

Green’s function [107]. Hence, at zero temperature, σSH must always be an integer multiple of 2 e2

h
.

In Fig. 5.7 we show the results for the calculation of σSH with (solid lines) and without (dashed
lines) momentum-dependent vertex corrections ∂kα

Σ(k). The case without momentum-dependent vertex
corrections corresponds to the so-called conductivity bubble. In the greyed out region TPSC is strictly
not valid anymore, because the spin correlation length diverges and TPSC is not valid in the XY
antiferromagnetic phase, since TPSC is a weak to intermediate coupling method. Nevertheless, we show
this region because it is instructive to see what TPSC does in this region.

Let us first discuss the case without vertex corrections (dashed lines). At all temperatures considered,
the spin Hall conductivity decreases smoothly as the Hubbard interaction increases towards the phase
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Figure 5.7: Spin Hall conductivity as a function of U/t calculated from Eq. 5.102 at λ/t = 0.01 and for different
temperatures including momentum-dependent vertex corrections ∂kαΣ(k) (solid) and neglecting them (dashed).
In the vicinity of the phase transition to the XY antiferromagnet at U/t ≈ 4 the inclusion of vertex corrections
almost doubles σSH at all temperatures. In the greyed out region TPSC is strictly not valid anymore, because
the spin correlation length diverged and TPSC is only valid in the weak to intermediate coupling regime.

transition. At the phase transition, the drop in σSH becomes sharper. The drop is more pronounced
at low temperatures. In the conductivity bubble, the main effect of the interactions is to broaden the
interacting Green’s function and make it smaller, since the self-energy enters in the denominator of the
Green’s function. This causes the phase transition to be visible in σSH with the conductivity bubble
through a drop off, because there the self-energy constructed from the spin, charge and mixed spin-
charge fluctuations becomes suddenly much larger. The main contributions, as we will see later, are the
transversal, antiferromagnetic spin susceptibilities that diverge at the phase transition. Without vertex
corrections, the quantized value of σSH is only reached in the limit where the Hubbard interaction goes
to 0, where there are no vertex corrections and the conductivity bubble yields the exact result.

We now discuss the case with vertex corrections (solid lines). The spin Hall conductivity once again
decreases with increasing U . However, this decrease is much slower than for the case without vertex
corrections. With vertex corrections, the SHC converges to the quantized value of −2e2/h in the zero
temperature limit at all values of U below the phase transition. This is in stark contrast to the case
where the vertex corrections are not included. At larger temperatures, where there is no quantization,
momentum-dependent vertex corrections also give a large contribution to σSH. In fact the inclusion of
vertex corrections almost doubles the value of the spin Hall conductivity near the phase transition at all
temperatures considered. In the vicinity of the phase transition to the XY antiferromagnet at U/t ≈ 4,
the inclusion of vertex corrections almost doubles the value of σSH at all temperatures.

The impact of the vertex corrections can be explained by the following: When approaching the
phase transition, the antiferromagnetic spin fluctuations become strong and scattering of electrons on
them yields a large contribution to σSH. Numerically, we see that the momentum dependence of the
self-energy is rather strong near the phase transition, especially near k = K, K ′ (compare Fig. 4.18.
Hence, vertex corrections corresponding to a momentum derivative of the self-energy become large near
K and K ′. This shows, that especially in the vicinity of the phase transition, where antiferromagnetic
spin fluctuations are strong, using only the conductivity bubble is insufficient and vertex corrections
become important. We note however, that in DMFT the neglect of vertex corrections is consistent since
the DMFT self-energy is constant in momentum space. Hence, using the DMFT Green’s function to
evaluate Eq. 5.102 is consistent and also yields quantization with integer multiples of 2e2/h in the zero
temperature limit, Eq. 5.102 is a topological invariant of the Green’s function.

We also note that, at the phase transition, the decrease in σSH is visible through a much smaller
kink. The reason is that, through the enforcement of TR symmetry in the above TPSC self-consistency
equations, the system cannot become magnetic even though the spin correlation length diverges. Note
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Figure 5.8: Spin Hall conductivity including vertex corrections as a function of T/t calculated from Eq. 5.82
at λ/t = 0.01 and for different values of the Hubbard U .

that the model possesses a continuous symmetry namely the spin rotation around z-axis. So strictly at
finite temperature the Mermin-Wagner theorem holds and the system must not become magnetic. The
small peak seen at certain temperatures in the greyed out region, where TPSC is not valid, could be
caused by the averaging of the self-energy expressions expanded in the longitudinal and the transversal
channels. Indeed, as discussed in section 5.4.1, with SOC the antiferromagnetic instability is reached
first for transversal spin fluctuations and only at larger U values for longitudinal ones. However this
peak is likely to be a unphysical phenomenon, because TPSC is not valid in the greyed out region.

In Fig. 5.8, we show the temperature dependence of σSH including vertex corrections for different
values of U . At low temperatures, σSH goes to the quantized values of −2e2/h. Deviations from the
quantized value start when the temperature becomes of the order of the SOC which determines the band
gap. Increasing the Hubbard U decreases σSH but the overall trend stays the same. We conclude that
interactions destabilize the QSH state. The decrease can be explained with a renormalization of the band
gap by interactions as we will see in more detail in Sec. 5.4.4. This can be seen as effectively increasing
the temperature in the system. A higher temperature leads to more electrons occupying states above
the band gap. The states above the band gap yield canceling contributions to the spin Hall conductivity.
Hence, the spin Hall conductivity is decreased. Note that in a non-interacting lattice model if all bands
are filled, the spin Hall conductivity, because all bands taken together must be topologically trivial.

In the case of the anomalous Hall conductivity, Ref. [235] attributes the decrease to a correlation-
induced increase of spectral weight within the gap at finite temperatures. For the (spin) Hall con-
ductivity, Refs. [234, 235] focus mainly on the topological insulator to Mott transition, which in the
KMH model is overshadowed by the transition to the XY antiferromagnet. The suppression of σSH

by interactions at finite temperatures has also been observed in DMFT calculations of the Bernevig-
Hughes-Zhang-Hubbard model [234] and similarly for the anomalous Hall conductivity in the Hubbard
model in the presence of a magnetic field [235].

5.4.4 Band renormalization

In the following, we discuss how interactions renormalize the band gap and thus affect σSH. The
quasiparticle weight is defined as

Z(ω,k) =
(

1− ∂ωΣ
R(ω,k)

)−1
, (5.103)

where ΣR(ω,k) is the retarded self-energy on the real frequency axis, indicated by ω. At k = K,K ′ we
find the TPSC self-energy Σ(2)(iωn,k) to be diagonal with identical entries that are purely imaginary,
therefore Z(0,K) becomes just a number Z. Expanding the self-energy linearly we can see that the
band gap energy ∆Eg gets renormalized by the interactions by a factor of Z
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Figure 5.9: Band renormalization Z as a function of U/t for different temperatures and λ/t = 0.01. In the
greyed out region TPSC is not valid anymore. At the phase transition we observe a sharp kink. The temperature
dependence is very weak. This indicates that the stronger temperature dependence of σSH for higher values of
U stems mostly from an effective increase of temperature by renormalizing the gap.

G±(ω,K) =

(

ω + iη ±
∆Eg

2
+ µ− Σ(ω,K)

)−1

≈

(

(1− ∂ωΣ(ω,K)|ω=0)ω ±
∆Eg

2
+ µ

)−1

=

(

ω ± Z
∆Eg

2
+ Zµ

)−1

Z (5.104)

For small SOC, the main contributions to σSH are localized around K and K ′, as can be seen in the
noninteracting case (compare e.g. [231] for the Haldane model). Increasing SOC the region in momentum
space contributing to σSH is broadened. At nonzero temperature, the band gap renormalization is
crucial for σSH since the occupied states above the gap yield canceling contributions to it as discussed
in Sec. 5.4.4. Renormalizing the gap hence can be seen as increasing the effective temperature in the
system. To calculate Z numerically, the analytical continuation to real frequencies is performed using

∂ωReΣ
R(ω,K)|ω=0 ≈ ImΣ(2)(iω0,K)/ω0, (5.105)

where ω0 = πT is the lowest fermionic Matsubara frequency. In Fig. 5.9 we show the quasiparticle
weight Z obtained from our TPSC calculations as a function of U . We observe a sharp drop at the
phase transition. However, in contrast to σSH, Z is almost temperature independent below the phase
transition. This indicates that the stronger temperature dependence of the spin Hall conductivity at
larger values of U stems mostly from an effective increase of temperature by renormalizing the gap, since
the Z itself shows no temperature dependence. In a quasiparticle picture it is easier to thermally excite
electrons from the valence into the conduction band when the band gap is effectively reduced by the
interactions. We note that the band gap renormalization and the corresponding decrease of the spin Hall
conductivity at finite temperature was already observed in Ref. [234]. Here however, we can explicitly
take into account the momentum dependence of the self-energy to calculate the band renormalization.

In the following we show that the antiferromagnetic spin fluctuations renormalize the band gap. G(2)

and Σ(2) are diagonal in spin and orbital at k = K. Hence, we consider the diagonal elements of the
self-energy at zero frequency and k = K that are responsible for the band gap renormalization. The
same arguments hold at k = K ′. From sublattice symmetry we have χ11

αα(q) = χ22
αα(q) from which it

follows that χaa
αα(q) ∼ χafm

αα (q)/2. Since the antiferromagnetic spin fluctuations dominate over charge
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and ferromagnetic spin fluctuations in the system (see Sec. 4.14.5 and 4.14.6), especially at large U
values, we only focus on them. The Hartee term can be absorbed in the chemical potential and is thus
omitted from our discussion. Focusing only on χxx (the same holds for χyy and χzz) with our previous
considerations we can write Eq. 4.183 for Σ(2) as

Σ(2)aa
σ (iω0,K) ∼

U

16

T

N

∑

iqm,qα

G
(1)aa
−σ (iω0 + iqm,K + q)Γa

xxχ
afm
xx (iqm, q). (5.106)

We conclude that the leading contribution to the self-energy comes from antiferromagnetic spin fluctu-
ations.

On first sight it might be counter-intuitive that interactions make the band gap smaller, since the
common picture in mind is that increasing interactions lead to a formation of Hubbard bands and thus
increasing the band gap. However, a renormalization of the band structure accompanied by an increase
of the effective electron mass through interactions is a common feature in correlated systems.

We can give a classical analogy for the renormalization of the band gap by spin fluctuations. How-
ever, the validity of the analogy is limited since it rather applies to phonons then Fermions. Consider
a damped harmonic oscillator in one dimension. A friction term with friction constant γ will renor-

malize the oscillation frequency to ωR =
√

ω2
0 −

γ2

4 , where ω0 =
√

k/m is the oscillation frequency of

the oscillator without damping. In the classical case the damping stems from the averaging of many
microscopic particle collisions. In the case of the Kane-Mele-Hubbard model the damping microscop-
ically originates from the interaction, which makes it possible for the electrons to excite and absorb
spin fluctuations. Contrary to the simple classical case this effect is frequency dependent and leads to a
frequency dependent renormalization of the quasi particle energy and hence also renormalizes the band
gap.

5.4.5 Summary of the results

In this chapter we studied the spin Hall conductivity in the Kane-Mele-Hubbard model with TPSC.
At zero temperature the Kane-Mele-Hubbard model shows a transition from a quantum spin Hall
insulator to an XY antiferromagnet. The instability for the transition to the XY antiferromagnet was
identified from the divergence of the antiferromagnetic spin correlation length for the spin components
in the x-y plane. We calculated the SHC once using the conductivity bubble and once including vertex
corrections. TPSC allows to take into account the full frequency and momentum dependence of the
Green’s function. Vertex corrections for the SHC within TPSC corresponds to the analogues of the
Maki-Thompson contributions. Physically they describe the excitation and reabsorption of a spin,
charge or mixed spin-charge excitation by an electron. With the conductivity bubble we saw a sharp
drop at the phase transition, because the self-energy dampens the interacting Green’s function. Including
momentum dependent vertex corrections this picture changes. At all temperatures the vertex corrections
have a large contribution near the instability to the XY antiferromagnet where antiferromagnetic spin
fluctuations are large. Close to the phase transition the vertex corrections almost double the value of the
spin Hall conductivity at all temperatures considered. Also, we did not see a drop at the phase transition
when vertex corrections are included. The reason is that within TPSC we enforce TR symmetry and
hence force the system to stay in the non-magnetic phase. TPSC is not valid anymore in the strong
coupling limit, i.e. when the spin correlation length diverges. Further, we found that only with vertex
corrections the SHC goes to the quantized value of −2e2/h in the zero temperature limit. At non-zero
temperature increasing the Hubbard interaction leads to a decrease of the SHC. Further our results
indicate that scattering of electrons of anti-ferromagnetic spin fluctuations renormalize the band gap.
This can be interpreted as an effective increase of temperature leading to a decrease of the SHC. Hence,
one needs to go to lower temperatures to see a the QSH when spin fluctuations become large.

Our main contribution is to show that nonlocal correlation effects, that result in a strong momentum
dependence of the self-energy, can play an important role in the calculation of the spin Hall conductivity
at finite temperature and that vertex corrections are extremely important to obtain the zero-temperature
quantized value that corresponds to a topological invariant of the Matsubara Green’s function. TPSC
is well suited to study these effects quantitatively in the weak to intermediate coupling regime.
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Chapter 6

Conclusion and Outlook

In this thesis we investigated certain aspects of the interplay of electronic correlation effects, spin-orbit
coupling and topological properties. The model we considered is the Hubbard model, once in one
dimension for the Su-Schriefer-Heeger model with Hubbard interactions and once in two dimensions
for the Kane-Mele-Hubbard model. In the Kane-Mele-Hubbard model we specifically focused on the
calculation of the spin Hall conductivity. In the following we summarize our main findings and give an
outlook on possible future research avenues.

We investigated the applicability of elementary band representations (EBRs) to diagnose interacting
topological phases that are protected by spatial symmetries and time-reversal-symmetry in terms of their
single-particle Matsubara Green’s functions. Assuming that there exists only a unique ground state of
the interacting system, we showed how it is possible to define EBRs for the Matsubara Green’s function
in the zero temperature limit via the topological Hamiltonian. We found that the Green’s function EBR
classification can only change by (i) a gap closing in the spectral function at zero frequency, (ii) the
Green’s function becoming singular i.e. having a zero eigenvalue at zero frequency or (iii) the Green’s
function breaking a protecting symmetry. However, in which cases there is a strict correspondence
between an EBR classification of Green’s functions and SPT phases remains an open question. As an
example, we demonstrated the use of the EBRs for Matsubara Green’s functions on the Su-Schriefer-
Heeger model with exact diagonalization. This model features a transition where the Green’s function
has zero eigenvalues at zero frequency. Although only demonstrated in one dimension, the procedure
can be applied in any dimension. An EBR analysis of the topological Hamiltonian hence can become
helpful in identifying topological phases in models and materials where electronic correlation effects are
significant. The reason is that one only needs to calculate the Green’s function and the topological
Hamiltonian at a few high-symmetry k-points instead of on a dense k-grid. These results are published
in Ref. [1].

An important topic of this work is the extension of the TPSC approach to include spin-orbit coupling
(SOC). To do so, we took advantage of time-reversal symmetry that is preserved in the presence of SOC
to derive new TPSC self-consistency equations including SOC. SOC breaks spin rotation symmetry
which leads to a coupling of spin and charge sectors. We introduced an efficient matrix notation for
susceptibilities and vertices. We showed that the local and constant TPSC vertex matrix in the particle-
hole channel consists of three spin vertices and one charge vertex in the presence of time reversal
symmetry. Together with spin and charge sum rules and an ansatz equation that relates the double
occupancy to one of the vertices, this yields the new self-consistency equations. The derived self-
consistency equations constitute a multidimensional root-finding problem for the four vertices that
needs to be solved numerically. The self-energy is constructed from spin, charge and mixed spin-
charge susceptibilities. In the absence of SOC, the derived equations reduce to the original TPSC
self-consistency equations. We implemented the TPSC self-consistency equations for the special case of
Sz conserved using the sparse-ir library [187–189].

As a test case to study the interplay of Hubbard interaction and SOC, we study the Kane-Mele-
Hubbard model. With TPSC, we find that the antiferromagnetic spin fluctuations are the leading
instability. This confirms that the Kane-Mele-Hubbard model is an XY antiferromagnet at zero tem-
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perature. Mixed spin-charge fluctuations are found to be small. The transversal spin vertices are found
to be more strongly renormalized than the longitudinal spin vertex. In TPSC we also see how higher
SOC leads to a decrease of antiferromagnetic spin fluctuations, so that the phase transition is shifted
to higher U values. The self-energy shows dispersion and sharp features in momentum space close to
the phase transition. The Tr(GΣ) check shows that TPSC loses validity at the phase transition or if U
gets to high.

As an application, we calculated the spin Hall conductivity in the Kane-Mele-Hubbard model at finite
temperature with TPSC. At zero temperature, the Kane-Mele-Hubbard model shows a transition from
a quantum spin Hall insulator to an XY antiferromagnet. Even though the Kane-Mele-Hubbard model
is a simplified model, it allows us to understand systematically the interplay between correlation effects,
here modeled by the Hubbard interaction that leads to an instability to a magnetically ordered phase,
and a topological transport property i.e. the spin Hall conductivity in our case. In our calculations,
the transition to the XY antiferromagnet was identified from the divergence of the antiferromagnetic
spin correlation length for the spin components in the x-y plane, which allowed us to calculate a phase
diagram from TPSC. We calculated the spin Hall conductivity once using the conductivity bubble
and once including vertex corrections. Vertex corrections for the spin Hall conductivity within TPSC
corresponds to the analogues of the Maki-Thompson contributions. Physically, vertex corrections in
TPSC describe the excitation and reabsorption of a spin, charge or mixed spin-charge excitation by an
electron. At all temperatures, the vertex corrections show a large contribution in the vicinity of the
phase transition to the XY antiferromagnet where antiferromagnetic spin fluctuations are large. Close
to the phase transition, the vertex corrections almost double the value of the spin Hall conductivity at
all temperatures considered. We find that vertex corrections are crucial to recover the quantized value
of −2e2/h in the zero temperature limit. Further, at non-zero temperature, increasing the Hubbard
interaction leads to a decrease of the spin Hall conductivity. Our results indicate that scattering of
electrons off antiferromagnetic spin fluctuations renormalize the band gap. Decreasing the gap can be
interpreted as an effective increase of temperature leading to a decrease of the spin Hall conductivity.
Hence, if the antiferromagnetic spin fluctuations are large, one needs to go to lower temperatures to
observe the quantum spin Hall effect. These results emphasize the importance of vertex correction in
the presence of strong spin fluctuations and help understanding the mechanism of decreasing the spin
Hall conductivity in the presence of interactions. The results hence present valuable insights that might
become important in spintronics applications based on the spin Hall effect. The developed method
might also become important in a realistic modeling of the spin Hall conductivity at finite temperature
and with interactions present in a real material. The results of this chapter are published in Ref. [2].

Besides the spin Hall effect, the interplay of SOC and correlation effects causes many interesting
phenomena that can be studied with TPSC. Possible other applications are the study of spin textures in
cuprates caused by SOC [81, 82], collective spin excitations in graphene due to the interplay of Rashba
SOC and electron-electron interactions [83–88], magnetic anisotropy caused by SOC [140–142], the
realization of a p-wave superconductor via proximity effects and gapless edgestates at the surface of a
topological insulator [145, 146] or the superconductivity in Sr2RuO4 where SOC is important to describe
the electronic structure [92–99].

Some of these application also necessitate progress on the method development side. The combination
of TPSC multi-orbital extensions that also include U ′ and J [167–169] and SOC is a promising but
challenging task. Here, the combination of DMFT with TPSC [5, 6, 159, 160], where occupation
numbers and double occupancies from DMFT are used in the TPSC self-consistency equation, as well
as the replacement of the local part of the self-energy by the DMFT self-energy, seems like a promising
avenue. In this way, the ambiguity in the ansatz equation when including SOC can also be resolved.

We conclude that the interplay of electronic correlations, spin-orbit coupling and topology is very
rich and has many exciting research avenues. TPSC is a suitable method to study this interplay in the
weak to intermediate coupling regime.
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Appendix A

List of definitions of susceptibilities

Here, we give a list of all susceptibilities formed by the operator set {Sx, Sy, Sz, n} and also the sus-
ceptibilities in a different basis formed by the operator set {n↑, n↓, S

+, S−}. We assume time reversal
symmetry, so that certain expectation values vanish. We also explicitly give the basis transformation
between both bases.

A.1 Physical susceptibilities

For the first set {Sx, Sy, Sz, n} we have the following 4×4 = 16 susceptibilities. The purely longitudinal
susceptibilities are

χab
cc (τ,Ri −Rj) = ⟨Tτnia(τ)njb(0)⟩ − ⟨n⟩

2
, (A.1)

χab
cz(τ,Ri −Rj) = ⟨Tτnia(τ)S

z
jb(0)⟩ , (A.2)

χab
zc(τ,Ri −Rj) = ⟨TτS

z
ia(τ)njb(0)⟩ , (A.3)

χab
zz(τ,Ri −Rj) = ⟨TτS

z
ia(τ)S

z
jb(0)⟩ . (A.4)

The pure transversal ones are

χab
xx(τ,Ri −Rj) = ⟨TτS

x
ia(τ)S

x
jb(0)⟩ , (A.5)

χab
xy(τ,Ri −Rj) = ⟨TτS

x
ia(τ)S

y
jb(0)⟩ , (A.6)

χab
yx(τ,Ri −Rj) = ⟨TτS

y
ia(τ)S

x
jb(0)⟩ , (A.7)

χab
yy(τ,Ri −Rj) = ⟨TτS

y
ia(τ)S

y
jb(0)⟩ . (A.8)

The susceptibilities coupling longitudinal and transversal channel are (first the upper right in the matrix
notation)

χab
cx(τ,Ri −Rj) = ⟨Tτnia(τ)S

x
jb(0)⟩ , (A.9)

χab
cy(τ,Ri −Rj) = ⟨Tτnia(τ)S

y
jb(0)⟩ , (A.10)

χab
zx(τ,Ri −Rj) = ⟨TτS

z
ia(τ)S

x
jb(0)⟩ , (A.11)

χab
zy(τ,Ri −Rj) = ⟨TτS

z
ia(τ)S

y
jb(0)⟩ , (A.12)

as well as (lower left in the matrix notation)
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χab
xc(τ,Ri −Rj) = ⟨TτS

x
ia(τ)njb(0)⟩ , (A.13)

χab
xz(τ,Ri −Rj) = ⟨TτS

x
ia(τ)S

z
jb(0)⟩ , (A.14)

χab
yc(τ,Ri −Rj) = ⟨TτS

y
ia(τ)njb(0)⟩ , (A.15)

χab
yz(τ,Ri −Rj) = ⟨TτS

y
ia(τ)S

z
jb(0)⟩ . (A.16)

A.2 Correlation functions of n↑, n↓, S
+ and S−

In the other basis formed by {n↑, n↓, S
+, S−} one has 16 susceptibilities that in the presence of TR

symmetry take the following form. Purely longitudinal one has

χab
↑↑(τ,Ri −Rj) = ⟨Tτnia↑(τ)njb↑(0)⟩ −

⟨n⟩
2

4
, (A.17)

χab
↑↓(τ,Ri −Rj) = ⟨Tτnia↑(τ)njb↓(0)⟩ −

⟨n⟩
2

4
, (A.18)

χab
↓↑(τ,Ri −Rj) = ⟨Tτnia↓(τ)njb↑(0)⟩ −

⟨n⟩
2

4
, (A.19)

χab
↓↓(τ,Ri −Rj) = ⟨Tτnia↓(τ)njb↓(0)⟩ −

⟨n⟩
2

4
. (A.20)

Here we used that ⟨n↑⟩ = ⟨n↓⟩. The transversal susceptibilities are

χab
++(τ,Ri −Rj) = ⟨TτS

+
ia(τ)S

+
jb(0)⟩ , (A.21)

χab
+−(τ,Ri −Rj) = ⟨TτS

+
ia(τ)S

−
jb(0)⟩ , (A.22)

χab
−+(τ,Ri −Rj) = ⟨TτS

−
ia(τ)S

+
jb(0)⟩ , (A.23)

χab
−−(τ,Ri −Rj) = ⟨TτS

−
ia(τ)S

−
jb(0)⟩ . (A.24)

Note that χ+− and χ−+ are continuous at τ = 0, because [S+, S−] = Sz whose expectation value
vanishes because of TR symmetry. Also note that because of TR symmetry ⟨S+⟩ = ⟨S−⟩ = 0 and hence
these terms are missing here in the susceptibilities. The mixed susceptibilities are

χab
↑+(τ,Ri −Rj) = ⟨Tτnia↑(τ)S

+
jb(0)⟩ , (A.25)

χab
↑−(τ,Ri −Rj) = ⟨Tτnia↑(τ)S

−
jb(0)⟩ , (A.26)

χab
↓+(τ,Ri −Rj) = ⟨Tτnia↓(τ)S

+
jb(0)⟩ , (A.27)

χab
↓−(τ,Ri −Rj) = ⟨Tτnia↓(τ)S

−
jb(0)⟩ . (A.28)

and

χab
+↑(τ,Ri −Rj) = ⟨TτS

+
ia(τ)njb↑(0)⟩ , (A.29)

χab
+↓(τ,Ri −Rj) = ⟨TτS

+
ia(τ)njb↓(0)⟩ , (A.30)

χab
−↑(τ,Ri −Rj) = ⟨TτS

−
ia(τ)njb↑(0)⟩ , (A.31)

χab
−↓(τ,Ri −Rj) = ⟨TτS

−
ia(τ)njb↓(0)⟩ . (A.32)
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A.3 Basis transformation between susceptibilities

The susceptibilities are related to each other by (note again that iSy = S+ − S−)

χcc = χ↑↑ + χ↑↓ + χ↓↑ + χ↓↓, (A.33)

χcz = χ↑↑ − χ↑↓ + χ↓↑ − χ↓↓, (A.34)

χzc = χ↑↑ + χ↑↓ − χ↓↑ − χ↓↓, (A.35)

χzz = χ↑↑ − χ↑↓ − χ↓↑ + χ↓↓, (A.36)

χxx = χ++ + χ+− + χ−+ + χ−−, (A.37)

iχxy = χ++ − χ+− + χ−+ − χ−−, (A.38)

iχyx = χ++ + χ+− − χ−+ − χ−−, (A.39)

−χyy = χ++ − χ+− − χ−+ + χ−−, (A.40)

χcx = χ↑+ + χ↑− + χ↓+ + χ↓−, (A.41)

iχcy = χ↑+ − χ↑− + χ↓+ − χ↓−, (A.42)

χzx = χ↑+ + χ↑− − χ↓+ − χ↓−, (A.43)

iχzy = χ↑+ − χ↑− − χ↓+ + χ↓−, (A.44)

χxc = χ+↑ + χ+↓ + χ−↑ + χ−↓, (A.45)

χxz = χ+↑ − χ+↓ + χ−↑ − χ−↓, (A.46)

iχyc = χ+↑ + χ+↓ − χ−↑ − χ−↓, (A.47)

iχyz = χ+↑ − χ+↓ − χ−↑ + χ−↓. (A.48)

Note that each Sy gets a factor i.



120 Appendix A. List of definitions of susceptibilities



121

Appendix B

List of vertex elements

In this appendix we give a list of the matrix elements of the TPSC vertex in matrix notation. The
TPSC vertex is defined as (disregarding all other indices but spin)

Γσ1σ2,σ4σ3
:= Γσ1σ2σ3σ4

=
δΣσ1σ2

δGσ3σ4

. (B.1)

The first and last two indices separated by the comma, can be grouped together and be represented by
the labels ↑, ↓,+−. Hence we have that

Γ↑↑ = Γ↑↑↑↑, (B.2)

Γ↑↓ = Γ↑↑↓↓, (B.3)

Γ↓↑ = Γ↓↓↑↑, (B.4)

Γ↓↓ = Γ↓↓↓↓, (B.5)

Γ++ = Γ↑↓↓↑, (B.6)

Γ+− = Γ↑↓↑↓, (B.7)

Γ−+ = Γ↓↑↓↑, (B.8)

Γ−− = Γ↓↑↑↓, (B.9)

Γ↑+ = Γ↑↑↓↑, (B.10)

Γ↑− = Γ↑↑↑↓, (B.11)

Γ↓+ = Γ↓↓↓↑, (B.12)

Γ↓− = Γ↓↓↑↓, (B.13)

Γ+↑ = Γ↑↓↑↑, (B.14)

Γ+↓ = Γ↑↓↓↓, (B.15)

Γ−↑ = Γ↓↑↑↑, (B.16)

Γ−↓ = Γ↓↑↓↓, (B.17)

In the presence of time reversal symmetry the only non-vanishing physical vertex elements are
(analogous to the susceptibilities)
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Γcc = Γ↑↑ + Γ↑↓ + Γ↓↑ + Γ↓↓, (B.18)

Γxx = Γ++ + Γ+− + Γ−+ + Γ−−, (B.19)

−Γyy = Γ++ − Γ+− − Γ−+ + Γ−−, (B.20)

Γzz = Γ↑↑ − Γ↑↓ − Γ↓↑ + Γ↓↓. (B.21)
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Appendix C

List of relations following from time

reversal symmetry

In the following we list implications of TR on several quantities. For the expectation values of the
occupation numbers and the spin operators one gets

⟨naσ⟩ = ⟨na−σ⟩ =
⟨na⟩

2
, (C.1)

⟨S+
a ⟩ = ⟨S−

a ⟩ = 0, (C.2)

⟨Sx
a ⟩ = ⟨Sy

a⟩ = ⟨Sz
a⟩ = 0. (C.3)

For the Green’s function and the self-energy one gets

Gab
σσ′(iωn,k) = σσ′Gba

−σ′−σ(iωn,−k), (C.4)

Σab
σσ′(iωn,k) = σσ′Σba

−σ′−σ(iωn,−k). (C.5)

For the susceptibility one gets

χab
σ1σ2,σ3σ4

(iqm, q) = σ1σ2σ3σ4χ
ba
−σ3−σ4,−σ1−σ2

(iqm,−q). (C.6)

Note that the first two and the last two spin indices can be combined into one taking the values ↑, ↓,+,−.
For the irreducible TPSC vertex one gets similarly

Γa
σ1σ2,σ3σ4

= σ1σ2σ3σ4Γ
a
−σ3−σ4,−σ1−σ2

. (C.7)
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Appendix D

Fast Fourier transforms for

convolution-like expressions

Often we need to evaluate expressions of the following one

(g ⋆ f)(l) =
∑

j

g(l + j)f(j). (D.1)

Note that this expression is not a convolution, but convolution like. In a convolution one would have a
minus sign instead of a plus sign. Of course in practice the indices l and j stand for either q = (iqm, q) or
k = (iωn,k), where iqm are bosonic and iωn fermionic Matsubara frequencies. To simplify the discussion
we restrict ourselves here to the one-dimensional case with discrete indices. The computational effort for
a direct evaluation of the above equation is O(N2). With the use of fast Fourier transformation (FFT)
the computational effort can be reduced to O(N log(N)). We define the discrete Fourier transform (FT)
as

f̂(k) =
∑

j

f(j)e−2πikj . (D.2)

The inverse FT is defined as

f̌(j) =
1

N

∑

k

f(k)e2πijk. (D.3)

Obviously, it holds f(j) =
ˇ̂
f(i). Let us consider the FT of (g ⋆ f)(j)

ĝ ⋆ f(l) =
∑

l

e−2πikl
∑

j

g(l + j)f(j)

=
∑

lj

e2πikje−2πik(l+j)g(l + j)f(j)

=
∑

j

e2πikj ĝ(k)f(j)

= ĝ(k)f̌(k). (D.4)

Taking an inverse FT we finally obtain

(g ⋆ f)(j) =

̂

(ĝ · f̌)(j). (D.5)

Note that with · we emphasize point wise multiplication. In our calculations we calculate in frequency
momentum space. This corresponds to expressions of the following type
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T

N

∑

iqmq

f(iωn + iqm,k + q)g(iqm, q) =

∫ β

0

dτeiωnτ
∑

Ri

e−ikRif(τ,Ri)g(−τ,−Ri). (D.6)

The bosonic expression is analogous. Since we only store positive times, symmetry or antisymmetry
can be used to relate negative τ the corresponding positive one (see Sec. 2.4).
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Appendix E

Search interval for the spin vertex

To avoid numerical instabilities in the one dimensional root-finding problems, associated with the pole
of the susceptibility regarded as a function of the spin vertices, it is possible to give a search interval
for the spin vertex. However, this is only possible in the case where there is no coupling with charge or
the other spins and hence the root-finding problem is one-dimensional. For example the expression for
the spin susceptibility with spins aligned in x-direction for the case Sz conserved is given by

χxx(iqm, q) =

(

1−
1

2
χ(1)
xx (iqm, q)Γxx

)−1

χ(1)
xx (iqm, q). (E.1)

One can give a search interval for Γxx. Remember that we assume Γxx to be diagonal with identical
entries. From symmetry considerations one can see that χxx(iqm, q) is a hermitian matrix i.e.

χa1a2

xx (iqm, q) = (χa2a1

xx (iqm, q))
∗

(E.2)

Further the matrix must be positiv semidefinite i.e. all its eigenvalues must be greater or equal zero
(this property is related to the positivity of energy dissipation (see Ref. [100].) These properties can
also be checked numerically. A hermitian matrix can easily be inverted in its eigenbasis, as long as none

of its eigenvalues is zero. We label the eigenvalues of χ
(1)
xx (q) by χ

(1)n
xx (q). To ensure positive eigenvalues

we must have for every n

1−
1

2
χ(1)n
xx (q)Γn

xx > 0. (E.3)

Hence we get

Γc
xx =

2

χ
(1)nmax

xx

, (E.4)

where nmax labels the largest eigenvalue. So the search interval for the matrix elements of Γxx is [0,Γc
xx).
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hubbard model. Phys. Rev. Lett., 97:066401, Aug 2006. doi: 10.1103/PhysRevLett.97.066401.
URL https://link.aps.org/doi/10.1103/PhysRevLett.97.066401.

[15] H. J. Liao, Z. Y. Xie, J. Chen, Z. Y. Liu, H. D. Xie, R. Z. Huang, B. Normand, and T. Xiang.
Gapless spin-liquid ground state in the s = 1/2 kagome antiferromagnet. Phys. Rev. Lett., 118:
137202, Mar 2017. doi: 10.1103/PhysRevLett.118.137202. URL https://link.aps.org/doi/

10.1103/PhysRevLett.118.137202.

[16] Josef Kaufmann, Klaus Steiner, Richard T. Scalettar, Karsten Held, and Oleg Janson. How
correlations change the magnetic structure factor of the kagome hubbard model. Phys. Rev. B,
104:165127, Oct 2021. doi: 10.1103/PhysRevB.104.165127. URL https://link.aps.org/doi/

10.1103/PhysRevB.104.165127.

[17] N. Bulut, W. Koshibae, and S. Maekawa. Magnetic correlations in the hubbard model on triangular
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Gerard Sullivan, Gábor A. Csáthy, Xi Lin, and Rui-Rui Du. Observation of a helical luttinger
liquid in InAs/GaSb quantum spin hall edges. Phys. Rev. Lett., 115:136804, Sep 2015. doi: 10.
1103/PhysRevLett.115.136804. URL https://link.aps.org/doi/10.1103/PhysRevLett.115.

136804.

[219] Ivan Knez, Rui-Rui Du, and Gerard Sullivan. Evidence for helical edge modes in inverted
InAs/GaSb quantum wells. Phys. Rev. Lett., 107:136603, Sep 2011. doi: 10.1103/PhysRevLett.
107.136603. URL https://link.aps.org/doi/10.1103/PhysRevLett.107.136603.

[220] Sanfeng Wu, Valla Fatemi, Quinn D. Gibson, Kenji Watanabe, Takashi Taniguchi, Robert J.
Cava, and Pablo Jarillo-Herrero. Observation of the quantum spin hall effect up to 100 kelvin
in a monolayer crystal. Science, 359(6371):76–79, 2018. doi: 10.1126/science.aan6003. URL
https://www.science.org/doi/abs/10.1126/science.aan6003.

[221] Shujie Tang, Chaofan Zhang, Dillon Wong, Zahra Pedramrazi, Hsin-Zon Tsai, Chunjing Jia, Brian
Moritz, Martin Claassen, Hyejin Ryu, Salman Kahn, Juan Jiang, Hao Yan, Makoto Hashimoto,
Donghui Lu, Robert G. Moore, Chan-Cuk Hwang, Choongyu Hwang, Zahid Hussain, Yulin Chen,
Miguel M. Ugeda, Zhi Liu, Xiaoming Xie, Thomas P. Devereaux, Michael F. Crommie, Sung-
Kwan Mo, and Zhi-Xun Shen. Quantum spin hall state in monolayer 1t’-wte2. Nature Physics,
13(7):683–687, Jul 2017. ISSN 1745-2481. doi: 10.1038/nphys4174. URL https://doi.org/10.

1038/nphys4174.

[222] Zaiyao Fei, Tauno Palomaki, Sanfeng Wu, Wenjin Zhao, Xinghan Cai, Bosong Sun, Paul Nguyen,
Joseph Finney, Xiaodong Xu, and David H. Cobden. Edge conduction in monolayer wte2. Nature
Physics, 13(7):677–682, Jul 2017. ISSN 1745-2481. doi: 10.1038/nphys4091. URL https://doi.

org/10.1038/nphys4091.

[223] James L. Collins, Anton Tadich, Weikang Wu, Lidia C. Gomes, Joao N. B. Rodrigues, Chang
Liu, Jack Hellerstedt, Hyejin Ryu, Shujie Tang, Sung-Kwan Mo, Shaffique Adam, Shengyuan A.
Yang, Michael S. Fuhrer, and Mark T. Edmonds. Electric-field-tuned topological phase tran-
sition in ultrathin na3bi. Nature, 564(7736):390–394, Dec 2018. ISSN 1476-4687. doi:
10.1038/s41586-018-0788-5. URL https://doi.org/10.1038/s41586-018-0788-5.



146 Bibliography

[224] J. O. Island, X. Cui, C. Lewandowski, J. Y. Khoo, E. M. Spanton, H. Zhou, D. Rhodes, J. C.
Hone, T. Taniguchi, K. Watanabe, L. S. Levitov, M. P. Zaletel, and A. F. Young. Spin–orbit-
driven band inversion in bilayer graphene by the van der waals proximity effect. Nature, 571
(7763):85–89, Jul 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1304-2. URL https://doi.

org/10.1038/s41586-019-1304-2.

[225] Philipp Eck, Carmine Ortix, Armando Consiglio, Jonas Erhardt, Maximilian Bauernfeind, Simon
Moser, Ralph Claessen, Domenico Di Sante, and Giorgio Sangiovanni. Real-space obstruction in
quantum spin hall insulators. Phys. Rev. B, 106:195143, Nov 2022. doi: 10.1103/PhysRevB.106.
195143. URL https://link.aps.org/doi/10.1103/PhysRevB.106.195143.

[226] Maximilian Bauernfeind, Jonas Erhardt, Philipp Eck, Pardeep K. Thakur, Judith Gabel, Tien-
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