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A B S T R A C T

Residual connections have been proposed as an architecture-based inductive bias to mitigate the problem of
exploding and vanishing gradients and increased task performance in both feed-forward and recurrent networks
(RNNs) when trained with the backpropagation algorithm. Yet, little is known about how residual connections
in RNNs influence their dynamics and fading memory properties. Here, we introduce weakly coupled residual
recurrent networks (WCRNNs) in which residual connections result in well-defined Lyapunov exponents and
allow for studying properties of fading memory. We investigate how the residual connections of WCRNNs
influence their performance, network dynamics, and memory properties on a set of benchmark tasks. We
show that several distinct forms of residual connections yield effective inductive biases that result in increased
network expressivity. In particular, those are residual connections that (i) result in network dynamics at the
proximity of the edge of chaos, (ii) allow networks to capitalize on characteristic spectral properties of the
data, and (iii) result in heterogeneous memory properties. In addition, we demonstrate how our results can
be extended to non-linear residuals and introduce a weakly coupled residual initialization scheme that can be
used for Elman RNNs.
1. Introduction

The power of artificial neural networks in solving tasks lies in
their universal approximation abilities, which is commonly referred
to as theoretical expressivity (Barron, 1994; Cybenko, 1989; Funahashi,
1989; Hornik, Stinchcombe, & White, 1989). However, the practical
solutions to which networks can converge in a reasonable number of
training iterations of a typically gradient-based learning scheme such
as backpropagation, the practical expressivity of a network, have been
shown to lag behind their theoretical expressivity (Hanin & Rolnick,
2019). Practical expressivity is determined by a set of inductive biases
that take the form of (i) network architecture, (ii) weight initializa-
tion methods, (iii) convergence properties and other specifics of the
training procedure, and (iv) more generally, comprise anything that
influences the space of mappings learnable by a given network in
practice (Battaglia et al., 2018; Goyal & Bengio, 2022). As the bias–
variance trade-off suggests, the right choice of inductive biases plays a
crucial role for model performance because properly informed biases
can improve the efficiency of learning, a serious constraint on network
expressivity in practice (Kearns & Vazirani, 1994).

A celebrated example of feed-forward networks with an effective
inductive bias in the form of a constrained network architecture are
convolutional neural networks (LeCun, Bengio, et al., 1995). Another
popular form of an architectural inductive bias are so-called residual
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connections (or skip connections) of deep feed-forward architectures.
These have been shown to strongly increase performance for many
architectures and are used, for example, in the U-Net (Ronneberger,
Fischer, & Brox, 2015), ResNet (He, Zhang, Ren, & Sun, 2016) or Trans-
former (Vaswani et al., 2017) architectures. Such residual connections
have been shown to prevent gradients from vanishing in deep feed-
forward networks, thereby mitigating one aspect of the well-studied
exploding and vanishing gradients problem (EVGP) that appears in
practice when training deep networks with the backpropagation algo-
rithm (Glorot & Bengio, 2010).

When considering inductive biases in recurrent neural networks
(RNNs), the crucial question is how these biases influence network
dynamics and the resulting memory properties of the networks. Train-
ing an RNN with the backpropagation through time (BPTT) algorithm
involves unrolling the RNN into a deep feed-forward network, so that
networks trained on longer time series also face the EVGP (Pascanu,
Mikolov, & Bengio, 2013). Historically, RNNs have been studied from
a dynamical systems perspective (Bengio, Simard, & Frasconi, 1994;
Hochreiter & Schmidhuber, 1997) and many ideas have been proposed
to address the EVGP (Chang, Chen, Haber, & Chi, 2019; Erichson, Azen-
cot, Queiruga, Hodgkinson, & Mahoney, 2020; Miller & Hardt, 2018;
Schoenholz, Gilmer, Ganguli, & Sohl-Dickstein, 2016). Importantly, the
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dynamical systems approach showed that RNN dynamics which are
close to the point of a transition between stability and instability (the
edge of chaos) are characterized by long-term fading memory and
therefore efficient gradient propagation (Engelken, Wolf, & Abbott,
2020; Vogt, Touzel, Shlizerman, & Lajoie, 2020).

Although the influence of residual connections on RNN performance
has been studied previously (Wang & Tian, 2016; Yue, Fu, & Liang,
2018), dynamics and memory properties of RNNs with residual connec-
tions have not been studied in detail. Here, we fill this gap and explore
how residual connections in RNNs can result in inductive biases that
influence the networks’ dynamics and properties of their fading mem-
ory. Note that the present study was not primarily motivated by the
goal of developing a model that achieves a new state of the art (SOTA)
score in a number of benchmark tasks, but to study RNN dynamics and
fading memory properties by means of Lyapunov exponents. The main
contributions of this work are as follows.

• We extend on the connection between network dynamics, fading
memory, and learning dynamics in RNNs discussed in Pascanu
et al. (2013), showing that the fading memory properties of RNN
dynamics result in temporally modulated learning rates.

• A new RNN architecture, the weakly coupled residual recurrent
network (WCRNN), is introduced and proven to have stable and
easily controllable memory properties by showing the existence
of Lyapunov exponents of network dynamics. In particular, we
demonstrate how the eigenvalues of the residual matrix control
fading memory in WCRNNs. Additionally, we study WCRNNs
with dynamics close to the edge of chaos and confirm the the-
oretically predicted trade-off between the efficiency (i.e. in how
many training steps the network converges to a high-performing
configuration) and the stability of learning.

• We show that informed residual connections and corresponding
inductive biases result in higher practical expressivity of WCRNNs
on a set of benchmark problems, assessed by learning efficiency
and the best test accuracy achieved. In particular, we show how
residuals resulting in weakly subcritical network dynamics allow
the networks to benefit from long memory timescales, how residu-
als with rotational dynamics allow the networks to utilize spectral
properties of the data samples, and how heterogeneous residuals
allow the networks to capitalize on the resulting diversity of
informed memory timescales.

• We show how results from WCRNNs with linear residuals can be
generalized to the case of non-linear residuals and to the general
case of a standard Elman RNN in the form of a weakly coupled
residual initialization scheme.

In summary, our work demonstrates how Lyapunov exponents can
be used to characterize fading memory resulting from residual con-
nections and shows how informed residual connections can be used to
achieve superior practical expressivity in RNNs.

2. Background and motivation

In this section, we discuss the connection between network dynam-
ics, memory, and learning dynamics resulting from the training by
backpropagation through time (BPTT). In Section 2.1, we introduce the
concept of Lyapunov exponents and show how they determine memory
timescales. In Section 2.2, we show how learning dynamics, mediated
by BPTT, is influenced by the properties of fading memory.

2.1. Dynamical systems analysis

The memory of a system, commonly called fading memory in the
context of recurrent neural networks, is a well-defined and thoroughly
2

studied concept in the field of dynamical systems. From a dynamical
system’s perspective, a recurrent network is a non-autonomous, non-
linear recurrent discrete map, the dynamics of which are given by

𝐱𝑡+1 = 𝐟 (𝐱𝑡,𝐒𝑡), (1)

here 𝐱𝑡 ∈ R𝑁 is the network state at time 𝑡, 𝐟 ∶ R𝑁 → R𝑁 is non-linear
unction, 𝐒𝑡 ∈ R𝑁 is the input to the network at time 𝑡 and 𝑁 is the

dimensionality of the network state.
First, we consider the autonomous case, where the memory prop-

erties of network dynamics can be studied by means of perturbation
theory and Lyapunov exponents. If we evolve an infinitesimal pertur-
bation of the 𝑃 -dimensional volume of the tangent space 𝛿𝐏, linearize
it along this perturbation and apply the chain rule 𝑡 times, we obtain

𝛿𝐏(𝑡 + 1) = 𝐕𝐱(𝐟 𝑡(𝐱1))𝛿𝐏(1), (2)

here 𝐱1 and 𝛿𝐏(1) are the initial state and initial volume of the
angent space, 𝐟 𝑡 = 𝐟◦… ◦𝐟 denotes the 𝑡-fold iteration of the map
, and 𝐕𝑥(𝐟 𝑡(𝐱1)) denotes a variational term. In the case of a discrete
ap 𝐟 , the variational term 𝐕𝑥(𝐟 𝑡(𝐱1)) takes the form of the product

f the instantaneous Jacobians 𝐉𝑥 of 𝐟 over the course of the system
rajectory (Eckmann & Ruelle, 1985; Sandri, 1996) and can be written
s

𝐱(𝐟 𝑡(𝐱1)) = 𝐉𝐱(𝐟 𝑡(𝐱𝑡))𝐉𝐱(𝐟 𝑡−1(𝐱𝑡−1))...𝐉𝐱(𝐟 (𝐱1)). (3)

inally, according to Oseledets’ theorem (Oseledets, 1968), the Lya-
unov exponents for the autonomous system (1) are given by the
igenvalues of the matrix

= lim
𝑡→∞

1
2𝑡

log (𝐕𝑥(𝐟 𝑡(𝐱1))𝐕𝑇
𝑥 (𝐟

𝑡(𝐱1))), (4)

here ⋅𝑇 indicates the matrix transpose.
Essentially, the Jacobians 𝐉𝑥(𝐟𝑘) define the space of instantaneous

ocal volume transformations that are accessible to the system. The
ariational term 𝐕𝑥(𝐟 𝑡) determines the memory timescales of network
ynamics, and every Lyapunov exponent defines the direction with an
symptotically stable rate of memory change. The number of Lyapunov
xponents is equal to the dimensionality of the system 𝑁 and the largest
yapunov exponent determines the stability of network dynamics, with
negative (positive) Lyapunov exponent indicating its stability (insta-

ility). In particular, the largest Lyapunov exponent changes its sign
hen the system undergoes a transition between chaos and order.

In the general case given in (1), the external input makes the system
on-autonomous and the existence of the limit (4) is not guaranteed.
hus, the described analysis cannot be easily performed for most input-
riven recurrent networks. In this study, we show how the introduction
f weak coupling can mitigate this issue; see Section 3.

.2. Learning dynamics

Through the lens of the theory of dynamical systems, training an
NN of the form (1) with backpropagation through time creates the

ollowing learning dynamics 𝐠 on the recurrent weights 𝐰,

𝜏+1 = 𝐠(𝐰𝜏 ) = 𝐰𝜏 − 𝜂 1
𝑀

∑

𝑀
∇𝑤𝐿, (5)

where 𝜏 ∈ N denotes the training iteration, 𝜂 ∈ R+ is the learning
rate hyperparameter, ∇𝑤𝐿 is the gradient of the loss function 𝐿 with
respect to the weight 𝑤, and 𝑀 ∈ N is the batch size. Here, we assume a
deterministic version of gradient descent without loss of generality. In
practice, training an RNN with BPTT involves unrolling the network
over time so that the RNN is transformed into an equivalent feed
forward network consisting of 𝐷 unrolled recurrent layers (one for each
time point 1 ≤ 𝑡 ≤ 𝐷), and also defines a temporal distance between
any two unrolled recurrent layers. To obtain network predictions, all
networks are equipped with an affine readout layer that transforms the
state vector of the network at the last time point 𝑡 = 𝐷 into activations
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of a set of output units on which the loss function 𝐿 is computed (see
Fig. 1).

The theoretical considerations derived in this section can be applied
to all typical loss functions used for classification and regression prob-
lems, as long as the Hessian of the loss function with respect to network
predictions is positive semidefinite and its derivative at the optimum
has a vanishing mean (Schraudolph, 2002). In our experiments, we
used loss functions for which these conditions are met, namely a
cross-entropy loss with softmax for classification problems and a root-
mean-square (RMS) loss for regression tasks. For a detailed description
of the experiments performed, see Section 4.

The instantaneous Jacobian 𝐉𝑤 of the learning dynamics (5) is then
given by

𝐉𝑤(𝐠) = 𝐈 − 𝜂 1
𝑀

∑

𝑀
𝐇𝑤(𝐿), (6)

where 𝐇𝑤(𝐿) denotes the Hessian of the loss function 𝐿 and 𝐈 is the
dentity matrix. Note that the asymptotic behavior of the product of
nstantaneous Jacobians given in (6) determines the convergence or
ivergence of the learning dynamics, in the same way as the variational
erm 𝐕𝑥 determines the convergence of divergence of the recurrent
etwork dynamics in (1). This agrees with previous studies that have
hown that the curvature of the loss landscape defined by the Hessian
lays a crucial role in gradient-based learning (Dauphin et al., 2014).

From (6), it also follows that every eigenvalue of the Hessian 𝐇𝑤(𝐿)
efines an effective learning rate in the direction of the associated
igenvector in the weight space, modulating the base learning rate
in the direction of this eigenvector. This effective learning rate is

qual to (1 − 𝜂𝜆𝑀𝐇 )−1, where 𝜆𝑀𝐇 is the corresponding eigenvalue of the
essian averaged over a given batch. In order to further investigate

hese effective learning rates, we can rewrite the Hessian as

𝑤(𝐿) = 𝐉𝑇𝑤(𝐟
𝐷(𝐱1))𝐇𝐟𝐷 (𝐿)𝐉𝑤(𝐟𝐷(𝐱1)) +

𝑁
∑

𝑛=1
∇𝐟𝐷𝑛

(𝐿)𝐇𝑤(𝐟𝐷𝑛 (𝐱1)), (7)

where 𝐷 denotes the input length, 𝐉𝑤(𝐟𝐷) is the Jacobian of 𝐟𝐷 with
espect to 𝑤, ∇𝐟𝐷𝑛

(𝐿) is the gradient of the loss function 𝐿 with respect
o the 𝑛th coordinate of 𝐟𝐷, and 𝐇𝑤(𝐟𝐷)𝑛 is the Hessian of the 𝑛th

coordinate of 𝐟𝐷 with respect to 𝑤, see Schraudolph (2002). Here, we
consider the loss to be a function of the network state at the last time
point 𝐿(𝐟𝐷). As therefore the decoding layer is included in 𝐇𝐟𝐷 (𝐿), this
allows us to directly show the dependence of 𝐇𝑤(𝐿) on 𝐉𝑤(𝐟𝐷).

The first term in (7) is known as the Generalized Gauss–Newton
(GGN) matrix, a popular approximation for the curvature matrix in
second-order optimization methods (Thomas et al., 2020). For the loss
functions considered here, the Hessian converges to the GGN matrix
when training by BPTT because the second term in (7) is proportional
to the loss and vanishes as the learning approaches a local minimum
of the loss landscape. Therefore, the asymptotic behavior of learning
dynamics given in (5) is predominately influenced by the properties of
the GGN matrix.

For a recurrent network defined by (1), the GGN matrix depends on
the Jacobians 𝐉𝑤(𝐟 𝑡(𝐱𝑡))) and can be computed by applying the chain
rule as

𝐉𝑤(𝐟𝐷(𝐱1)) =
∑

1≤𝑡≤𝐷
𝐕𝐷−𝑡
𝑥 (𝐟𝐷(𝐱𝑡+1))𝐉𝑤(𝐟 𝑡(𝐱𝑡)), (8)

where 𝐕𝐷−𝑡
𝑥 (𝐟𝐷(𝑥𝑡+1)) = 𝐉𝑥(𝑓𝐷(𝐱𝐷))𝐉𝑥(𝐟𝐷−1(𝐱𝐷−1))… 𝐉𝑥(𝐟 𝑡+1(𝐱𝑡+1)) is a

truncated version of the variational term in (3), and 𝐕0
𝑥 = 𝐼 . This

shows that the memory properties of network dynamics influence the
GGN matrix and thereby the final configuration to which the network
converges. Taken together, RNN dynamics thus plays the role of an
inductive bias.

Importantly, the second term in (7) can be analyzed further if we
apply chain rule to the Hessian 𝑡 times, and we obtain
𝑁
∑

∇𝐟𝐷𝑛
(𝐿)𝐇𝑤(𝐟𝐷𝑛 (𝐱1)) =

𝑁
∑

𝐷
∑

∇𝐟 𝑡𝑛 (𝐿)𝐂
𝐟 𝑡𝑛 +

𝑁
∑

∇𝐟𝑛 (𝐿)𝐇𝑤(𝐟𝑛(𝐱1)), (9)
3

𝑛=1 𝑛=1 𝑡=2 𝑛=1
where we denote the curvature matrix at time
𝑡 as 𝐂𝐟 𝑡𝑛 = (𝐉𝑤(𝐟 𝑡−1))𝑇𝐇𝐟 𝑡−1 (𝐟 𝑡𝑛)(𝐉𝑤(𝐟

𝑡−1)) with total Jacobians evaluated
at 𝐱1, and by 𝐇𝐟 𝑡−1 (𝐟 𝑡𝑛) the Hessian of 𝑛th coordinate of 𝐟 𝑡 with respect to
the previous state 𝐟 𝑡−1, evaluated as instantaneous partial derivatives.

Due to the presence of an activation function, the curvature matrix
𝐂𝐟 𝑡𝑛 is (in contrast to the GGN matrix) not necessarily positive semi-
definite, but we note that this does not affect the following conclusions.
In particular, the application of the chain rule in (9) shows how the
Hessian (left-hand side) can be split into terms corresponding to differ-
ent unrolled recurrent layers (right-hand side). Thus, we can represent
the eigenvalues of the Hessian of the full network as a sum of the
contributions of each unrolled recurrent layer as 𝜆𝐇 =

∑

1≤𝑡≤𝐷 𝜆𝐟 𝑡𝐇.
Importantly, the magnitudes of these contributions are proportional to
the corresponding gradient propagation

𝜆𝐟
𝑡

𝐇 ∝ ∇𝐟 𝑡 (𝐿) = (𝐕𝐷−𝑡
𝑥 )𝑇∇𝐟𝐷𝐿, (10)

meaning that the variational term 𝐕𝑥 determines the contribution of
each unrolled layer to the overall effective learning rates.

Taken together, this shows that the variational term 𝐕𝑥 not only
defines the memory properties of the network dynamics but also tem-
porally modulates the effective learning rates, establishing a connection
between fading memory and learning dynamics. This connection will be
important for the further analysis of weakly coupled residual recurrent
networks (WCRNNs) as defined below.

3. Weakly coupled residual recurrent networks

Residual connections in deep feed-forward networks have been
shown to allow for a better backpropagation of errors and are usually
implemented by an identity map between subsequent layers (He et al.,
2016).

Here, we consider the more general case of weakly coupled residual
recurrent neural networks (WCRNNs) equipped with an arbitrary fixed
residual map 𝐑 ∶ R𝑁 → R𝑁 . The update equation for such networks
takes the form

𝐱𝑡+1 = 𝐑(𝐱𝑡) + 𝛾 ⋅ 𝜎(𝐖𝑥𝑥𝐱𝑡 + 𝐒𝑡), (11)

here 𝛾 ≪ 1 denotes a weak coupling constant, 𝜎 denotes a non-
inearity (typically tanh), and 𝐒𝑡 = 𝐖𝑠𝑥𝐬𝑡 is the input vector that is an
ffine projection with weights 𝐖𝑠𝑥 on some time-varying input data
𝑡. We also equip the network with an affine readout layer 𝐖𝑥𝑜 and
erform the readout on the final network state 𝐱𝐷, where 𝐷 is the
ength of the input, see Fig. 1. The weights 𝐖𝑠𝑥,𝐖𝑥𝑥,𝐖𝑥𝑜 are subject
o backpropagation learning and include trainable bias terms that are
mitted in (11) for simplicity of notation.

The condition of weak coupling (𝛾 ≪ 1) simplifies the analysis of
emory properties of such networks because for small values of 𝛾 the

ariational term (3) can be written as

𝑥(𝐟 𝑡(𝐱1)) = 𝐉𝑅(𝐱𝑡)𝐉𝑅(𝐱𝑡−1)...𝐉𝑅(𝐱1) + 𝑂(𝛾), (12)

here 𝐉𝑅(𝐱𝑡) denotes the instantaneous Jacobian of the residual at time
, and 𝑂(⋅) is the Landau O.

Eq. (12) shows that the properties of the dynamics of WCRNNs
re predominately determined by the instantaneous Jacobians of the
esidual. Thus, the WCRNN architecture allows for a control of the
roperties of fading memory of the entire network by choosing an
ppropriate residual.

We note that the weak coupling condition holds as long as 𝛾 is
ufficiently smaller than 1. Small values of 𝛾 lead to controllable
etwork dynamics in WCRNNs and are the prerequisite for well-defined
yapunov exponents, as the analysis below shows. However, if 𝛾 be-
omes negligibly small (𝛾 < 10−3), the external input will be too small in
agnitude to allow the networks to perform well, so there is a trade-off

etween stabilizing the system dynamics and still allowing for a forcing
f system dynamics through an external input. In practice, we have seen
hat values of 𝛾 ∈ [0.001, 0.1] work well for the datasets tested.
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Fig. 1. Schematic representation of the WCRNN model for the sMNIST classification
task. Each 28 × 28 pixel MNIST digit is serialized and presented to the network as a
time series of length 𝐷 = 784. 𝐬𝑡 and 𝐱𝑡 denote the stimulus and network amplitude
configurations at the discrete time step 𝑡 (1 ≤ 𝑡 ≤ 784), respectively. Orange circles
indicate RNN nodes (unrolled over time) and green circles indicate the output units
for the 10 digit classes, respectively. Line colors indicate the input type. The total
recurrent input is shown in orange and consists of a residual input as mediated by the
residual map 𝑅 shown in blue, a recurrent input as mediated by the recurrent weight
matrix 𝐖𝑥𝑥 shown in red, and an external input mediated by an input projection matrix
𝐖𝑠𝑥 shown in gray. Note that, in general, the total recurrent input at time 𝑡 shown in
range does not represent an affine transformation of the previous network state 𝐱𝑡−1.
he readout weights 𝐖𝑥𝑜 of a linear readout performed at 𝑡 = 784 are shown in green.
n the case of the ADD datasets, the configuration is analogous, except for adjustments
n the input and output layers (2d input, one output unit).

In the general case (11), the Lyapunov exponents depend on 𝑥𝑡
ue to the non-linearity in the residual, which can complicate proving
he existence of the limit in (4). To simplify the analysis, we first
onsider networks with linear residuals 𝐑(𝐱𝑡) = 𝐑𝐱𝑡, where 𝐑 is a
× 𝑁 matrix. For the linear case, the instantaneous eigenvalues of

he residual are independent of the trajectory of the system, and the
ariational term simplifies to 𝐕(𝐟 𝑡(𝐱1)) = 𝐑𝑡 + (𝛾), where ⋅𝑡 denotes
atrix exponentiation. Furthermore, we can easily derive the Lyapunov

xponents in this case, because the Oseledets equation (4) in the limit
f weak coupling yields 𝐌 = log𝐀+(𝛾), where 𝐀 = diag(𝜆1, 𝜆2,… , 𝜆𝑁 )

is the diagonal matrix of eigenvalues of 𝐑. This means that for WCRNNs
the logarithms of the eigenvalues of the residuals 𝜆residual approximate
the Lyapunov exponents LEnet of the entire network

LEnet ≈ log 𝜆residual, (13)

nd that the weak coupling limits the range of their finite-size fluc-
uations. Based on their dynamical stability (distance to the edge of
haos, see Bertschinger & Natschläger, 2004) as determined by the
agnitude of the largest eigenvalue 𝜆max of the residual matrix, we

an distinguish three classes of WCRNNs: (i) subcritical (𝜆max < 1), (ii)
ritical (𝜆 = 1), and (iii) supercritical (𝜆 > 1) networks.
4

max max
Moreover, it follows from (7) that the Hessian of WCRNN dynamics
t the point of convergence takes the form

𝑤(𝐿) =
∑

1≤𝑘≤𝐷

∑

1≤𝑚≤𝐷
𝐉𝑇𝑤(𝐟

𝑘(𝐱𝑘))(𝐑𝐷−𝑘)𝑇𝐇𝐟𝐷 (𝐿)𝐑𝐷−𝑚𝐉𝑤(𝐟𝑚(𝐱𝑚)) + (𝛾3).

(14)

his shows that the contribution of the partial derivatives to the overall
urvature at different times is proportional to the corresponding eigen-
alues of the residual matrix. This means that the residual matrices
etermine the inductive biases in the final weight configuration to
hich the network converges. We thus predict that WCRNNs will
chieve different levels of performance depending on the residual
nitialization, and that the residuals resulting in the best performing
etworks will be dataset-specific. Moreover, we predict that an optimal
esidual configuration will depend on the input length.

Similarly to the GGN matrix, the second term of (8) is also affected
y the residuals. It follows from (10) that

𝐟 𝑡
𝐇 ∝ ∇𝐟 𝑡 (𝐿) = (𝐑𝐷−𝑡)𝑇∇𝐟 𝑡𝐿 + (𝛾), (15)

eaning that the magnitudes of eigenvalues of 𝐑 determine the contri-
ution of each unrolled recurrent layer to the overall effective learning
ates. Based on the propagation of the gradients as described in (15),
e therefore predict temporally modulated effective learning rates,
here the eigenvalues of 𝐑 define the exponential rate with which

his contribution decays or increases with time 𝑡. On the one hand,
an increase in the magnitudes of the eigenvalues of 𝐑 induces an
improved learning efficiency for information contained in temporally
distant recurrent layers. However, such an increase can also result
in an instability of learning dynamics if the overall effective learning
rates reach high magnitudes as a result. In contrast, a decrease in the
magnitudes of the eigenvalues of 𝐑 can result in a loss of temporally
distant information and reduce the efficiency of learning dynamics. At
the same time, the same mechanism can also provide better stability
of learning dynamics by reducing the overall magnitudes of effective
learning rates.

These properties of WCRNNs make us hypothesize that there exists
a trade-off between the stability of learning dynamics and learning
efficiency, the number of iterations required to achieve a certain value
of the loss function (with lower numbers of iterations being better).
For more subcritical networks, we expect problems with slow learning
and vanishing gradients. For more supercritical networks, we expect
faster convergence, but potentially problems with unstable learning
trajectories and exploding gradients at the same time. For critical
WCRNNs, characterized by network dynamics in proximity to the edge
of chaos, we anticipate an optimal balance between learning effiency
and stability.

In summary, we design weakly coupled residual recurrent networks
(WCRNNs), where the introduction of weak coupling allows us to
obtain stable memory timescales as defined by Lyapunov exponents.
We show that the properties of fading memory are mainly determined
by properties of the residuals and, in the case of linear residuals, by the
eigenvalues of the residual matrix. On the basis of our analyses, we pre-
dict that WCRNNs close to criticality show the best trade-off between
efficiency and stability of learning, and that optimal residual configu-
rations depend on the input length. In conclusion, we have shown here
how architecture-based inductive biases in the form of residuals shape
the memory properties and learning dynamics of WCRNNs in theory.
In the next section, we will test our predictions in practice.

4. Experiments

To empirically validate our theoretical predictions, we performed
experiments on several datasets:
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• Sequential MNIST (sMNIST), where the 28 × 28 pixels of MNIST
digits (LeCun, Bottou, Bengio, & Haffner, 1998) are presented
to the network sequentially in the form of a time series and
the task is to solve a digit classification problem. The samples
are turned into a time series of length 784 by collecting inten-
sity values in scan-line order from top left to bottom right. We
also consider the permuted sequential MNIST (psMNIST) dataset,
where a random but fixed permutation is applied to the sMNIST
samples. The permutation removes the dominant low-frequency
components present in the sMNIST samples and increases the
difficulty of the classification problem. For these classification
tasks, a cross-entropy loss was used.

• The adding problem (ADD) of lengths 100, 200, 400, 800, as
a regression problem. Here, every sample is given by a two-
dimensional time series of the specified length (Hochreiter &
Schmidhuber, 1997). The first coordinate is given by random
numbers drawn from a uniform distribution [0, 1], and the second
coordinate constitutes a cue signal taking values 0 (no cue) and
1 (cue). The task of the network is to compute the sum of the
input values presented in the first coordinate for two cue points
randomly placed in the first half and the second half of the signal,
respectively. For these tasks, a root mean square (RMS) loss was
used.

s the primary goal of this study is not to provide a model outperform-
ng other SOTA architectures, but rather to study network dynamics in

CRNNs and underlying principles of how network dynamics influence
earning dynamics and inductive biases, we chose the MNIST dataset
nd the adding problem for most of our experiments as these are
ell established classic benchmarks for RNNs. These datasets can be
ade more challenging by introducing permutations for MNIST or

onger sample lengths for the adding problem. To test our models on
more challenging task, we also performed experiments on the gray-

caled sCIFAR10 dataset, which is part of Long Range Arena benchmark
esigned for long sequence tasks (Tay et al., 2020). The sCIFAR10
ataset contains 10 different classes of 32 × 32 pixel images, which
re transformed into time series of 1024 gray-scaled pixels, analogously
o the sMNIST dataset. As for the sMNIST dataset, a cross-entropy loss
unction was used for the latter.

The experiments were carried out in PyTorch (Paszke et al., 2019)
or network sizes of 50, 100, and 200 units. Training was performed
or 200 epochs for the sMNIST and psMNIST datasets and for 150
pochs for the ADD datasets. Stochastic gradient descent (SGD) with
momentum of 0.9 was used as an optimizer for BPTT and training

terations were performed according to a minibatch scheme, using
atch sizes of 64, 128, and 256 samples. Qualitatively, results were
ound to be mostly independent of network and batch size. Thus, we
resent results for networks of 100 units, trained with a batch size of
28 samples in the following. Results were collected over 5 network in-
tances with random weight initialization, and most plots report mean
cores and their standard deviation obtained from these 5 instances.
uring initialization, weights and biases were randomly sampled from a
aiming uniform distribution according to the default implementation
f the PyTorch torch.nn.Linear layer (𝑈 (−1∕

√

𝑛in, 1∕
√

𝑛in), where
in denotes the input dimension of a given layer). As the non-linear
ctivation function, we used 𝜎 = tanh in all of our experiments.

In Section 4.1 we present simulation results of WCRNNs with dy-
amics close to the edge of chaos, showing the validity of our theoreti-
al predictions about their performance for all datasets. In Sections 4.2
nd 4.3 we show how rotational and heterogeneous residuals can be
eneficial to the performance of WCRNNs. Lastly, in Section 4.4 we
how that our results can also be generalized to Elman RNNs by an
nitialization scheme. The results presented were found to be consistent
cross all datasets, inputs, and networks with different random weight
5

nitializations.
4.1. Critical residuals

First, we studied different WCRNNs with network dynamics in prox-
imity of the edge of chaos. To place networks in this dynamical regime,
we introduced linear diagonal residuals of type 𝐑 = 𝑟𝐈, where the resid-
al connection strength 𝑟 is a scalar hyperparameter, and 𝐈 denotes the
dentity matrix. According to (13), these networks have 𝑁 Lyapunov
xponents with identical values equal to log 𝑟, where 𝑁 is the number

of units in the network. By varying 𝑟, we can control the Lyapunov
exponents, and thereby the distance of the network dynamics to the
edge of chaos. We varied the value of 𝑟 in the interval 𝑟 ∈ [0.91, 1.02] to
xplore the range of subcritical, critical, and supercritical dynamics (see
ig. 2). To numerically compute Lyapunov exponents from network
ynamics, we used a method based on QR-decomposition (Sandri,
996) that ensures the numerical convergence of the eigenvalues of
he orthonormalized variational term even for unstable dynamics (see
ppendix A). Gradient propagation was measured by the 𝐿∞ gradient
orms 𝜕𝐿

𝜕𝐟 𝑡 in the test dataset (Arjovsky, Shah, & Bengio, 2016). All
essians were computed for a randomly chosen but fixed set of 1000

amples from the test set and we note that the results were found to
e consistent across different choices for this set (data not shown).
he findings were found to be qualitatively consistent in the range
∈ [0.001, 0.1] and here we present results for the value 𝛾 = 0.01.
e found that WCRNNs with 𝛾 < 0.001 have difficulties in achieving

igh task performance as in this case the forcing of the network
ynamics by the input becomes too small. If 𝛾 > 0.1, the forcing of
he network dynamics can become too strong and tends to lead to
nstable dynamics, which is in agreement with the conditions discussed
n Section 3. In particular, the coupling constant 𝛾 had an effect on
earning stability and efficiency, which is similar to the global learning
ate, as ∇𝑤𝐿 = (𝛾); see Fig. B.2.

As expected, we found that the eigenvalues of the variational
erm had converged to the values defined by the residual according
o Eq. (13), which confirms the existence of Lyapunov exponents
or the WCRNNs (Fig. 2B). The learning curves for all networks are
hown in Fig. B.3. Furthermore, we observed that the magnitudes of
he eigenvalues of the Hessians increased with an increase in 𝑟, see
ig. 2C. This supports the theoretical results on how the proximity
f network dynamics of WCRNNs to the edge of chaos affects their
ffective learning rates, see (15). In addition, we observed that in
ubcritical networks the magnitudes of eigenvalues of the Hessian
ended to increase over training, while in critical and supercritical
etworks they tended to decrease; see Fig. B.3. The gradient norms 𝜕𝐿

𝜕𝑓 𝑡

of the subcritical and supercritical networks were observed to decrease
or increase exponentially with a constant rate over time, as predicted
by (15), see Fig. 2D. We compare the eigenvalues of the variational
term, the eigenvalues of the Hessian, and the gradient propagation
before training WCRNNs, because the initial differences between the
networks are attributed to the differences in their residuals. In contrast
to the eigenvalues of the Hessian and gradient norms, the eigenvalues
of variational term remained in the same range during the training
period by design, see Fig. B.1.

To evaluate the networks’ practical expressivity, we measure not
only the best accuracy achieved on a test set during the training period
(overall performance), but also the learning efficiency. We assess the
learning efficiency by the number of training iterations required for the
network to reach a given threshold of minimal performance (MP), cho-
sen differently for each dataset and thus small values of this measure
correspond to better efficiency. The threshold of minimal performance
was set to 50% accuracy for the sMNIST and psMNIST datasets and to a
RMS of 0.05 for the ADD datasets. These threshold values were chosen
to capture a non-negligible deviation from chance-level performance.
For networks that were unable to reach this threshold, the number
of iterations to reach minimal performance was set to the maximum
number of iterations in the training period.
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Fig. 2. WCRNN performance and dynamics on sMNIST. Colors indicate network type; strongly subcritical (𝑟 = 0.95), weakly subcritical (𝑟 = 0.995), critical (𝑟 = 1), weakly
supercritical (𝑟 = 1.0025), strongly supercritical (𝑟 = 1.01). A. Test accuracy on sMNIST as a function of training iterations over 200 training epochs. B. Dynamics of eigenvalues of
variational term 𝐕𝑥(𝑓 𝑡) before training. Lines show trajectories of 20 randomly chosen eigenvalues over time for a randomly chosen input digit. C. Rank plot of the eigenvalue
magnitudes of the Hessian of the loss function 𝐇𝑤(𝐿) before training. Lines show eigenvalues that were computed for a randomly chosen batch of the sMNIST test set. D. Evolution
of norms of BPTT gradients as a function of time. Lines show gradient norms that were computed over a random input batch before training.
The practical expressivity of WCRNNs was found to be strongly
dependent on the parameter 𝑟, showing that although residual connec-
tions do not limit the theoretical expressivity of the network, they play
an important role for network expressivity in practice.

We observed that an increase in distance from the edge of chaos in
the subcritical regime resulted in a decrease in learning efficiency for
all datasets, see Fig. 3. This is in good agreement with our theoretical
predictions presented in Section 3. The observed decay in learning effi-
ciency is caused by vanishing gradients, showing that the EVGP poses
an important practical limitation for subcritical networks. We observed
that supercritical networks showed unstable learning trajectories, see
Fig. 3A, again in line with our theoretical predictions. The fact that the
gradients of supercritical networks were informative but exploded in
magnitude was supported by the finding that clipping of the gradients
resulted in more stable learning trajectories (data not shown). Overall,
these results support our hypothesis that proximity to the edge of chaos
enables a better learning efficiency at the expense of the stability of
learning dynamics.

Interestingly, we observed that supercritical networks showed better
performance for the sMNIST and psMNIST datasets, while subcritical
networks performed better for the ADD datasets. This can be explained
by the fact that the inputs of ADD datasets are dense in the first
dimension (input values in the first dimension are rarely zero), whereas
the inputs of the sMNIST datasets are more sparse (many input values
are zero or close to it). These different characteristics of the input
favor exploding and vanishing gradients, respectively. Importantly, we
observed that the best performing networks were closer to the edge of
chaos for longer ADD datasets. This agrees with the general intuition
that longer inputs require longer memory timescales and shows that the
best inductive biases are dependent on the characteristics of the inputs
as defined by the dataset. We saw that networks with dynamics close to
6

the edge of chaos showed both higher overall performance and better
learning efficiency compared to strongly supercritical and strongly
subcritical networks. Overall, weakly subcritical networks performed
best with a dataset-specific optimal distance to the edge of chaos. We
note that our results are in good agreement with previous literature on
the role of the interplay between architecture-based inductive biases
and characteristic properties of the input (Goyal & Bengio, 2022; Kerg
et al., 2022; Liu et al., 2023; Mastrogiuseppe & Ostojic, 2018; Rajan,
Abbott, & Sompolinsky, 2010).

In summary, we evaluated the practical expressivity of subcritical,
critical, and supercritical WCRNNs by means of their overall per-
formance and learning efficiency on a set of benchmark tasks. We
validated the existence of Lyapunov exponents by numerical calcu-
lations and confirmed our theoretical predictions about the trade-off
between learning efficiency and the stability of learning dynamics.
Consistent with the previous literature (Schoenholz et al., 2016), we
found that residual networks with dynamics close to the edge of chaos
possess a higher practical expressivity compared to strongly subcritical
or supercritical networks. Importantly, we observed that the weakly
subcritical networks showed the best overall performance, and found
that the optimal distance to the edge of chaos was indicative of memory
timescales beneficial for the task at hand.

4.2. Rotational residuals

The WCRNNs considered so far only had residual matrices with real
eigenvalues, so they were limited to scaling linear transformations and
reflections. To study all geometrical transformations represented by the
group of square matrices, we have to introduce rotations, which cor-
respond to matrices with eigenvalues having non-vanishing imaginary
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Fig. 3. Practical expressivity of WCRNN networks as a function of the value of the residual connection strength 𝑟 for the ADD and MNIST datasets. Lyapunov exponents of
presented WCRNNs are equal to log 𝑟. All networks have a value of 𝛾 = 0.01. Lines show mean values over 5 network instances with random weight initialization, shaded areas
show the range between minimal and maximal values. A. Best test accuracy on the ADD task as measured by root mean squared error (RMS) attained over 150 training epochs
for the ADD datasets. B. The number of training iterations to reach a defined minimal performance (MP) of 0.05 RMS error (see main text) for ADD datasets. C. Best test accuracy
for MNIST dataset over 200 training epochs. D. The number of training iterations to reach a MP of 50% test accuracy for MNIST datasets.
Fig. 4. Performance of WCRNNs with homogeneous rotational residuals on sMNIST and psMNIST. Lines show mean values over 5 network instances with random weight
initialization, shaded areas show the range between maximal and minimal values. Colors indicate the training dataset. The green dashed line indicates the characteristic frequency
of sMNIST 𝜙𝑐 = 2𝜋∕28 ≈ 0.22. A. The best test accuracy attained as a function of angular frequency of rotation 𝜙0 of the homogeneous residual matrix. B. The number of training
iterations to reach a defined minimal performance (MP) of 50% test accuracy (see main text), as a function of angular frequency of rotation 𝜙0.
part. For this purpose, we consider residual matrices 𝐑 taking the form
of orthonormal diagonal block matrices

𝐑 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐓1 𝟎 ⋯ 𝟎
𝟎 𝐓2 ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝐓𝑁∕2

⎤

⎥

⎥

⎥

⎥

⎦

, with 𝐓𝑖 =
[

cos𝜙𝑖 − sin𝜙𝑖
sin𝜙𝑖 cos𝜙𝑖

]

, (16)

where 𝑁 is the number of units in the network and 𝜙𝑖 ∈ [0, 2𝜋] denotes
an angular frequency of rotation. This type of residual represents
rotation matrices with arbitrary combinations of angular frequencies
𝜙𝑖.

First, we studied WCRNNs with rotational residuals of the form
(16) for which all 𝜙𝑖 have a constant value 𝜙0, referred to as homo-
geneous rotational residuals from now on. We trained WCRNNs with
homogeneous rotational residuals for different values of 𝜙 on sMNIST
7

0

and psMNIST for 50 epochs, see Fig. 4. Here, we chose a shorter
training period to better demonstrate the differences in performance
between such networks that arise due to differences in their learning
efficiency, but we also trained these networks for 200 epochs, see
supplementary Fig. B.4 where the results were similar. We found that
these networks converged fastest and expressed highest performance
on sMNIST when their angular frequency 𝜙0 was close to 2𝜋∕28 ≈ 0.22.
Interestingly, this frequency coincides with the maximal peak of the
average power spectra of the samples in sMNIST, thus we call it the
characteristic frequency 𝜙𝑐 of the dataset (Effenberger, Carvalho, Du-
binin, & Singer, 2023). We found that homogeneous rotational residuals
with angular frequencies that were close to integer multiplies of 𝜙𝑐
(i.e., 𝜙𝑐 and its harmonics) result in networks that show the highest
performance and the best learning efficiency, see Fig. 4. As follows from
Section 2.2, we attribute this enhanced performance to the fact that
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the instantaneous Jacobians of the networks with rotational residuals
modulate the effective learning rates in an oscillatory manner. Such
instantaneous Jacobians allow the networks to accumulate derivatives
that are in-phase and cancel out derivatives that are out of phase, see
Fig. B.4B. Taken together, this shows that oscillatory learning rates can
be beneficial for a network’s practical expressivity when they align with
characteristic spectral properties of the dataset.

In contrast, we did not find a strong effect on practical expressivity
when varying the angular frequencies of the rotational residuals for
the psMNIST, see Fig. 4. This can be explained by the fact that, in
contrast to the sMNIST dataset, the samples of the psMNIST dataset do
not possess a prominent characteristic frequency that can be exploited
for classification.

Furthermore, we also studied the case where residuals are given by
random orthonormal matrices with a uniform distribution of angular
frequencies of rotations (constructed with the function
scipy.stats.ortho_group.rvs from the SciPy package (Virta-
nen et al., 2020)). The latter were found to result in networks with a
performance similar to that of those with residuals with heterogeneous
angular frequencies discussed below, see Fig. B.4D.

Overall, we found that choosing residuals informed by character-
istic spectral properties of the samples in the dataset can result in
WCRNNs with higher practical expressivity. In particular, we show
for sMNIST that rotational residuals can significantly improve the effi-
ciency of learning. This agrees with the previous findings of increased
performance of networks composed of oscillatory units (Effenberger
et al., 2023; Norcliffe, Bodnar, Day, Simidjievski, & Liò, 2020; Rusch &
Mishra, 2020).

4.3. Heterogeneous residuals

In this section, we study how introducing heterogeneous residu-
als influences practical expressivity in WCRNNs. We first considered
networks for which the residual matrix takes the form

𝐑 = diag(𝐫), (17)

with each coordinate 𝑟𝑖 of 𝐫 sampled from a uniform distribution U(𝑟0−
𝛿𝑟∕2, 𝑟0+𝛿𝑟∕2). For our experiments, we fix 𝑟0 which defines a baseline
distance to edge of chaos and gradually increase the level of hetero-
geneity controlled by the term 𝛿𝑟. We found that subcritical networks
0 < 1 with moderate heterogeneity (𝛿𝑟∕2 is less than the distance to the

edge of chaos) showed better performance and efficiency of learning,
and only strong heterogeneity (𝛿𝑟∕2 is greater than the distance to the
dge of chaos) yield WCRNNs with unstable learning dynamics, see
ig. 5A. This can be explained by the fact that the heterogeneity of
he residual matrix increased the diversity of memory timescales in
he Lyapunov spectrum and brought the network dynamics closer to
he edge of chaos, resulting in longer memory timescales, see Fig. 5B.
oreover, the heterogeneity in subcritical networks improved gradient

ropagation and increased the number of non-vanishing eigenvalues
f the Hessian, making learning dynamics richer, see Fig. 5C and D.
n contrast, for networks with dynamics close to the edge of chaos,
he benefit of having heterogeneous residuals reduced, because het-
rogeneity increased the risk of exploding gradients (data not shown).

Next, we considered WCRNNs with residual matrices that are a
roduct of an orthonormal matrix of the form (16) and a diagonal
atrix of the form (17). Furthermore, we allowed unit-specific het-

rogeneity of the weak coupling parameter by substituting the scalar
oupling constant from (11) by a vector 𝜸. Informed by previous
xperiments, we sampled 𝐫𝑖 from 𝑈 ([0.99, 1]), 𝜙𝑖 from 𝑈 ([0, 𝜋∕4]), and
𝑖 from 𝑈 ([0.005, 0.05]) independently for each network unit. We found
hat WCRNNs with such informed heterogeneity performed on par
ith the best homogeneous configuration of WCRNNs on all datasets

onsidered, see Table 1. Our results show that the variety of memory
8

imescales present in WCRNNs with heterogeneous residuals allows d
hem to generalize well over different datasets and therefore obtain
ncreased practical expressivity compared to networks with homoge-
eous residuals. In particular, it follows that informed heterogeneity
an be used to avoid a computationally expensive search for the best
erforming residual configuration.

.4. Non-linear residuals

So far, we have only studied WCRNNs for which the residual was
iven by a linear map. In this section, we study two non-linear variants
f WCRNNs of the form

𝑡+1 = 𝜎(𝐑𝐱𝑡) + 𝛾𝜎(𝐖𝐱𝑡 + 𝐒𝑡). (18)

nd

𝑡+1 = 𝜎(𝐑𝐱𝑡 + 𝛾(𝐖𝐱𝑡 + 𝐒𝑡)). (19)

or ease of notation, we will refer to networks defined by (18) as type
and to networks defined by (19) as type B. Note that the observa-

ions from Section 3 also hold for the non-linear case presented here,
eaning that the weak coupling ensures that the memory properties of

he networks (18) and (19) are still mostly determined by the residual
onnections. Moreover, when the non-linearity is not in a strongly
aturating regime, the eigenvalues of the residuals matrices of both
etwork types A, B still influence the network dynamics to a large
xtent. This is why we continue to distinguish subcritical, critical, and
upercritical nonlinear WCRNNs, as before. We note that due to the
resence of the non-linearity 𝜎, this classification is less strict than
or WCRNNs with linear residuals. To investigate these networks, we
erformed the same set of experiments on the MNIST datasets as in
ections 4.1, 4.2, and 4.3.

When training networks of both types, we found the same trade-
ff between efficiency and stability of learning dynamics as observed
n networks with linear residuals. Similarly to linear networks, the
on-linear WCRNNs with the highest performance and best learning
fficiency were the networks that have eigenvalues of residual matrices
lose to critical value 1, see Fig. 6 A. Subcritical networks of type A
howed the best performance and the fastest convergence, in contrast
o type B networks, for which the best practical expressivity was
chieved by weakly supercritical networks. For both studied non-linear
ariants of WCRNNs, we also found peaks in the learning efficiency and
erformance when trained with rotational residuals on sMNIST, see in
ig. 6 B. Interestingly, we found that the performance of networks of
ype B showed stronger sensitivity to angular frequencies of rotational
esiduals compared to networks of type A. These differences can be
xplained by the fact that one common non-linearity better prevents
haotic dynamics, but makes biases from initialization have a stronger
ffect on performance. We also observed that both network types were
ble to achieve similar performance levels as their highest performing
omogeneous variants when equipped with informed heterogeneity
rom Section 4.3 (data not shown).

Notably, the network of type B can be considered as a weakly
oupled residual initialization of an Elman RNN, because the residual
atrix and other weight matrices are subject to the same non-linearity.

n agreement with previous studies (Arjovsky et al., 2016), learning
ong tasks was found to be challenging for classic Elman networks
ven after applying standard techniques such as identity residuals and
radient clipping (Table 2, Elmanres+clip and Elmanwc), emphasizing
he advantage of the weakly coupled residual initialization scheme
resented in (19).

We furthermore compared the presented variants of WCRNNs with
ther architectures that are known to be well-suited for working with
ong sequences such as LSTM (Gu, Gulcehre, Paine, Hoffman, & Pas-
anu, 2020) and S4 (Gu, Goel, & Ré, 2021), see Table 2. This com-
arison also includes the more challenging grayscale sequential CIFAR
ataset (sCIFAR10) which is part of Long Range Arena benchmark

esigned to evaluate model performance on long sequences (Tay et al.,
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Fig. 5. Performance of heterogeneous subcritical WCRNNs on sMNIST with 𝑟0 = 0.96 and different levels of heterogeneity 𝛿𝑟 (color-coded). A. Test accuracy as a function of
training iterations over 200 training epochs. The lines show mean test accuracy over 5 network instances with random weight initialization, shaded areas show the range between
minimal and maximal values of test accuracy. B. Dynamics of eigenvalues of variational term 𝐕𝑥(𝑓 𝑡) for WCRNNs with different levels of heterogeneity. All eigenvalues computed
using the same randomly chosen input. Lines show trajectories of 15 randomly chosen eigenvalues over time. C. Rank plot of the eigenvalue magnitudes of the Hessian of the loss
function 𝐇𝑤(𝐿) before training. Lines show eigenvalues that were computed for a randomly chosen batch on sMNIST test dataset. D. Evolution of norms of BPTT gradients as a
function of time. Lines show gradient norms that were computed over a random input batch before training.
Fig. 6. Performance of WCRNNs with non-linear residuals of type A and type B on sMNIST in comparison with their linear analogs from previous experiments. The lines show
the mean test accuracy over 5 network instances with random weight initialization, shaded areas show the range between maximal and minimal values of the test accuracy. A.
The best test accuracy as a function of the maximal eigenvalue of the residual matrix (as controlled by the scalar parameter 𝑟). B. The best test accuracy as a function of angular
frequency of rotation 𝜙0 of the homogeneous residual matrix. The green dashed line indicates the characteristic frequency of sMNIST 𝜙𝑐 = 2𝜋∕28 ≈ 0.22.
Table 1
Practical expressivity of informed heterogeneous WCRNNs compared to homogeneous WCRNNs, assessed by best test accuracy
and the number of training iterations to reach a minimal performance (MP).

Homogeneous Heterogeneous Homogeneous Heterogeneous

accuracy, % accuracy, % iter. to MP iter. to MP
sMNIST 96.05 98.22 200 200
spMNIST 92.66 95.37 2076 1038

RMS RMS iter. to MP iter. to MP
ADD100 2.0 ⋅ 10−5 4.6 ⋅ 10−5 9298 8698
ADD200 5.1 ⋅ 10−5 3.3 ⋅ 10−5 2.4 ⋅ 104 3.1 ⋅ 104

ADD400 1.5 ⋅ 10−4 3.1 ⋅ 10−4 7.4 ⋅ 104 9.5 ⋅ 104

ADD800 9.1 ⋅ 10−4 19.1 ⋅ 10−4 2.9 ⋅ 105 4.1 ⋅ 105
9
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Table 2
Best performance of various RNN architectures on a number of benchmark tasks. Elmanres+clip denotes the Elman network with an identity
residual and gradient clipping. Elmanwc denotes the Elman network with weakly coupled residual initialization (type B network). WCRNNbest
denotes the informed heterogeneous WCRNN. WCRNNno tanh denotes a WCRNN with the same residual and 𝛾 as WCRNNbest, but without the
tanh non-linearity. LSTM denotes the default PyTorch implementation of an LSTM network. Elman and WCRNN networks have 100 units, LSTM
networks 47 units (resulting in each model having around 10k trainable parameters). State-of-the-art results are given in the form of UR-LSTM
(around 250k parameters for ADD, around 4M parameters for sMNIST/psMNIST, around 32M parameters for sCIFAR10) and S4 networks
(around 300k parameters). Note the significantly increased model sizes of UR-LSTM and S4 in with respect to the other models. A dash (-)
indicates that no data is available.

sMNIST psMNIST ADD100, 200, 400, 800 sCIFAR10
acc. % acc. % RMS acc. %

Elmanres+clip 36.53 78.59 1.5 ⋅ 10−5, 3.8 ⋅ 10−5, fail, fail 18.7
Elmanwc 97.33 92.98 1.1 ⋅ 10−3, 2.9 ⋅ 10−3, 8.0 ⋅ 10−2, fail 38.49
WCRNNbest 98.22 95.37 4.6 ⋅ 10−5, 3.3 ⋅ 10−5 , 3.1 ⋅ 10−4, 1.9 ⋅ 10−3 47.21
WCRNNno tanh 91.15 90.11 fail, fail, fail, fail 29.79
LSTM 93.3 90.29 1.0 ⋅ 10−6, 1.0 ⋅ 10−6, 2.0 ⋅ 10−6, 6.0 ⋅ 10−6 58.13
UR-LSTM (Gu et al., 2020) 99.28 96.96 1 ⋅ 10−10 (ADD2000) 71.0
S4 (Gu et al., 2021) 99.63 98.7 – 91.8
2020). We also compared these networks with a variant of WCRNN that
lacks the non-linearity (WCRNNno tanh), showing the importance of the
on-linear activation function. We found that heterogeneous WCRNNs
ith informed memory properties are able to achieve performance

evels that are competitive with the much bigger and complex SOTA
odels for some datasets.

. Discussion

In this work, we introduced weakly coupled residual recurrent
etworks (WCRNNs) and studied how their recurrent residual con-
ections influence network dynamics, properties of fading memory,
nd practical expressivity. A dynamical systems analysis of WCRNNs
llowed us to uncover a connection between network dynamics and the
eight dynamics resulting from BPTT training. Based on this analysis,
e predicted a trade-off between the stability of the learning dynamics
nd the learning efficiency of the backpropagation algorithm. In line
ith this prediction, simulation results showed that WCRNNs with
ynamics close to the edge of chaos achieve greater practical expres-
ivity than more subcritical or supercritical networks. Moreover, we
ound that several classes of informed residual connections could yield
ffective inductive biases for WCRNNs. In particular, we found that (i)
otational residuals are beneficial when they match the characteristic
pectral properties of the data, (ii) residuals resulting in subcritical
ading memory are favorable when temporally distant dependencies
re present in the data, and (iii) heterogeneous residuals can increase
he networks’ practical expressivity by providing an informed range
f memory timescales. In addition, heterogeneity can help avoid the
omputationally expensive search required to find the best-performing
onfiguration for a homogeneous network.

Over the years, many approaches have been proposed to overcome
he EVGP encountered when training RNNs with BPTT. Among those
re gated architectures, such as long-short-term memory networks
LSTM) (Hochreiter & Schmidhuber, 1997) and gated recurrent units
GRU) (Cho et al., 2014), which in many cases still require gradient
lipping to achieve high practical expressivity (Pascanu et al., 2013).
urthermore, models that place constraints on weight matrices such as
rthogonal (Helfrich, Willmott, & Ye, 2018), unitary (Arjovsky et al.,
016) or antisymmetric weight matrices (Chang et al., 2019) were pro-
osed to mitigate the EVGP. In contrast to these models, the WCRNNs
roposed here do not impose strict conditions on weight matrices,
s this can limit the practical expressivity of networks (Vorontsov,
rabelsi, Kadoury, & Pal, 2017). In that sense, WCRNNs are similar
o RNNs with a specific initialization of their recurrent weights (for
xample, using the identity or orthogonal matrices (Le, Jaitly, & Hinton,
015; Mishkin & Matas, 2015)), but differ in that the weak coupling in
CRNNs ensures the stability of the gradient properties throughout the

earning process.
We also note that in our experiments we only used normal residual
10

atrices and that it is known that non-normal initialization can lead
to higher levels of practical expressivity (Kerg et al., 2019). Thus, the
thorough study of how normality, diagonalizability, and other proper-
ties of residual matrices affect the performance of WCRNNs could be a
potential direction for future research.

Although residual networks were first introduced without dynam-
ical systems theory in mind, it was later shown that residual net-
works possess efficient gradient propagation properties in the infinite-
width approximation when their dynamics are close to the edge of
chaos (Yang & Schoenholz, 2017). Moreover, this approximation has
been used to show the role of initialization schemes in shaping ‘‘lazy’’
or ‘‘rich’’ regimes of learning dynamics (Chizat, Oyallon, & Bach, 2019;
Flesch, Juechems, Dumbalska, Saxe, & Summerfield, 2021; Geiger,
Spigler, Jacot, & Wyart, 2020; Liu et al., 2023). Interestingly, the
presence of weak coupling in WCRNNs resembles the infinite-width
approximation as the influence of recurrent weights is scaled down by
the weak coupling factor 𝛾. We found that over training, the weights of
WCRNNs often changed by an order of magnitude with respect to their
initialization values, indicating a ‘‘rich’’ learning regime. However, the
unique property of WCRNN is that the weak coupling allows for ‘‘rich’’
learning while maintaining stable memory properties.

Residual networks also sparked new interest in a dynamical systems
approach due to the fact that in the limit of an infinite-depth approx-
imation they can be understood as a system of differential equations,
the NeuralODE approach (Chen, Rubanova, Bettencourt, & Duvenaud,
2018). However, in contrast to WCRNNs, architectures based on the
NeuralODE approach are limited to describe continuous-like dynamics.
Notably, recent research on various weight initialization methods in
NeuralODE approach has revealed the crucial role of the properties of
network dynamics for the training of these networks (Christodoulou,
Vogels, & Agnes, 2022; Jarne, 2023; Jarne & Laje, 2023), in line with
the findings of the present study.

Furthermore, recently introduced methods grounded in geometric
principles and similarity metrics (Ostrow, Eisen, Kozachkov, & Fiete,
2023; Schuessler, Mastrogiuseppe, Ostojic, & Barak, 2023) allow for
the detection of dynamical structures in recurrent neural networks. The
application of these methods to WCRNNs is left for a future study.

Our results are consistent with previous studies on the benefits of
residual networks with dynamics at the edge of chaos (Schoenholz
et al., 2016), and also provide an additional perspective on the previ-
ously shown computational advantage of recurrent networks consisting
of oscillatory units over non-oscillating architectures (Effenberger et al.,
2023; Norcliffe et al., 2020; Rusch & Mishra, 2020). Our findings also
agree with studies in the field of neuroscience, indicating that the brain
seems to operate close to criticality but in a slightly subcritical regime,
as this has computational advantages (Wilting et al., 2018; Wilting
& Priesemann, 2019). In addition, our results also agree with recent
studies that suggest the functional role of neural heterogeneity (Effen-
berger et al., 2023; Perez-Nieves, Leung, Dragotti, & Goodman, 2021;
Sánchez-Puig, Zapata, Pineda, Iñiguez, & Gershenson, 2023).
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Fig. B.1. Dynamics of eigenvalues of variational term 𝐕𝑥(𝑓 𝑡) before training and after 200 training epochs. Lines show trajectories of 20 randomly chosen eigenvalues over time
for a randomly chosen input digit. Colors indicate network type, strongly supercritical have 𝑟 = 1.01, weakly supercritical have 𝑟 = 1.0025, critical have 𝑟 = 1, weakly subcritical
have 𝑟 = 0.995, strongly subcritical have 𝑟 = 0.95. A. ADD100 before training; B. ADD100 after training; C. ADD400 before training; D. ADD400 after training; E. psMNIST before
training; F. psMNIST after training;.
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Fig. B.2. Learning trajectories for WCRNNs subject to different learning rates and coupling constants 𝛾, trained on the ADD100 dataset. Lines show test accuracy measured in
RMS as a function of training iterations over 150 training epochs. A. Learning rate: 𝜂 = 0.1, coupling constant: 𝛾 = 0.01. Note that the learning dynamics are unstable. B. Learning
rate: 𝜂 = 0.1, coupling constant: 𝛾 = 0.001. Note that the decrease in 𝛾 results in more stable but slower learning dynamics compared to A. C. Learning rate: 𝜂 = 0.01, coupling
constant: 𝛾 = 0.01. Note that the decrease in learning rate results in more stable but also slower learning dynamics. D. Learning rate: 𝜂 = 0.01, coupling constant: 𝛾 = 0.001. Note
the very stable and also very slow learning dynamics.
We also anticipate that our results will be relevant in the context
of continuous learning, where effective memory is known to be essen-
tial to avoid catastrophic forgetting (Hadsell, Rao, Rusu, & Pascanu,
2020). Furthermore, we hypothesize that our approach to incorporate
informed biases into residuals could find its application in feedforward
architectures, because residual connections are widely used in a range
of modern architectures (He et al., 2016; Ronneberger et al., 2015;
Vaswani et al., 2017).

6. Conclusion

In a broader context, we believe that the findings presented here are
in line with a recent surge in interest in RNNs, seeking to overcome the
EVGP and training inefficiencies (Orvieto et al., 2023; Zucchet, Meier,
Schug, Mujika, & Sacramento, 2023). These developments show that
the careful design of RNNs can result in state-of-art performance on
long range memory tasks. In some cases, RNNs were shown to surpass
the performance of feed-forward Transformer-based architectures (Tay,
Dehghani, Bahri, & Metzler, 2022), while overcoming the drawbacks
of their dot-product attention, where memory and computational com-
plexity exhibit quadratic scaling with sequence length (Peng et al.,
2023). In this work, we have defined weakly coupled recurrent net-
works (WCRNNs) that possess well-defined Lyapunov exponents and
have shown how the practical expressivity and training stability of
WCRNNs are influenced by their dynamics, and how heterogeneous and
informed residuals can increase further practical expressivity without
increasing system size. We believe that this is an important step for-
ward in the understanding of residual RNNs on both a theoretical and
practical level.

In summary, our results show how the properties of fading mem-
ory resulting from RNN dynamics play a crucial role in shaping the
backpropagation-induced learning dynamics, and how the implementa-
tion of informed memory properties by means of residual connections
can improve the practical expressivity of RNNs.
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Appendix A. Algorithm for computation of Lyapunov exponents

Here, we explain how we compute the Lyapunov exponents for
WCRNNs defined by Eq. (1). In theory, Laypunov exponents can be
computed directly from the Oseledts equation (4), but in practice the
𝑃 -dimensional volume of the tangent space tends to align with the
eigenvector associated with the largest eigenvalue, resulting in degen-
erate matrices and therefore numerical problems. To overcome such
problems, an orthonormalization procedure was introduced; see, for
example, (Sandri, 1996). This procedure orthonormalizes the tangent
space along a system trajectory that gives more stable estimates of the
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Fig. B.3. Learning dynamics for WCRNNs. Plot A and B show learning trajectories for the studied range of the residual connection strength 𝑟 ∈ [0.91, 1.02]. Rank plots C and D
show the eigenvalue magnitudes of the Hessian of the loss function 𝐇𝑤(𝐿) during training. The eigenvalues were computed for a randomly chosen batch from the sMNIST test set.
A. Lines show test accuracy as a function of training iterations for sMNIST dataset. B. Lines show test error measured in RMS as a function of training iterations for the ADD100
dataset. C. Lines show eigenvalues for a critical WCRNN. Note the decrease in magnitudes over learning. D. Lines show the eigenvalues for a strongly subcritical WCRNN. Note
the increase in magnitudes over learning.
scaling of the 𝑃 dimensional volume. For the case of a discrete system
(1), we iterate it alongside with its variational equation

𝛿𝐏(𝑡 + 1) = 𝐉𝐱(𝐟 𝑡(𝐱1))𝛿𝐏(𝑡). (A.1)

If we apply the chain rule for 𝑡 times, we obtain Eq. (2) from the main
text

𝛿𝐏(𝑡 + 1) = 𝐕𝐱(𝐟 𝑡(𝐱1))𝛿𝐏(1), (A.2)

where 𝐕𝐱(𝐟 𝑡(𝑥1)) = 𝐉𝐱(𝐟 𝑡(𝑥1))𝐉𝐱(𝐟 𝑡−1(𝐱1))...𝐉𝐱(𝐟 (𝐱1)). To compute the Lya-
punov exponents, we need to estimate the eigenvalues of the variational
term 𝐕𝐱(𝐟 𝑡(𝑥1)) with the initial condition of 𝛿𝐏(1) = 𝐈.

The orthonormalization procedure is performed as follows. After
every iteration of the system (1), we compute its Jacobian and evolve
the variational equation (A.1), where the 𝑃 dimensional volume of the
tangent space is initialized with the identity matrix. Next, we perform
a QR decomposition on the resulting volume of the tangent space 𝐐1.
The QR decomposition of 𝐐1 produces two matrices 𝐐2 and 𝐑2, where
the orthonormal matrix 𝐐2 defines the rotational component, and the
diagonal elements of 𝐑2 define the volume scaling. Finally, we collect
the eigenvalues of 𝐑, which describe the instantaneous transformation
of the volume, and perform the next step with a new volume from the
tangent space 𝐐2. Furthermore, if we repeat this procedure for 𝑡 times,
the final variational term is

𝐕 (𝐟 𝑡(𝐱 )) = 𝐐 𝐑 …𝐑 . (A.3)
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𝐱 1 𝑡 𝑡 1
From (A.3) it follows that if the logarithms of the eigenvalues
𝐑𝑡 converge, they define unique Lyapunov exponents according to
the Oseledets equation (4). Therefore, we show the convergence of
eigenvalues of the variational term in all of our figures. We also want
to note that this method is usually applied to autonomous systems,
but the design of the residuals of the system (11) allows us to study
non-autonomous dynamics.

The pseudocode for the orthonormalization algorithm is as follows:

Algorithm 1 Collect eigenvalues of the variational term
Initialize: 𝐱,𝐐, 𝐈
while 𝑡 ≤ 𝐿 do

𝐱 ← 𝐟 (𝐱, 𝐈)
𝐉 ← d𝐟

d𝐱
𝐐 ← 𝐉𝐐
𝐐,𝐑 ← 𝑞𝑟(𝐐)
𝜆 ← append(diag(𝑅))

end while

Appendix B. Supplementary figures

See Figs. B.1–B.4.
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Fig. B.4. A. Learning trajectories for WCRNNs with different angular frequencies of the rotational residuals 𝜙0, trained on the sMNIST dataset. Lines show the test accuracy as a
function of training iterations. B. Evolution of the norms of the gradients 𝜕𝐿

𝜕𝑓 𝑡 as a function of inference time for homogeneous WCRNNs with different angular frequencies of the
rotational residuals 𝜙0. Lines show gradient norms computed on a random batch of the sMNIST test set before training. C. Best test accuracy of rotational WCRNNs trained on
sMNIST over 200 epochs as a function of the angular frequency of the rotational residual 𝜙0. D. Comparison between different implementations for the construction of heterogeneous
orthonormal residual matrices, comparing scipy.stats.ortho_group.rvs implementation (red) and our pytorch.rand implementation (blue). Test accuracy for WCRNNs
with different residual matrices as a function of training iterations for first 7000 training iterations. Lines show average accuracy over 5 networks with random weight initialization,
shaded area indicates the range between minimal and maximal values.
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