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Abstract: Previous studies towards reduced oxygen availability have mostly focused on changes
in total mRNA expression, neglecting underlying transcriptional and post-transcriptional events.
Therefore, we generated a comprehensive overview of hypoxia-induced changes in total mRNA
expression, global de novo transcription, and mRNA stability in monocytic THP-1 cells. Since
hypoxic episodes often persist for prolonged periods, we further compared the adaptation to acute
and chronic hypoxia. While total mRNA changes correlated well with enhanced transcription during
short-term hypoxia, mRNA destabilization gained importance under chronic conditions. Reduced
mRNA stability not only added to a compensatory attenuation of immune responses, but also,
most notably, to the reduction in nuclear-encoded mRNAs associated with various mitochondrial
functions. These changes may prevent the futile production of new mitochondria under conditions
where mitochondria cannot exert their full metabolic function and are indeed actively removed by
mitophagy. The post-transcriptional mode of regulation might further allow for the rapid recovery
of mitochondrial capacities upon reoxygenation. Our results provide a comprehensive resource
of functional mRNA expression dynamics and underlying transcriptional and post-transcriptional
regulatory principles during the adaptation to hypoxia. Furthermore, we uncover that RNA stability
regulation controls mitochondrial functions in the context of hypoxia.

Keywords: hypoxia; monocytes; de novo transcription; RNA stability; SLAM-seq; GRAND-SLAM

1. Introduction

Hypoxia is a common environmental factor both in physiological and pathophysio-
logical contexts. Specifically, while high altitudes as well as certain cellular niches, such as
the bone marrow, are inherently characterized by low oxygen tensions, hypoxic conditions
pathologically occur, e.g., upon vascular thrombosis, within rapidly growing tumors, as
well as in diseases associated with severe inflammatory conditions [1,2]. Since ambient
oxygen availability is critical for numerous cellular processes, such as energy production
by mitochondrial oxidative phosphorylation, it is not surprising that adaptive processes to
hypoxia have been in the limelight of research for many decades [3]. Specifically, hypoxia
induces a rapid increase in glucose transporters and glycolytic enzymes to ensure suffi-
cient energy supply and, furthermore, even represses mitochondrial function [4,5]. Under

Int. J. Mol. Sci. 2022, 23, 5824. https://doi.org/10.3390/ijms23105824 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23105824
https://doi.org/10.3390/ijms23105824
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-9799-7489
https://orcid.org/0000-0002-4902-9387
https://orcid.org/0000-0003-3527-3378
https://orcid.org/0000-0002-1952-5259
https://orcid.org/0000-0001-8237-2841
https://doi.org/10.3390/ijms23105824
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23105824?type=check_update&version=3


Int. J. Mol. Sci. 2022, 23, 5824 2 of 19

prolonged hypoxic conditions this metabolic rewiring appears to be further stabilized by
autophagy-dependent removal of the mitochondria [6–8].

Nevertheless, despite the fact that disease conditions commonly reflect conditions of
chronic hypoxia, efforts to molecularly characterize hypoxia responses have so far largely
focused on acute hypoxic conditions, identifying the oxygen-sensitive transcription factors
hypoxia-inducible factor (HIF) 1 and 2 as key regulators of adaptive processes [9–11].
Interestingly though, during extended hypoxia, both HIFs are downregulated again [12,13],
which in combination with a new steady state expression of classical hypoxia response
genes, was recently put forward as an indicator for chronic hypoxia [14,15]. Importantly,
this definition of chronic hypoxia encompasses a cellular response state rather than an
exact duration of hypoxic conditions, and was detected in THP-1 monocytes as well as in
various multiple myeloma after 72 h of hypoxia [14,15]. Notably, in line with the decreasing
relevance of HIF-mediated adaptations during prolonged hypoxia, post-transcriptional
regulatory mechanisms, including mRNA stability regulation, translational changes, and
alternative splicing, have been shown to contribute to hypoxic responses as well [12,16–19].

2. Results

As the contribution of different regulatory layers on gene expression changes through-
out the course of hypoxia remains largely elusive, we aimed at characterizing altered mRNA
dynamics during acute and chronic oxygen deprivation. To this end, we exposed THP-1
monocytes to acute (AH, 8 h, 1% oxygen) and chronic hypoxia (CH, 72 h, 1% oxygen) [14]
and employed SLAM-seq (thiol(SH)-linked alkylation for the metabolic sequencing of
RNA) [20]. Specifically, we added 4-thiouridine (4sU; 300 µM) during the last hour of the
respective incubations to label newly synthesized mRNA and determined differential gene
expression (DGE) changes and differentially de novo synthesized (DDNS) mRNAs by RNA
sequencing based on changes in total read counts and reads harboring T-to-C transitions
due to 4sU incorporation, respectively.

2.1. Hypoxia Induces Dynamic Changes in mRNA Expression

Initially, we focused on global gene expression changes in THP-1 monocytes from
acute to extended hypoxic exposures (Figure 1A). Overall, more pronounced DGE changes
compared to normoxia (N) (Benjamini–Hochberg-corrected p-value (padj) < 0.05) occurred
under CH than under AH (DGE(CH/N): 1824; DGE(AH/N): 370) (Figure 1B). The obser-
vation that a large proportion of the additional genes regulated under CH significantly
changed between CH and AH, supports the notion that a major part of the adaptive pro-
cesses to hypoxia is induced under extended hypoxic incubations only. To obtain further
insights into the expression dynamics under hypoxia, we used k-means clustering analysis
of all DGE targets significantly regulated between AH, CH, and/or N, identifying five
clusters of targets following different expression patterns in the course of hypoxia (Fig-
ure 1C (left panels); Figure S1): A small group of DGE targets (8% of all DGE; cluster 1)
rapidly increased already under AH, remaining stable or decreasing under CH (Figure 1C
(annotation columns 1–3)). Two larger groups of genes steadily increased (cluster 2) or de-
creased (cluster 5) in expression across the course of hypoxia, representing 19% and 21%
of all DGE changes, respectively. In line with the above described observation that CH
induced more substantial DGE changes, the two largest clusters were characterized by a
predominant or exclusive up- (cluster 3; 25%) or downregulation (cluster 4; 26%) under
CH. Notably, while the mean absolute read counts of genes appeared to be similar across
all clusters, targets in cluster 4 (predominantly downregulated under CH) appeared to be
expressed at higher basal (N) levels (Figure S1; Table S1).

To assess potential functional implications of the altered mRNA expression profiles
in the course of hypoxia, gene set enrichment analyses (GSEA) for specific well-defined
biological states or processes (hallmarks) were carried out for all mRNA expression changes
occurring under AH and CH relative to N. Despite the marked difference in DGE changes
between AH and CH, the same functional implications were enriched in both conditions
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(Table S2), i.e., hypoxia and cholesterol homeostasis emerged among the top enriched
upregulated hallmarks, while Myc targets, E2F targets, and DNA repair were among the
top enriched downregulated hallmarks (Figures 1D and S2).
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Figure 1. Differential gene expression (DGE) changes under hypoxia. (A) THP-1 cells were incu-
bated under hypoxia (1% oxygen) for 8 h (acute hypoxia, AH) or 72 h (chronic hypoxia, CH), or 
under normoxia, supplemented with 300 µM 4-thiouridine (4sU) for the last hour. DGE changes 
were determined based on changes in total read counts. (B) MA plots representing DGE changes 
(log2FC) between AH and N (left), CH and N (middle), or CH and AH (right). Significant DGE targets 
(padj < 0.05) are indicated in orange (up) or purple (down). (C) Heatmap representing z-score-nor-
malized counts of all DGE targets significantly altered in at least one of the comparisons. Five groups 
representing different DGE dynamics were identified by k-means clustering analysis (left panels). 

Figure 1. Differential gene expression (DGE) changes under hypoxia. (A) THP-1 cells were incubated
under hypoxia (1% oxygen) for 8 h (acute hypoxia, AH) or 72 h (chronic hypoxia, CH), or under
normoxia, supplemented with 300 µM 4-thiouridine (4sU) for the last hour. DGE changes were
determined based on changes in total read counts. (B) MA plots representing DGE changes (log2FC)
between AH and N (left), CH and N (middle), or CH and AH (right). Significant DGE targets
(padj < 0.05) are indicated in orange (up) or purple (down). (C) Heatmap representing z-score-
normalized counts of all DGE targets significantly altered in at least one of the comparisons. Five
groups representing different DGE dynamics were identified by k-means clustering analysis (left
panels). Annotation columns 1–3 depict DGE changes (up: orange; down: purple) for the comparison
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of AH and N, CH and N, and CH and AH. Annotation columns 4–7 depict targets contributing to
the GSEA-enriched hallmarks either upregulated (I: hypoxia; II: cholesterol homeostasis (orange)) or
downregulated (I: Myc targets v2; II: E2F targets (purple)) in DGE of either AH vs. N, CH vs. N, or
both. (D) Top three enriched up- or downregulated hallmarks identified by GSEA of total mRNA
expression under AH or CH relative to N.

In line with this, many of the DGE targets constituting the enriched hallmarks hypoxia
and cholesterol homeostasis were upregulated, while Myc targets and E2F targets were
downregulated in both AH and CH. A few DGE candidates associated with these functional
hallmarks appeared to be altered exclusively under CH, mostly in clusters 3 and 4 (Figure 1C
(annotation columns 4–7)).

Taken together, total mRNA expression changes during the course of hypoxia not only
bore signs of enhanced classical hypoxia responses, but also were enriched for upregu-
lated cholesterol metabolism and reduced Myc and E2F target expression. This suggests
altered metabolic processes as well as reduced proliferation and cell cycle progression.
The finding that chronic conditions generally induced more pronounced DGE changes
than AH, and that the proportion of downregulated targets substantially increased under
CH, implies that the regulatory principles underlying dynamic mRNA expression changes
differ considerably between short- and long-term hypoxia.

2.2. Hypoxia Enhances Transcriptional Responses

In order to obtain further insights into the regulatory mechanisms governing the
observed changes in total RNA dynamics, we next analyzed newly transcribed mRNAs
(DDNS) by assessing T-to-C conversions resulting from chemical modification of incorpo-
rated 4sU in newly synthesized mRNAs (Figures 2A and S3A). The vast majority of AH-
or CH-induced DDNS changes (padj < 0.1) reflected the enhanced transcription of targets,
i.e., 94% and 76% of DDNS targets were upregulated under AH and CH, respectively
(Figure 2B). Further comparison of the DDNS changes between CH and AH revealed only
a few additional changes, pointing to the attenuation of hypoxia-induced transcription
under chronic conditions. Alike to the DGE changes, k-means clustering of all DDNS
targets regulated between AH, CH, and/or N identified five groups of targets representing
different DDNS dynamics in the course of hypoxia (Figure 2C (left panels); Figure S4 (upper
panels)). Three similarly-sized clusters, representing 66% of significant DDNS changes,
corresponded to targets with enhanced transcription during hypoxia, either steadily in-
creasing across the course of hypoxia (cluster 1) or alternatively increasing under AH, and
thereafter remaining stable (cluster 2) or decreasing again (cluster 3). Clusters 4 (24%) and
5 (10%) depicted DDNS that were transcriptionally downregulated either exclusively under
CH (cluster 4) or cumulatively throughout the hypoxic exposure (cluster 5) (Figure 2C
(annotation columns 1–3); Table S3). Notably, transcriptional changes (Figure 2C (annotation
columns 1–3)) in the identified DDNS targets appeared to closely resemble their changes
in DGE level (Figure 2C (annotation columns 4–6)). Moreover, the increase in normalized
T-to-C read counts under basal (N) conditions observed from DDNS clusters 1 to 4, which
decreased again in cluster 5, closely followed the corresponding changes in total mRNA
expression (Figure S4).

In line with the concurrent changes in DDNS and DGE, GSEA of the DDNS changes
also identified hypoxia and cholesterol homeostasis as the top enriched upregulated hall-
marks under AH and CH (Figures 2D and S5; Table S4). Due to the low number of
downregulated DDNS targets, no enriched downregulated hallmarks were identified in
DDNS under AH, yet E2F and Myc targets were again enriched under CH.

Thus, the analysis of changes in de novo mRNA synthesis suggested marked transcrip-
tional adaptations under AH with only minor additional changes under CH. The enhanced
transcription of hypoxia- and cholesterol metabolism-associated targets corroborated the
changes in DGE level, while downregulated DDNS correlated with the DGE changes under
CH related to cell cycle-associated hallmarks.
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Figure 2. Differential de novo synthesis (DDNS) changes under hypoxia. (A) THP-1 cells were in-
cubated under hypoxia (1% oxygen) for 8 h (acute hypoxia, AH) or 72 h (chronic hypoxia, CH), or 
under normoxia, supplemented with 300 µM 4-thiouridine (4sU) for the last hour. DDNS changes 
were determined based on 4sU alkylation-dependent changes in T-to-C conversions. (B) MA plots 
representing DDNS changes (log2FC) between AH and N (left), CH and N (middle), or CH and AH 
(right). Significant DDNS targets (padj < 0.1) are indicated in orange (up) or purple (down). (C) 
Heatmap reflecting z-score-normalized T-to-C read counts of all DDNS targets significantly altered 
in at least one of the comparisons. Five groups representing different DDNS dynamics were identi-
fied by k-means clustering analysis (left panels). Annotation columns 1–3 contain DDNS changes (up: 

Figure 2. Differential de novo synthesis (DDNS) changes under hypoxia. (A) THP-1 cells were
incubated under hypoxia (1% oxygen) for 8 h (acute hypoxia, AH) or 72 h (chronic hypoxia, CH), or
under normoxia, supplemented with 300 µM 4-thiouridine (4sU) for the last hour. DDNS changes
were determined based on 4sU alkylation-dependent changes in T-to-C conversions. (B) MA plots
representing DDNS changes (log2FC) between AH and N (left), CH and N (middle), or CH and
AH (right). Significant DDNS targets (padj < 0.1) are indicated in orange (up) or purple (down).
(C) Heatmap reflecting z-score-normalized T-to-C read counts of all DDNS targets significantly altered
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in at least one of the comparisons. Five groups representing different DDNS dynamics were identified
by k-means clustering analysis (left panels). Annotation columns 1–3 contain DDNS changes (up:
orange; down: purple) for the comparison of AH and N, CH and N, and CH and AH. Annotation
columns 4–6 encompass DGE changes (up: orange; down: purple) for the comparison of AH and
N, CH and N, and CH and AH. Annotation columns 7–10 reflect targets from the GSEA-enriched
hallmarks either upregulated (I: hypoxia; II: cholesterol homeostasis) or downregulated (I: Myc targets
v2; II: E2F targets) in DGE of either AH, CH, or both (Figure 1D). (D) Top three enriched up- or
downregulated hallmarks identified by GSEA of T-to-C count changes under AH or CH relative to N.

2.3. Hypoxia Reduces RNA Stability

As transcriptional changes (DDNS) appeared to explain only parts of the total gene
expression changes (DGE) under hypoxia, and since post-transcriptional modes of regu-
lation, including mRNA stability regulation, are known to commonly contribute to gene
expression changes in response to extended stimulations [21,22], we next determined dif-
ferentially stability regulated (DSR) mRNAs under hypoxic conditions. Therefore, we
labeled THP-1 cells for 8 h with 4sU, i.e., four pulses of 30 µM 4sU every 2 h during the
last 8 h of the experiment to ensure sufficient labeling (Figure 3A). Indeed, 4 × 30 µM 4sU
administered over a time course of 8 h strongly increased T-to-C conversion rates compared
to a single dose of 300 µM, while it did not affect the viability of THP-1 cells (Figure S3B,C).
mRNA half-lives were determined based on T-to-C conversions using the GRAND-SLAM
pipeline [23]. Interestingly, not only were global mRNA half-lives significantly reduced
under AH (median half-life = 3.30 h) and CH (3.16 h) as compared to N (3.71 h) (Figure S6A),
but the vast majority (99%) of DSR changes in response to both AH and CH compared
to N (padj < 0.1) corresponded to reduced mRNA stability, with only a few stabilized
targets (Figure 3B). The stratification of all DSR targets comparing AH, CH, and/or N by
k-means clustering again identified five groups representing different half-life dynamics
across the course of hypoxia (Figure 3C (left panels); Figure S7 (upper panels)). Only 2%
of DSR targets displayed enhanced half-lives in response to hypoxia, which appeared to
transiently increase under AH only (cluster 1). All other groups were characterized by
reduced mRNA half-lives already under AH. Specifically, cluster 2 represented targets with
a steady reduction in target half-life from AH to CH. Despite their separation by clustering
analysis, clusters 3 and 4, representing 65% of all DSR targets, showed markedly reduced
mRNA half-lives under AH, which remained low under CH. Cluster 5 contained DSR
targets with a strong, yet transient reduction in half-lives during the course of hypoxia
(Figure 3C (annotation columns 1–3); Table S5). In contrast to the distribution in DDNS, DSR
changes (Figure 3C (annotation columns 1–3)) poorly correlated with changes in DGE level
(Figure 3C (annotation columns 4–6)).

Notably, the few targets showing an increase in half-lives under hypoxia (cluster 1)
shared rather short basal (N) half-lives (median half-life = 1.41 h), whereas the targets in
cluster 5 (transient decrease in half-lives) had the longest basal (N) half-lives (16.89 h), and
clusters 2–4 ranked at 7.49 h, 12.31 h, and 11.15 h, respectively (Figure S7).

In line with the observation that downregulated DSR targets vastly outnumbered
upregulated ones, the GSEA of mRNA half-lives identified predominantly downregulated
hallmarks (Figures 3D and S8; Table S6). Specifically, Myc targets, oxidative phosphory-
lation, and fatty acid metabolism emerged as the top enriched downregulated hallmarks
under both AH and CH, and only TNFα signaling via NFκB and downregulated Kras
signaling appeared to be enriched in upregulated DSR under CH.

In summary, our data on the differential stability regulation of mRNAs in the course of
hypoxia indicated that most DSR targets are destabilized under hypoxia and that the major
regulated groups show only slight changes between acute and chronic conditions. Enriched
hallmarks within the downregulated DSR targets pointed to altered Myc activation and
adaptation of metabolic processes (oxidative phosphorylation, fatty acid metabolism) under
both AH and CH.
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Figure 3. Differential stability regulation (DSR) changes under hypoxia. (A) THP-1 cells were incu-
bated under hypoxia (1% oxygen) for 8 h (acute hypoxia, AH) or 72 h (chronic hypoxia, CH), or 
under normoxia, supplemented with 4 x 30 µM 4-thiouridine (4sU) during the last 8 h. DSR changes 
were determined based on 4sU alkylation-dependent changes in T-to-C conversions using GRAND-
SLAM. (B) Scatter plots comparing mean mRNA half-lives at AH vs. N (left), CH vs. N (middle), and 
CH vs. AH (right) highlighting significantly increased (orange) or decreased (purple) half-lives be-
tween the conditions (padj < 0.1, local linear regression + 95% confidence intervals). (C) Heatmap 
reflecting z-score-normalized half-lives of all DSR targets significantly altered in at least one of the 
comparisons. Five groups representing different DSR dynamics were identified by k-means cluster-
ing analysis (left panels). Annotation columns 1–3 contain DSR changes (up: orange; down: purple) 
for the comparison of AH and N, CH and N, and CH and AH. Annotation columns 4–6 encompass 

Figure 3. Differential stability regulation (DSR) changes under hypoxia. (A) THP-1 cells were incu-
bated under hypoxia (1% oxygen) for 8 h (acute hypoxia, AH) or 72 h (chronic hypoxia, CH), or under
normoxia, supplemented with 4 ×30 µM 4-thiouridine (4sU) during the last 8 h. DSR changes were
determined based on 4sU alkylation-dependent changes in T-to-C conversions using GRAND-SLAM.
(B) Scatter plots comparing mean mRNA half-lives at AH vs. N (left), CH vs. N (middle), and CH vs.
AH (right) highlighting significantly increased (orange) or decreased (purple) half-lives between the
conditions (padj < 0.1, local linear regression + 95% confidence intervals). (C) Heatmap reflecting
z-score-normalized half-lives of all DSR targets significantly altered in at least one of the comparisons.
Five groups representing different DSR dynamics were identified by k-means clustering analysis (left
panels). Annotation columns 1–3 contain DSR changes (up: orange; down: purple) for the comparison
of AH and N, CH and N, and CH and AH. Annotation columns 4–6 encompass DGE changes (up:
orange; down: purple) for the comparison of AH and N, CH and N, and CH and AH. Annotation
columns 7–10 reflect targets contributing to the GSEA-enriched hallmarks either upregulated (I: hy-
poxia; II: cholesterol homeostasis) or downregulated (I: Myc targets v2; II: E2F targets) in DGE of either
AH, CH, or both (Figure 1D). (D) Top three enriched up- or downregulated hallmarks identified by
GSEA of mRNA half-life changes under AH or CH relative to N.
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2.4. Functional DDNS and DSR Determine Specific Changes in DGE Dynamics in Hypoxia

Having established differential regulatory patterns for transcriptional and stability
regulation under hypoxia and the divergent correlation with the prime enriched DGE
hallmarks, we next assessed which of the identified DDNS and DSR changes might influence
total gene expression (DGE). First, we focused on DGE targets upregulated in the course of
hypoxia (DGE clusters 1–3) and determined how DGE targets within these clusters behaved
on DDNS and DSR levels (Figure 4A; Table S7). Herein, DDNS changes closely resembled
the DGE changes, whereas DSR changes appeared to rather counteract the DGE changes,
i.e., upregulated mRNAs at DDNS and DGE level were destabilized at the DSR level at
the same time. Furthermore, DDNS overlapped better with DGE targets induced already
under AH (clusters 1 and 2), suggesting the early induction of transcriptional responses.
To assess which adaptive cellular processes induced under hypoxia might be regulated
at a transcriptional or a post-transcriptional level, we determined enriched functional
annotations in upregulated DGE targets concomitantly upregulated in DDNS (functional
DDNS) or in upregulated DGE targets downregulated in DSR (compensatory DSR). In
line with the observation that DGE changes representing the enriched hallmarks hypoxia
and cholesterol homeostasis (Table S2) were also found in the upregulated DDNS clusters
1–3 (Figure 2C (annotation columns 7–8)), functional DDNS were enriched for cholesterol
metabolism and hypoxia response (Figure 4B (middle panel); Table S8) as identified for all DGE
(Figure 1D) and DDNS changes (Figure 2D). Instead, upregulated DGE (clusters 1–3) showed
an enrichment of rather general annotations referring to altered membrane composition and
communication with the microenvironment (extracellular, immune response) (Figure 4B (left
panel); Table S8). Interestingly, functional annotations enriched within the compensatory
DSR indeed appeared to counteract the DGE-associated functions’ extracellular and immune
response (Figure 4B (right panel); Table S8). Collectively, these observations suggested that
adaptive processes induced by hypoxia are facilitated by transcriptional programs, while
mRNA stability changes rather appear to counteract enhanced functional programs.

We next asked how downregulated DGE targets (DGE clusters 4 and 5) changed at
the DDNS and DSR levels (Figure 5A; Table S7). Generally, downregulated DGE targets
overlapped to a much smaller extent with both DDNS and DSR changes. Furthermore,
downregulation of DGE targets and concomitant DDNS changes mostly occurred under
chronic conditions. In contrast, DSR changes corresponding to downregulated DGE targets
were observed similarly under AH and CH. As most DDNS and DSR changes corresponded
to downregulated DGE in clusters 4 and 5, only targets decreasing exclusively on DDNS
(functional DDNS) or DSR level (functional DSR) in parallel to downregulated DGE were
used for the subsequent functional enrichment analyses to allow for an unambiguous
assignment to either transcriptional or post-transcriptional regulatory processes. Func-
tional DDNS were enriched in the nucleus, RNA metabolism, and cell cycle annotations
(Figure 5B (middle panel); Table S8), which corroborated that DGE targets constituting the
enriched downregulated DGE hallmarks associated with the cell cycle and transcription
(Table S2) were also found in the downregulated DDNS clusters 1–3 (Figure 2C (annotation
columns 9–10)). Thus, transcriptional changes appeared to correlate well with global gene
expression changes. In contrast, the hallmarks enriched in global DGE changes were only
poorly reflected on DSR levels (Figure 3C (annotation columns 7–10)). Interestingly though,
functional DSR targets showed a massive enrichment in mitochondrial functions, and to
a lesser extent in translation and oxidative metabolism (Figure 5B (right panel); Table S8),
corroborating the functional annotation with the highest enrichment in all downregulated
DGE targets within clusters 4 and 5 (Figure 5B (left panel); Table S8). STRING analysis
further supported the tight connection of mitochondria and metabolic changes within the
hypoxia-downregulated functional DSR targets (Figure S9; Table S9).

Taken together, general adaptations during the course of hypoxia appear to be deter-
mined largely at a transcriptional level. Yet, our data further suggest that post-transcriptional
regulatory principles, i.e., mRNA destabilization, also might play an important role. The
later may act, e.g., by limiting the extent of hypoxia-induced immune responses, but also
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by implementing a reduction in nuclear-encoded, mitochondria-associated mRNAs (see
below), thereby contributing to the establishing of specific adaptive processes to (extended)
hypoxic conditions.
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Figure 4. Impact of DDNS and DSR on upregulated DGE targets during hypoxia. (A) Changes in the
upregulated DGE target clusters (1–3) on the level of DGE, DDNS, and DSR comparing AH and N, CH
and N, and CH and AH are depicted as stacked bar graphs. (B) Top enriched functional annotations
in all upregulated DGE within clusters 1–3 (left panel), in functional DDNS, i.e., genes which are
upregulated on DGE and DDNS level (middle panel), and in compensatory DSR, i.e., genes which are
upregulated on DGE and downregulated on DSR level (right panel) as determined by DAVID.
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Figure 5. Impact of DSR and DDNS on downregulated DGE targets during hypoxia. (A) Changes in
the downregulated DGE target clusters (4–5) on the level of DGE, DDNS, and DSR comparing AH
and N, CH and N, and CH and AH are depicted as stacked bar graphs. (B) Top enriched functional
annotations in all downregulated DGE within clusters 4–5 (left panel), in functional DDNS, i.e., genes
which are downregulated on DGE and DDNS level and unaltered in DSR (middle panel), and in
functional DSR, i.e., genes which downregulated on DGE and on DSR level and unaltered in DDNS
(right panel) as determined by DAVID.

2.5. Nuclear-Encoded Mitochondrial mRNAs Are Destabilized in the Course of Hypoxia

A marked reduction in mitochondria in chronic hypoxia in THP-1 cells was previ-
ously shown to be mediated by the autophagic removal of mitochondria, i.e., mitophagy.
Moreover, the expression of numerous mitochondrial proteins involved in mitochondrial
membranes and respiratory chain complexes was also strongly reduced, though not exclu-
sively associated to autophagy [14]. In line with this, we observed reduced mitochondrial
mass and oxygen consumption rates, representing mitochondrial function, in THP-1 cells
under CH (Figure S10). We therefore asked if mRNAs encoding mitochondrial proteins
are indeed destabilized during hypoxia. This may prevent the futile production of novel
mitochondria under conditions where excess mitochondrial activity would not only be
limited due to reduced oxygen availability, but instead might be deleterious to cells due to
the uncontrolled production of reactive oxygen species [24].

In total, 59 functional DSR targets within 10 GO terms comprised the enriched func-
tional annotation mitochondria, termed functional mito-DSR targets (Figure 6A). Interest-
ingly, the median half-life of these functional mito-DSR targets was reduced from 16.02 h
under normoxia to 8.31 h under both AH and CH (Figure 6B).
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Figure 6. Validation of functional DSR during hypoxia associated with mitochondria. (A) GO terms
corresponding to mitochondrial functions (Figure 5) and the contributing hypoxia-regulated func-
tional DSR. (B) Half-lives of hypoxia-regulated functional DSR under N, AH, or CH as determined
by GRAND-SLAM. (C) DGE changes in selected functional DSR. Residuals were tested for normality
using Shapiro–Wilk test, and one-way ANOVA with Tukey’s multiple comparison test was performed
(* p < 0.05).

In order to validate the half-life changes in mitochondrial targets, we selected the
mRNAs encoding MRPL40 (mitochondrial ribosomal protein L40), CPT1A (carnitine palmi-
toyltransferase 1A), and TOMM34 (translocase of outer mitochondrial membrane 34) for
further analyses, based on their association with different mitochondrial functions. While
reduced half-lives were already observed under AH for all candidates (t1/2 (AH relative to
N): MRLP40: 58%; CPT1A: 62%; TOMM34: 46%), functional consequences, i.e., the decrease
in total mRNA levels, were appreciable only under CH (Figure 6C).

Considering that these half-lives were determined using a wash-in strategy, i.e., esti-
mating half-lives based on the contribution of mRNA synthesis and decay (GRAND-SLAM),
we further aimed to validate the half-lives in an orthogonal wash-out experiment. In this
setting, we followed the decay of mRNAs, i.e., the remaining T-to-C conversions for up
to 6 h after removal of 4sU and the addition of excess uridine (Figure 7A (left)). Notably,
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half-lives determined using the wash-out approach appeared to be substantially longer
than those predicted by GRAND-SLAM (Figure 7B). Moreover, while the so-determined
half-lives of MRPL40 and CPT1A reflected a destabilization under AH and CH, the half-life
reduction in TOMM34 was only observed under AH (Figure 7B (right panel)).
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Figure 7. Validation of altered functional mRNA stability under hypoxia. (A) THP-1 cells were
incubated under hypoxia (1% oxygen) for 8 h (acute hypoxia, AH) or 72 h (chronic hypoxia, CH),
or under normoxia. For experimental validation of half-life changes, cells were supplemented with
4 ×30 µM 4-thiouridine (4sU) during the last 8 h, followed by a wash-out with excess uridine of
up to 6 h and RNA sequencing (left). Alternatively, transcription was blocked by the addition of
actinomycin D (2.5 µg/mL; act D) at the end of the incubations, and mRNA expression was followed
for up to 4 h by RT-qPCR analyses (right). (B) mRNA stability of selected functional DSR was
determined by wash-out analyses. Library-size corrected T-to-C counts were normalized to 0 h
wash-out. (C) mRNA stability of selected functional DSR was further analyzed by following mRNA
levels after transcriptional blockade. mRNA expression was assessed by RT-qPCR. Half-lives (t1/2)
were determined by linear regression (B,C). (D) Total mRNA expression of selected functional DSR
after AH or CH as compared to N was assessed by RT-qPCR. Residuals were tested for normality
using Shapiro–Wilk test, and one-way ANOVA with Tukey’s multiple comparison test was performed
(n ≥ 3; * p < 0.05, ** p < 0.01, *** p < 0.001).

To obtain independent experimental evidence on the half-lives, we next blocked de
novo mRNA synthesis by adding the transcription inhibitor actinomycin D (2.5 µg/mL;
act D) at the end of incubations under N, AH, or CH and followed mRNA levels of the
selected candidates for up to 4 h (Figure 7A (right)). As seen before, half-lives were already
substantially reduced under AH, and remained low or slightly increased again under CH
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(Figure 7C). This resulted in a marked downregulation in total mRNA expression of all
candidates under CH and to a minor degree already under AH (Figure 7D). Interestingly,
half-lives determined using this approach resembled the GRAND-SLAM-calculated half-
lives much closer than the wash-out data.

In summary, we provide evidence that nuclear-encoded mRNAs of mitochondrial
proteins are indeed downregulated under chronic hypoxia by a reduction in their mRNA
stability. These changes appear to be initiated already under acute hypoxia, suggesting
that post-transcriptional programs support or stabilize reduced mitochondrial activities,
thereby facilitating the metabolic readjustment to prolonged low oxygen availabilities [24].

3. Discussion

Our study provides a comprehensive picture of total mRNA expression changes
(DGE), with contributing transcriptional (DDNS) and mRNA stability (DSR) changes in the
course of hypoxia. Interestingly, more pronounced changes in gene expression occurred
under chronic as compared to acute hypoxia. Adaptations to acute hypoxia were almost
exclusively reflected by enhanced mRNA expression, resulting from induced transcription,
whereas total mRNA dynamics during prolonged hypoxic incubations were characterized
by reduced expression of numerous targets. While transcriptional changes also contributed
to the observed reduction in DGE, certain adaptive traits, most notably mitochondrial
functions, instead appeared to be determined mostly by reduced mRNA stability, which
was initiated already during acute hypoxic conditions.

Gene expression changes in response to oxygen deprivation have been characterized
extensively [25–29], and only recently has a comparative analysis of mRNA synthesis and
decay under hypoxia been carried out [19]. Nevertheless, a comprehensive analysis of
mRNA expression determining transcriptional and post-transcriptional changes during the
course of hypoxia was lacking. Our approach combined the analysis of differential gene
expression (DGE) changes with contributions of differential de novo synthesis (DDNS)
and stability regulated (DSR) targets during both short- and long-term hypoxia. Our ob-
servation that hypoxia induces marked transcriptional changes corroborates the notion
that hypoxia-inducible transcription factors are of major importance to coordinate hypoxic
responses [30]. The enrichment of similar functions in all DGE and DDNS changes during
both acute and chronic hypoxia further underscores that major phenotypic adaptations to
hypoxia are determined transcriptionally. In line with this, the transcription factors HIF-1
and 2 have been shown to be essential for an appropriate adaptation to hypoxia [11]. Tiana
and colleagues recently showed that the majority of hypoxia-induced changes at mRNA
level resulted from altered transcription during short-term hypoxia in HUVEC cells using
a similar approach [19]. In contrast, total DSR changes are dominated by reduced target
stabilities under both acute and chronic conditions. While global DSR changes appeared to
only marginally affect total gene expression programs (i.e., Myc targets), altered metabolic
requirements associated with lower oxygen availability (i.e., reduction in oxidative phos-
phorylation and fatty acid metabolism) were enriched in downregulated DSR. Focusing on
functional DSR only, i.e., downregulated DSR that correlated with downregulated DGE,
not only supported this observation, but extended it to an mRNA stability-dependent
reduction in mitochondria and associated metabolic functions on a broader scale. In addi-
tion, these observations add a post-transcriptional component to the previously reported
autophagy-mediated reduction in mitochondria and reduced expression of various mi-
tochondrial proteins under prolonged hypoxia [6–8,14], which again was supported by
our findings of reduced mitochondrial mass and oxygen consumption rate under chronic
hypoxia. Functionally, reduced mRNA stability might serve to prevent the futile production
of new mitochondrial proteins and mitochondria under conditions where these are actively
degraded. On the other hand, the fact that regulation occurs on a post-transcriptional level
should allow for a rapid production of mitochondrial proteins once hypoxic conditions
are overcome, thereby allowing for an efficient post-hypoxic recovery of mitochondrial
energy production. This might be of great relevance in the context of pathophysiological
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conditions associated with ischemia-reperfusion, to ensure a rapid normalization of the
energetic deficits. Since enhanced activities of the respiratory chain are known to elevate
levels of reactive oxygen species (ROS), a rapid recovery of mitochondrial functions during
reoxygenation might also prove to be detrimental if protective systems against oxidative
stress are not upregulated equally as fast [31]. Thus, it will be interesting to see in future
studies how fast mRNA stability-evoked repression of mitochondrial functions is alleviated
upon reoxygenation and how this impacts mitochondrial energy and ROS production.

As a side note, functional DSR were further enriched in translation-associated mRNAs,
suggesting that reduced mRNA stabilities contribute to reduced translation under hypoxia.
Interestingly, while the processes of RNA stability and translational regulation have been
shown to be tightly connected [32], coupled or parallel regulatory mechanisms were
suggested [19]. In contrast, our data suggest that translational processes are subject to
mRNA stability regulation under hypoxic conditions.

We further identified a small group of compensatory DSR, i.e., targets which, while
being upregulated on total mRNA level, had reduced mRNA half-lives. The observation
that immune responses experience a compensatory mRNA stability reduction under hypoxic
conditions corroborates earlier reports that LPS-induced pro-inflammatory mRNAs are desta-
bilized under hypoxia [33]. Importantly, inflammatory conditions commonly bear hypoxic
characteristics due to the reduced oxygen availability in the local niches as a result of the in-
filtration and activation of immune cells [1,2]. Thus, it can be speculated that the importance
of compensatory destabilization of immune response-related targets might be even greater
during inflammation, where it could contribute to the resolution of inflammation.

Interestingly, the median global mRNA half-life in THP-1 cells under normoxia (3.71 h)
appeared to be substantially shorter than in HUVEC cells (8.7 h) [19]. A similar discrepancy
was observed in different murine cells, i.e., while the median global mRNA half-life
ranged between 5 h [34] and 9 h [35] in NIH3T3 cells, it was only 3.9 h in mESCs [20].
Thus, not surprisingly, similarly to the cell type-specific transcriptional profiles, mRNA
stabilities appear to vary between different cellular contexts as well. Despite the overarching
differences, the reduced global mRNA half-lives in response to hypoxia observed in our
study corroborate the marked reduction found in HUVECs [19]. Furthermore, we observed
substantial differences in the half-lives of the different DSR clusters, where mRNAs that
showed increased stability under hypoxia shared an extremely short median half-life (2.3 h).
In contrast, clusters containing mRNAs with reduced stability had median half-lives of
up to 12.3 h (cluster 5). Notably, the total mRNA expression levels appeared to follow
a similar distribution, i.e., the cluster with the shortest median half-life had the lowest
median expression (cluster 1) and the cluster with the longest half-life had the highest
median expression (cluster 5). Strikingly, the functional, mitochondrial DSR targets had an
even higher median half-life under normoxia (16.02 h), which was reduced by almost 50%
under acute and chronic hypoxia.

Our finding that the experimental validation of selected half-lives by actinomycin
D treatment correlated better with the bioinformatically determined half-lives than those
determined by 4sU wash-out is in line with previous observations [23]. Yet, others have
shown similarly good correlations for the wash-out approach [20]. Considering the great
variability in cell-type-, stimulus-, and even mRNA sub-group-specific half-lives, the
selection of an experimental approach to determine global and selected mRNA half-lives
as well as the bioinformatics tools needs to be made carefully as recently shown in a
comparative analysis of various experimental and bioinformatical approaches [36].

In conclusion, while major gene expression changes during the course of hypoxia
result from the enhanced transcription of numerous mRNAs, we provide evidence that
the reduction in half-lives of specific groups of mRNAs adds to functional traits such as
the downregulation of mitochondrial function. Considering the importance of metabolic
rewiring during hypoxia and the detrimental effects of reactive oxygen species during
hypoxia, but also during reoxygenation, these findings appear of major importance since
they might open new opportunities for intervention.
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4. Materials and Methods
4.1. Chemicals

All chemicals were purchased from Thermo Fisher Scientific GmbH (Dreieich, Germany),
if not indicated otherwise. Primers were ordered from Biomers (Ulm, Germany).

4.2. Cell Culture

THP-1 cells were maintained in RPMI 1640 containing 10% FCS (Capricorn Scientific
GmbH, Ebsdorfergrund, Deutschland), 100 U/mL penicillin, and 100 µg/mL streptomycin
in an incubator with 5% CO2 (normoxia = N). For hypoxic incubation, cells were transferred
into a hypoxia workstation (SCI-tive, Baker Ruskinn, Bridgend, South Wales, USA) with
5% CO2 adjusted to 1% O2 with N2 for either 8 h (acute hypoxia = AH) or 72 h (chronic
hypoxia = CH). For all experiments performed under hypoxic conditions, freshly prepared
hypoxic media and PBS (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) were used,
and cells were kept under hypoxic conditions until lysis.

4.3. Viability Assay

THP-1 cells were labeled with increasing concentrations of 4-thiouridine (4sU, Biosynth
Carbosynth, Staad, Switzerland) for 8 h under normoxic conditions. Every 2 h, fresh 4sU
was added without exchange of the medium. After 8 h, medium was removed, and the
cells were incubated for further 16 h in 4sU-free medium prior to determining viability
using the CellTiter-Glo® assay (Promega GmbH, Walldorf, Germany) as described in the
manufacturer’s instructions. The IC10 value was determined using nonlinear regression in
GraphPad Prism 8.

4.4. SLAM-seq

For estimation of transcriptome-wide changes in de novo synthesis and stability of
mRNA, thiol-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) was used
as previously described [20] with minor modifications.

Briefly, THP-1 cells were seeded in medium at a density of 3.5× 105/mL and incubated
under normoxic or hypoxic conditions. For estimating de novo synthesis, cells were labeled
during the last hour of normoxic or hypoxic incubations with 300 µM 4sU. To analyze RNA
stability, cells were labeled with 4 pulses of 30 µM 4sU every 2 h during the last 8 h of
the incubations without exchanging the medium in between. For wash-out analyses, cells
were washed twice in PBS after 8 h labeling (4 × 30 µM 4sU), resuspended in medium
containing 3 mM uridine (Sigma-Aldrich Chemie GmbH), and incubated for additional
1, 3, or 6 h under normoxic or hypoxic conditions. At the respective endpoints, cells
were lysed in RLT buffer and RNA was isolated using the RNeasy Plus Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions with the modification that
dithiothreitol (DTT; Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland) was added in
all washing steps (0.1 mM) and to the final eluate (1 mM). Five µg extracted total RNA
were alkylated using 10 mM iodoacetamide (in 50 mM sodium phosphate buffer, pH 8, 50%
DMSO). After 15 min incubation at 50 ◦C, the reaction was quenched by addition of 20 mM
DTT, followed by subsequent ethanol precipitation. RNA integrity was analyzed with an
Agilent 2100 Bioanalyzer using the RNA 6000 Nano Kit (Agilent Technologies Germany
GmbH & Co. KG, Waldbronn, Germany). 3′UTR libraries were generated from 500 ng
alkylated RNA using the QuantSeq 3′ mRNA-Seq Library Prep Kit FWD for Illumina with
the UMI Second Strand Synthesis Module for QuantSeq (Lexogen, Vienna, Austria). Library
sequencing (single-read; 75 or 150 cycles) was performed on a NextSeq 500 sequencer using
a High Output Kit v2 (Illumina, San Diego, CA, USA).

4.5. Read Processing, Mapping and Counting

Illumina BaseSpace was used for Bcl2fastq conversion and demultiplexing of pooled
libraries. Quality of fastq files was examined using FastQC [37]. Initially, all fastq files were
trimmed to 75 nt followed by quality-, adapter- and polyA-trimming with Cutadapt [38].
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Subsequently, the unique molecular identifier (UMI) and linker sequences were removed
from the reads, and reads were aligned to the human genome (GRCh38) with Ensembl
gene annotation (release 80) using STAR (version 2.7.6a) [39] with the following parame-
ters: –alignEndsType EndToEnd –outSAMattributes MD NH –outFilterMultimapNmax 1
–clip5pNbases 12. The resulting bam files were converted to sam files using SAMtools [40],
and mutations in the alignments relative to the reference genome were extracted using the
Perl script parseAlignment.pl from of the CLIP Tool Kit (CTK, v1.1.3) [41]. The resulting
list specified all found mutations, their locations in the genome, as well as the names of
the reads in which they were found. The list was filtered for T-to-C mutations using basic
Bash commands and kept in bed file format as described in [42]. Based on the filtered list
of T-to-C mutations, de-duplicated reads were separated into two bam files holding reads
with and without T-to-C mutation, respectively, using SAMtools and basic Bash commands.
Separate bam files were generated for total and T-to-C reads, and transcript counts were
determined using htseq-count with default parameters [43] and Ensembl gene annotation
(release 80).

4.6. Differential Gene Expression Analysis of Total (DGE) and T-to-C (DDNS) Data Set

Differential gene expression analysis was performed with DESeq2 in R [44]. Log2-
transformed fold changes in genes were shrunken using the estimator “ashr”. Benjamini–
Hochberg correction was used to determine adjusted p-values (padj). Data were visualized
using the R packages ggplot2 [45] and ComplexHeatmap [42]. For generation of heatmaps,
read counts of significantly changed genes were corrected for library size using DESeq2
size factors and subjected to a row-wise z-score normalization.

4.7. Determination of mRNA Half-Lives Using GRAND-SLAM

RNA half-lives were estimated based on “globally refined analysis of newly tran-
scribed RNA and decay rates using SLAM-seq” (GRAND-SLAM [23]). Briefly, GRAND-
SLAM extrapolates the new-to-total ratio (NTR) and the corresponding posterior distri-
bution based on SLAM-seq data, which allows RNA half-lives to be estimated. Bam files
of the 8 h 4sU-labeled samples (for N, AH, and CH) and, in addition, unlabeled control
bam files were used for running GRAND-SLAM using the default parameters. The mode
of the posterior distribution for the NTR π (output from GRAND-SLAM) was used to
calculate half-lives λ using the formula λ =

−8 log(2)
log(1−π)

. Transcripts with >0 read counts in all
samples and half-lives >0 h and <100 h were included in further analyses. Significant global
mRNA half-life changes between N, AH, and CH were determined using a Kruskal–Wallis
test with subsequent Dunn’s test. Significant single transcript half-life changes between
N, AH, and CH were determined using a one-way ANOVA followed by pairwise t-tests
with Benjamini–Hochberg multiple testing correction. Data were visualized using the R
packages ggplot2 [45] and ComplexHeatmap [42]. For generation of heatmaps, half-lives
of significantly changed DSR targets were subjected to a row-wise z-score normalization.

4.8. Gene Set Enrichment Analysis (GSEA)

GSEA was performed using GSEA v4.2.1 [46,47]. Library-size normalized counts
(basemean > 0, for all conditions), T-to-C counts (T-to-C basemean >0, for all conditions),
or half-lives (half-lives >0 h and <100 h, for all conditions) were used as input and the
hallmark gene set “h.all.v7.5.1.symbols.gmt” was as reference gene set. The hallmark genes
sets represent specific well-defined biological states or processes. The permutation type
was set to “gene_set” and 1000 permutations were performed.

4.9. Functional Annotation Clustering

Functional annotation clustering was carried out using the Database for Annotation, Vi-
sualization and Integrated Discovery (DAVID) against the gene sets “GOTERM_BP_ALL”,
“GOTERM_CC_ALL”, and “REACTOME_PATHWAY” [48,49]. A list of all detected tran-
scripts (basemean > 0, for all conditions) served as background data set.
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4.10. Transcription Inhibition Using Actinomycin D

THP-1 cells were seeded at a density of 3.5 × 105 cells/mL and incubated under
normoxic, acute, or chronic hypoxic conditions, before de novo transcription was blocked
by the addition of 2.5 µM actinomycin D (act D; Sigma-Aldrich Chemie GmbH). RNA
was isolated using TRIzol (Thermo Fisher Scientific) according to the manufacturer’s
instructions, either before (=0 h timepoint) or 1, 2, and 4 h after the administration of
act D. RNA concentration was determined by a Nanodrop ND-1000 spectrophotometer
(Peqlab Biotechnologie GmbH, Erlangen, Germany). RNA was reverse transcribed using
the Maxima First Strand cDNA synthesis kit (Thermo Fisher Scientific) and qPCR analyses
were carried out using the PowerUp SYBR Green Master Mix on QuantStudio 3 and 5
PCR Real-Time Systems (all Thermo Fisher Scientific) using primers against MRPL40 (fwd:
GAC CAA GAA GCA AAG GAG CGC T; rev: CCT CTC AGT CTC CTC AAA GGT G),
CPT1A (fwd: TCG TCA CCT CTT CTG CCT TT; rev: ACA CAC CAT AGC CGT CAT CA),
TOMM34 (fwd: CGG CAA TGA GAG TTT CCG C; rev: TCT GAA GAA CCT TGC GCC
TG), and GUSB (fwd: CAT TCC TAT GCC ATC GTG TGG G; rev: GGG GGT GAG TGT
GTT GTT GAT).

4.11. Experimental Validation of mRNA Half-Lives

RNA half-lives were estimated from act D experiments or from SLAM-seq wash-out
data by normalizing Ct values or library-size normalized T-to-C counts, respectively, to
the 0 h control time points. Linear regression in GraphPad Prism 8 was used to determine
RNA half-lives.

4.12. Statistics

Statistical analyses were carried out using GraphPad Prism v8.2.1 (GraphPad Software,
San Diego, CA, USA) or R v4.0.5 [50].
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