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Deutschsprachige Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Konstruktion dissipativer relativistischer Hydrodynamik
insbesondere fiir solche Fluide, deren Konstituenten einen nicht verschwindenden Spin aufweisen.
In diesem Kapitel soll eine Zusammenfassung der Motivation, der Methoden sowie der Ergebnisse
vorgenommen werden.

Einleitung und Motivation

Die an Beschleunigern wie dem Large Hadron Collider (LHC) oder dem Relativistic Heavy Ion Collider
(RHIC) durchgefiihrten Schwerionenkollisionen erlauben einen einzigartigen Einblick in Zustéinde der
Materie, wie sie sonst nur im frithen Universum vorhanden waren. Die dort erreichten hohen Dichten
und Temperaturen sind nach aktuellem Kenntnisstand hinreichend, um das sog. ,Quark-Gluon Plasma*
(QGP) zu erzeugen, einen Zustand, in dem Quarks und Gluonen die relevanten Freiheitsgrade darstellen.
Diese Teilchen, welche im Rahmen der Quantenchromodynamik (QCD) stark wechselwirken, sind
unter normalen Umsténden durch das sog. ,confinement” in Hadronen gebunden. Es hat sich in den
vergangenen Jahren und Jahrzehnten herausgestellt, dass dieses QGP eine hohe Kollektivitdt aufweist
und sich somit mittels hydrodynamischer Methoden beschreiben ldsst [1-3].

Eine interessante Unterklasse der in diesen Schwerionenkollisionen méglichen Messungen besteht in
der Betrachtung der Polarisation der emittierten Teilchen. Die Intuition hinter einer solchen Messung
liegt darin, dass die Kollisionen nicht immer zentral ablaufen, sodass das entstehende QGP mit einer
signifikanten Winkelgeschwindigkeit rotiert. Analog zur Magnetisierung von Materie unter Rotation,
dem sog. BARNETT-Effekt [4], ist es dann zu erwarten, dass die emittierten Teilchen eine nicht
verschwindende Polarisation entwickeln. In der Tat wurde an mehreren Experimenten nachgewiesen,
dass die A-Hyperonen, welche Baryonen mit dem Spin !/2 darstellen, einen Polarisationsgrad aufweisen,
der insbesondere bei niedrigen Energien von Null verschieden ist [5-8]. Diese Art der sog. globalen (d.h.
iiber die Impulse der beteiligten Teilchen integrierten) Polarisation kann recht gut mit hydrodynamischen
Modellen in Einklang gebracht werden, welche annehmen, dass die Polarisation der Teilchen nur von
der Vortizitdt des Mediums abhéngt [9]. Im Gegensatz dazu ist dies fiir die lokale (impulsabhéngige)
Polarisation [10] nicht moglich, wobei hier mit der Beriicksichtigung der Effekte des sog. ,thermalen
Schertensors® in den letzten Jahren deutliche Fortschritte erzielt wurden [11-14].

Eine weitere vielversprechende Observable besteht im sog. ,alignment* der ¢- und K*-Mesonen,
welche einen Spin von 1 aufweisen. Diese Groéfe ist Teil der Tensorpolarisation von Teilchen und
muss somit von der oben beschriebenen (Vektor-) Polarisation unterschieden werden. Wihrend die
Vektorpolarisation der A-Hyperonen durch den Erwartungswert des PAULI-LUBANSKI-Vektors gegeben
ist und potentiell fiir alle Teilchen mit nicht verschwindendem Spin vorhanden sein kann, beschreibt die
Tensorpolarisation Elemente der Spin-Dichtematrix, die fiir Teilchen mit Spin kleiner 1 nicht existieren.
Als Beispiel fiir den masselosen Fall sei hier das Photon genannt, welches sowohl zirkular als auch linear
polarisiert sein kann: erstere Grofe gibt die Vektorpolarisation an, letztere die Tensorpolarisation [15].
Das (globale) alignment der oben genannten ¢-Mesonen hat sich als signifikant herausgestellt [16-18],
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was in einer Reihe von theoretischen Erklarungsversuchen resultierte, wobei eine eindeutige Losung
noch aussteht [19-28].

Die Verbindung dieser Arbeit zu den oben genannten theoretischen Erklarungen fiir Vektor- und
Tensorpolarisation von Teilchen besteht darin, dass vielen dieser Ansétze hydrodynamische Modelle
zugrunde liegen. Ausgehend von fundamentalen Quantenfeldtheorien, wird iiber den Weg der kineti-
schen Theorie eine hydrodynamische Beschreibung von hinreichend stark wechselwirkenden Systemen
formuliert, deren fundamentale Freiheitsgrade einen Spin von 0, 1/2 oder 1 aufweisen. Innerhalb dieses
Rahmens kénnen dann Ausdriicke fiir die relevanten Observablen hergeleitet werden, welche sowohl
Gleichgewichts- als auch dissipative Effekte mit einbeziehen.

Relativistische Hydrodynamik

Das Anwendungsgebiet der Hydrodynamik, deren Einfiihrung sich Kapitel 2 widmet, sind solche
Systeme, die eine hinreichend grofle Separation zwischen mikro- und makroskopischen Skalen aufweisen
und somit durch ihre erhaltenen Strome beschrieben werden kénnen. In der Thermodynamik, welche
die Existenz eines globalen Gleichgewichts voraussetzt und somit als statischer Spezialfall der Hydro-
dynamik betrachtet werden kann, sind diese Grofen beispielsweise durch die (im nicht beschleunigten
Fall konstante) Temperatur, den Druck, und das chemische Potential gegeben. In relativistischen Theo-
rien, welche den Fokus dieser Arbeit darstellen, umfassen diese den Energie-Impuls-Tensor T+", den
Gesamtdrehimpulstensor J ¥, sowie weitere erhaltene Strome wie z.B. den elektrischen Ladungsstrom.
Um die Diskussion moglichst einfach zu halten, beschréinkt sich diese Arbeit auf ein Fluid, das aus
einer Teilchensorte besteht, sodass der erhaltene Strom N* als Teilchenstrom aufgefasst werden kann.
Die Erhaltung des Gesamtdrehimpulses folgt in der konventionellen Hydrodynamik trivial aus der
Energie-Impuls-Erhaltung. Demgegeniiber muss diese in der Spin-Hydrodynamik aufgrund der Existenz
eines Spin-Beitrags zum Gesamtdrehimpuls explizit mit einbezogen werden. Die zeitliche Entwicklung
der oben eingefiihrten Strome ist durch die entsprechenden Erhaltungsgleichungen gegeben,

GN!=0, 9T =0, I =0. (1)

Hier zeichnet sich bereits das Hauptproblem der dissipativen Hydrodynamik ab: die Anzahl der Erhal-
tungsgleichungen reicht nicht aus, um die Evolution aller Komponenten der erhaltenen Stréme eindeutig
festzulegen! In der idealen Hydrodynamik, welche auf dem Konzept eines lokalen thermodynamischen
Gleichgewichtes basiert, kann die Anzahl an unabhéngigen Freiheitsgraden jedoch hinreichend stark
reduziert werden, sodass die Erhaltungsgleichungen geniigen, um die Dynamik des Systems zu be-
stimmen. Im Speziellen bestimmt die Erhaltungsgleichung fiir den Energie-Impuls-Tensor die zeitliche
Entwicklung der Temperatur T'(x) sowie der Vierergeschwindigkeit u#(x), wihrend die Erhaltung des
Teilchenstromes das Verhéltnis von chemischem Potential zu Temperatur a(x) := u(z)/T(z) festlegt.
Die Erhaltungsgleichung fiir den Gesamtdrehimpulstensor schlielich fithrt auf die Zeitentwicklung des
sog. Spin-Potentials Q#”, welches nur unter Beriicksichtigung eines Spintensors auftritt.

Da in der dissipativen Hydrodynamik, welche einen allgemeineren Fall darstellt, die oben angesprochenen
Argumente zur Reduktion der unabhéngigen Komponenten aufgrund des Fehlens eines Gleichgewichtes
nicht verwendet werden koénnen, bleibt hier das Problem der Unbestimmtheit der erhaltenen Strome
bestehen. Es ist somit nétig, fiir die dissipativen Grofien, welche durch die Erhaltungsgleichungen
nicht eindeutig bestimmt werden, Bewegungsgleichungen abzuleiten. Eine Methode, dies zu tun,
ist die sog. Gradientenentwicklung, deren Beitrag erster Ordnung die im nichtrelativistischen Fall
dufserst erfolgreichen NAVIER-STOKES-Gleichungen sind. Im relativistischen Fall jedoch stofen diese
Gleichungen an ihre Grenzen, da sie zur Klasse parabolischer Differentialgleichungen gehéren und somit
die Forderung der speziellen Relativitdtstheorie nach Kausalitéit verletzen. Infolgedessen entwickeln sich
im linearen Regime Instabilitdten, welche die relativistische Version der NAVIER-STOKES-Gleichungen
in der Praxis nicht einsetzbar machen [29-32]. Eine weitere Moglichkeit, Bewegungsgleichungen fiir
die dissipativen Grofen herzuleiten, besteht darin, eine mikroskopische Theorie zugrunde zu legen,
und durch zweckméfige Naherungen das interessierende makroskopische Verhalten zu extrahieren.
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Diese Herangehensweise ist Gegenstand der vorliegenden Arbeit, und die fundamentale mikroskopische
Theorie ist durch die Quantenfeldtheorie gegeben.

Feldtheorie, Erhaltungsgrofien, und kinetische Theorie

Die erste Frage, die beantwortet werden muss, um das im letzten Abschnitt beschriebene Programm
durchzufithren, besteht darin, wie die makroskopischen erhaltenen Stréome mit den fundamentalen
Freiheitsgraden der mikroskopischen Theorie in Verbindung gesetzt werden kdnnen, was in Kapitel 3
in Angriff genommen wird.

Teilchen mit Spins 0, 1/2 und 1 werden durch Quantenfelder reprisentiert, welche sich unter LORENTZ-
Transformationen jeweils wie Skalare, Spinoren und Vierervektoren verhalten. Aus den Symmetrien der
entsprechenden Wirkungen unter POINCARE-Transformationen lassen sich dann die erhaltenen Stréme
mittels des NOETHERschen Theorems [33] bestimmen: so folgt aus der Invarianz der Wirkung unter
Raumzeit-Translationen die Divergenzfreiheit des Energie-Impuls-Tensors, wihrend die Erhaltung des
Gesamtdrehimpulses aus der Invarianz unter LORENTZ-Transformationen resultiert. Die Erhaltung des
Ladungs- bzw. Teilchenstroms schlieflich folgt aus einer globalen U(1)-Symmetrie.

Obwohl sich mit dieser Methode die erhaltenen Stréome als Funktionen der mikroskopischen Felder
darstellen lassen, ist die eingangs erwahnte Fragestellung noch nicht vollstdndig beantwortet: es
stellt sich n&dmlich heraus, dass die Erhaltungsgleichungen invariant unter einer Klasse von sog.
+Pseudoeichtransformationen sind [34]. Im Kontext einer Feldtheorie, welche Teilchen mit nicht
verschwindendem Spin beschreibt, folgt aus jeder Wahl einer solchen Pseudoeichung eine bestimmte
Aufspaltung des Gesamtdrehimpulses in einen Bahn- und einen Spinanteil [35]. Wenngleich vom
Standpunkt der vollen mikroskopischen Theorie alle Pseudoeichungen dquivalent sind, kénnen sie
dennoch die Trunkierungen beeinflussen, welche beim Ubergang zu einer makroskopischen Theorie
zwangsldufig vorgenommen werden miissen. Die Pseudoeichungen, welche in dieser Arbeit Anwendung
finden, erfiillen die Anforderung, dass der Spintensor im Fall freier Felder sowie im Gleichgewicht
erhalten bleibt und der Energie-Impuls-Tensor somit symmetrisch ist. Die Anschauung, welche hinter
diesen Bedingungen steht, besteht darin, dass die Teilchen Bahn- und Spindrehimpuls nur in Kollisionen
austauschen konnen, und dass im Gleichgewicht im Mittel kein Austausch mehr stattfinden sollte.

Eine in Herleitungen der konventionellen Hydrodynamik oft verwendete mikroskopische Formulierung
ist durch die kinetische Theorie gegeben, welche Systeme von Teilchen beschreibt, die mittels zeit- und
rdumlich lokalisierter Stofse wechselwirken. Unter Beriicksichtigung von Zweierstofen sowie Verwendung
des BoLTZMANNschen Stoftzahlansatzes lésst sich eine Bewegungsgleichung fiir die Ein-Teilchen-
Verteilungsfunktion f(z, k) angeben, welche die Wahrscheinlichkeit beschreibt, ein Teilchen mit Impuls
k am Raumzeitpunkt x zu finden [36].

Diese Formulierung ist zunéchst der klassischen Physik zuzurechnen, da sie davon ausgeht, Ort
und Impuls gleichzeitig beliebig genau bestimmen zu kénnen, was im Rahmen von Quantentheorien
aufgrund der HEISENBERGschen Unschérferelation nicht méglich ist. Die analoge Formulierung im
Kontext der Quantenmechanik und Quantenfeldtheorie besteht im WIGNER-Funktions-Formalismus,
bei dem die Rolle der Verteilungsfunktion von der WIGNER-Funktion W (z, k) {ibernommen wird,
welche eine FOURIER-Transformation der Relativkoordinate der Zweipunktfunktion darstellt und somit
im Allgemeinen matrixwertig ist.! Im Fall von massiven Spin-1/2 Teilchen weist die WIGNER-Funktion
vier unabhéingige Komponenten auf, welche sich in einem Skalar F(z, k) und einem Axialvektor
At (z, k) mit k- A = 0 zusammenfassen lassen. Im Spin-1-Fall dagegen beinhaltet die WIGNER-
Funktion neun unabhingige Komponenten, welche neben einem Skalar fx(z,k) und einem zum
Impuls orthogonalen Axialvektor G*(z,k) auch einen symmetrischen, zum Impuls orthogonalen,
spurlosen Tensor Ff umfassen. Diese zusétzlichen Freiheitsgrade stehen in direkter Beziehung zum

1Eine Ausnahme bildet der Fall von Teilchen mit Spin 0, in dem die WieNER-Funktion ein Skalar ist und somit nur
eine unabhingige Komponente aufweist.
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Vorhandensein der Tensorpolarisation bei Teilchen von Spin 1 und héher. In diesem Formalismus geht
zwar die Interpretation als Wahrscheinlichkeitsdichte verloren, da die WIGNER-Funktion iiber Gebiete
AxAk ~ h negativ werden kann [37], jedoch lassen sich zumindest im Fall freier Felder alle erhaltenen
Strome mittels dieser Funktion als gewichtete Impulsintegrale ausdriicken. Weiterhin beschreibt die
Bewegungsgleichung der WIGNER-Funktion

k- OW (z, k) = C(, k) (2)

das Verhalten des Systems zunéichst exakt. Die rechte Seite dieses Ausdrucks stellt eine Art Kollisions-
integral dar, welches in einer sinnigen Art und Weise gendhert werden muss.

Vor dieser Rechnung, welche Gegenstand der beiden folgenden Kapitel ist, wird ein in Refs. [38—42]
angewandtes Hilfsmittel eingefiihrt: Um eine kompakte Beschreibung aller Freiheitsgrade der WIGNER-
Funktion zu erhalten, ist es moglich, eine sog. ,,Spin“-Variable s* einzufiihren, und die unabhéngigen
Komponenten der WIGNER-Funktion als Multipolmomente einer skalaren Funktion f(z, k, s) bezliglich
dieser Variable zu definieren. Der Teil dieser Funktion, welcher auf der Massenschale liegt, d.h. fiir den
k? = m? gilt, erfiillt dann gemiR Gl. (2) eine Bewegungsgleichung der Form

k-0f(xz k,s) =C(x,k,s) , 3)

was eine einheitliche Beschreibung von Teilchen mit beliebigem Spin erlaubt. Die physikalisch relevanten
Observablen sind immer durch bestimmte Komponenten der WIGNER-Funktion gegeben und beinhalten
somit eine Integration iiber die Variable s.

Die kinetische Gleichung in der GLW- und KB-Methode

Eine zentrale Frage der kinetischen Theorie besteht darin, den Kollisionsterm in Gl. (3) aufzustellen.
Im Zuge dessen wird sich in dieser Arbeit auf die Effekte binérer elastischer Kollisionen beschrénkt.
Desweiteren wird die Annahme des ,molekularen Chaos* getroffen, welche besagt, dass Teilchen vor
einem Stoft unkorreliert sind, und die auch dem BOLTZMANNschen Stofszahlansatz zugrunde liegt.

Die konkrete Berechnung wird auf zwei Weisen demonstriert: In Kapitel 4 wird die GLW-Methode
(nach DE GROOT, VAN LEEUWEN und VAN WEERT) verwendet, welche in Ref. [43] dargelegt ist und
in einer direkten Entwicklung der Interaktionsterme nach asymptotischen ,in“- und ,out“-Zustdnden
besteht. Kapitel 5 dagegen verwendet die KB-Methode (nach KADANOFF und BAyM), die auf der
DYSON-SCHWINGER-Gleichung fiir die Zweipunktfunktion basiert. Wahrend die GLW-Methode direkt
mit den Interaktionstermen arbeitet, driickt die KB-Methode den Kollisionsterm zunéchst durch
die Selbstenergien der beteiligten Felder aus, welche dann mittels einer diagrammatischen Methode
entwickelt werden. Trotz der formalen Unterschiede liefern beide Methoden schliefslich die gleichen
Ergebnisse, mit dem Unterschied, dass es der KB-Methode auch mit handhabbarem Aufwand gelingt,
Effekte der Quantenstatistik zu beriicksichtigen.

In beiden Methoden werden neben der oben vorgestellten Annahme des molekularen Chaos, welche
die Ursache einer irreversiblen Zeitentwicklung ist, sowie der Restriktion auf binére Kollisionen zwei
essentielle Ndherungen vorgenommen. Zunéchst werden die Kopplungen als hinreichend schwach an-
genommen, um die Wechselwirkungsenergien als klein im Vergleich zu den Ruheenergien anzusehen.
Dies wird bendétigt, um beispielsweise Korrekturen der Ruhemasse der Teilchen perturbativ zu be-
trachten. Desweiteren wird eine sog. Gradientenentwicklung bis zur ersten Ordnung vorgenommen,
welche aus der Matrixwertigkeit der WIGNER-Funktion herrithrt und nichtlokale Effekte beschreibt, die
darauf zuriickzufiihren sind, dass die fundamentalen Quantenfelder im Gegensatz zu punktférmigen
Teilchen eine endliche Ausdehnung besitzen. Wahrend in der GLW-Methode die Ordnung in beiden
Néherungen durch Faktoren von i gezdhlt werden, ist die KB-Methode hier differenzierter, da sie
die Kopplungskonstanten der ersten Néherung aufgrund der anschaulichen Diagrammtechnik klar



ersichtlich macht, wéhrend die Gradientenentwicklung ebenfalls durch das Auftauchen von 7 signalisiert
wird. Das Hauptresultat der Kapitel 4 und 5 lautet

1
2
x [f(x T A=Ak s) f(z 4 Ay — Ak, 50) fz + A — ALK, 8) fa, k, 5)

k-0f(x,k,s) = /dr1 ATy AT dS (k) (27h)* 6™ (k + K — ky — ko)W

- (x+A1_A7k1?51)f(x+A2_A7k2352)f($+A/_Avklvsl)f(xakyg) ) (4)

wobei o € {0,1/2,1} den Spin der Teilchen darstellt und dS(k) bzw. dI" bedeuten, dass iiber die Pha-
senraumvariablen s bzw. k und s integriert wird. Der obige Ausdruck beriicksichtigt quantenstatistische
Effekte, was durch die Funktionen f := 1+ f ausgedriickt wird, wobei das positive (negative) Vorzeichen
fiir Bosonen (Fermionen) zu verwenden ist. Ein wichtiges Resultat der beiden Methoden, ersichtlich aus
Gl. (4), besteht darin, dass in der ersten Ordnung der Gradientenentwicklung sowohl lokale als auch
nichtlokale Kollisionen auftreten, wobei letztere Gradientenbeitrdge im Kollisionsintegral beschreiben.
Die Anschauung hinter diesen Termen besteht darin, dass zwei Teilchen nicht am selben Raumzeitpunkt
kollidieren, sondern um eine bestimmte Distanz gegeneinander verschoben sind, welche durch die
Vektoren A1, Ay, A’ und A bestimmt wird. Auf diese Art besteht zum Zeitpunkt der Kollision ein
nicht verschwindender Bahndrehimpuls, welcher unter Beachtung der Gesamtdrehimpulserhaltung in
Spin umgewandelt werden kann. Diese nichtlokalen Kollisionen stellen somit einen mikroskopischen
Mechanismus zur Polarisation von Teilchen dar, da nur durch sie der Spin gedndert werden kann.
Wichtig ist zu erwdhnen, dass diese Beitrige zwar bereits in Refs. [44, 45] beschrieben, jedoch erst in
Refs. [46, 47] und in der vorliegenden Arbeit in LORENTZ-kovarianter Form aufgestellt wurden. Dies
ist essentiell, da eine solche Form die Frage, ob es moglich ist, ein Inertialsystem zu finden, in dem die
Kollisionen lokal ablaufen, eindeutig negativ beantwortet.

Auch auf das Gleichgewicht haben diese nichtlokalen Kollisionen tiefgreifende Auswirkungen. Ublicher-
weise wird das lokale Gleichgewicht, welches den Ausgangspunkt fiir den Ubergang zur Hydrodynamik
darstellt, durch die Bedingung definiert, dass der Kollisionsterm fiir die Gleichgewichtsverteilungsfunk-
tion feq verschwindet. Aufgrund quantenstatistischer Effekte muss diese Funktion (zur ersten Ordnung
in der Gradientenentwicklung) die Form

h -1
feq(z, k,8) = {exp [ao(aj) — Bo(z) - k — ng,My(x)e“”aBkasg} + 1} (5)
m
annehmen, wobei die Groken g, 85 = u* /Ty, und QF” LAGRANGE-Multiplikatoren darstellen, welche
im Fall des lokalen Gleichgewichtes mit den bekannten Gréfsen aus der idealen Spin-Hydrodynamik
iibereinstimmen. Die nichtlokalen Beitrige des Kollisionsterms sorgen nun aber dafiir, dass zusétzliche
Bedingungen an diese Grofsen gestellt werden miissen,

1
a(,uBO,u) =0, 3ua0 =0, QO,MV =W = _ia[yﬂo,u] s (6)

die charakteristisch fiir den Zustand des globalen Gleichgewichts sind. Um nun im folgenden Kapitel
auf die Formulierung dissipativer Hydrodynamik eingehen zu kénnen, ist es nétig, die Definition des
lokalen Gleichgewichts derart anzupassen, dass nur der lokale Teil des Kollisionsintegrals von f.q zum
Verschwinden gebracht wird, sodass die LAGRANGE-Multiplikatoren in Gl. (5) beliebige Funktionen
von x sein kdnnen.

Dissipative Spin-Hydrodynamik

Ein Verfahren, um konventionelle Hydrodynamik aus kinetischer Theorie herzuleiten, besteht in der sog.
Momentenmethode. Hierbei wird die Verteilungsfunktion zunéchst als Summe der Gleichgewichtsfunk-
tion feq sowie einer Abweichung J f dargestellt, und letztere in einer orthogonalen und vollstandigen
Basis im Impulsraum entwickelt. Die Koeflizienten dieser Entwicklung, die sog. irreduziblen Momente

plihe = / dr Bkt - k5 (72)
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beschreiben immer noch die komplette Dynamik des Systems, ermd&glichen aber eine systematische
Trunkierung. In Kapitel 6 der vorliegenden Arbeit wird diese Methode in einer verallgemeinerten
Form angewandt, welche auch die Abhéngigkeit der Verteilungsfunktion von der Spinvariablen s
berticksichtigt. Konkret werden zusitzlich zu Gl. (7a) die irreduziblen Momente vom Spin-Rang 1 und
2 eingefiihrt,

Tﬂ,ﬂl"'l’«l = /dF E;ﬁ”k“ﬂ e k“”df ) (7b)
wruu,ur“w = /dF E£K§;5a55k<ul c kﬂ@)&f ) (7C)

mit deren Hilfe die Verteilungsfunktion fiir alle hier betrachteten Teilchen beschrieben werden kann. Es
sei angemerkt, dass eine Teilmenge der Momente p#*"#¢ den dissipativen Anteil des Energie-Impuls-
Tensors und des Teilchenstromes beschreibt, wihrend der Spintensor von den Momenten 7t#1#e
bestimmt wird. Die Momente ¢#*#1*#¢ gchlieflich tauchen in keinem erhaltenen Strom auf, stehen
aber mit der Tensorpolarisation in Verbindung.

Fiir die Zeitentwicklung der in den Gl.en (7) definierten irreduziblen Momente lassen sich unter
Verwendung der kinetischen Gleichung exakte Ausdriicke herleiten, welche ein gekoppeltes System
(abzéhlbar) unendlich vieler partieller Differentialgleichungen bilden, was eine Umformulierung der
urspriinglichen partiellen Integro-Differentialgleichung (4) darstellt. Die sich nun stellende Frage
besteht darin, wie dieses System in einer sinnvollen Weise geschlossen werden kann. Die in dieser
Arbeit verwendete Methode basiert auf Refs. [48-50] und verwendet eine Trunkierung in zwei als
klein angenommenen Grofsen: die KNUDSEN-Zahl Kn := \p5,/L beschreibt das Verhéltnis aus der
mittleren freien Weglénge der Teilchen Ang, und einer hydrodynamischen Langenskala L, welche
invers zu den Gradienten makroskopischer Variablen ist. Diese Zahl gibt an, wie grofs die Separation
zwischen mikro- und makroskopischen Skalen ist, und bildet somit ein Maf fiir die Anwendbarkeit der
Hydrodynamik. Die zweite Grofe, welche eigentlich einen ganzen Satz von Verhéltnissen beschreibt,
sind die inversen REYNOLDS-Zahlen Re™! ~ §f / feq, welche den Betrag von dissipativen Grofen im
Vergleich zu ihrem Gleichgewichtswert angeben. Diese Zahlen, von denen es so viele wie dissipative
Grofen gibt, beschreiben die Ndhe des Systems zum lokalen Gleichgewicht.

Unter der Annahme, dass die oben genannten Grofen klein und von derselben Gréfenordnung sind, ist
es moglich, die Gleichungen fiir die irreduziblen Momente perturbativ zu behandeln. Dazu wird zunéchst
die Losung erster Ordnung gebildet, welche das kinetische Analogon zur NAVIER-STOKES-Theorie
bildet. Um die Gleichungen zur zweiten Ordnung in Kn und Re™! zu trunkieren, werden diese Losungen
dann in die Terme zweiter Ordnung eingesetzt und héhere Beitrige vernachléssigt. Es sollte erwéahnt
werden, dass sich diese Methode, in Ref. [50] ,Inverse-REYNOLDS Dominance® (IReD) genannt, von dem
in Ref. [51] eingefiihrten und vielfach verwendeten sog. DENICOL-NIEMI-MOLNAR-RISCHKE (DNMR)-
Ansatz unterscheidet, welcher auf der Extraktion der Eigenmoden des linearisierten Kollisionsterms
basiert. Zwar resultieren beide Methoden in formal #hnlichen und, wie in Ref. [50] gezeigt, perturbativ
dquivalenten Gleichungen, jedoch sind die auftretenden Koeffizienten unterschiedlich. Ein Vorteil des
IReD-Ansatzes besteht darin, dass eine Klasse von in der DNMR-Methode auftretenden Termen,
welche die Bewegungsgleichungen parabolisch und somit akausal und instabil werden lassen, nicht
auftritt, und ihre Effekte in anderen Transportkoeffizienten absorbiert werden. Da diese parabolischen
Beitrige in praktischen Anwendungen immer vernachléssigt werden miissen, ist es zu erwarten, dass die
IReD-Methode bessere Ergebnisse im Vergleich mit der unterliegenden kinetischen Theorie bringt. Ein
weiterer Vorteil, welcher in Ref. [49] demonstriert wurde, besteht in der Anwendbarkeit auf Systeme
mit mehreren erhaltenen Ladungsstromen.

Unter Verwendung dieser Methode werden die Momentengleichungen so trunkiert, dass nur noch
diejenigen Momente iibrig bleiben, deren NAVIER-STOKES-Beitrdge von erster Ordnung in Kn oder
Re™! und die somit hydrodynamisch ,wichtig® sind. Dies kommt einer Trunkierung im Tensorrang /
der irreduziblen Momente (7) gleich. Der letzte Schritt besteht dann in der Wahl derjenigen Momente,
welche als dynamische Freiheitsgrade gewédhlt werden sollen. Um das Ziel einer hydrodynamischen
Theorie zu erfiillen, die erhaltenen Stréme zu beschreiben, ist es hier sinnvoll, diejenigen irreduziblen
Momente zu wihlen, welche in diesen Grofen auftreten. Da die Momente #¥:#1"#¢ in keinem erhaltenen
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Strom enthalten sind, ist diese Prozedur dort nicht moglich; stattdessen werden diese Momente mit
den konventionellen dissipativen Grofsen aus dem Energie-Impuls-Tensor und dem Teilchenstrom in
Verbindung gesetzt.

Hiernach, beschrieben in Abschnitt 6.4, ist das Hauptziel erreicht: Zuséatzlich zu den Gleichungen, welche
die ideale Spin-Hydrodynamik charakterisieren, existiert ein Satz von Gleichungen zur Beschreibung
der dissipativen Komponenten aller erhaltenen Stréme. Diese sind alle vom Typ einer Relaxations-
gleichung, wobei die asymptotischen Werte jenen aus der NAVIER-STOKES-Theorie entsprechen und
die charakteristischen Relaxationszeiten von der mikroskopischen Interaktion der Teilchen bestimmt
werden. Interessant ist, an welchen Punkten die nichtlokalen Beitrage der Kollisionsterme auftreten:
wéhrend die oben genannten Relaxationszeiten allein von lokalen Kollisionen bestimmt werden, sind
die nichtlokalen Beitrage fiir die NAVIER-STOKES-Werte der dissipativen Beitrige des Spintensors
verantwortlich. Ebenso bestimmen sie die charakteristische Zeitspanne, welche das Spin-Potential Q"
benotigt, um zu seinem Gleichgewichtswert, der thermalen Vortizitat wh”, zu relaxieren.

Zum Abschluss kann eine Verbindung zu den eingangs beschriebenen, im Experiment zugédnglichen
Observablen hergestellt werden. Innerhalb des aufgestellten Rahmens lassen sich diese Grofien, d.h. der
PAULI-LUBANSKI-Vektor sowie die Tensorpolarisation, als Funktionen der hydrodynamischen Variablen
schreiben, und, was besonders anschaulich ist, im NAVIER-STOKES-Limes betrachten. Dabei stellt
sich heraus, dass die Vektorpolarisation der Teilchen dissipative Korrekturen erhélt, welche auf den
nichtlokalen Anteilen des Kollisionsterms basieren, und sowohl durch die Vortizitat als auch durch den
Schertensor des Mediums erzeugt wird. Die Tensorpolarisation hingegen, welche eine rein dissipative
Grofie ist, wird allein von den lokalen Kollisionen bestimmt. Zum Abschluss der Arbeit wird eine
einfache Trunkierung des vollen Modells gewahlt, sodass nur ein einziger Koeffizient iibrig bleibt,
welcher sensitiv fiir die mikroskopischen Details ist. Auf diese Weise wird ein simpler Zusammenhang
zwischen der Tensorpolarisation der Teilchen und dem Scherspannungstensor des Mediums hergestellt.

Ausblick

In dieser Arbeit wurde eine in sich geschlossene Herleitung der dissipativen relativistischen Spin-
Hydrodynamik présentiert. Ausgehend von mikroskopischen Quantenfeldtheorien, welche Teilchen der
Spins 0, 1/2 und 1 beschreiben, wurde unter Verwendung des WIGNER-Funktions-Formalismus eine
kinetische Theorie entwickelt, welche quantenmechanische nichtlokale Effekte in fithrender Ordnung
berticksichtigt. Aus dieser kinetischen Theorie wurden wiederum mittels einer verallgemeinerten
Momentenmethode die Gleichungen hergeleitet, welche die Zeitentwicklung der dissipativen Anteile
der erhaltenen Stréme beschreiben. Zusammen mit den makroskopischen Erhaltungsgleichungen ist
damit die Dynamik des Energie-Impuls-Tensors, des Teilchenstroms und des Gesamtdrehimpulstensors
eindeutig festgelegt.

Die so konstruierte Theorie kann auf verschiedene Arten erweitert werden: neben Verbesserungen
in der Herleitung, wie z.B. der Beriicksichtigung nichtlinearer Beitrige aus den Kollisionsintegralen,
sollte im Vordergrund stehen, die hergeleiteten Ausdriicke fiir Vektor- und Tensorpolarisation mit
den entsprechenden experimentellen Daten zu vergleichen. Weiterhin ist geboten, die Gleichungen
darauf zu untersuchen, ob sie im linearisierten Fall ein symmetrisch-hyperbolisches System bilden
[52]. Eine Wiederholung der hier prisentierten Rechnung fiir masselose Teilchen, insbesondere fiir
nicht-abelsche Eichfelder, wére zu begriifsen, um weitere Einsicht in das hydrodynamische Verhalten des
QGPs zu gewinnen. Schlieflich kénnen die in der Anfangsphase einer Schwerionenkollision entstehenden
Magnetfelder sehr stark sein, weswegen es sinnvoll wire, Effekte elektromagnetischer Felder, welche
in Refs. [53-55] fiir den kollisionsfreien Fall untersucht wurden, auch in die volle Beschreibung mit
einzubeziehen, um eine Theorie der Spin-Magnetohydrodynamik zu entwickeln.
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Notation

Although most of the notation employed in this thesis will be introduced again before its first usage,
here we will provide a comprehensive overview of the basic rules and conventions for reference purposes.

In this work, we choose natural units, i.e., we set ¢ = ¢g = pg = kg = 1. The (reduced) PLANCK
constant % is not set to unity, since we will use it as a formal indicator for an expansion in gradients as
well as coupling constants.

We employ the “mostly minus” convention for the metric tensor in flat spacetime, i.e.,

pv

1 0 0 0
0 -1 0 0
77 2
9 =1o o -1 o ’
0 0 0 -1

The totally antisymmetric LEVI-CIVITA pseudotensor density etveb g defined via €0123 = —¢103 == 1.

The scalar product of two four-vectors a and b is denoted with a dot, a - b = a*b, = a*g,,b", and the
square of a four-vector is defined as a® := a - a. Indices on LORENTZ vectors or tensors as well as the
components of spinors in DIRAC space are denoted by greek letters. To avoid confusion, the latter are
represented predominantly by the letters from the beginning («, 8, - -) of the greek alphabet. Other
lists use latin letters (i, j, - ), and three-vectors are printed in bold.

The symmetrization of a rank-two tensor A*” is given by round brackets, A“) .= A* 4 A¥#_ Similarly,
its antisymmetrization is denoted via square brackets, AW .= Arv — Avh,

An operator O in Fock space is represented by a wide hat, and its normal-ordered ensemble average is
given by the same symbol without a hat, O := (: O :). The commutator between two operators O; and
52 is denoted by square brackets, [61, 52] = 5162 — 5261, and the anticommutator is represented
by curly brackets {517 62} = 5162 + 5261.

A quantum field in a general representation is given the letter . Relativistic scalar fields are
represented as ¢, while spinor fields get the letter . Vector fields are denoted as V. The DIRAC
matrices {y* ,pu = 0,1,2,3} are defined via their anticommutator, {y*,v”} = 2¢g*”. Here, the unit
matrix in DIRAC space has been omitted for brevity, as will often be done in the main text. For
the contraction of a four-vector a with these matrices, we employ the FEYNMAN slash notation,
¢ :==a-vy = atvy,. Expressed in arbitrary units of energy, which we choose as MeV, the scalar and
vector fields have a dimension of [¢] = [V] = MeV, whereas the spinor fields fulfill [¢)] = MeV®/2,

The spacetime and momentum coordinates will be denoted most of the time by variants of the letters
x and k. If not indicated otherwise, the four-gradient 0" is taken to act with respect to the spacetime
coordinates, 0" = 9%. The projectors onto the spaces parallel and orthogonal to the momentum k are
given by EF := k*kV /k? and KM := g — EMV | respectively, and they manifestly fulfill E#*k, = k*
and K*”k, = 0. The traceless symmetric projector orthogonal to the four-momentum is denoted by
K = LKV KY) — LK# Ko, and it has the property that K, K/ = K** K" = 0.

The measure in momentum space for particles on the mass shell (i.e., where k? = m?) is defined as
dK = d®k/[(27h)3k°], and the measure in spin space reads dS(k) = [Som/(s7)]d*s0 (s> + ¢2)o(k - 5),
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where Sy and ¢ depend on the particle spin. The combined measure is denoted as dI" := dKdS(k).
Finally, the microscopic dipole tensor is defined as X5" := —(1/m)e"*Pk,sp.

The four-velocity is denoted by u* and is normalized to unity, u> = 1. The projector onto the
three-space orthogonal to it is defined as A*” := g — y*u”. The comoving derivative will be written
as % = u - 0, and the spacelike gradient is given by V# := A#*”9,,. Considering an ¢-th rank tensor
Arrie e furthermore define A1re) = ARIEEAVIVe where ARITEY denotes a projector of
tensor-rank 2/ that is orthogonal to the four-velocity as well as symmetric and traceless in any pair of
upper or lower indices. In the special case ¢ = 2, this projector reads AL7 = %A(a“ Ag) — AN .
The irreducible components of the derivative of the fluid four-velocity are given by the shear tensor
o = V{y?) | the expansion scalar  := V - u, and the vorticity w’ = %V["u”]. Furthermore, we
define the vorticity vector as w* = %6“”a5ul,wa5.
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Chapter 1

Introduction

The aim of this thesis is to provide a mostly self-contained derivation of relativistic dissipative spin
hydrodynamics. Starting from a microscopic quantum field theory, the tools of quantum kinetic theory
are used to construct an effective description of the system in terms of quasiparticles, while keeping the
leading-order quantum effects that are related to spin. Then, the macroscopic fluid-dynamical behavior
is extracted through a systematic truncation of the kinetic equation, providing a set of equations for
the components of the conserved currents present in the system. In this chapter, we will shortly present
the status quo of fluid dynamics with spin, and show the connection to the field of ultrarelativistic
heavy-ion collisions.

1.1 Fluids with spin: a theoretical challenge

Fluid dynamics has been a tremendously successful field for centuries. Already the nonrelativistic
EULER equations [56] are applicable to a variety of problems concerning flows with low viscosities, and
their viscous generalization, the set of NAVIER-STOKES equations [57, 58], is widely used in practical
applications today. When asking how the universal behavior of fluids emerges from a microscopic
theory, one possible route to take is given by kinetic theory, where the fluid constituents are treated as
particles whose distribution obeys an evolution equation of BOLTZMANN type. Upon taking the limit
of this microscopic theory for systems that are close to equilibrium and feature a sufficient separation
of microscopic and macroscopic scales, the equations of dissipative hydrodynamics can be derived. In
such a derivation, the fact that an explicit microscopic model is assumed is both a blessing and a
curse. On the one hand, it allows for the explicit calculation of all coefficients related to dissipative
behavior of the fluid, as they are determined by the microscopic details of the system. On the other
hand, certain assumptions have to be made for the fluid to be describable by kinetic theory. These do
not necessarily have to overlap with the necessary conditions for fluid dynamics to be valid; there are
regimes where kinetic theory does not provide a good description of the system, but fluid dynamics
does, and vice versa. Thus, deriving hydrodynamics from a microscopic theory allows for the explicit
computation of all terms that appear, but limits the applicability of the resulting equations, at least
when using the coefficients as they arise from the microscopic theory.

In the case of nonrelativistic hydrodynamics, a generalization to fluids whose constituents do not
behave as pointlike spinless particles has been undertaken and is relevant to the fields of e.g. spintronics
[59-62] and micropolar fluids [63]. When deriving these types of theories from a microscopic kinetic
approach, the internal degrees of freedom of the particles have to be considered as well. As shown in,
e.g., Refs. [64-68], these quantities manifest themselves in the appearance of a microscopic tensor of
inertia that determines the rotational energy of the fluid constituent in question. The application to a
fluid that consists of particles with nonvanishing spin has been treated extensively in Refs. [69-73],
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which constitute pioneering works in this direction and introduced many ideas that were further
developed in subsequent years.

In the relativistic domain, while the equations of ideal fluid dynamics, the relativistic EULER equations,
are uncontroversial, the dissipative case is not as clear cut. The reason for this lies in the fact that the
relativistic generalization of the NAVIER-STOKES equations is acausal and unstable [30], such that an
alternative theory has to be provided. One way to derive such a formulation, as in the nonrelativistic
case, consists in providing a microscopic foundation in terms of relativistic kinetic theory. Upon
considering the near-equilibrium behavior of the system, whose microscopic and macroscopic scales
are assumed to be sufficiently well separated, one can derive a set of fluid-dynamical equations which
can be causal and stable [74]. It has to be remarked that the issue of finding a viable theory of
relativistic dissipative fluid dynamics is not merely an academic issue: at present, this type of theory
is (successfully) used in the modeling of relativistic heavy-ion collisions, which we will treat in the next
section.

Upon extending these relativistic theories of fluid dynamics to the case where the fluid constituents
are particles of nonzero spin, several challenges emerge. First, since spin is fundamentally a quantum-
mechanical property, an appropriate version of kinetic theory that includes such effects has to be used.
As an even stronger demand, a quantum-field theoretical foundation of kinetic theory is mandatory
to incorporate both quantum-mechanical and relativistic effects. These requirements can be fulfilled
by considering the covariant WIGNER function, which serves as a matrix-valued generalization of the
classical phase-space distribution function [75]. Second, in a relativistic setting, the set of conserved
quantities on which fluid dynamics is based is not unique. Rather, the conservation laws for energy,
momentum, and total angular momentum are invariant under so-called pseudogauge transformations,
which essentially redistribute those components of the total angular momentum which are labeled as
“orbital” and “spin”-angular momenta, respectively [35, 76, 77].

Besides these difficulties, a number of works in the past years have taken on the challenge of formulating
relativistic spin hydrodynamics [38, 78-81]. Regarding the task of deriving relativistic dissipative
fluid dynamics with spin from kinetic theory via the method of moments, pioneering work has been
done in Refs. [82, 83| for massive particles of spin 1/2. What is missing up to now is a formulation of
spin hydrodynamics for particles of higher spin, although investigations into an appropriate kinetic
formulation have been undertaken [84-89]. In particular, in light of the experimentally measurable
quantities that we will discuss in Subsec. 1.2.1, a hydrodynamic theory for massive vector mesons that
have spin 1 is desirable, and will be derived in this work.

1.2 Relativistic heavy-ion collisions and hydrodynamics

One aim of today’s collider experiments is to explore the phase diagram of Quantum Chromodynamics
(QCD), which constitutes the theory of strong interactions, one of the four fundamental forces of Nature.
While the basic equations of QCD are well known, it is notoriously hard to treat analytically due to its
negative S-function which lets the energy-dependent coupling of the theory decrease (increase) at higher
(lower) energies. This property, called asymptotic freedom [90, 91], is responsible for the fact that
the fundamental fields given by quarks and gluons are not observed directly, but rather form hadrons
that constitute the effective low-energy degrees of freedom. Thus, in order to construct the phase
diagram of QCD, which is depicted in Fig. 1.1, a variety of methods are used (for reviews, see, e.g.,
Refs. [93-95]). While at zero baryon chemical potential, up = 0, it is possible to study the behavior
of QCD from first principles via lattice simulations, this method does not apply at higher g due to
the infamous sign problem [96]. In this region, different tools are applied, such as functional methods
[97]. One particularly interesting feature of the QCD phase diagram is the crossover from a hadron
gas, in which the quarks and gluons are confined, to the so-called quark-gluon plasma (QGP), where
they constitute the primary degrees of freedom. At pup = 0, this transition happens at a crossover
temperature of T ~ 155MeV, and might end in a critical point at higher pp, cf. Fig. 1.1.
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Figure 1.1: The phase diagram of QCD [92].

Since the nuclei in ultrarelativistic heavy-ion collisions are accelerated to almost the speed of light,
the QGP can be probed in these experiments. Interestingly, it has been found in the past decades
that the QGP exhibits collective traits, implying that it behaves as a fluid rather than a gas of free
particles [1, 2]. Using hybrid simulations that combine kinetic and hydrodynamic frameworks to model
the different stages of a heavy-ion collision, data such as particle multiplicities and flow coefficients can
be reproduced rather well (for a review, see, e.g., Ref. [3]).

1.2.1 Polarization observables

An interesting class of potentially measurable quantities is given by the observables related to the
polarization of the particles. These constitute exciting probes of the hydrodynamic nature of the
QGP, since the fluid-dynamical gradients of the medium, such as vorticity and shear, can induce a
nonvanishing polarization. In the following, we will shortly discuss two observables of this type, namely
the polarization of A hyperons, and the alignment of ¢ and K*° mesons."

Polarization of A hyperons

The A baryon can decay via the weak interaction into a proton and a pion, A — p + 7~. Since the
weak interaction violates parity, the distribution of the decay products over the solid angle depends on
the polarization of the A baryon. More specifically, denoting all quantities evaluated in the rest frame
of the A hyperon with a star, we have [9]

dN 1

*  x\ 1 * *
o = 1= (1+anPiIg) = —— (L+aalPi| cos¢™) . (L1.1)

where P’ and R; are the polarization vector of the A particle and the direction of the momentum of
the emitted proton, respectively. Furthermore, £* denotes the angle between the polarization vector
and the momentum of the emitted particle, and ay is the so-called decay parameter of the hyperon,
which is estimated to be ay ~ 0.75 [98]. Equation (1.1) allows to relate the average of the proton

We remark that research is ongoing considering the polarization of other particles, such as, e.g., Q or Z hyperons, cf.
Ref. [7].
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Figure 1.2: Left: The global polarization of A hyperons measured by the ALICE and STAR collabora-
tions as a function of center-of-mass energy, compared to various models. Right: Expectation value of
cos 0% [9].

P

momenta along some direction n, an experimentally measurable quantity, to the polarization of the A
hyperon,

<f<; : n> - %Am ‘n. (1.2)

Choosing the vector n to point in the direction of the total angular momentum of the system, we find
the so-called global polarization [9]

Ph = —— (sin (6} — Ure)) . (1.3)

T

where ¢7 denotes the angle between l;; and the impact parameter, and Wrp is the reaction-plane
angle.? The global polarization of A hyperons [5-8], shown in Fig. 1.2, can be explained rather well
by hydrodynamic models that assume local equilibrium [9]. In these approaches, the particles are
polarized through the vorticity of the medium, akin to the famous BARNETT effect [4].

Oun the other hand, one may set n in Eq. (1.2) to point in the direction of the beam, which we choose
to be the z-axis. The longitudinal polarization [10] is then given by

1 <cos 9*>
Ppi=__ P 1.4
AT ap (cos? 91*7> (1.4)
This observable is called local polarization, since it is a function of the angle ¢4, cf. Fig. 1.2. In
contrast to the global polarization, there has been a disagreement between theory and experiment,
sometimes referred to as the polarization sign puzzle, a name that originates from the fact that the
theoretical predictions were of the right magnitude, but opposite sign compared to the data. Recently,
models based on local equilibrium have been able to reproduce the data by including previously omitted
terms proportional to the so-called thermal shear of the medium [11-14]. One goal of this thesis is to
expand on the extensive results obtained in Refs. [82, 83| by obtaining the global and local polarization
in a theory of dissipative hydrodynamics featuring transport coefficients that can be systematically
improved.

Alignment of ¢ and K*° mesons

Another possible observable related to polarization is the so-called alignment of vector mesons, which
is given by the difference of the 00-element of their density matrix from the unpolarized value of

2In practice, this angle has to be estimated from experiment, and a correction factor has to be introduced [99].
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Figure 1.3: The global alignment of ¢ and K*° mesons [18].

1/3 [15]. Since both ¢ and K*° mesons decay mainly via the parity-conserving strong interaction,
their polarization vectors cannot be measured. However, utilizing the decays ¢ — K+ + K~ and
K*9 — K+ 4+ 77, one can relate the angular distribution of the decay products to the 00-element of
the density matrix via [9]

dN 3
=S[1- —1)cos?er] . 1.5
deose — 1 [1— 000 + (3000 — 1) cos® £*] (1.5)

While not entering the polarization vector, the 00-element of the spin density matrix is part of the
so-called tensor polarization, and constitutes an effect that is only present for particles of spin 1 or
higher [15]. The measured (global) alignment of ¢ mesons, displayed in Fig. 1.3, is larger than expected,
with the additional complication that the alignment of K*° mesons is compatible with zero [16-18].
In recent years, the explanation of these results, which cannot be provided by naively combining the
polarizations of the constituent quarks, as the effect would be too weak, has become the subject of
intense work [19-27], but an established solution is still missing. In this thesis, while not yet being
able to make quantitative predictions, we will, as shown in Ref. [28], arrive at a theoretical description
of this type of effect in a hydrodynamic framework, with the alignment of the vector mesons induced
by dissipative fluid gradients.

1.3 Overview of this thesis

In order to provide an introduction into the description of macroscopic systems, Chapter 2 starts from a
thermodynamic viewpoint and introduces ideal hydrodynamics through the concept of local equilibrium.
After presenting different ways to arrive at theories of dissipative fluid dynamics in Sec. 2.3, the
inclusion of spin is discussed. Both with and without spin, the conservation equations that govern
ideal fluid dynamics are not sufficient to describe all degrees of freedom appearing in the conserved
currents. To remedy this, we turn to a formulation of quantum kinetic theory, whose basic building
blocks are established in Chapter 3. Introducing the concept of the WIGNER function, it is shown how
to connect to the macroscopic conserved currents through phase-space integrals. Then, Secs. 3.3, 3.4,
and 3.5 discuss the phase-space formulation of the dynamics of massive scalar, spinor, and vector fields,
respectively. It is shown how to extend phase space by an additional variable in order to work with a
scalar distribution function for fields of any spin. Different pseudogauges are introduced, and kinetic
equations for the WIGNER function of all fields are derived. On the right-hand sides of these evolution
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equations, there appear collision terms which specify the scattering between quasiparticles. Chapter 4
is then concerned with computing these collision terms for all of the aforementioned fields. To perform
this computation, the so-called GLW method is used, which consists of an expansion in “in”-picture
reduced density matrices. Both local and nonlocal contributions are computed, and the spacetime
shifts characterizing the nonlocality are given in a manifestly covariant form. In Sec. 4.6, the state of
local equilibrium is discussed, and is found to be equal to the one corresponding to global equilibrium,
as long as the particles have nonzero spin. In Chapter 5, the computation of the collision terms is
repeated, this time using the KB approach, which starts from the DYSON-SCHWINGER equations and
assumes a reasonable truncation for the appearing self-energy. The results of the previous chapter are
recovered, with the important addition that quantum-statistical effects are retained. This manifests
itself also in the discussion of equilibrium in Sec. 5.6, where the known quantum-statistical distributions
are recovered. Having laid the groundwork on the underlying quantum kinetic theory, Chapter 6
is concerned with deriving dissipative fluid dynamics. The method of moments is introduced and
generalized to the case of particles with nonzero spin, necessitating the introduction of irreducible
moments of different ranks in spin. The exact equations of motion of the irreducible moments of
all spin-ranks are derived. In order to close the system of moment equations, the IReD approach is
employed, which denotes a perturbative scheme where the higher-order terms are approximated by
using their NAVIER-STOKES values. This then allows to derive equations of motion for all dissipative
degrees of freedom that appear in the conserved currents, thus completing the construction of spin
hydrodynamics from kinetic theory. It is found that those spin degrees of vector particles which
are responsible for the tensor polarization couple to the standard hydrodynamic fields, leading to
corrections in the respective transport coefficients. In Sec. 6.5, the polarization-related observables,
i.e., the PAULI-LUBANSKI pseudovector and the alignment, are expressed in terms of hydrodynamic
fields, and also shown in the NAVIER-STOKES limit. Finally, Chapter 7 summarizes this work and lists
future perspectives.



Chapter 2

Relativistic hydrodynamics

In general, describing the behavior of a macroscopic physical system is a highly nontrivial task.
Evaluating the equations of motion for all microscopic degrees of freedom is not feasible, as it would
require solving O(N4) ~ O (10?*) coupled differential equations. Instead, it is sensible to take a
diametrically opposed approach that does not build on evaluating the evolution of the microscopic
degrees of freedom, but rather on a few macroscopic variables that describe the emergent properties
of the system. In this chapter we will discuss a few of these approaches, the most well-known being
usual thermodynamics, which deals with systems in thermal equilibrium. Relaxing the assumption
of complete thermal equilibrium yields a theory that deals with spacetime-dependent fields in local
equilibrium, namely ideal hydrodynamics. Removing this constraint as well, which is necessary in order
to be able to describe dissipative processes, leads into the realm of dissipative hydrodynamics. This
last and most general approach to describe macroscopic systems, which in contrast to the previous two
requires system-specific input beyond an equation of state, will be the main topic of the thesis.

2.1 Thermodynamics

In complete thermal equilibrium, a macroscopic system can be characterized by a comparatively small
set of extensive and intensive quantities, extensive meaning that the quantity scales with the system’s
size, which does not hold for intensive quantities. Considering a system at rest in the absence of
external fields, the extensive thermodynamic quantities are given by the energy &, the entropy S, the
volume V, and the particle number N'. These quantities obey the first law of thermodynamics,

Nspec

A& =TdS — PAV + > pid\; (2.1)

i=1
where the factors in front of the differentials are the intensive quantities of the system, namely the
temperature T, the pressure P, and the chemical potentials {{;}, where i = 1,--+, Nypec. In the
following, we will always assume that the system consists of a single particle species, i.e., Ngpec = 1.
The intensive quantities can be related to the extensive ones by the relations

-1
o 9 _ (98 7 (2.2a)
95 |, DE |, nr
p=-%| _p% (2.2b)
Wlsry Wy
o€ oS
=22 T2 2.2
N Nz (2.2¢)
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which follow immediately from Eq. (2.1) by considering either the energy or the entropy as a function
of the other extensive variables, i.e., £ = £(S,V,N) or § = S(&,V, N), respectively.

Given that £,S,V and N are all extensive quantities, we can deduce that the energy is a homogeneous
function of order one, i.e.,

EAS, AV, IN) = AE(S,V,N) (2.3)
which holds for any A € RT. Expanding A around unity, A = 1 4+ n, n < 1, we find

14+nES,V,N)=E[1+n)S,1+n)V,(1+n)N]

_S(S VN 4 (85 s+ %

yy &
aS |, " oV

SN W

N) +0(n%), (24)
S,V

from which it follows by equating terms of order O(n) and using Eqgs. (2.2) that
E=TS - PV+uN . (2.5)

This relation is called the EULER equation. For the following considerations, it is helpful to work not
with total quantities, but rather with densities. Introducing the energy density € := £/V, the entropy
density s :== §/V and the particle-number density n := A /V, we have

e+ P=Ts+pun. (2.6)

Defining the inverse temperature 8 := 1/T and the ratio of chemical potential over temperature
a = p/T = pf, we can rewrite the first law as

ds = fde — adn . (2.7)

Furthermore, by LEGENDRE-transforming the energy with respect to S,V, and N as well as using Eq.
(2.5), we find the GIBBs-DUHEM relation

dP = sdT +ndp (2.8)
which upon switching from (i, T') to (a, 8) and using the EULER equation takes on the following form,
BdP = —(e 4+ P)df + nda . (2.9)

The discussion up to now tacitly assumed a fixed reference frame and did not assess the question of
how thermodynamic variables transform upon changing the reference frame, for which a covariant
formulation is needed.

2.1.1 Covariant thermodynamics

As we will discuss in more detail in Sec. 3.1, the action of a relativistic theory should be invariant under
transformations belonging to the POINCARE group, implying the conservation of the energy-momentum
tensor TH as well as the total angular momentum tensor JM¥. Note that the total angular momentum
tensor can be decomposed into the sum of the orbital angular momentum tensor

LA = T 1] (2.10)

and the spin tensor
RSV = JAw _ [ (2.11)

Note that the square brackets denote antisymmetrization, A¥BYl .= A*B¥ — AYB*. In order to stay
consistent with the thermodynamic relations introduced earlier, we further assume that the theory
features a conserved particle four-current N*. Note that these conserved currents are to be identified
with densities (and not total quantities) when comparing to Eqgs. (2.6)—(2.9). This can be seen from
the fact that the total charges (i.e., the total particle number N, the total momentum P*, and the
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total angular momentum J*¥) are given by integrating N*, T, and JM over a hypersurface X.
Explicitly, we have

N = /dEANA , (2.12a)
PH = / AL, T | (2.12b)
T = /dE,\JA“”, (2.12¢)

where the hypersurface can in particular be chosen to be an equal-time one, d¥* = §/'d®z, such that
the total charges are constant in time. The conservation equations for these currents read

a#NM — 0 , (213&)
auT;w =0, (2.13Db)
T = By S LTIl — ¢ (2.13¢)

Given the aforementioned general arguments, it is now clear how to connect the thermodynamic
variables appearing in the standard relations (2.7) and (2.9) to covariant conserved currents. The
energy density is the 00-component of the energy-momentum tensor, e = T°°, while the particle-number
density denotes the zeroth component of the particle four-current, i.e., n = N°. Assigning a four-vector
S to the entropy density such that s = S° and expressing the inverse temperature as the zeroth
component of a four-vector, 3 = 3", we may express the first law (2.7) as

dS% = BydT — adN° . (2.14)

At this point it is clear that Eq. (2.14) is the zeroth component of a covariant expression evaluated
in some frame, which we can argue to be the rest frame of the medium. First, we note that the
four-velocity of the medium w*, which in its rest frame (denoted with an index RF) becomes

upe = (1, 0,0, 0)* (2.15)

is the only vector at our disposal that is related to the system. In a nonrotating system in thermal
equilibrium without external fields, the pressure is isotropic and thus the energy-momentum tensor is
diagonal,

Tiy = diag (e, P, P, P)" = eupufip — PARY (2.16a)

where we defined the projector A*” := gt — yHu”. Since u* is the only vector at hand, we must have
that N* = nu*, S* = su*, and " = Sut, i.e.,

Nip = (n, 0, 0,0, (2.16b)
SgF = (Sa 07 0) O)M 9 (2160)

From Egs. (2.16), we can then deduce the covariant form of the first law,
ds* = 3,dT"" — adN*" (2.17)

which reduces to Eq. (2.7) in the rest frame of the medium. Similarly, we obtain the covariant form of
the GIBBS-DUHEM relation (2.9),

d(B"P) = —T*dB, + N*da . (2.18)
The EULER equation (2.6) then reads
T B, + PB* = S* + aN* . (2.19)

We remark that from Eq. (2.17) we find that, as expected, the entropy four-current has vanishing
divergence,

08" = B,0,T" — ad,N" =0 . (2.20)
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Moving systems in thermal equilibrium

It should be stressed that the previous results always assumed complete thermal equilibrium. This
restricts the possible values of the system’s four-velocity u* to the ones that are obtained from the
rest-frame values by a constrained class of LORENTZ transformations, namely those that let the
four-velocity be a combination of a uniform motion and a rigid rotation.

This condition can be derived along the lines of §10 of Ref. [100], which deals with the nonrelativistic
case. First, we may think of the system in question as made up of N smaller systems, which are
macroscopic nonetheless. These small systems, which we call cells, are themselves in thermodynamic
equilibrium, as well as in equilibrium with each other. Note that, in Sec. 2.2 we will relax the latter
assumption. Thermal equilibrium demands the maximization of the total entropy, which is given by

S = /dEASA ) (2.21)
The total entropy S of the system is given by the sum of the entropies of the cells S;, and the latter

have to be functions of the internal energy of the cell, i.e., the difference between the total energy of
the cell and its kinetic energy. Thus, we have

N
S=Y S8 (&— My 1), (2.22)

1 p2
vi = =1+ (2.23)
1—v? \/ M?

is the LORENTZ factor, v; := u;/7; is the three-velocity and p; := M;7;v; denotes the momentum of
the i-th cell, which has the mass M;. Furthermore, the conservation of the total four-momentum and
the total angular momentum imply

where

N N
ZP? = const. , Z P, opi g = const. (2.24)
i=1 i=1

where we neglected the possibility of particles having spin for now. Maximizing the entropy (2.22)
subject to the constraints (2.24), we find, using the method of LAGRANGE multipliers,

N

8 (o7 = leget
0= o D [Si (& — Mi(yi = 1)) + bapf* + Fpoe” P z; opi )
Joi=1
= —uzjj—’_“ + by + @ €poapty - (2.25)
J

Here we employed that

i Di, U;,

" = fy~]\/f;-2 i = 7‘1\25” (2.26)

j (Y] Vi
as well as the definition of the temperature in a moving system
IS, Vi

which reduces to Eq. (2.2a) in the case of 7; = 1, as it has to. Rearranging Eq. (2.25) and defining
wB = %paep"aﬁ, we find

‘@
oS

=B =+, , (2.28)

loe!

where w'” = %8["@’-‘ I = const. is the so-called thermal vorticity. This condition tells us that (for
constant temperature) each cell in the medium may move uniformly with the same magnitude and
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direction (given by b*). Furthermore, there may be a constant rotation or acceleration (characterized
by @ or w%, respectively). Note that in the case of nonzero acceleration or rotation the temperature
is not constant [101].

We will encounter the condition (2.28) again in Chapters 4 and 5, where it will arise from an effective
microscopic theory as the condition of global equilibrium.

Recovering a known relation

Since Eq. (2.28) implies that the acceleration and rotation of the system is constant, we can write the
total four-temperature as " = b* + wh¥x, (where z is continuous now), which can then be inserted
into the first law (2.17). Using the antisymmetry of w"¥, we find

1
dS* = b,dTH — §wy>\dL‘“”\ — w T da? — adN* | (2.29)

where we employed the definition (2.10). Note that we still have 9,5* = 0 due to the divergence of
the orbital angular momentum tensor, 8ML””>‘ =T

To conclude this section, we consider the case of a rigidly rotating (but not uniformly moving) medium.!

The four-velocity is
W= (1, V) =y (1w x x)" (2.30)

where w is the vorticity vector. Via Eq. (2.28), we can then identify

p= (20,00, @ =0, @V =Lkt (2.31)

In order to obtain the nonrelativistic limit, we may approximate the LORENTZ factor

1

=—=1+0(wPx?) , 2.32
such that T = const. in that regime. Defining the angular momentum vector L := —%eij kO we

find for the zeroth component of Eq. (2.29) in the nonrelativistic limit
Tds =de 4+ w-dL — pdn . (2.33)

Here we neglected terms of second order in the velocity, using that 7% = pv® ~ O(|w]||x]|), where p
denotes the density of the medium. As expected, Eq. (2.33) is the first law for nonrelativistic rotating
systems known from the literature, cf., e.g., §26 of Ref. [100].

2.2 Ideal hydrodynamics

When speaking of hydrodynamics, the fundamental difference to usual thermodynamics as discussed
in Sec. 2.1 lies in the concept of local equilibrium. Thinking of the total system (which we call a
fluid from now on) as being made up of a large number of small subsystems, which are nonetheless
large enough themselves to be considered as macroscopic, we can take each of these cells to be in
thermal equilibrium as discussed in the previous section. The crucial difference lies in the relaxation
of the assumption of complete thermal equilibrium, i.e., the assumption that all cells are in thermal
equilibrium with each other. Without this premise, Eq. (2.28) does not necessarily follow, as the
entropy only has to be maximal for a given cell, but not for the whole system; in other words, it has
to be maximized only locally, but not globally. Letting the number of the fluid cells go to infinity

IFor a discussion of the accelerating case, see Ref. [101].
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while shrinking their size to zero (such that the volume of the fluid stays finite), we can move from
a set of thermodynamic quantities for each cell {T;, P;, u', ---} to a set of thermodynamic fields
{T(x), P(x), u*(x), --- } that depend continuously on spacetime.

The equations of motion for these quantities are given by the conservation equations (2.13). For the
purpose of this section, we will ignore the conservation law for the total angular momentum, which
will be discussed in Sec. 2.4. As argued in Sec. 2.1, we may decompose the particle four-current and
the energy-momentum tensor as

N = nut and T = eufu” — PAMY . (2.34)
Inserting these decompositions into the respective conservation laws, we obtain

OuNF =n+nb, (2.35a)
8,T" = [¢ + (¢ + P) O] u” + (e + P) @ — V'P . (2.35b)

Here, we defined the comoving derivative d% = u, 0", which is denoted by a dot and reduces to a
time derivative in the rest frame of the fluid, where u* = (1, 0, 0, 0)*. Similarly, the spacelike gradient
VH# = AMQ, was introduced. Furthermore, we defined the so-called expansion scalar § = 0,u*.
Projecting Eq. (2.35b) along the fluid four-velocity (by contracting with u, ) and onto the three-space
orthogonal to it (by contracting with A*)) yields

n=-nb, (2.36a)
E=—(c+P)b, (2.36b)
(e+P)ut =V*HP, (2.36¢)

where we used the fact that u,u" = %du2 /d7 = 0 since the four-velocity is normalized to one. Equations
(2.36) are called the relativistic EULER equations and constitute the basis of relativistic ideal fluid
dynamics.

Evidently, the ideal fluid is characterized by five variables, namely ¢, n, and u", where it has to
be noted that u* only has three independent components due to its normalization. Recall that the
pressure is not an independent quantity, as it is determined in terms of the energy and particle-number
density after specifying an equation of state of the form f(P,e,n) = 0 with some function f. Thus,
the evolution of an ideal fluid is completely specified by the conservation equations and (covariant)
thermodynamics. It has to be stressed that at this point the only information that is specific to the
fluid under consideration comes from the equation of state; Eqgs. (2.36) are (under the assumption
of isotropy in the fluid-rest frame) universal, and the fluid to be studied merely provides the initial
conditions.

Lastly, note that the covariant thermodynamic relations (2.17)—(2.19) still hold, and thus the entropy
four-current is conserved, cf. Eq. (2.20). Analogous to Egs. (2.36), its equation of motion reads
0=0,5"=5+s0. (2.37)

At this point, it should be mentioned that, due to the nonlinearity of the EULER equations, a perfect
fluid may develop shock waves (discontinuities). At these points, the energy-momentum tensor and the
particle four-current are no longer continuously differentiable [102, 103]. The resulting values of T#* and
N* on both sides of the discontinuity are then determined by the (relativistic) RANKINE-HUGONIOT
conditions [104]. It can subsequently be shown that shock waves have to increase the entropy [102,
103], i.e., they constitute irreversible processes.

Nonrelativistic limit

We close this section by connecting with the nonrelativistic theory. In order to perform this limit, we
have to decompose the fluid four-velocity into its time and space components u = « and u = yv, which
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behave as a scalar and a vector under GALILEI-transformations, respectively. In the nonrelativistic
case, we have |v| = v < 1,2 such that the fluid four-velocity reads

ut ~ (1, v)* | (2.38)

where we neglected terms of second order in v. Then, the expansion scalar takes the form

0~V-v. (2.39)
The comoving derivative reads
d 0
_— = M~ — . 2.4
I u,, 0 8t+v Vv, (2.40)
while the spacelike gradient becomes
d
Vu=0,— Uy 0, V), , (2.41)

where we again neglected terms of second order in v. Using that, in the nonrelativistic limit, the
particle-number density is directly related to the mass density p of the fluid made out of constituents
of mass m, mn = p, and expressing the energy density as ¢ = pe with the specific internal energy e,
we find from Egs. (2.36)

Ip
Oe P
E—F(V-V)E——;V-V, (242b)
ov 1
o TV V)= —;VP. (2.42¢)

Note that the zeroth component of Eq. (2.36¢) became trivial and was consequently omitted from
the system of equations. Manifestly, Eq. (2.42a) denotes a continuity equation for the mass flow and
Eq. (2.42b) describes the evolution of the specific internal energy, while Eq. (2.42c) determines the
evolution of the fluid velocity.

2.3 Dissipative hydrodynamics

As we have seen in Sec. 2.2, ideal fluids evolve adiabatically (except for shock waves), implying that
all processes are reversible. However, any real system features some degree of degree of dissipation,
which renders the evolution of the fluid irreversible. Giving up the premise of local thermodynamic
equilibrium, we can no longer argue that the energy-momentum tensor is diagonal in the rest frame of
the fluid, as there may be nonzero fluxes in energy or momentum. Of course, the conservation equations
(2.13) are still valid, and constitute the basis of a theory of dissipative fluids as well. Considering a
fluid whose constituents do not have spin, i.e., setting SM¥ = 0, the conservation of total angular
momentum (2.13¢) enforces the energy-momentum tensor to be symmetric.

In order to proceed, we irreducibly decompose N* and TH¥ with respect to u*, which at this point
merely is a normalized timelike four-vector that specifies a frame of reference. We obtain

N¥ = nut +nt | (2.43a)
TH = eutu” + uPhY) — PAMY 4 i | (2.43b)

where the round brackets denote symmetrization, A#BY) .= A*BY + AYB*. In addition, n == u- N
is the particle-number density in the frame characterized by u*, while n* = A*” N, denotes the

2The dimensionless quantity that controls the expansion around the nonrelativistic limit is of course v/c, where c is
the speed of light in vacuum.
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reference expansion vorticity

Figure 2.1: Sketch of the intuition behind the irreducible components of the derivative of the four-
velocity V#u” (Figure adapted from Ref. [103], p.136).

particle diffusion in that frame. The energy density is still given by € := u,u,T"", but can now be

accompanied by an energy flur h* = A" u*T,,. Note that, due to the symmetry of T#”, the energy

flux and the momentum density are equal. The isotropic pressure is given by P := —%AWT’“’, while

the remaining part is called the shear-stress tensor «t" = AZETO‘B . Here, the traceless projector

ALG = %Ag‘ A;) — AP A, projects a rank-two tensor onto the subspace orthogonal to /.

The divergences of the particle four-current and the energy-momentum tensor read
OuN" =n+nb+ 0,n", (2.44a)
0, TH = [¢ + 6 (e + P) + 0, h* u” + b + geh"
+ hy (o + W) + (e + P)u” — VP + 9,7 . (2.44b)

Here, we made use of the following irreducible decomposition of the derivative of the four-velocity u*,
0
oMu” = uha” + gA‘“’ + ot + Wt | (2.45)

where we defined the shear tensor o*¥ = Aggaauﬁ and the vorticity w*” = %V[“uy]. Intuitively, the
expansion scalar 6 describes a change of the volume of a fluid cell without any additional motion, while
the vorticity describes a rotation at constant volume. The shear tensor can be envisioned as the change
of the shape of a fluid cell without changing the volume. These interpretations are visualized in Fig.
2.1.

2.3.1 Hydrodynamic frames

It is important to remark that the variables e, n, and P a priori do not fulfill the thermodynamic
relations (2.6)—(2.9) since they are related to the nonequilibrium fluid. However, one can formally
take the particle four-current and the energy-momentum tensor as sums of equilibrium and dissipative
parts, and then interpret some of the quantities that appear in Egs. (2.43) as equilibrium contributions.
First, we write

N# = NI 4 5N (2.46a)
TH =TI 4 5TH (2.46D)
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where the equilibrium contributions read
N = nou” | T = equtu” — PyAM . (2.47)

Note that the variables ng, €g, and P, are the particle-number density, energy density, and pressure
characterizing a fictitious equilibrium state, and they do fulfill the thermodynamic relations (2.6)—
(2.9).3 In particular, there exists an equation of state, such that the equilibrium pressure Py(ng, )
can be expressed in terms of the equilibrium particle-number density and energy density. Decomposing
the deviations from equilibrium as

ON* =utén +nt | (2.48a)
STH = ubu” e + ulHh?) — TIAMY 4 7k | (2.48b)

we can identify
€=-¢o+0c, n=ng+on, P=P+1I. (2.49)

At this point, it is clear that we have introduced several new variables which are not defined unambigu-
ously, as is evident by simply counting the degrees of freedom: N* has four independent components,
while T#", being a symmetric second-rank tensor, has ten. However, we are dealing with five scalar
quantities (g, de, ng, on, and II), three vectors (n*, h*, and u*, which have three independent
components each), and one traceless symmetric tensor (7#¥, which has five independent components).
In total, we thus are faced with 19 quantities whose evolution has to be specified, five of which have to
be fixed by defining the fictitious equilibrium state characterized by ng, €g, and u*. These defining
relations are known as matching conditions, and a specific choice is called a hydrodynamic frame.
Two hydrodynamic frames are ubiquitous in the literature because of their straightforward physical
interpretation, namely the ECKART frame [105] and the LANDAU frame [102]. In both of these, the
deviations of the particle-number and energy density from their equilibrium values are set to zero,

g0 =upu, T = de=0, (2.50a)
ng = u, N* = on=0, (2.50b)

implying that n and € behave as if they were in local thermal equilibrium. The four-velocity is defined
in the ECKART frame via
Ni=nouyy, = nph=0, (2.51)

i.e., the rest frame specified by the four-velocity u%, is such that there is no particle diffusion. The
price to pay for this definition consists in the energy diffusion not vanishing, h’, # 0. In contrast, the
LANDAU frame defines the four-velocity through

T'ur, =euf = hif =0, (2.52)

such that in the rest frame defined through u/ there is no energy diffusion. However, in general there
will be a nonvanishing particle diffusion, nf # 0.

In the past years, more general frame choices have gained popularity due to their desirable properties
regarding the causality and stability of the resulting system of equations [106-110]. However, a
thorough discussion is outside the scope of this thesis, where we will choose the LANDAU frame.

Inserting Eqgs. (2.49) into Eqs. (2.44) and projecting the equation of motion for the energy-momentum
tensor with u, and A*,, we find

0 =ng+on+ (ng + dn)d + 9,n" , (2.53a)
0=¢ég+0é+ (g0 + Po + 0e +11) 0 + (0, — 1y) B — 0, (2.53Db)

.4
0= Ahy 4 SOM + hy (0™ + W)
+ (g0 + Py + 0e + I) i — VH(Py + IT) + AP 0%r,q . (2.53¢)

3We remark that neither the equilibrium nor the dissipative quantities are measurable by themselves, but only their
sum, i.e., the components of the physical particle four-current and energy-momentum tensor.
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In the LANDAU frame, the conservation equations read

ng = —ngb + 4,nt — Vnt (2.54a)
€0 = —(€0+P0+H)9+7THVUHV (254b>
(€0 + Py + ) 0" = VH(Py + II) + 740, — APV, . (2.54c)

Here we decomposed the partial derivatives 0% = u“% + V*# and used that the particle diffusion and
the shear-stress tensor are orthogonal to the fluid four-velocity.

It is straightforwardly seen that, even after enforcing matching conditions such as Egs. (2.50)—(2.52),
the system of equations (2.54) remains underdetermined. The reason is that we are still dealing with
14 dynamical quantities, while the conservation laws only provide five equations of motion, which
determine g, ng, and u”. Intuitively, this underdetermination arises because dissipation results from
complicated microscopic processes in the fluid, and thus it is a property of the specific system at hand,
as opposed to the general conservation laws that govern ideal fluid dynamics. Thus, we always have to
provide some microscopic input that specifies which kind of fluid we aim to describe. This microscopic
input consists in additional equations that determine the dissipative quantities, i.e., IT, n*, and 7" in
the LANDAU frame. The two most prominent approaches to provide these equations are the gradient
expansion, which relates the dissipative currents to fluid gradients in algebraic equations, and the
MULLER-ISRAEL-STEWART (MIS)-type theories, which keep the dissipative quantities dynamical and
provide differential equations for them.

2.3.2 Gradient expansion

The basic idea of the gradient expansion lies in relating the dissipative quantities to derivatives of
the fluid-dynamical quantities that characterize the fictitious local equilibrium state, i.e., {eg, 1o, u*},
or equivalently {ag, Bo, u*}, where ag and Sy are defined through the equation of state and the
thermodynamic relations (2.6)—(2.9). In the LANDAU frame, we find for the relevant dissipative
quantities

I=-¢h, (2.55a)
nt = kI* + AJH, (2.55b)
= 2not” | (2.55¢)

where we defined I* := V*aq, J* = V# Sy, and collected terms on the right-hand side that contain
only one derivative and fulfill the necessary symmetries. A theory that builds on relations like Eqgs.
(2.55), which are of first order in derivatives of equilibrium quantities, is commonly referred to as a
first-order theory. Note that the coefficients (, x, A, and 7 are not fixed and have to be calculated
from a microscopic approach that describes the fluid under consideration.

First-order entropy

Even though there are no universal values for the coefficients in Egs. (2.55), we can constrain them to
some extent via the second law of thermodynamics. First, note that our fictitious equilibrium state
also features an entropy current

SH — Téw,ﬁouy + Poﬁouu — OéoN(l)j‘
= [Bo (Po 4 €0) — agng |u* (2.56)

=!S0
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cf. Eq. (2.19). Its divergence reads

8MS'M = BouyﬁuTé"’ — OéoauNéL
= —Bou,,auéT”” + Oé()aﬂ(SNu
= Bo (7" 0, — T10) + apd,n* | (2.57)

where we used the conservation of the total particle four-current and the energy-momentum tensor.
Note that, since we are working in the LANDAU frame, it holds that ée = dn = 0, h* = 0. Defining the
first-order correction to the entropy current [111]

Sl = —aydN* = —agn* , (2.58)
we find

9y (S + SY) = Bo (1" 0, — T10) — nt1,,
= By (2000, + G67) — (K" 4 APV, 5)

where we inserted the first-order gradient expansion (2.55). From the second law of thermodynamics,
0,5* > 0, we then find that?

! ! !
A=0, ¢>0, k>0, n>0. (2.60)
Thus, the bulk viscosity (, the thermal conductivity k, and the shear viscosity n should be nonnegative.

Inserting Eq. (2.55) with the constraints (2.60) into Eqs. (2.54), we arrive at the relativistic NAVIER-
STOKES equations,

ng = —ngb + ki, I" —V,, (KI") (2.61a)
éo = — (e0 + Po — CO) 0+ 270" 0,0, (2.61b)
(€0 + Po — CO) 0" = V*(Py — (0) + 2no* i, — 2A*V (novq,) - (2.61c)

Unfortunately, Eqs. (2.61) are not usable in practice, as they constitute parabolic equations, which
feature an infinite speed of signal propagation, thus being inconsistent with special relativity [103].
This is not merely a conceptual problem, as acausality in the rest frame of the fluid leads to (linear)
instabilities in moving frames [29-32]. Going to higher orders in the gradient expansion does not
fix this problem, either, as this procedure results in the (relativistic) BURNETT equations [112, 113],
which are unstable even in the nonrelativistic regime [114]. At this point, we remark again that, if one
chooses nonstandard matching conditions where the deviation from the equilibrium particle-number
and energy density are kept, it is possible to formulate first-order theories that are causal and stable
[106-110].

Nonrelativistic limit

To conclude this subsection, we show how to obtain the nonrelativistic limit of the conservation
equations (2.61). In addition to the nonrelativistic limits introduced in Sec. 2.2, we need to express
the shear tensor,

o~ 0, o~ N — 5”%v v, (2.62)

where we introduced A := 1(9"07 + §v"). The nonrelativistic limit of the continuity equation (2.61a)
reads®
dp

ot
4Since I* is spacelike, we have that w1, <o.
5The continuity equation acquires a contribution from the heat current due to the choice of the LANDAU frame [115].

In the EcCKART frame, the continuity equation would be unchanged compared to the ideal case, whereas Eqgs. (2.63b)
and (2.63c) would receive corrections involving the heat flux, which however vanish in the nonrelativistic limit [103].

-V (pv - %q) ~-V-(pv—q), (2.63a)
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where we neglected terms of second order in v. Moreover, we identified® the heat flux q = —hn = hxlI,
where h == (e9+Py)/no denotes the enthalpy per particle, which in the nonrelativistic limit is dominated
by the rest-mass energy, h ~ m. With these considerations, the energy-conservation equation (2.61b)
takes the form

Oe Py 1 2n o1 2

= -V)e=——V.v—--V. — A AT+ = (- = V-v)?. 2.63b

G V)e= Vv Mgt s (- D) (Vv o)
Lastly, neglecting terms of second order in v, the evolution equation for the fluid velocity (2.61c)
becomes

ov'
ot

) 1 . . 2 . .
+(v-V)o' = —; {BiPO —0; {77 (81-1)] + 0v" — 56;-V . V) + C(S;-V . v] } , (2.63c)

which is called the nonrelativistic NAVIER-STOKES equation. Equations (2.63), together with an
equation of state and appropriate choices for the viscosities and conductivities ¢, n, and k, completely
determine the evolution of a nonrelativistic fluid and have wide-ranging practical applications.

2.3.3 MIS-type theories

As mentioned in the previous subsection, the relativistic NAVIER-STOKES equations are not used in
practice, since they feature an infinite speed of signal propagation, which leads to instabilities in
the linearized theory when observed in the frame of a (with respect to the system) moving observer
[29-32]. A straightforward way to amend this issue is to make the equations hyperbolic by introducing
relaxzation-type equations for the dissipative currents, i.e.,

Il + = —CO+--- (2.64a)
Taf ) b = gIF 4 (2.64b)
Taf ) gl = 2ok 4 (2.64c)

where the dots symbolize terms of higher order in dissipative quantities and fluid gradients, and 7y, 7,
and 7, denote the characteristic relaxation timescales of II, n*, and 7*¥, respectively. Furthermore,
we introduced the notation

A= AR, 7= ARLEeP (2.65)

where the projector is needed to remove the components of the equations (2.64) which are not
independent. The crucial difference between Eqs. (2.64), which are said to be of MIS type, and
(2.55), is that in the former the dissipative quantities are kept as independent dynamical degrees of
freedom satisfying differential equations, whereas the NAVIER-STOKES relations (2.55) express them
through gradients of fluid-dynamical quantities in an algebraic way. Note that Eqs. (2.64) relax to
their respective NAVIER-STOKES values at asymptotically long times. While such a formulation can
render the equations causal and stable [31], it introduces several ambiguities. Besides the values of the
relaxation times 7y, 7,,, and 7, the higher-order terms on the right-hand sides of Eqgs. (2.64) have to
be specified. In order to find the most general form of these terms, we first have to introduce small
parameters that control the expansion. The first dimensionless quantity is the so-called KNUDSEN
number Kn, which is defined as

K i -micro , (2.66)

Lhydro
where £icro denotes a microscopic scale, such as, e.g., the mean free path of the particles that constitute
the fluid, while Lyya,, stands for a macroscopic hydrodynamic length scale, which we can associate
with the distance over which macroscopic quantities vary, 0 ~ Lgyldro. This parameter quantifies
how large the separation between microscopic and macroscopic scales is. The second quantity that

6This identification can be seen from an argumentation in §136 of Ref. [102]. Pure heat conduction takes place when the
total particle three-current vanishes, i.e., when n = —v/ng. The heat flux then is given by ¢* = T% = (g9 + Py)u? = —hn'.
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controls the quality of the expansion is the inverse REYNOLDS number Re™!, which is defined as the
ratio of a dissipative quantity and its equilibrium value and thus quantifies how close the system is
to equilibrium. Since there are several dissipative quantities, each of them has an associated inverse
REYNOLDS number,

— a my
Re—l — H R671 — @ R671 = @ . (267)

T p n BoPo T P

Taking into account all dissipative currents and fluid gradients at our disposal, the most general
relaxation-type equations up to second order in Kn and Re ~! read [51]

mll+1=—-0+T+K+R, (2.68a)
il ot = gIF 4 TF + KF + R* (2.68D)
TR ) Y = Qe TV O RV (2.68c¢)
Here, the terms
J =tV -n—mpn - F = onnll0 — Apn - I 4+ Apem*op, (2.69a)
TH = —un, Wt — S0 — L VA + £ APV 7, + T lIFF — 7, m"V
— Ao 4+ A IlIITH — NI, (2.69b)
T = QTﬂﬂiﬂwW’\ — OO — TMWM“UK) + AenIlot”
Y A RN VAL R WA L] , (2.69c¢)

denote contributions of first order in both Kn and Re ~!, and we defined F* := V*P,. Similarly, we
introduced

K = Q" + (0ot +(360% + QI - T+ GF - F+ (] - F+&V-1+GV-F,  (2.70a)

KH = Ryo I, + Rao F, + RaI"0 + £ F'0 + 5w I, + ke ALV ,0™ + k7 VH0 (2.70b)
K= ipw Pty + 0™ + T~]30'>\<”O'K> + ﬁ4af\”w”>)‘ + s IV
+ g F M EY) 4 i I FY) 4 g VR T 4 gV HFY) | (2.70¢)
to collect the terms of second order in the KNUDSEN number.” Lastly, the quantities
R =12 + @an-n + 3T T (2.71a)
RE = ' n,, + psIInt | (2.71b)
R = oIl + @ B )\ + pgnitn®) | (2.71c)

are of second order in the inverse REYNOLDS number. The prefactors appearing in the equations
above are the so-called second-order transport coefficients of the system, which have to be computed
from a microscopic theory. The main objective of this thesis is to obtain Eqgs. (2.68) as well as their
spin-analogues (cf. Sec. 2.4) from a quantum field-theoretical starting point.

To close this section, we remark that another way to approach the task of finding the second-order
contributions to Egs. (2.64) without resorting to a microscopic theory is to extend the analysis done
in Subsec. 2.3.2 to second order by considering a higher-order phenomenological entropy current [116,
117]. This type of analysis yields relaxation-type equations as indicated in Eqgs. (2.64), but does not
include all possible terms that are allowed by symmetry. Furthermore, it does not provide explicit
values for the transport coefficients.

2.4 Hydrodynamics with spin

When talking about fluids whose constituent particles have a nonvanishing spin, we have to take a step
back and consider the conservation of the total angular momentum (2.13c) in more detail. While for a

"These contributions are in principle problematic, as they render the equations of motion parabolic [51]. In Sec. 6 we
will show that it is possible to set these terms to zero [50].
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fluid consisting of spinless particles the conservation of the total angular momentum simply enforces
the symmetry of the energy-momentum tensor, for fluids consisting of fermions or bosons with nonzero
spin the spin tensor is in principle an independent quantity that fulfills the equation of motion

hdySMY = THl (2.72)

Note that, as we noticed in the case of fluid dynamics without spin, the system is severely underdeter-
mined: The spin tensor features 4 x 6 = 24 degrees of freedom, since it is antisymmetric in the last
two indices, while the antisymmetric part of the energy-momentum tensor adds six more components.
In contrast, Eq. (2.72) determines six components of the spin tensor, which have to characterize the
ideal case. Collecting these six independent components in an antisymmetric second-rank tensor Qf”,
we may decompose it with respect to the fluid four-velocity as

QpY = u["ng] + By 5 (2.73)

which can be inverted to yield
u g M 1 prap
Ky = —Q5 w, wo = 5€ Up§0,a8 - (2.74)

The quantity Qf", which will reappear in Sec. 4.6, is called the spin potential, with kf and w{ being
its electric- and magnetic-like parts, respectively.

Using the vector and tensor structures at our disposal, i.e., u*, g"”, and QF", the spin tensor in the
ideal case can be decomposed as [38]%

SO = Agur QL + Bourua Q5 ur! + Cour QO AL, + Doua QS AYIN 4 By AN Q0]
= (Ap — By — Cy) u’\u[“ng] + (Ao — 2Cy) uAe“”aﬁuawoﬁ

+ D()KJBMAV])\ + Eou[“e"])‘o‘ﬁuawoﬁ , (2.75)

where the coefficients Ao, - - -, Fy are functions of the temperature and the chemical potential, thus not
adding additional degrees of freedom. The divergence of the equilibrium part of the spin tensor then
reads

aAS(j\W = (u[%g] + u[“/%zg] + HU[MHS]) (A9 — By — Cp) + u[”ﬁg] (Ao — By — C‘O)
—+ GMVQB |:(7..LOLCUO’5 —+ ’uad}o’ﬁ -+ HUQUJQﬁ) (AO — 2C0) =+ anO’g(Ao — 200):|
+ Dg (V[Vﬁg] - /cg“u"]ﬁ - m([)“u”]) + KE“V"]DO + Ey (VAU[“) PPy w0 5

+ ’LL[MEV]AQB [(’U,,\’L.LawOﬁ + uaV)\wo’g) Eo + uoéwO’gV)\Eo] . (276)

The dissipative parts of the spin tensor can be included through
S = Gy §SANY (2.77)

As in the case of the energy-momentum tensor and the particle four-current, equilibrium variables (i.e.,
Q") require a choice of hydrodynamic frame in the case where dissipation is present. In this thesis,
we choose the spin analogue of the LANDAU frame [82], i.e., we demand that

un6SM =0, (2.78)

such that we can rewrite

ONOSMY = — SNV 4 VS (2.79)

81n principle there could also be a term ~ g Hu¥!, cf. Ref. [118]. We did not consider it here because it does not
depend on the spin potential and will not emerge from the microscopic theory, as shown in Subsec. 6.2.2.
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Projecting Eq. (2.72) with u, and %ewaguﬁ, we obtain the equations of motion for the components of
the spin potential,

. h L s
h:‘ﬂ:é’u> = _m [KS(AO — BO — C()) — et BUV’U/QWO’B(AO — 200 — EQ)

2
— Dy (o'/‘“/ + w/»“’) Ko, + (AO — By —Cpo+ 3D0) 9/15

1
— By, (BoVawo s +wo,sVaEo) + uy (iiy — Vy) 65 — ﬁTWuu , (2.80a)

o
Ao —2C,

2
+ Eo(o"” + w"')wo,, + (AO —2C) — 3E0> 0wl — e"*Pu,, (DoV ko + Ko,5VaDo)

hwé”> = [(AO — 200)wg + E“Va'@ul,’llalio,g(Ao — BO — C() + Do)

+ %e‘“’o‘ﬁuy (—u* + V)‘) 0Srap + %e’“’o‘ﬁuyTaﬁ} , (2.80Db)
where we used Eq. (2.76). When the dissipative parts are set to zero, Eqs. (2.80a) and (2.80b)
determine ideal spin hydrodynamics and have been found to exhibit wavelike behavior in the linear
regime around a nonrotating flow [119]. While it is possible to decompose the dissipative contribution
to the spin tensor in a general way [120], we will not do so in this chapter. However, employing
the formalism presented in Chapter 3, we will be able to determine the equations of motion of the
different components of §S*¥. We remark that, while still an active area of research, in principle
the same points apply that were put forward in Sec. 2.3 concerning the equations of motion for the
dissipative degrees of freedom. In particular, when trying to apply NAVIER-STOKES-type relations
to the components of §S ¥ Refs. [121, 122] suggest that these theories are plagued with similar
instabilities as the standard relativistic NAVIER-STOKES theories. Thus, a possible way to obtain a
causal and stable theory consists in deriving relaxation-type equations for the dissipative components
of the spin tensor, which we will do in Chapter 6.
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Chapter 3

Field theory and phase space

The thermodynamic and hydrodynamic formulations treated in the last chapter are all built on
fundamental conserved quantities. Since we will try to derive the macroscopic behavior of a given
system from the bottom up in the following chapters, we have to ask how these conservation laws arise
when considering a microscopic field theory. To begin this endeavor, we recapitulate how the basic
conserved currents introduced in Subsec. 2.1.1 are connected to fundamental spacetime symmetries.

3.1 Conservation laws

The basic transformations in spacetime are characterized by the POINCARE group, which is a semidirect
product of the translation group in four-dimensional MINKOWSKI space R!3 and the LORENTZ group
O(1,3). The translation group contains the (finite) translations in space and time, i.e.,

RL:3
ot = 2 =2t +at (3.1a)

with some four-vector a*. The LORENTZ group, on the other hand, describes transformations that
connect inertial systems which are rotated or moving uniformly relative to each other,

zH Og;)) 't = At a” (3.1b)

where A*, denotes a general LORENTZ transformation. As a special case, a pure boost L*, describes
the transformation between systems that are uniformly moving with velocity v with respect to each

other and reads - "
g v
Lt = 3.2
Y (—W 11+(7—1)V%¥T> , (32

where we defined v :=1/v/1 — v? with the magnitude of the three-velocity v := |v|, and 1 denotes the
three-dimensional unit matrix. On the other hand, a pure rotation R*, connects inertial systems that
are rotated against each other and takes the form

1 om\* .
R*, = 0o R , with R € SO(3), (3.3)

with 0 := (0,0,0)T. While the set of rotations forms a subgroup of O(1,3) [namely the group SO(3)],
the boosts do not. Given that the POINCARE group is a LIE group, its elements can be expressed via
the exponential map, i.e., we have for a general field p(x) that transforms in some representation of
the group,

1,3 ~ ) —
o(x) KoL) o) = { [exp (iaaP(’) exp (;waﬁMaﬂ>} <p} (A", 2" +a") | (3.4)
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where P is the generator of translations, while M generates LORENTZ transformations.! Note that
the ten parameters {a,, wy, }, where w,,, = —w,,, fully specify the transformation. The commutation
relations for the generators read [123]

[13#,13"} =0, (3.52)
[M\uv,ﬁa} — <g,uaﬁu _ gVaﬁM) , (35b)
[]/W\NV7 J/\J\O‘B} _ (gua]/\/fl/ﬂ _ gVa]/\/fNﬂ _ guﬁjf\/f”a 4 g’/ﬁjf\/f"a) , (3.5¢)

where square brackets denote the commutator.

NOETHER’s (first) theorem tells us that for every continuous symmetry there exists a corresponding
conserved current. The symmetry group ¢ can be characterized by functions A and ) that describe
the behavior of coordinates and fields under infinitesimal transformations, respectively, i.e.,

ot Ly gt 4 A (x)dw” (3.6a)
(@) L o(a) + Qi(z)dw’ (3.6b)

where dw? are the parameters of the respective transformation.

Explicitly, the conserved current ¢ for a theory of a field ¢ described by some Lagrangian £ reads
[123]

oL

b= WQZ _TH AV (3.7)

| 2 A

where we defined the (canonical) energy-momentum tensor

T = ———0"p —g""' L. 3.8
90,0 ¢ (3

In Eq. (3.7), the index “#” assumes different forms depending on the generators of the symmetry group.
Note also that the field ¢(z), if it transforms in a nontrivial representation of the LORENTZ group, will
have multiple components, which are implicitly summed over in Egs. (3.7) and (3.8).

Since the POINCARE group characterizes the transformations between inertial systems, a sensible
relativistic theory should feature it as one of its symmetry groups. In consequence, two conserved
currents arise immediately, namely the energy-momentum tensor TH” as well as the total angular
momentum tensor J*. The former is a consequence of the invariance under the translation group R,
while the latter stems from the invariance under the restricted LORENTZ group SO (1, 3). Furthermore,
if the fields are electrically charged, the action of the theory features a global U(1) symmetry, leading
to a conserved electric current, which, given that we are dealing with a single particle species, we may
associate with a four-current N# which characterizes the difference between particles and antiparticles.
In the following, we will call N* simply the particle four-current.

In this and the following chapters, since we want to start from a quantum field theory, we are going to
deal with operator-valued fields @, which will result in the conserved currents also becoming operators.
The quantities that can be related to experiment are then given by the respective (normal-ordered)
averages, i.e.,

Nt = <: N# :> , TH = <: THv :> . JM = <: Jhw :> . (3.9

1The LORENTZ group also contains the discrete parity and time-reversal transformations, which we will for now ignore,
i.e., we consider the proper orthochronous (or restricted) LorenTz group SO¥(1,3) that is the connected component of
O(1, 3) containing the identity.
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3.1.1 Pseudogauge transformations

Even though NOETHER’s theorem allows to compute conserved currents from the Lagrangian, they are
not fixed uniquely. To see this, consider the following transformation,

Sy G = G QA R, T (3.10a)
. N . h - -~ ~
Tr — Tt o= T 4 20 (B2 92 4 ) (3.10b)
where ® is antisymmetric in the last two indices, P = —@AV”, and 7 is antisymmetric in the first
and last pair of indices, ZH# AP = —ZVH e = — ZrPA Since we have
8,05 (@W v @M) ~0, (3.11)

the new energy-momentum tensor is also conserved,

~

9Tk =0. (3.12)
Furthermore, due to the relation R
ONDpZH P = () (3.13)
in conjunction with
Tl = Tl 4 g, v (3.14)
the equation of motion for the spin tensor stays unchanged as well,
hONSYY = TwT (3.15)

Finally, the conserved charges are left invariant under the transformation (3.10) as long as boundary
terms can be neglected. Denoting the unit vector on the boundary of ¥ as ¢, this becomes immediately
clear for the energy-momentum tensor,

PH / dx, T

pgt pet
= [amae B i (@ )
2 Jos
_pn (3.16)

In the case of the total angular momentum tensor, we first compute

~ ~ h ~ ~ ~ ~ ~ ~
JI))\E/;J:CV _ T)\[VI'M + 5 |:8a ((I)oc)\l/ + (I))\Voc + (I)V)\a) P — 8(1 (q)oc)\p, + (I)/\,u,a + (DM)\Q) $V:|

T FLSV\)\/U} _ ha\))\uu
. A ~ ~ ~
— J)\;UJ + 58,1 (q)a)\[l/xu] _ (I)k(x[uxu] + {E[MCI)VP‘(X) , (317)
from which we obtain
% TAuv
Toi = [ amaiy
_ / dz)\j)\uu + E% df)\ N ((’I;a/\[l/xu] _ (’I\))\a[uxp,] + x[ucf)u])\a)
s 2Jox 7
=J". (3.18)
The transformation (3.10) is called a pseudogauge transformation [34] and describes an ambiguity in the
definition of the conserved currents. At this point, since the total charges and the equations of motion

for the transformed quantities are left invariant, it seems that there is no reason for observables to
depend on the pseudogauge. However, as we will see in Chapter 6, a truncation has to be made in order
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to obtain dissipative hydrodynamics from a microscopic theory. At that point, the chosen pseudogauge
might influence the truncation and the resulting theory thus becomes pseudogauge-dependent. This
issue will reappear in Subsec. 6.3.4.

In the remainder of this chapter, we will discuss some commonly used pseudogauges for fields of
different spin. In order to assign an intuitive meaning to the different pseudogauge choices, however, it
is advantageous to express the conserved currents as phase-space integrals, the formulation of which
will be the subject of the next section.

3.2 Phase-space formulation

3.2.1 Classical systems

In classical mechanics, the dynamics of an ensemble of N > 1 particles is often conveniently described
via a formulation in phase space. Since each particle (labeled by 1 < ¢ < N) has a well-defined position
x; = (t;,7;) and a well-defined momentum k; := (k?, Ei), there exists a scalar function Fy ({x;};{k:})
(depending on all 8N particle coordinates) that describes the distribution of positions and momenta.
The function Fl is then called an N-particle distribution function, and it describes the probability of
finding N particles at the phase-space positions {(z1, k1), -, (zn, kn)}. Parametrizing the trajectory
of the i-th particle by the parameter 7;, the N-particle distribution function can be written as [124]

Pt () = g famee [any

N
< Z H5(4) [zl - Ty (qu)} 5@ [kl - kji (qu)] > ) (3'19)

Jryedn i=1 ens
where m is the particle mass and the angular brackets denote ensemble averaging. The intuition behind
Eq. (3.19) is that all worldlines of the N particles are traced out in phase space via the integrals
over 11, -+, 7Tn, and the sum checks whether the arguments of the function {z;},{k;} all lie on a
worldline. Knowledge of the N-particle distribution function Fy is equivalent to complete knowledge
of the system, and thus to solving O(N) coupled differential equations. What we aim to achieve via a
phase-space formulation, however, is a coarse-grained description of the system. In the classical picture,
this coarse-graining consists in not considering the whole N-particle distribution function, but rather
s-particle distributions (with s < N), where the information about N — s particles is integrated out,

Fy(xy,-- gk, kg) =mN (N — s)!/dzsﬂd%sﬂ..-/dzjvd%]v Fxn({z:}; {ki}), (3.20)

with ¥; being three-dimensional spacelike hypersurfaces. The distribution function (3.20) now describes
the probability of finding s particles at the phase-space positions {(z1,k1), -+, (s, ks)}. Since this
function describes less particles than are contained in the system, it does not provide complete
information anymore. In particular, the N — s particles that were integrated over act as a source term
for the change of the s-particle distribution function, leading to the fact that the evolution of Fy will
depend on Fsq, such that the system is not closed and has to be truncated. This dependence on
higher-order distribution functions is called the BBGKY hierarchy, after BOGOLIUBOV, BORN, GREEN,
KIRKwOOD, and YVON [125-128].

Taking this procedure to the extreme by setting s = 1, we arrive at the notion of the one-particle
distribution function F(x, k) := F;(x, k), describing the probability of finding a particle at position
and with momentum k. As discussed above, its evolution depends on the two-particle distribution
function F5, and as such its evolution equation is not closed. One popular way of truncating this system
is by introducing the condition of molecular chaos, where one assumes the two-particle distribution
function to simply be a product of the one-particle distribution functions, i.e.,

FQ(I1,$2;k17k2) :F(Il,kl)F($27k2) . (321)
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We will encounter this condition again in a slightly different form in Chapters 4 and 5.

Conserved currents

With the concept of the one-particle distribution function, it is possible to reconnect to the conserved
quantities introduced earlier in Sec. 3.1. Considering a system made up of the same species of particles
in the absence of inelastic processes (i.e., no particles are created or destroyed), the particle four-current
N* is conserved, with the global charge being given by the total number of particles. It can then be
expressed as the average of the four-momentum, i.e.,

4 3
Nﬂ(g:)/(2i§)4kﬂF(z,k)/@;i;kokuf(z,k). (3.22)

2

Here we made use of the fact that for classical particles the momentum is always on shell, k? = m?2,

which allows us to write
F(x,k) = 4nh§(k* — m?) f(x, k) , (3.23)

and subsequently employ the identity

/d4k5(k2— 2y = /d‘*kﬁ& (ko \/k2+m2> E/dgk (3.24)

2k0 7

where in the last d3k-integral it is implied that k° = v/k2 + m2. The energy-momentum tensor can be
expressed similarly as

4 3
TW(:E)—/(2i§)4kukVF(x,k)—/(Zgi)l;wkﬂw(x,k). (3.25)

Equations (3.22) and (3.25) provide relations between the conserved currents (which describe the
macroscopic properties of the system) and the one-particle distribution function. This implies that, if
the evolution of f is known, the conserved currents follow at once, providing the equations of motion
that were missing from the purely macroscopic analysis of Chapter 2. First, however, we have to ask
the question of how to provide a phase-space formulation in the case of quantum-mechanical systems.

3.2.2 Quantum systems

In contrast to the classical systems we just discussed, in a quantum system there cannot be a scalar
function describing the position and momenta of all particles that looks like Eq. (3.19), since a
quantum-mechanical particle does not have well-defined position and momentum at the same time.
This can be seen straightforwardly from the fact that the position and momentum operators do not
commute. Nevertheless, it is possible to formulate a phase-space description of a quantum theory
at the cost of giving up some of the properties of the distribution function that have been taken for
granted in Subsec. 3.2.1. We will first illustrate the idea by considering one-dimensional nonrelativistic
quantum mechanics before moving on to a relativistic quantum field-theoretical formulation.

One-dimensional nonrelativistic quantum mechanics

Building on Egs. (3.22) and (3.25), we may reformulate the question of obtaining a phase-space
formulation by asking whether there exists a function W(z, k, t) that fulfills

Tr |0(, k, t) k /dx/—A z, kYW (2, k,t) , (3.26)
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where 0 is the density matrix and Ais an arbitrary operator. Note that, in this example, we returned
to nonrelativistic physics, such that the time coordinate takes a special role. Indeed there is an infinite
number of functions that satisfy Eq. (3.26), but none of them features all the properties one would
expect of a one-particle distribution function, namely

e being real, W*(x, k,t) = W(x, k,t),

e being nonnegative, W(x,k,t) > 0V (z, k,t) € R?, and

e giving the correct marginal distributions, i.e.,

/%W(x k.t) = |¥(x,t)] /de z,k,t) = |k, t)%, (3.27)

where W is the wave function of the quantum-mechanical particle, and U is its FOURIER transform.

In the literature, one finds several choices for W(x, k,t), depending on the problem at hand; for a
review, see Ref. [37].2 In this thesis, we are going to use the so-called WIGNER function

vtk = fae o e
:/d”e_%w’* (#+5)w(e-3) (3.28)

where the second equality holds if the system is in a pure state, i.e., 0 = |¥) (¥|. Note that, while the
WIGNER function is real and gives the correct marginal distributions, it is not necessarily nonnegative,
such that the strict interpretation as a probability density fails, the reason being that interference
effects are incorporated [37]. In order to verify that Eq. (3.26) indeed holds, we have to define A(z, k),
which will be the WIGNER-WEYL transform of the operator E,

Az, k) = /due‘iﬁk“ <x+ g'ﬁ‘x - g> . (3.29)

Inserting the above equation into the left-hand side of Eq. (3.26) and omitting the dependence on §:,l§:
for brevity, we find

/ /—Amk x,k:,t):/dx/dv<m—%‘g‘x+%><m+g‘@‘m—g>
— [av [ ays o1 Al w2
=Tr (A7) . (3.30)

Here we substituted y4 := x + v/2 in the second step. The WIGNER function (3.28) thus fulfills the
desired property, as long as the correct transform of the operator in question is used.

Field theory: Covariant WIGNER operator

We now want to generalize the concept of phase space in quantum mechanics to a quantum field theory
of some field @ that furnishes a certain representation of the inhomogeneous LORENTZ group. In
particular, if ¢ has spin j, it transforms in the

(%, %) — representation

2We remark that one of the possible choices is given by the GLAUBER-SUDARSHAN P representation [129].
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of the LORENTZ group if j is integer, and in the

(%; 2%1) Y [(%70) @ (0, )] — representation

N[

if j is half-integer. Since the (m,n)-representation of the LORENTZ group is (2m~+1)(2n+1)-dimensional,
we have (j + 1)? [(2j + 1)?] components for integer (half-integer) spin. However, a (massive) field of
spin j only has 25 4+ 1 degrees of freedom, such that the field ¢ fulfills suitable constraint equations
that reduce the number of independent components [123]. Building on the definition (3.28), we can
generalize the WIGNER function in one dimension to a WIGNER operator in 3-+1 dimensions,

W(z, k) = /ﬁ/d4vef%k'”$ (J: + %) 7 (x - g) , (3.31)

where the constant is || = 2/h for integer and |x| = 1 for half-integer spin, and we defined

= {@T I .7 integer ) (332>

- ity 4 half-integer .

Note that this definition differs from the conventions in Refs. [43, 44] by a factor of (27h)* in the
d*v-integration measure, but agrees with the formulation used in Ref. [46].> The WIGNER operator
(3.31) has 2|j] LORENTZ indices and an additional 2 DIRAC indices if j is half integer. From the
number of degrees of freedom of the field @, it follows that the WIGNER operator features (25 + 1)2
independent components, which we will verify for the cases j € {0, /2, 1} in the following sections. The
WIGNER function follows from the corresponding operator by taking its normal-ordered expectation
value, W(z, k) .= (: W(z, k) :). We remark that, as soon as the fields ¢ do not transform trivially
under LORENTZ transformations, the WIGNER function is no longer real, but fulfills W= W*, where
j43]

(3.33)

W wT, j integer ,
YWTAY 7 half-integer .

Since the energy-momentum and particle-number operators for free fields are bilinear in derivatives of
the fields @, @, we need to formulate expressions of the type

[0t ()] [0+ 0% p(a)]

in terms of integrals over the WIGNER operator. Firstly, note that the inverse of the WIGNER transform
is given by

Ak — ERPA

WW@’ k) = rp(2)P(z) - (3.34)

Furthermore, we define the so-called BOPP operator [130]

h ih
DF = kP 4 %aﬂ . D™ =kk %aﬂ , (3.35)
which fulfills
1% = dpe= T kv Norg(e- L

DHW (z, k) zhn/d ve~ cp(er 2)6 go(x 2) : (3.36a)
D*W (x, k) zm/d ve+ {a go(x+ 2)] go(:v 2) . (3.36b)

3In this thesis, we adopt the latter convention because it allows the interpretation of the WiaGNER function as a
particle-number density, as we will see in Chapter 4.



30 3 Field theory and phase space

To prove this, we compute, denoting the derivative with respect to v as 0%, and abbreviating ¢4 =
oz +v/2),

"W (2, k) = “/d%e—%m :(W@) P +%. (3;@_)}
—x [ dtoe o [2(003,) 3o + 3, (05

= /i/d%e_%’” 2%/#‘@@ - 2$+ (Ohp-) + $+ (5“@)}

= [t 00,6+ 25,04
= Q%kMW(QT, k) + 2m/d4ve_%k'”$+ (OHp_) . (3.37)

This proves Eq. (3.36a), while Eq. (3.36b) follows analogously. Combining the identities (3.34) and
(3.36), we are able to express any operator bilinear in the fields as

k[0 0 (@)] [0 - 0" ()

n+m 4 -
= (—1)" <Zlh) /(2(;:)4 (D* ... D) (DY - DY) T (2, k) . (3.38)

Equation (3.38) is the central formula that we will use to represent conserved currents of different
fields as momentum-space integrals.

Power-counting in the PLANCK constant

In the following sections, we will encounter equations of motion for the WIGNER functions that involve
different powers of h. We will then often perform a so-called “h-expansion” which consists in writing a
quantity A(z, k) as a power series

Az, k) = i B A™ () k) (3.39)

n=0
that can then be perturbatively solved in order to determine the coefficients A™ (z, k).

This kind of expansion, which is well-known in quantum mechanics and thermodynamics [100, 131],
is of course independent from the value of the PLANCK constant, which can in the end be safely set
to unity and acts as a book-keeping parameter. As we will see, a power of /i that contributes to the
power-counting (as opposed to the powers appearing in, e.g., the measure of momentum space) is
always accompanied by a derivative, such that the A-expansion also becomes an expansion in gradients.
The dimensionless quantity that controls the quality of the expansion is given by the ratio of the
CoMPTON-wavelength Ac = ii/m and a macroscopic length scale L, where we take the gradient to be
proportional to its inverse, & ~ L~!. The classical limit (corresponding to A — 0) is then given by

fm

17 — 0,

which is the well-known eikonal approximation that appears in the transition from wave optics to
geometric optics [132] and was already recognized by SCHRODINGER as the classical limit of quantum
mechanics [133]. It should be noted that this classical limit, where the notion of a particle has a
well-defined meaning, corresponds also to the limit where kinetic theory, as imagined by BOLTZMANN,
i.e., as a theory of particles colliding in small regions of spacetime, is valid. In the remainder of the
thesis, we will mostly contain ourselves to the first order in the i-expansion, treating quantum effects
(in particular those induced by the particle spin) as small corrections.
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3.3 Scalar fields

As a first example, we consider the case of complex scalar fields, which do not feature any spin and
transform in the (0, 0)-representation of the LORENTZ group. Accordingly, all quantities related to the
scalar field are denoted with a subscript S.

3.3.1 Dynamics
A complex scalar field 3 is described by the KLEIN-GORDON Lagrangian
~ ~ ~ m2 ~ ~
Ls=h [(aw*) (ﬁm) - 52"1"2} + Ls,int (3.40)

where ES,int denotes an interaction Lagrangian, which we assume to be independent of the derivatives
of the field. The resulting equations of motion read

m2\ ~
m2\ ~
(D + h2> ot =pt, (3.41D)
where we introduced the source terms
1 C in ~ 1 C. in
ﬁ::faﬁi ) to 10Lsum (3.42)
h 9gt L 96
The GREEN’s function A(z,z’) of the complex scalar field can be obtained from
m? / 4 /
(D”J+;~Lz) Az, ') = 6W(x —2') (3.43)

which in FOURIER space becomes

4 41./ ; i N
/(d k /(d Mok otk ) (L2 42V ()

2mh)4 2mh)*
R
_ / e / iyt FET T @) R k). (3.44)

With the definition A(k, k') =: (27h)*6™ (k + k')A(k), we find the retarded and advanced GREEN’s
functions

~ h2
AR(k> = k2 — m2 ¥ i?]ko ) (345&)
~ hQ
AA(k> = _kz —m2 i?]ko ) (345}3)

where the infinitesimal quantity > 0 in the denominator indicates that, when evaluating the FOURIER
integral via contour integration, the half-circle has to be closed in the lower or upper half-plane,
respectively.

3.3.2 WIGNER function

The WIGNER operator is defined [in accordance with Eq. (3.31)] as

/W(z,k) = %/d‘%}(f%k'”g?ff (x + g) gg(;v - %) . (3.46)
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Acting on it with the operator D? — m? and using Eq. (3.38), we obtain with the help of the
KLEIN-GORDON equation

K2 —~ ~
<k2 —m? 4 ihk - 0 — T > W(x, k) = hC(x, k) , (3.47)
where we defined
A — 4, — Lkt UNo(,._ Y
C(z, k) = 2/d ve "V (x—l— Q)p(x 2) . (3.48)

~

Taking the real and imaginary parts of the expectation value of Eq. (3.47), and defining D := Re (: C":),

~

C:=Im(:C:), we find

(k2 —m? — TD) W (x, k) = hD(z, k) , (3.49)
k-OW (x,k) = C(x, k) . (3.50)

Here we also made use of the fact that the WIGNER function is real. One can see that Eq. (3.49)
constitutes a mass-shell equation for the WIGNER function, i.e., it will ensure that the momentum k
will obey the relativistic energy-momentum relation, k2 = m?, in the classical limit. Equation (3.50)
on the other hand denotes a kinetic equation that will determine the time evolution of W (x, k).

3.3.3 Conserved currents

From the Lagrangian (3.40), we immediately obtain the canonical energy-momentum tensor

THY, 4 ¢ Ls = h<: (a%*) (a%) ;> . (3.51)
The canonical energy-momentum tensor is manifestly symmetric, which is to be expected from the
conservation of the total angular momentum, since the scalar field does not carry spin. In order to

express the energy-momentum tensor in terms of the WIGNER function, we make use of Eq. (3.38)
and obtain

1 d*k
T§¢+ 9" Ls = 7/ D*DVIW (z, k)

2 ) (2wh)*
d'k MLV hjuv T
—/W<kk+488)W(,k). (3.52)

Furthermore, the action of the scalar field is invariant under the global U(1) transformation
6= e hIG 9T 5 eh1gT
leading to the conserved electric current
Jjs =1iq <: (&8“5— 58“(?) :> =igq <: (ZTW(E :> . (3.53)

Employing the general prescription (3.38) again, we can express the electric current as

4
js = g/ r (D™ + D") W (z, k)

2 ) (2mh)*
4
- q/%k“W(m, k), (3.54)

which is a very intuitive result. At this point it becomes clear that there is the general correspondence

-~ ~ 2
“ W between ¢ and ¢ = %k;" in the momentum integral ” .
i
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GLW pseudogauge

Even though the scalar field does not have spin, we can still perform a pseudogauge transformation.
Considering the vectors and tensors at our disposal, it is clear that the superpotentials ®, Z can only
consist of (at most) one gradient and the metric tensor. Defining

v N N v 1 v ~
B = (qSTg)‘[“@ Ghe) . ZER = - PP, (3.55)
where “h.c.” denotes the hermitian conjugate, we see that
UV TA\pv
hopZETwW = Peiw » (3.56)

such that [according to Eq. (3.10a)] the spin-tensor does not change in this so-called GLW pseudogauge
(after DE GROOT, VAN LEEUWEN and VAN WEERT), Sg*%”e = SA”” = 0. Considering that

(I)/\LW + (I)H GLw T q’é’ﬁ)\\zv o' g N + hc. (3.57)

the energy-momentum tensor becomes
Tl =5 (9085 g ({Ls - 3 [709+ (2297) (030) +ne] }o) . @39)

Denoting the last term in the equation above as

ES,GLW = Es - g {(ET&E—# (8’\¢AST> (8%5) + h.c.}

~ h |~
= LS int — 5 {¢T (D + > ¢+ h. c} , (3.59)
the energy-momentum tensor can be expressed through the WIGNER function as
d4k p
Tsaw + 9" Lsciw = | 75 KK W (2, k) . (3.60)

The right-hand side of the equation above resembles the form we would expect to obtain for the
energy-momentum tensor in kinetic theory, with the WIGNER function taking the role of the distribution
function.

Before moving on to higher-spin fields, we remark two things about the Lagrangian (3.59): First, if
the theory is free, i.e., if L5 = 0, it vanishes as soon as the equations of motion are imposed. More
precisely, in the case that the interaction term is a polynomial in the fields, we have that

[-:S,int ~ (E;Tﬁ+ ﬁ-i‘(ga (361)

such that we get from Eq. (3.60) after applying the equations of motion

Lsaiw ~ / D) (3.62)

showing that this term incorporates off-shell effects [43, 134, 135]. Second, we could have started
directly from the Lagrangian ESGLW, which differs from the canonical Lagrangian ES by a total
derivative, thus yielding the same action and equations of motion. In that case, since ES7GLW depends
on second derivatives of the field, we would have to compute the energy-momentum tensor as [43]

OLs.crw 5£SGLW ~
THY 4 ogh L = (. GIW ol 0¥ +he b 3.63
ST T <Ha<an¢f> 0(0,009") ] ’ }> .

yielding precisely the result (3.58). Thus, this pseudogauge transformation is equivalent to changing
the Lagrangian by a total divergence.
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3.4 Spinor fields

We now move on to DIRAC particles of spin 1/2, which transform in the (1/2,0) @ (0, 1/2)-representation
of the LORENTZ group. The quantities related to these fields are denoted with a subscript D.

3.4.1 Dynamics

A massive DIRAC field 7:/1\ is described by the Lagrangian

=~ (ih<>
=

Lp ::w(z —m>$+ LDt (3.64)

where A :== ~ - A for any four-vector A and v* are the DIRAC matrices fulfilling
Py A =29 (3.65)

The Lagrangian (3.64) leads to the following equations of motion,

(ihd —m) ¥ = hp (3.66a)
=~ Aol ~
v (ma + m) _— (3.66b)
where the source terms are given by
=R 1 32 in ~ 1 82 in
=3 Dint 3= - D int (3.67)
o e

%
Note that by acting with the operators (ih@ + m) and (ih@ — m) on Egs. (3.66a) and (3.66b),
respectively, we obtain

(D + ’gj) b= (i+ %) 7, (3.68a)
<D + ng) v=3 (13 - %) , (3.68D)

i.e., all components of the DIRAC fields also fulfill the KLEIN-GORDON equation.

The GREEN’s function of the DIrRAC field S(x,2’) is obtained by solving
(ihd —m) S(z,2") = h6W (z — 2') (3.69)

or in FOURIER space

d4k d4k’ i . ~
— ¢ (ka+k-z") _ /
/ i / S (k= m)S(k. k)

= / Ak / A e m etk 2 (9mpyAps @) (| + &) (3.70)
(2rh)* ) (2wh)* ' '

Defining S(k, k') = (2rh)*6™) (k + k')S(k), we find for the retarded and advanced GREEN’s functions

(k) = iy () B (3.710)
Sa(k) = h]% = —% (F+m)Aa(k) . (3.71Db)
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3.4.2 WIGNER function

The WIGNER operator for DIRAC fields is defined as

Wap(z, k) = /d%e*%k'”iﬁ (m n g) Do (x - g) , (3.72)

where we made the DIRAC indices «, 8 explicit. As we discussed in Subsec. 3.2.2, the WIGNER
operator formally has 16 components, but only four of them are independent. It is easiest to see which
components constitute the independent degrees of freedom by decomposing the WIGNER operator in
terms of the CLIFFORD algebra, i.e.,

—

1/~ ~ 5 41 g
W=2 <f+w57>+)9+%/l+ 2%8“”) : (3.73)

where o = %[7“,7”], and the square brackets denote the commutator. Equation (3.73) can be
inverted by taking suitably weighted traces over DIRAC space,

F=TcW, P=—iTrysW, V" =TeA"W , A" = Teylys W, S* = Tr oW . (3.74)

The equations of motion for the WIGNER operator are found by applying the operator ) — m to Eq.
(3.72) and employing Eq. (3.38) in conjunction with the DIRAC equation, obtaining

Kk + %«% - m) Wiz, k)} = hCop(z, k), (3.75)
ap
where we defined

Cop(z, k) = /d4ve_%k'”iﬁ (x + g) Do (:B — g) . (3.76)

The equation above, being matrix-valued in DIRAC space, can be decomposed w.r.t. the CLIFFORD
algebra, and each resulting equation can be separated into real and imaginary parts. We find

. 1 1

Re(:C:) = 1 (Df +iv5Dp + Py + 1P 4 + QO’prgy) , (3.77a)
-~ 1 . 1 nv

Im(:C:) = 1 Cr+i7Cp + Cy +v5€a + QUWCS , (3.77b)

where

Dr =Re(: TtC:), Dp = —iRe (: TrvsC 3 , D, = Re (: Tr#C ),

Dl =Re(: Tr A v5C ) D" =Re(: Tr o C Y, (3.78a)
Cr=Im(:TrC:), Cp = —ilm(: Try5C :) , Cy =1Im (: TeA C )
Chy=Im¢(: Trv#sC 0, Ce¥ =Im(: Tr o™ C ) (3.78b)

Then, we perform the trace over Eq. (3.76), weighted with the generators of the CLIFFORD algebra
{1, —ivys, v, Y5, o }. Taking the real part of the resulting set of equations yields

k-V—mF=hDr, (3.79a)

ga-/me = —WDp, (3.79D)

kHF — gays"# —mVH = KDY, (3.79¢)

—gaHP + %e“"aﬁkusaﬁ +mA* = —hDY (3.79d)

gaww — P, Ag — mS* = KDL, (3.79¢)
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while the imaginary part gives

-V =2F, (3.80a)

k-A=hCp, (3.80b)

26“}" + k, S = hCl | (3.80c)

E'P + gemﬂausaﬁ = —hCl (3.80d)
Kyl 4 geﬂ”aﬁaaxlﬁ = —hCL" . (3.80e)

Equations (3.79) and (3.80) determine the components P, V#, and S*¥ in terms of the independent
degrees of freedom F and A¥, where it has to be noted that A* is subject to the constraint (3.80b)
and thus only has three independent components. Thus, as we argued in Subsec. 3.2.2, the WIGNER
function has (2% +1)? = 4 independent degrees of freedom. The evolution equation for these components
can either be found by manipulating Eqgs. (3.79), (3.80), or, which is easier, by employing the fact that
the DIRAC spinor fields fulfill the KLEIN-GORDON equation component-wise, cf. Egs. (3.68). Acting
with the operators D? 4+ m? and D*? + m? on the WIGNER operator (3.72) and using Egs. (3.68), we
find (taking the average over FOCK space)

(0 =) Wagta ) = | dtoe i (5 (2 + 3) [0 +m) 5 (e~ 5)] )
]

=h[(D+m)C(x,k) B (3.81a)
(D = ) Was(o, ) = =1 [ atue < 5+ 3) (00 - m)] 3u(e-3) >
=1 {y" (B +m) Cla, k)] 'yo}aﬂ : (3.81b)

Taking the sum and difference of these equations, we obtain, employing the notation of Refs. [44, 46],

(k2 —m? - TD) Waps(z, k) = hdMag(z, k) | (3.82)
k- OWop (2, k) = Cap(x, k) | (3.83)
where we introduced
SMap(ar k) = 5 { (B +m) Clank) +° [(B+ m) Clab] 1} (3.84)
Cop(a, ) = —% (B +m) Cla. k) =2 [(+m) O(a. b)) 70}&,3 . (3.84D)

Equations (3.82) and (3.83), in analogy to their scalar-field counterparts (3.49) and (3.50), are to be
understood as mass-shell and kinetic equations for the spin-1/2 WIGNER function. However, they still
have to be supplied with the subsidiary conditions imposed by the DIRAC equation, i.e., Egs. (3.79)
and (3.80). Since the WIGNER function only has 4 independent components, namely F and the part of
A" that is orthogonal to the four-momentum, it is sufficient to compute the evolution of these degrees
of freedom via taking the trace of Eqgs. (3.82) and (3.83), weighted with 1 and v*s, respectively. The
remaining components P, V*, and S* can then be reconstructed via the subsidiary conditions (3.79),
(3.80).

Extending phase space

Instead of solving four mass-shell and BOLTZMANN equations, we may enlarge the phase space of
the theory from (z, k) to (z,k,s) to be able to solve only a single equation for a scalar distribution
function f(zx, k,s) [38-42]. In order to achieve this, we introduce a “spin™-variable s, that is given by a



3.4 Spinor fields 37

normalized spacelike four-vector, which is orthogonal to the four-momentum k. Defining the scalar
distribution function in extended phase space as

Ha by 5) = % Fla k) —5 - Al k)] = %Tr (1 — drs) W(a )] (3.85)

we can express Eqgs. (3.82) and (3.83) as

h2
<k2 —m? - 4D> f(z, k,5) = BN (x, k, 5) , (3.86)
k- Of(z,k,s) = €(x, k,s) . (3.87)
Here we defined

Mz, k) = %Tr (1 = $s) 6M (2, k)] | (3.88)
(a, k,s) = %Tr (1 = #5) Cla, k)] - (3.88D)

Note that Eqgs. (3.86) and (3.87) contain the information about all independent components of the
WIGNER function, as we can obtain F and the part of A* that is orthogonal to the four-momentum
via suitably weighted integrals over spin space,

Flx, k) = /dS(k)f(x,k,s), KA, (z,k) = /dS(k)s“f(x,k,s), (3.89)

where KMV = g"¥ — kPEY /k? is the projector onto the subspace orthogonal to k. Here, the integration
measure in spin space is defined as

2
dS(k) == \Z“Td‘*sé(s? +¢)8(k-5), ¢*=3, (3.90)

and we used the identities
/dS(k) =2, /dS(k)s” =0, /dS(k)ﬁ“ﬁ” = —2K" | (3.91)
which are special cases of a general formula derived in Appendix F.1.

Before going on to discuss the conserved currents for DIRAC fields, we remark that we will always
consider spin effects to be small, i.e., they should not enter in the classical limit &~ — 0. Thus, we
assume that A* ~ O(h), from which, taking into account Eqgs. (3.79), it follows that P,S*” ~ O(h)
as well, while mV* = k*F 4+ O(h). Note that this structure could have been predicted based solely
on the fact that at zeroth order in i (which is equivalent to zeroth order in gradients) there are no
four-vectors at our disposal except the four-momentum k. Building on the same argument, since
there are no pseudoscalar, pseudovector, or tensor quantities at zeroth order, we may conclude that
Dp,Cp, DY, CY, D", C" ~ O(h), from which we can conclude that P ~ O(h?). With this power-
counting in mind, we have the important relation & - A ~ O(h?), implying that, to second order in A,
we can replace K" A, (z, k) by A*(z, k) in Eq. (3.89).

3.4.3 Conserved currents

From NOETHER’s theorem we immediately obtain the canonical energy-momentum tensor as
th ) = 43~
Tpe+9"Lp =3 <¢ Py oy 1> : (3.92)
while the canonical spin tensor assumes the form

SJ):\)%‘ = i <: i{VX,UW} n :> = —%e)““’“ <: imwﬂ :> ) (3.93)
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where the curly brackets denote the anticommutator, {4, B} := AB + BA, and we used the identity

VA = ghat 4 gr At — MY 4 e My s
to derive the second equality in Eq. (3.93). Note that the canonical energy-momentum tensor is not
symmetric, implying that the canonical spin tensor is not conserved. Furthermore, the canonical spin
tensor is totally antisymmetric. In terms of the WIGNER function, we can invoke the general relation
(3.38) as well as the definitions (3.74) to obtain

d*k

TR + " L = / GV k). (3.94)
1 d*k
Apv _ _ ~ Aura
Spc 5€ /(2ﬂ5)4"40‘(x’k)' (3.95)

Using Egs. (3.79¢), (3.79¢), we can rewrite the energy-momentum tensor in terms of the independent
components of the WIGNER function,

d*k kv h h
HY Y — T M i Y glppal T paBy _ w 3
Toc+9™kp / (2mh)* m [k s Zm&1 <2m6 WP e kﬁAv) hDV} TOE), (396)

where we used that A2D4” ~ O(h?). Using now Egs. (3.89) and defining
v 1 rvo
T = et Plass | (3.97)
we may express the energy-momentum and the spin tensor in extended phase space as
T gory — [arwe (ke 4 Pxpeg, 4 2 plugel k
DC+g D — +§5 a+m « f(xa 55)
d4k:
/ ———k"D} + O(h?) (3.98)
= /dF (kkzg'/ + kS + KVEM) f(a,kys) + O(R?) (3.99)
In these expressions, we neglected off-shell terms by substituting
f(z,k,5) = dmmwhd(k* —m?) f(x, k,s) , (3.100)

and we defined the on-shell momentum- and spin-space measure

dl' == dK dS(k) here dK @k Ak 4rhis (k? — m?) (3.101)
= w = = 78 — . .
’ (27h)3k0 — (27h)4

Furthermore, in order to reformulate the spin tensor, we employed the SCHOUTEN identity
FA et ol g heraBA v eaBAn 4 pa Py pBAnvae — (3.102)

which holds because at least two of the five free indices have to be equal to each other in four dimensions.
When contracted with kg and A,, it becomes

KM Ay = NPk Ay + KNk Ao + KNP kg Ay + O(R7) (3.103)
from which Eq. (3.99) follows.

At this point, we can write down the kinetic representation of the conservation laws (2.13b), (2.13c).
They read to first order in A

0=20, (Tg o+ g’“’ﬁp> = /dFk"C(z, k,s), (3.104a)

4
0= horSYE + The = / ArS# C(z, k, s) — % / %k[upg] : (3.104b)



3.4 Spinor fields 39

where we made use of Eq. (3.87) and defined the on-shell collision kernel
C(z, k,5) = dmmwhC(z, k,s) . (3.105)

Furthermore, in order to derive Eq. (3.104b), we made use of Eq. (3.104a). It is clear that Eq. (3.104a)
describes the conservation of linear momentum in a collision, while Eq. (3.104b) specifies how spin is
converted into orbital angular momentum. In order to see this, let us assume the form

hDL (2, k) = —/dSA”(m,k,s)Q(x,k,ﬁ) , (3.106)
such that the conservation of the total angular momentum becomes
h
/ ar <2ng + k[l’A“]) Cla,ks) = 0. (3.107)

Here, the second term can be identified as a part of the orbital angular momentum. Thus, a change in
the spin of the particle is accompanied by a shift A in its position. We will explicitly calculate how
this shift looks like in Chapter 4, and we will find that the guess (3.106) is not completely correct.

Even though the conservation law (3.104b) is general, the canonical pseudogauge has some drawbacks
in its interpretation. Specifically, consider the divergence of the spin tensor,

h v
ha)\Si\)l:‘gv = 5 /dF [Eg”C(x, ]{375) + k[ﬂzs]kakf(x, k,ﬁ):|

h y ho[ dik
= §/dFk[“ES]A6Af(x,k,s) + E/WIWD@] , (3.108)

where we used Eq. (3.104b) in the second step. Manifestly, the spin tensor is not conserved on its own,
not even in the free case where D}, = 0. Intuitively, one would expect that the energy-momentum
tensor is symmetric in the free case, such that the spin tensor is also conserved on its own.

BELINFANTE pseudogauge

One way to achieve this symmetrization of the energy-momentum tensor is through the procedure
introduced by BELINFANTE and ROSENFELD [136, 137| by choosing the superpotentials

FApv aiuv UV
Y = S'D’fc7 Zr=0. (3.109)
Then, the corresponding conserved currents read
10 = ~
TE s+ " Lp = ZZ< TN ol > , (3.110)
SyE=0. (3.111)
In terms of the WIGNER function, the energy-momentum tensor is straightforwardly computed to be
1 d*k
THY v S EvVm (o k
p.st+ 9" Lp 5 / ) VI (2, k)
1 [ d*k k¥ h h
= SR F 4 =0 [ == F — by, — DY | + O
2/(27rh)4m[ +2ma<2m ¢ oAy v|+Om),
(3.112)
which in extended phase space becomes
T 4 g Lp = & [arkt (g9 4 Bswea, ¢ gyl k
p,BTY9 D=3 +§5 aer o | [z, k,5)
h d*k
- kDY + O(R%) . 3.113
2m/(27‘rh)4 v O (3.113)

In this case, the spin tensor is constantly zero, such that all spin dynamics are absorbed into the
energy-momentum tensor.
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HW pseudogauge

A less drastic way of ensuring the symmetry of the energy-momentum tensor in the absence of
interactions consists in introducing the HW (after HILGEVOORD and WOUTHUYSEN) superpotentials
[54, 138, 139]

~ 1 = ~
Dy = M — e ey Qv ZEvAe —%1/){0"“’,0)"’}1/), (3.114)

where we defined

o~
~

— ih= 2 ~ h [~ ~ = B
MM = waaw , QM = - (m%—% + wa‘“”yAp) . (3.115)

In this case, it is actually easier to directly evaluate the pseudogauge transformation in terms of the
WIGNER function. In particular, note that

d*k

M)\uu _ )\ SHv 11
Zm/ 27Th ’ (3.1162)
Apv /\[u )\p,VaD ) 116b
@ om / 27rh e+ e Aa)o (3.116b)

JAC - A[# vlp _ Awvp ) 11
v / D) g’ F —e€ P, (3.116¢)

where we used
,7/\0_;w zg [p,,yl/] )\uua,ya,yS

to derive the second equality. Then, employing that for any third-rank tensor A that is antisymmetric
in its last two indices it holds that

AlrvIA o AlwAly L AN — _ pvIeA] = 9 gveA 7 (3.117)
we find for the energy-momentum tensor
Tg uw T 9" LD

d4k v N h2 v v hz vaf 3
Gyt |1 (B F = BDY) & T (070" — D) F 4 S0, | +OGF), (3119)

while the spin tensor becomes [due to Egs. (3.79d) and (3.80c)]

G _ / d4k AS
DvHW_2m 27Th

h
A [w1.v] praf 2 . 11
= 2 / 5 k‘ (2 oMKV F — e kaAﬁ) + O(ﬁ ) (3 9)

Note that, since the first term in the spin tensor is separately conserved due to momentum conservation,
when taking into account Eq. (3.104b) it becomes clear that the HW spin tensor is conserved in the
absence of interactions, and consequently the energy-momentum tensor is symmetric in that case. In
general, however, the HW energy-momentum tensor is not symmetric.

Lastly, we remark that, in the case of free fields, this set of energy-momentum and spin tensors can
also be obtained via the NOETHER procedure from the Lagrangian [140]

Enany = 3| (047) (0,9) - 200 (3.120)

where the resulting equation of motion is given by the KLEIN-GORDON equation and the DIRAC
equation has to be supplied as a subsidiary condition.
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GLW pseudogauge

Alternatively, the Lagrangian (3.120) can be changed by a total derivative to give

~ 2 [~ m2
Lp,cLw = —% [1/) <D + ) P+ h C} ) (3.121)

which yields the GLW currents in the case of free fields. Here, the (FOCK-space averages of the)
superpotentials read in terms of the WIGNER function

Apv v vAp
DK = 2m/ 2 SklSY e =0 (3.122)
The corresponding energy-momentum tensor is given by
T gL = & / ko o F oty | (3.123)
D,GLW m (27T )

making it obvious that the hard-to-interpret terms of second order in % in Eq. (3.118) have been
removed. Likewise, the spin tensor now reads

dk h
Auv v v Vo
Spcw = Qm/ 2h)t (k’\S’ + heM Dy o — §6>\l "aap) . (3.124)
Using Egs. (3.79d) and (3.79e), this can be rewritten as
1 I
S)\ll«l/ _ uuaﬂka _ 7k[ual/] O(R?) . 3.1925
D.GIW = 5~ / 27h) ( € Ag 2 F | +0(h) ( )

Given that the last term in the equation above is conserved on its own, we may ask whether it can also
be removed by a suitable pseudogauge transformation. Indeed, we may modify the quantities given in
Ref. [43] by implementing an additional superpotential

ZHe 1/d4kk[>\gp][ukl/]}-
GLW Am3 (27Th)4 ?

such that (upon using momentum conservation) the spin tensor becomes

Apv 1 d*k A _pv
S cnw ﬁ/ ik @ haAs + O(F) (3.126)

while the energy-momentum tensor stays unchanged.

Since in this thesis we do not consider the interaction term proportional to the Lagrangian,® in extended
phase space we have thus the intuitive result

Ty cow = /dFk“k”f(x,k,s) + O(h?) , (3.127)
1
St = 3 [ AURSI Fa5) + O0R) 3.128)

which is the formulation we are going to use when constructing spin hydrodynamics in Chapter 6.

3.5 Vector fields

Finally, we consider charged PROCA fields ‘A/“, which transform in the (1/2,1/2)-representation of the
LORENTZ group. We will mark the quantities referring to these fields with a subscript P.

4The omission of this contribution is consistent with the procedure in the next chapters, where mean-field effects
will not be considered as well. In the diagrammatic language of Chapter 5, this corresponds to neglecting the tadpole
contributions.
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3.5.1 Dynamics

The Lagrangian reads

-~

PP PPN o
Lp=—h (2VWVW - thwvﬂ> + Lpint (3.129)

where VA := 9ltV"] and L p,int again denotes a general interaction Lagrangian. With the EULER-
LAGRANGE equations, this Lagrangian leads to the following equations of motion,

m2

o, V" + ﬁV” =pY, (3.130a)
~ m2 ~
9, Vi 4 ﬁv“ =5, (3.130b)
where the source terms read
1 L in: ~ 1 C in
oM = 778[:7245 , PTH = —78‘6711’1; . (3131)
hoov) ooy,
Taking the divergence of Egs. (3.130) yields
~ R PN h?
0-V=—30-p, a-vT:ﬁa.pT (3.132)
which implies that the equations of motion become
m2 i L v h2 14 -~
m?\ L, h? 2\~
<|:| + h2> V'HL = (g” + W@“@ ) Py - (3133b)

Note that in the free case, i.e., when p# = 0, each component of the vector field separately fulfills the
free KLEIN-GORDON equation. Furthermore, the second terms on the right-hand sides of Egs. (3.133)
can be seen to be potentially problematic in the limit of m — 0; we will shortly come back to this
limit later.

We now compute the GREEN’s function G**(x,2’) of the massive vector field, which has to fulfill

2
(Dm + 7;;) G (2,2') = 050G (@, 2') = g0 (@ = a') . (8.134)

Transforming Eq. (3.134) into FOURIER space, we obtain

d4k d4k, Q U ~ ~
/ / e mE TR (B2 4 m?) G (kK ) + B koGO (k)

(2rh)* | (27h)4
d*k dk -
— — ¢ (katk-z") ) 432 ¢(4) Nghtv 1
/(27rh)4/(27rh)4e (2rh)*h=d"Y (k+ E')g (3.135)

Defining G* (k, k') = (2rh)*6™ (k 4+ k')G* (k), the equation above implies

(=2 + m2)G" (k) + k" ko G (k) = R2 g™ . (3.136)
Contracting this equation with K.k, and k, K, yields

K, G* (k)k, =0 and  k,G" (k)K,» =0, (3.137)

respectively. Furthermore, from antisymmetrizing Eq. (3.136) it follows that C:”“’(k) is symmetric,
implying that we may decompose the GREEN’s function as

G* (k) = B* Gp(k) + K" G (k) (3.138)
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where E* := kMk¥ /k?. Projecting Eq. (3.136) with K, and E,,, we obtain

(—k? + m®) G (k) = h? (3.139a)
m?Gg(k) = h? . (3.139h)

Thus, the retarded GREEN’s function reads in FOURIER space

~ EHv KHv
Gl (k) = h? - 3.140
R( ) <m2 kg_m2+inko> ( a)
Its advanced counterpart is obtained similarly as
~ Fhv Ky
GY (k) =n* - 3.140b
0 = (o~ ) (3.1400)

where the infinitesimal quantity in the denominator now indicates that the half-circle has to be closed
in the upper half-plane. Employing the GREEN’s functions of the scalar field (3.45) and making use of
the fact that »n is an infinitesimal quantity, we find

GY (k) = Ap(k) (gw - :;E“> , (3.141a)
GH (k) = Aa(k) <g”” - :;E“’) . (3.141D)

The massless case

In the massless case, the equations of motion for the vector field reduce to
VI = pv | (3.142)

which yields
0-p=0 (3.143)

upon taking the divergence. This implies that the source term for the massless vector field has to be
conserved. Furthermore, note that at this point we lose the subsidiary condition (3.132) due to the
mass vanishing identically. As expected for a massless vector field, the Lagrangian is now invariant
under gauge transformations

VE S VR 4 0FA (3.144)

where A is an arbitrary scalar function. In order to compute physical quantities, the gauge has to be
fized in some way, as the equations of motion are ill-posed otherwise. One popular choice of gauge
fixing consists in imposing the LORENZ gauge

9-V=0, (3.145)

which looks identical to Eq. (3.132) for the case of free fields. However, it has to be stressed that the
former, although intuitive, is only one peculiar choice of gauge, and there exist many situations in
which other gauges may be more suitable.” Equation (3.132) on the other hand is enforced by the
equations of motion directly.

3.5.2 WIGNER function

The WIGNER operator for charged vector fields is defined as

W’“’(m, k) = _2 dtpe wEvyTH (:v + g) Vv (:r - g) ) (3.146)

5As one example, cf. Ref. [141] for a thorough discussion of the Fock-SCHWINGER gauge.
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cf. Eq. (3.31). Acting with the operators D, and Dy, on the definition above, using the constraint
equations (3.132) on the vector fields, and taking the average over FOCK space, we find

ih 5 h ih Vi

(ku + 2(’9“) Wz, k) = 5 (ku + 2(%) C"(a, k) , (3.147a)
ih h ih »

(k“ - 28"> Tl k) =0 (k“ - 2a“> O k) (31470)

where we used the fact that the WIGNER function is hermitian and defined
"% o 4 —ikwy /. AT}L U\ ~p v .
CH (x, k) = -2 [ d*ve™ = % x+§ pile-3):)- (3.148)
Acting with the operator D? — m? on the WIGNER function and using Egs. (3.133) yields

2
<k2 —m? — %D + ihk - a) WH (z, k) = —hCH (x, k)

h h? ih
v _ v (V o
+— (k: bo = 50" 00+ Sk aa)) Cr(z, k). (3.149)

Equations (3.147), which originate from Eq. (3.132) that removed one dynamical component from

the fields ‘7“, have the effect of reducing the number of independent degrees of freedom of the
WIGNER function to nine. It is advantageous to decompose the WIGNER function into symmetric and
antisymmetric parts,

1 1
W =WE + WhY | WE = §WW> . W = iww , (3.150)

for which we obtain constraint equations by taking the sum and difference of Egs. (3.147):

v ih v h e 2 v h " . v
k WE" — %@LWX =3 [ku (iCh" — dME") + 5(‘3“ (CE” + 6 MY )] , (3.151a)
ih h
kW = SOWE = — [ku (iC5" = SMY") + 50, (CH" + i(SMg“’)] . (3.151b)
Here, we defined
. :
MM = = (CM ™), O = % (cr — vy | (3.152)

and decomposed these objects into symmetric and antisymmetric parts as well. Note that, apart from
signs and the operators ) + m, Eqs. (3.152) are analogous to Eqs. (3.84). Subtracting Eq. (3.149)
from its hermitian conjugate and splitting the result into symmetric and antisymmetric parts, we also
obtain kinetic equations for the symmetric and antisymmetric parts of the WIGNER function,

1 h?
ke OWE =C — o — [(kaw - 4%8(“) (cg)“ - ianJ“)

+§ (kaa(“ + (’)ak(“) (icj‘* + 5M§>“)} : (3.153a)

1 2
k- OWE = C — o Kkak[“ - Zaaa[#) (08 )
h

— (kaa[“ + aa/g[ﬂ) (z'cg]“ + 5M;;]“)] . (3.153b)

Since there appear contractions with the momentum k, it appears sensible to further decompose
the WIGNER function with respect to momentum such that we are able to extract the independent
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components. This idea is analogous to the CLIFFORD decomposition (3.73) in the spin-1/2 case and
yields

k( v v
WE" (a.k) = B fip + 5 Fg ) KM fi 4+ FIY (3.154a)
Kln Fl
W (2, k) = ioFa } jenvasFa =G, (3.154b)

where the components are given by

22 1
fe=E,WH Fi=FKHe —Was,  fx =KW, Fl = Khgwe? (3.155)
and
e j k.,
Fh =ik —Wap, G = —%GWQBEWM , (3.156)

respectively. Here we introduced the traceless projector onto the subspace orthogonal to the four-
momentum,

v 1 v v 1 1%
Kb =5 (KgKB + KaKg) K" Kap -

The vectorial quantities Fu, Fi fulfill Fs -k = F4 -k = 0 and thus only have three independent
components. The same holds true for the axial vector G. The tensorial quantity Fx on the other
hand fulfills Fi” = FY, FiZ’k, = 0 and Ff, = 0, leaving five independent components. Thus, the
constraints (3.147) determine F4, Fg, and fg in terms of fx, G, and Fk. Similarly, we decompose
the quantities 0M and C,

SMY (x,k) = E"' D + %D? + K" Dy + D | (3.157a)
MY (x, k) = Z%Du] + ze“"aﬁk Das (3.157b)
CY (1, k) = E"Cp + I‘;(k CY) + KM Cy + (3.157c)
Chl(x, k) = zic”] + jetved kaCG B (3.157d)

with the components defined analogously to the ones introduced before.

In order to expand the kinetic equations to first order in the PLANCK constant, we have to clarify
which parts of the collision terms enter at leading order. Using the definition of the collision term
(3.148) and the constraint (3.132), we obtain

(ku - Zhau) Cr ~ O(h), (k + f%) Cr e~ On) (3.158)

from which it follows that Cg, Dg ~ O(h). As we did in the last section in the spin-1/2 case, we follow
Refs. [45, 54] and consider a situation where no initial large (vector- or tensor-) polarization is present.
In this case we conclude that G, FE” ~ O(h) as well as Ck, Ci, D, DY ~ O(h), which follows from
the fact that there are no vector or tensor structures at our disposal at order O(1) which possess the
required symmetries of the aforementioned terms.

With these simplifications, we obtain from Eqgs. (3.147)

2
h
= @Kaﬁaaam ~—3Pp+ Oh?) (3.159a)

F¥ = 0O(h?), (3.159b)
kFY = hK""0, fx + O(R?) . (3.159¢)

fe=
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Furthermore, from Egs. (3.153) we obtain a simple form of the kinetic equations for the independent
components of the WIGNER function,

k-0fkx = Cx + O(h?) , (3.160a)
k-OFE =C 4+ O(h?), (3.160b)
k-0G" =Ck + O(h?) , (3.160c)
while the mass-shell equations follow from the real part of Eq. (3.149),
(k* —m?) fx = Dk + O(I?) , (3.161a)
(k* —m?)FY = kDR + O(h?) , (3.161b)
(k* — m*)G" = hDE, + O(h?) . (3.161c)

Extending phase space

In order to combine the nine independent components of the WIGNER function into one scalar
distribution function, we may, in the same manner as introduced in the last section for spin-1/2 particles,
enlarge the phase space by introducing an additional variable s*, together with a respective measure

AS (k) = %d%é(ﬁ Sk s), 2i=2, (3.162)

Note that now the normalization of the spin vector s is different compared to the spin-1/2 case, which
is dictated by the prefactors that should appear in the conserved quantities.

Defining a distribution function in this enlarged phase space

5
f(z, k,8) = fx —5-G+ gs”s”FK,W ) (3.163)
Egs. (3.160) and (3.161) become (up to first order in h)
(k* —m?)f(x, k,5) = hN(x, k,5) , (3.164)
k- 0f(x, k,8) = €(z, k,s) , (3.165)
where we defined
1 Z e 5 « v
C(z, k,5) = (3[(”” — %Guyagk‘ 7 + 85(!5/31(“5) CH (z,k) (3.166a)
1 7/ @ 5 « LV
M(z, k,5) = (3 Ky = 5—€uvash 57+ 8%ng#5) SM"™ (k) . (3.166b)
Using the identities
/ AS(k) = 3, / AS(k)shs” — —2Km | / AS(k) K 59575 = %Kw’aﬁ , (3.167a)
and
/dS(k)ﬁ” =0, /dS(k)s“s”s“ =0, (3.167Db)

we can obtain the independent components of the WIGNER function via suitably weighted integrations
over spin space,

Frc (k) = % / AS(k)i(z, k,5) (3.168a)
G, k) = % / AS(k)s"§(z, k.5) | (3.168h)

FiY(z,k) = / dS(k)Kl5s*s f(x, k,s) . (3.168¢)
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3.5.3 Conserved currents

Applying NOETHER’s theorem to the Lagrangian (3.129), we find the canonical currents to be

TR, + " Lp = —h<: (f/“@aaﬁa + 17““8”17;) :> , (3.169)
S — <: (17“["?#1 + ?*W/W) ;> . (3.170)

Using the definition of Vi and the general formula (3.38), the energy-momentum tensor reads in
terms of the WIGNER function

Tﬁf’c +g"Lp

1 4 e
== / _d% (D”D*[“Wo‘]a + WQ[O‘D“]D*”>

2 ) (2rh)*
4 2 2 1
- /(2‘;};4 Kk“k” + 28“8"> W, — (k”ka + Za%) Wor — ’jk[”aa]WZ“} ;o (31

where we split the WIGNER function into symmetric and antisymmetric parts in the second step. The
spin tensor on the other hand can be written as

: 4 —

s _ 0 [ dTR 2 A Wl o e o _ plppsla

sy 2/(%5)4 [(D + DN Wl 4 WAl p=l _ pleyy
. d4k A ny [I" V])\ Y,h [I/ “])\

Expressing the canonical conserved currents up to first order in 7 in extended phase space by using
Egs. (3.154) in conjunction with Eqgs. (3.159) and (3.168), we have

THY 4 g Lp = / ACKPR f(x, k,5) + O(R?) | (3.173)
A Moy — P e L Liesd B g 2
spe = [ar [ (se - ki) ¢ Sk + 2K (k) + O(R)

(3.174)

Here, we defined the tensor 34 as in Eq. (3.97), and set
f(x, k,s) = 4whd(k* — m?) f(z, k,s) , (3.175)

which differs from Eq. (3.100) by a factor of mass. This can be understood directly from the dimension
of the fields: while a DIRAC spinor (in natural units, where we choose to measure energy in MeV) has
dimension MeV®/2, a vector field has dimension MeV. Then, for DIRAC fields the WIGNER function
has dimension MeV ™!, while the one for vector fields has units of MeV 2. Given that the units of the
delta function for the mass shell are MeV ™2, it is clear that with the definitions (3.100) and (3.175)
the function f(z,k,s) is dimensionless for any spin.

BELINFANTE pseudogauge

The BELINFANTE pseudogauge is constructed by taking the superpotentials
=X ar SuvA
Sy =Sy Ze =0, (3.176)

which lead to the energy-momentum tensor

A~ A~ A~ A~ 2 A~ A~ A~ A~
TH + 9" Lp = h <: [VT“aVa” VRV S (VI 4 V“VT”)] ;> . (3177)
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while the spin tensor vanishes by construction, S;‘,f‘ % = 0. In terms of the WIGNER function we have

Th G + g™ Lp = Ak k“kwh—zaﬂau W — ( kak® 4 h a ov ) we
PB ISP [ (orpy 4
im0 YWY (k2 —m?+ ZD) Wg”] . (3.178)

Note that the last term in the expression above constitutes an off-shell effect [cf. Egs. (3.161)], which
we take to be of order O(h?) and do not consider further. Thus, in extended phase space we have again

T+ 9" Lr = [ ADKRf(n,9) + O(H). (3.179)

HW pseudogauge
In accordance with the superpotentials introduced in Eq. (3.114) for spin-1/2 particles, we define

Dy = MIIA — MBpf Ve Qhuv | Ziar = (vﬂ# Iyl 4 V[“g””)“?m) . (3.180)

l\D\H

where we introduced
- 1 /s &3 N B2 N N
MM = 3 (V“@AV” + V“@*VT”) , QM= gl (V”la v, ﬁ) . (3.181)
m

As in the case of DIRAC particles, it is easier to evaluate the conserved quantities in terms of the
WIGNER function, where the (FOCK-space averages of the) superpotentials read

4
. / d*k ( p[“g”}’\+ik:[“WZ]’\> , (3.182a)
i 1 d4k v v
74 = [ s (P ) 522
Noting that
d*k
N 4 QLN 4 YN — 2 / R ( 0, WLl g\ +zk”Wj,“) : (3.183)

we compute the energy-momentum tensor in the HW pseudogauge as
d4k 1% hz 1% « v h2 1%
70 [ 2 [ o) we, - (e - Cor )
h Mu h2
+Z2 YO W — =5 <k2 —m?+ 4D) Waa] . (3.184)

Using the constraint equations (3.151) and employing that ACg, Dg ~ O(h?), we find

d4k h2 B
Tpaw + 9" Lp = / it [(k“k” + a“a") W = 5 —5k" (=kCl — kD + hK"*0.Cx)
ing 2
92 (k2 m? + ZD) W“a} +0(1%) (3.185)

such that to first order in the PLANCK constant it holds again that

THY w + 9" Lp = / ATKERY f (2, 8) + O(R?) | (3.186)
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The spin tensor becomes in the HW pseudogauge

d*k
ALY o A1a7 IV
SPHW 22/(27%) kW

_ / ATk (zgv - ?ﬂ};k[ﬂal’]) F@k,5) + O(R?) . (3.187)

Note that, as expected, this spin tensor is conserved in the case where the interactions are absent
and k- 0f(x, k,s) = 0. The divergence of the spin tensor is equal to the antisymmetric part of the
energy-momentum tensor, yielding the conservation law for the total angular momentum (valid up to
first order in h)

d*k
2mh)4

BOAS N = h / AT C(x, k, 5) / gl (c + D) =Ty (3.188)

where we also used the conservation of momentum and defined the on-shell part of the collision kernel
in extended phase space,
E(z, k,5) = 4nhé(k* — m?)C(x, k,s) . (3.189)

Note that Eq. (3.188) looks very similar to its spin-1/2 counterpart (3.104b). When identifying the
vector parts of the collision terms Df; and (Cly + DY)/2, the only differences are a factor of k/m, which
becomes unity on-shell, and a factor of 2 in front of the spin tensor, which is to be expected due to the
higher spin magnitude of vector particles.

Let us note that, as in the cases before, we can derive the HW currents in the free case from the
Lagrangian

2
i uirv i i m-s i
Lpaw = —h|(0, Vo'V —(8-VT)6-V—§VT-V , (3.190)

which differs from the original one by a total divergence.

GLW pseudogauge

Finally, we consider the GLW pseudogauge® for spin-1 particles, which in the free case can be derived
from the Lagrangian

2
Lpciw —h{ (VWDV +V“DVT) +(@-VHo- T+ %V*-V , (3.191)

which vanishes upon using the equations of motion. Slightly modifying the HW superpotentials (3.180),
we define

= 1 Si 1 ~
DR = D A AR S TN = Zhar TR AR (3.192)
The resulting energy-momentum tensor reads

dk h
T+ r = [ s [’“’“W 5k (KCh + kCE 4+ R 0,Cie)

9" (2 , I 3

while the spin tensor stays unchanged.
Analogous to the spin-1/2 case, we can remove the last term in Eq. (3.187) (which is separately

conserved due to momentum conservation) by adding a further superpotential to the quantities in the
HW pseudogauge,

ghrAp L d*k kP Pl e 3.194
W = 709 | @anyt Y o (3.194)

6Also referred to as KG (Klein-Gordon) pseudogauge in Ref. [54].
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By virtue of momentum conservation, we thus have, analogous to Eq. (3.128),

T5 ciw: = / dUEFE f (2, k,8) + O(R?) (3.195)
St = [ ATRSEf(ok8) + O02) (3.196)

which is the formulation we will employ for deriving spin hydrodynamics in Chapter 6. Note that we
again omitted the contribution proportional to the Lagrangian from the energy-momentum tensor.

To close the discussion of the conserved currents, we remark that, although not treated in this thesis,
the formulation of different pseudogauges presented here can also be generalized to the case where
nonzero electromagnetic fields are present, which requires a redefinition of the WIGNER function to
render it gauge-invariant [53, 54, 84, 85, 142, 143].



Chapter 4

The kinetic equation in the GLW
approach

In Chapter 3, we showed that the conserved currents can be described as phase-space integrals over
the respective WIGNER functions. The time evolution of the latter is given by the kinetic equations for
particles of spins 0, 1/2, and 1, which we also computed in the preceding chapter. In extended phase
space, they read up to first order in A

k- 0f(z, k,s) = €(x,k,s) , (4.1)
where the collision terms are
Clx, k), for spin 0,
S s) = { 5 B30 — ($15)5] €, B) for spin 12, (49)
1 i 5 .
(3[(”,, — %euyagkaﬁ’g + SSQSBKE‘E) CH(z, k) , for spin 1,

cf. Egs. (3.87) and (3.165). Note that in the case of spin-1/2 particles the indices «, 8 in the equations
above denote components in DIRAC space, while for spin-1 particles they are LORENTZ indices. For
scalar particles the spin indices can simply be ignored, such that the s-dependence in Eq. (4.1) is
spurious in that case.

The aim of this chapter is to employ the so-called GLW method [43, 46| (after DE GROOT, VAN
LEEUWEN, and VAN WEERT) to express the collision term € as a functional of the distribution function
f. In particular, we will impose that the collision kernel should describe binary elastic scattering, i.e.,
we will consider only 2 — 2 scatterings, without the possibility of particle creation or annihilation.

In standard kinetic theory, it can be argued that the BOLTZMANN equation for binary elastic scattering
takes on the form [43, 115]

k- 8f(x, k) = Cclass(xa k)

1
= 5 /dK/ dK1 dK2(27Th)4($(4)(]€ + k/ - ]Cl — kQ)Wkk,*)kle

% |f (k) f (@, ko) (o, k) Fla K) = fla, k) f oK) Fla k) floka)| o (43)

where f(x,k) = 1— af(z,k), with a = —1 for bosons and a = 1 for fermions, denote the BOSE-
enhancement and PAULI-blocking factors, respectively. For classical particles, one simply has a = 0.
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The quantity Wik’ —k,k, is called the transition rate for the two particle-scattering process with
momenta k, k’ prior to and momenta ki, ks after the collision. Note that we have the detailed balance
relation Wik sk k, = Wi, k, —kk’; Which can be shown to follow from the unitarity of the scattering
matrix [123]. In the following, we will show that the form of the collision term in quantum kinetic
theory assumes a similar form as in Eq. (4.3), with a few important modifications owing to the nonzero
spin of the particles.

4.1 Basic idea

Recalling the definitions of the collision terms (3.76) and (3.148), it becomes clear that the main task
consists in evaluating the expectation value of an operator bilinear in the respective fields and source
terms. The basic idea behind the GLW approach lies in employing a complete orthogonal basis of
the relevant FOCK space in terms of “in-states. Then, one can express the expectation value of a
general operator O as a series of “in”~-WIGNER functions, which are constructed from the operators
creating and annihilating the “in”-states. Truncating this series such that the resulting expression is
only bilinear in WIGNER functions, one obtains the sought-after expression for the collision term.

4.1.1 FocCK space and expectation values

The first step, which consists in deriving a formula for expressing the expectation value of a general
operator in terms of “in”~WIGNER functions, can be done in a general manner for fields of any spin. In
this subsection, we present the general formulation, and specialize to fields of fixed spin in the following
sections.

Fock space

We define the “in”-states as

K" 0™ =l (K", ™) [0) (4.4)
where we introduced
k" =KV RS KR o™ i =01,00,0 00 o0, (4.5a)
as well as
af, (k" 0™) i=al, (ky, 01 )af, (ka, 02) - @ (K, o) - (4.5b)

Here, the values of the spin-variables ¢ range from 0 to 2j 4+ 1, where j is the spin of the particle
described by a field p. These states form a complete and orthogonal basis of the FOCK space, i.e., we
have the relations

(k30| k50" )in = (270)°2k°6%) (k — K)dg0 (4.62)
.- 1 n n n n n
1=> Sl Z/dK k"5 0™ )in 1 (K" 07 - (4.6b)
n=0 T oon

Here we defined
2j4+1 2j41  2j+1

/dK”:z/dKldIdeKn, =)y (4.7)

on og1=105=1 onp=1

The factorial in Eq. (4.6b) is needed to account for double counting, such that the FOCK space is
spanned by all distinct “in”-states. Furthermore, the factor 2™ arises because of the definition of the
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measure dK. Note that the same completeness relation also holds for the “out”-states, which describe
outgoing free particles. Using these creation and annihilation operators, we define the “in™fields [123]

~a . d4k 0 2 2\ —ik-xrra -~
oo (x) =X EU /7(271%)39(16 )o(k* —m*)e U(k,o)ain(k,o)
A ikzrra ~
=3 E /dKe R (K, o)A (k, o) (4.8)

where the prefactor X is needed to recover the correct dimensions of the respective fields, e.g., A =1
for spin-1/2 particles, whereas A\ = V1 for spin-0 and spin-1 particles. Note that, for simplicity, Eq.
(4.8) neglects antiparticle contributions, whose inclusion is demonstrated in Ref. [43]. The quantities
U“(k,o) span the internal space for particles with nonzero spin and correspond to the basis spinors
u®(k) and polarization vectors ¢ (k) in the case of spin-1/2 and spin-1 particles, respectively. The
index a collects all internal indices of the field . We require the following orthogonality relation,

U (k,0)Uq(k,0) = 1050 (4.9)

where the choice of 1 depends on the spin of the particle, e.g., n = 1 for spin-0, = 2m for spin-1/2,
and n = —1 for spin-1 particles. Using Eq. (4.8), we define the “in”-WIGNER function,*

Wb (z, k) = /{/d4ve_%k'“ <$§’n (= + %) B (- g)> : (4.10)

which is consistent with Eq. (3.31).

Re-expressing FOCK-space averages

In a subsequent step, we show how to express the expectation value of an arbitrary operator O in
terms of the “in”-WIGNER function (4.10). Inserting Eq. (4.6b), we can express the expectation value
of O as

<5> =Tr 55
= 22n (nl)Q e n ) ’ in in ’ ’ in .

where we assume that the initial state has been prepared such that the “in”-particle number operator
commutes with the density matrix. The next task is to express the matrix element of the density
matrix through expectation values of bilinear products of creation and annihilation operators. For this
we first compute, using the cyclicity of the trace,

(@l X" (R, X)) = Trdin (K™, N0, (K", ")
:ZﬁZ/dein<pk7k/n;Uk’)\/n|/g\|pk7kn;o_k7>\n>in ) (412)
k=0 T oon

The inversion of this relation, proven in Ref. [43], gives

n n| N, n S " m m m. _m m m
(K™ 00k 0 >i“2222(771(1?ru)2 > /dP /dP’ w@®™ ™ P

m=0 om,g/m

X <ajn(k”,pm,an,am)ain(k’",p'm,a'",0”")> , (4.13)

1Because of the exclusion of antiparticles, we omit the normal-ordering prescription.
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which we may insert into Eq. (4.11) to obtain

<6> Z 22n n| 2 Z /dK"/dK’n ;pn|6‘km§0m>in

- ( 1)m m /m m, m m., _Im
x mz:o 22 ()2 ;m ap dp o P e )
><<5fn(k”,p "o )i (K, ,p’",a’m)>. (4.14)

Introducing a new summation index, j := n +m, and using the fact that Y- > =327 =0 Em 0
we arrive at

~ > 1 . . A SR S
(O) =2 gy = fan? [ars (w5107 0W5;0), (a8 it o) . (439
J= oJ,o’i

where we defined

J

N\ 2
in«kj;aj‘ 6 ’k‘/j; Z m ( ) in<km;am| k,/m;o,/m>in

m=0

x (k00 m‘a’k’j_m;a'j_m>. (4.16)

in °

Note that the expression above is taken to be symmetric (antisymmetric) under the exchange of primed
and unprimed momenta if the particles are bosons (fermions). Next we put in the essential assumption
of molecular chaos, implying that the expectation value of creation and annihilation operators factorizes
pairwise as

(@, 0k, o™i (6, 0™ ) = S Y1 7’H< (ko Yain (K, 7)) (4.17)

In this context, the symbol P stands for the summation over all possible permutations of primed and
unprimed variables, while the factor (-1)" gives a sign change for odd permutations if the particles
are fermions, and no sign change if they are bosons. In terms of the fields, Eq. (4.17) becomes

(Bon(@1) B (wa) B0 (1) - Wgﬂ<,>>=5nmzﬂ7’ﬂ<% TIEE)) - (418)

Inverting the definition of the “in”-fields (4.8), we have

1 1

= @rgertrT 5% (2) = O(k)6 (k2 — m2)a;
Shi Paern™ U, (k,0)p () = O(k")d(k* — m*)am(k, o) . (4.19)

Inserting this expression into Eq. (4.15) and renaming the sum index j — n, we obtain

Z /d4 n/d4 nOn sa1b1--anby l’ CC f[ <§01n :L'j (pm )> , (420)

where

~ o 1 d*k" d'Em . on B (s o/
O35 = o | G | s 2wl O

n _gin
om0

He # (ks =) Uy (kj, 0) 0, (K, 0h) | (4.21)
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Using the definition of the “in”-WIGNER function (4.10), we have

S (e 5) 7 () = [ et 422

Defining the center and difference variables 7; = (x; + 2})/2 and v; = z; — 2}, Eq. (4.22) in
conjunction with Eq. (4.20) then yields

(0) Zn'/d‘1 “/ dk Oty ay, (3 E™) HW”“ (@5, %) (4.23)

where we defined

—n.Ln 1 " d*um” =n u” ~ |- u™ -
On.arby--anb, (T k") = <"‘€)\27]2) /(2#5)4" Z _ <<k T 50 "O k" + —;0 >>
i, = Uy — (= Uy
< AT et i, (ks = F0,) U, (ki +F07) | - (4.24)

j=1
Note that in this calculation & is the integration variable appearing in Eq. (4.22), we used the emerging

delta function §(*) (% — l;:j) and defined k; — k =

Equation (4.23) is the sought-after relation that allows to express the expectation value of any operator
in terms of the “in”~-WIGNER function. In the following sections we will employ this relation to evaluate
the collision term for particles of different spins.

Expressing W in terms of Wj,

The first application, however, lies in applying Eq. (4.23) to the WIGNER function itself. We recognize
that the WIGNER function can be expressed as the expectation value

W (2, k) = <enPwab(k)e*%ﬁ > : (4.25)

T (k) == m/d‘*ve*%k-va” (;) o (72) , (4.26)

and P is the usual momentum operator. Then, applying Eq. (4.23) and relegating details to App. B.1,
we obtain the intuitive result

where we introduced?

W (x, k) = W2 (x, k) + terms of higher order in the density . (4.27)

m

Thus, we may replace every “in”~-WIGNER function appearing in the expression for the collision term
on the right-hand side of the kinetic equation by the full one, up to corrections of higher order in the
density, cf. Ref. [43]. Note that this step is indeed important, as the BOLTZMANN equation has to be
closed in terms of the full WIGNER function that appears on its left-hand side. We remark that this
introduces another approximation into our scheme that is different from the (%-)gradient expansion,
and essentially corresponds to an expansion in terms of the (dimensionless) coupling constant of the
interaction. In the following, to be consistent in the truncation, we will always neglect collisional
contributions that arise inside the collision integral itself.

The second, and arguably more involved application of Eq. (4.23) lies in expressing the collision term
in terms of the WIGNER function, which we will demonstrate for particles up to spin 1 in the following.

2As noted before, we do not consider the normal ordering due to the formal omission of antiparticle contributions,
whose inclusion is demonstrated in Ref. [43], p. 96.
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4.2 A helpful theorem

Before proceeding to the actual computation, we state an important theorem that simplifies the
calculation significantly. The proof is provided in Appendix A.

Theorem 1. The kinetic equation for the WIGNER function of particles of any spin also holds on the
mass shell to any order in h.

Specifically, this means that, when considering the WIGNER function W (x, k) for a general field defined
in Eq. (3.31), and expanding it as a series in h, we may consider the momentum k to lie on the
mass-shell, k2 = m?2. We thus have the following implication,

k- 3W(9:, k) = C(Qj, k) - k- 8V[/on—shell(xv k) = COH—ShEll(I'7 k) 5 (428)

where
W(l‘, kj) = (5(k'2 - mQ)Won_sheu(x, k‘) + Wott-shell (l‘, k‘) , (4.29&)
C(l’, k) = 5(k2 - mQ)COH—SheII(x; k) + Coﬁ'—shell(xa k) 3 (429b)

with the “off-shell” terms being nonsingular on the mass shell. Note that this does not imply that
the WIGNER function does not have off-shell parts. Rather, it provides an evolution equation for the
on-shell parts of the WIGNER function. The off-shell parts can then be reconstructed perturbatively
from the on-shell ones by employing the mass-shell equations, such as Eqgs. (3.49), (3.82), and (3.161).

4.3 Scalar fields

The scalar case has been discussed thoroughly in Ref. [43], but we nonetheless treat it here for
completeness. Furthermore, nonlocal collisions have not been taken into account in Ref. [43], which, as
we will show, bears no consequences to first order in .

4.3.1 Rewriting expectation values

The FOURIER decomposition of the “in”-fields in the scalar case reads

din(z) == Vh / 27 O(K%)8(k* — m?)e™ #*a, (k) (4.30)

and the “in”-WIGNER function is defined as

Win(x, k) /d4ve_ﬁk” (Jc—i— %) ain (Jc — g)> . (4.31)

Evaluated for spin-0 particles, Eq. (4.23) becomes

o [ A . o
Zn'/ d'a /277?14” n (@ k) [T W5, 8) (4.32)

where we introduced

=N, LN\ . 1 d4un .n u”
k)= g5 | gy (5

1

oy 7>> H ehui T (4.33)

Note that the quantities U%(k, o) become unity in the spinless case.
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Expressing C in terms of W,

In order to express the collision term as a function of Wj,, we express it as an average over FOCK
space,

C(z, k) = <e%ﬁw§>(k)e—%ﬁw> : (4.34)

where we introduced

= f vt 51 ()7 (-5) 7' (5) 8 (-5)] - 159

Then, we can utilize Eq. (4.32) to express the collision term as
T d*kn - . .
(z,k) Z / / oy T (@R |k)H1Win(x+xj,kj), (4.36)
j=
where we defined the kernel

_— 1 dtun wnu”
i ] e (e

mn

(k) k"

» Heﬁu? %, (4.37)

inj—1

In Eq. (4.36), the n-th term in the sum, being proportional to a product of n WIGNER functions,
contributes to the effect of n-particle collisions. In the remainder of this chapter we focus on binary
elastic scattering and thus truncate the sum after the n = 2 term. Note that, when comparing to the
expected result (4.3), we can already anticipate that this truncation will lead to the loss of effects that
originate from BOSE-EINSTEIN statistics, since these are characterized by the product of three and
four distribution functions [144]. After inserting a complete set of “out’-states and using the fact that
the “in”-and “out”-states are momentum eigenstates, we obtain

<k2 _w k? + u2>
in 2 2 in

:Z'mZ:

= 1 u?| [~
dK/m ]{?2 v T 0
_02mm!/ in< 2 H(b ©
k/m> <k/m
out out
:3/dK’ o o (0) [k
2 . 2

Note that in the last equality we assumed some conserved charge to be present (e.g. baryon number or
electric charge), and assumed only one species of particles. Under these conditions, the only permissible
scattering with two outgoing particles is 2 — 2 scattering. In Eq. (4.38), we next have to evaluate the
matrix elements of the fields and the source terms. The former can be treated via the YANG-FELDMAN
equation [43]

D (k)

p(0)

k/m > < k/m
out out

2
k2+u2> (2mh)*5 k+2k§szlfk:2

Dl
out out

2
K+ u2> 2rh) 6@ (k+ k' — ki — k2) . (4.38)

- p%(0)

$<0>]

p(0)

3(0) = Fnl(0) + / da A p(—2)p(a) (4.39)

leading to

¥
out

K+ “2>m = Vh(2rh)32k" [5<3> (k' — ko — %) +(1o 2)]

#(0) 5
+ AR <k1 PR —k’) <k’
out

2
k2+“2> . (4.40)

: 5(0)
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where we introduced the FOURIER-transformed retarded propagator of the scalar field, cf. Eqs. (3.45).
The matrix elements of the sources on the other hand can be connected to the transfer matrix ¢ (i.e.,
the nontrivial part of the scattering matrix [145]) through the relation

(K'1p(0) k%), = % (kK| t]k?) . (4.41)

Inserting Eqs. (4.40) and (4.41) into Eq. (4.38), we find
2 2
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In order to simplify this expression further, we split the transfer matrix t into its real and imaginary
parts. The real parts, which were neglected in Ref. [43], correspond to VLASOV-like terms that belong
to the left-hand side of the BOLTZMANN equation, cf. e.g. Ref. [146]. In the remainder of this thesis,
we will not consider these terms further for simplicity, but including them is straightforward. Thus, we
can approximate the transfer matrix by its imaginary part, whose matrix elements can be rewritten
through the optical theorem [43]

(2mh)*

LT T p2) = _ 2T
2<k}t t|p>7 16

/dQ1 dQ2 6™ (g1 + 2 — k1 — ko) (K?[ E]q®) (@[T [p*) . (4.43)
Utilizing this theorem, we are in a position to reinsert Eq. (4.42) into Eq. (4.37) and subsequently into
Eq. (4.36). However, in order to obtain a simpler expression it is advantageous to employ Theorem 1
and evaluate everything on the mass shell. The main effect of this usage is that the last line of Eq.
(4.42) can be evaluated at the point u; = us = 0, since otherwise the difference of the propagators
would introduce off-shell terms. This can be seen from the identity

. 1 1.
71]1_% i 32'; Find(z), (4.44)

where & denotes the CAUCHY principal value. Then, since the retarded propagators are evaluated at
the same momentum, we are able to use the important relation

AR (k) — Ah(k) = 2mih6 (k2 — m?) . (4.45)
Defining the on-shell contributions to the WIGNER function and the collision term

Wz, k) = 4nhé(k* —m?) f(x, k) + Wog.shen(z, k) (4.46a)
Clx, k) = 4nhé(k* — m?)C(z, k) + Comshen (7, k) , (4.46D)
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where the off-shell parts are taken to be nonsingular at k2 = m?2, we obtain
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where we introduced the notation
(kK| t]k*) = = (k: k') Ling(0) : |K2) = M (kK k1, k) - (4.48)

Note that we also used the fact that we can neglect the off-shell contributions of the WIGNER functions
inside the collision integrals, as they are either of order O(h?) or of collisional origin themselves, putting
them outside our employed truncation. Finally we expand the on-shell WIGNER function around z as

fle+25,k) ~ f(z, k) +z; - 0f (z, k) , (4.49)

such that we obtain (after performing the dz-integrations) and making use of the symmetries of M
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M(k+u22ul7k/q;27k17k2) M* <k Ul‘;UQ’k’«FU;,kl,kz)) . (4.50)

The equation above already features a structure of gain and loss terms, determining the rate of particles
scattering into and out of the momentum state k, respectively. However, the loss term, given by
the second and third term in the equation above, consists of two contributions, differing in the signs
of the momentum-space shifts uy, us. The first terms in curly brackets denote local contributions
to the collision term, while the respective second terms characterize nonlocal collisions, since they
originate from the fact that the distribution functions in Eq. (4.47) were originally evaluated at
different spacetime positions, cf. Eq. (4.49). At this point it is apparent that at zeroth order in & only
local collisions take place, while at first order both local and nonlocal contributions enter. Note that,
from now on, we will also neglect the momentum dependence of the vertices M.
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4.3.2 Local collisions

Evaluating the first terms in curly brackets in Eq. (4.50), i.e., setting u; = us = 0, we find the local
collision term

|M|?
16
X [f(xv kl)f(ma k2) - f(mv k‘)f(],‘, k/)] ) (451)

Crocal(, k) = % / dK, dKy dK'(20h)* 6@ (k + k' — ky — ko)

Comparing this expression to Eq. (4.3), we can identify Wi 1.k, = |M|?/16. Furthermore, as
expected, we lost the effect of quantum statistics due to our truncation of the collision expansion
(4.36), which is valid in the low-density regime [43].

4.3.3 Nonlocal collisions

In order to evaluate the nonlocal terms, we integrate by parts in wj, us in Eq. (4.50). We find two
contributions (which we will label by Roman numbers), one where the u, us-derivatives act on the
distribution functions in the loss terms, and a second one where they act on the momentum-conserving
delta functions in the loss terms. In principle, there would be a third contribution where the derivatives
act on the vertices M, which vanishes due to our assumption of them being momentum-independent.
The first contribution reads

M 2
cportecal(z, k) = il 5 4| / dK; dKy dK'(2nh) 6@ (k 4+ k' — ky — ko)
4, s(4) o _ Y2 U2 !
x /d wad® (), |f (k= ) + f (2. k+ )| 0, (@, k)
_ih|MP

=51 /dKl/ng/dK’(27rh)45(4)(k+k’ — Ky — k)

x OF [~ (2, k) + f (2, k)] 0, f (2, )
=0. (4.52)

The second contribution can be evaluated similarly. Noting that
1
o 5 (k F K — kg — oy £ %) = £ 0,0 (k FK —ky — kot %) ,

we can rewrite the uj-derivative acting on the delta function as a k’-derivative and integrate by parts
again to obtain

nonlocal _ @ |M|2 / 45(4) I _
OII (33, k‘) = 2 64 dK1 dKQ dK (27Tﬁ) ) (k‘ + k k‘1 kQ)
X 8[@ [f (I? kl) - f (.’IJ, kj/)] 8Pf(l‘7 k)
=0. (4.53)

Thus, in the case of scalar particles, the nonlocal contributions vanish and the collision term stays
local up to first order in A. The intuition behind this fact is that nonlocal collisions are needed to
exchange orbital and spin angular momenta. More specifically, the exchange of spin will necessitate
a nonzero net orbital angular momentum in the collision, which is realized by shifting the position
of the particles. However, since the spin of scalar particles is zero, the orbital angular momentum is
separately conserved, and such shifts are thus not induced.

As we shall see in the coming sections, this changes for particles with nonzero spin.
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4.4 Spinor fields

After having completed the treatment of scalar fields, we move on to DIRAC fermions with spin 1/2.
While the general steps are very similar to what has been shown in the last section, there are some
subtleties related to the nontrivial internal structure of the fields.

4.4.1 Rewriting expectation values
For a spinor field, the FOURIER decomposition reads
Vin (2 Z / oh)? 0)6(k2 — m2)e™ #F T, (k)aw (k) (4.54)

where we introduced the basis spinors u,., cf. Eq. (4.8). These quantities are constrained by the DIRAC
equation to satisfy

(k—m)u, (k) =0, (4.55)

and they are constructed to fulfill the following orthogonality and completeness relations,
Uy o (K)ul (k) = 2moy,s , (4.56a)
Zu Vi, 5(k) = (F+m)*s = 2mAT5(k) , (4.56b)

where we made the DIRAC indices explicit® and introduced the projector onto positive-energy states

k+m

AT (k) = 5

(4.57)

Accordingly, the “in”~-WIGNER function for the DIRAC field is defined as

Win,ap(z, k) = /d4ve wh <1/J5 (sc—i— )¢a< - %)> . (4.58)

From Eq. (4.23) we obtain for spin-1/2 particles
" d4kn . n B -
Zn‘/ de / 2mh)n Onanpran s (5 K°) [T Wi ™ (35, 8) (4.59)
j=1

where we defined

=N, LN 1 d4un 7.n u” n| A |mn u” m
On,a1 8100 pa (Z"; K") = (2m)?" / (2mh)4n Z . <<k B ?;T Ok +7;T >>
rn p/nin in
- LT T U5\ _ - U4
]165 J Jurj,ﬁ_7 (k] — 3]) uréyaj (kj + é) . (460)
i=

Expressing Cog in terms of Wi, o5

As demonstrated in the last section for scalar particles, we now express the collision term (3.84b) in
terms of the “in”~-WIGNER function, which can then be replaced by the full WIGNER function to close
the resulting equation. Note that, once the collision term (3.84b) is known, we can proceed to translate
it into extended phase space via Eq. (3.88b).

3From now on, we will not distinguish between upper and lower Dirac indices, as they will be traced over in the final
result anyway.
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Orienting on Eq. (4.34), we express the collision term as the average
Capla, k) = (eF 7B, p(k)e 7o) | (4.61)
where we defined the operator
Bt = e {80 (5)#], 5 () 000 ()5 (-3
S @) (2], (n (D) e

Here we used that for an arbitrary operator A(z), the (covariant version of) the HEISENBERG equation
of motion states that

[A(x), ﬁu} = ihd"A(x) . (4.63)
Employing Eq. (4.59), the collision term can be written as
aB 44z d4kn OZB =n.Ln - a;B; = I
¢ LU k Z n! nozlﬁl anﬁn(w ;k |k)HVV1n ! ('r—’_xJ’kj) ’ (464)
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where we defined
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in analogy to Eq. (4.60). After inserting a complete set of “out™states and performing the d*v-
integration we obtain
k2 4 U727 52>
2 in
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out 2 in in 2 out

As was done in the last section in order to obtain Eq. (4.38), we used that, in the case of a single
particle species that features an intrinsic charge, only binary scattering is permitted. The matrix
elements of the field operators can be evaluated via the YANG-FELDMAN equation for spin-1/2 particles
[43]
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3(0) = Tn(0) + / At Sp(—2)px) (4.67)

where Si denotes the retarded fermion propagator introduced in Sec. 3.4. Then, the respective matrix
elements can be evaluated to be
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Inserting this relation into Eq. (4.66) and employing the definition of the FOURIER-transformed
retarded fermion propagator (3.71a), we find
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Note that in this expression we made use of the completeness relation (4.56b). Next, we have to employ
the relation between the source terms and transfer-matrix elements [i.e., the spin-1/2 equivalent of Eq.
(4.41)], which is given by [43]

EI;O(B (k)

k2+—s +1<—>2}

(kKm0 | €|k r?) = =, (k) o (K5 77[5(0) |k r2) (4.70)

Then, we split the transfer matrix into real and imaginary parts, neglect the real parts (as they give rise
to VLASOV-like terms, which we do not consider in this work?) and make use of the optical theorem,
which in the case of spin-1/2 particles reads [43]

z(k‘,k';r, it —tt ’kQ;r2>

16

(k+k — ks — k) Z/d@ldQ2<k Kyrr'|E|q% %) (g% 82| 2T (k% r?) . (4.71)
Lastly, similar to Eq. (4.48), we define the tree-level vertices of the theory via

(kK5 r’|f|k2;r2> <k K'srr'| s Ling (0) : |k2;r2>

St

= Ty (k)i o (K Vitry ay (K1 )ity (h2) MO 102 (ke K Ky o) (4.72)
Note that, since we are dealing with fermions, we have the symmetry relations
MO0z (o |y ko) = — M 102 () bk ko) = — M 2% (kK ko ky) .
Assuming that the vertex M is symmetric under the exchange k <+ ki, k' <+ ko, we furthermore have
(K% 02| 0 [k, K ') = Uy ooy (k1) Ui g (2 )t (B ) tgr o (K'Y M2 (K K hey k) (4.73)

where we used that £ =71 at tree level.

4These contributions have been called “pure-spin exchange terms” in Ref. [43]. We remark at this point that neglecting
these terms is the equivalent of considering the self-energy in the T-matrix approximation in the KaApANOFF-Baym
approach [46, 147].
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These relations can now be inserted into Eq. (4.69) and subsequently into Eq. (4.64), where the sum
is truncated at n = 2. Performing these steps and making use of Theorem 1, we obtain the following
result which only depends on the on-shell parts of the WIGNER functions,
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In this expression, we expanded the WIGNER functions to first order around z; = Z3 = 0, cf. Eq.
(4.49), and subsequently performed the dz2-integrations. Furthermore, the on-shell contributions of
the WIGNER function and the collision term are defined via

W (z, k) = 4mnhé(k* — m*)Wen-shet1 (7, k) + Wogshen (, k) (4.75a)
C(z, k) = 4mmhd(k* — m?)C(2, k) + Cor-shen (2, k) (4.75b)

where the off-shell terms are defined to be nonsingular on the mass shell. Since we can neglect the
off-shell parts of the collision term, we were also able to make use of the relation (4.45) to simplify
the term in Eq. (4.69) containing the difference of the retarded scalar propagator and its complex
conjugate, which can both be evaluated at the momentum k.

Note that, in accordance with Eq. (3.100), we included a factor of mass when defining the on-shell
parts for the fermionic WIGNER function. This is to be contrasted with Eqgs. (4.46), and has its roots
in the different dimension of the fermionic fields as compared to scalar or vector fields.

As in the case of KLEIN-GORDON fields, the collision term (4.74) contains both local and nonlocal
contributions. Due to the nontrivial internal structure of particles with spin, however, there appear a
multitude of positive-energy projectors AT, many of which are dependent on w;, us and thus contribute
to the nonlocal collisions. Indeed, as we will see shortly, these terms are responsible for nonvanishing
nonlocal contributions to the collision term at first order in A. As in the previous section, we will from
now on neglect the momentum dependence of the vertices M for simplicity.
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4.4.2 Local collisions

In order to obtain the local contributions to the collision term, we set all shifts w1, us in momentum
space to zero, such that we find
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This expression now has to be translated into extended phase space, i.e., we have to use (the on-
shell part of) Eq. (3.88b) to compute C(x,k,s). In order to obtain a result with a straightforward
interpretation, we also have to relate the WIGNER functions in Eq. (4.76) to the scalar distribution
function in phase space f(z,k,s), cf. Eq. (3.85). However, in principle the WIGNER function has
more components in its CLIFFORD decomposition than the scalar F and the axial vector A that enter
the distribution f. As discussed in Subsec. 3.4.2, to first order in A the pseudoscalar component P
vanishes, while the vector and tensor contributions read

i
Vi (z, k) ~ %}'(x,k), SM (k) =~ Ta[”k”]]—'(x k) — mewaﬁk Ag(xz, k), (4.77)

where the omitted terms are either of second order in & or of collisional origin. Noting that all WIGNER
functions in Eq. (4.76) are sandwiched in between two positive-energy projectors, we use the relation

AT (kK)o k, AT (k) =0 (4.78)
and conclude that
AF (Wt DA () = [ dS(R)A(k. ) (o, bes) (4.79)
where we defined 1
h(k,s) =5 (1 +59) AY(E) . (4.80)

Note that due to
(L+754) AT (k) = AT (k) (1 +758)
which follows from k- s = 0, it holds that

A+ (k)h(k,s) = h(k,5)AT (k) = h(k,s) . (4.81)

Inserting the representation (4.79) of the on-shell WIGNER function into the local collision term (4.76),
we obtain
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where the momentum- and spin-space measure dI" has been defined in Eq. (3.101), we made use of the
relation

/ dS(k)h(k,s) = A+ (k) , (4.83)
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and inserted a spurious dS(k)-integration in the first term. Lastly, we write the on-shell part of Eq.
(3.88b) as

Clx,k,5) =5 (L +75%) 3, Cap(z, k) , (4.84)

N |

which then yields
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where we made use of the identity
[ A4S0 sy 08 s, 8 5) + s 0y, ()] = 2, (,9). (4:86)

In Eq. (4.85), it is interesting to note that, while the distribution functions in the gain term depend
on (ki,51) and (ks,52), as expected, the arguments of the functions in the loss term are (k’,s") and
(k,5) [and not (k,s)]. As we will see in Sec. 4.5, this is an effect that is present also for particles of
spin 1. In the case of spin-1/2 particles, it has been shown in Ref. [44] that it is possible to redefine
the collision kernel C(x, k,s) such that the integration over § is removed and the loss term takes the
expected form.® In general, however, it is not possible to perform such a procedure, which is why we
refrain from doing it at this point. We will return to this issue in Sec. 4.6.

4.4.3 Nonlocal collisions

Integrating by parts in the variables uq,us in Eq. (4.74), we split the resulting expression into four
terms, which we will label by Roman numbers, as in the last section. Firstly, the uq, us-derivatives act
on the first two positive-energy projectors A" (k + u1/2 + uz/2) on the right-hand side of Eq. (4.74).
These derivatives can be evaluated by noting that
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x {6a/a16ﬂfalA§ta2 ()0, [WE T b Wy )|

= A (BN, (k2) [ B85 + G 0]
8 PYe)
x Oy [Wgn shen (7, k)Won bhell(x’k/):| } . (4.88)
Here we used that
1
Wz, k) = §A+(/€)}"(x, k) + O(h) , (4.89)

5Such a redefinition is possible since the physical meaning of the spin degree of freedom s is limited and all observable
quantities are given by integrals over spin space.
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implying AT (k)W (x, k)At (k) = W (z, k) + O(h), which we may use since the nonlocal contributions
are already of first order in /& and the neglected terms are thus of second order. Inserting the relation
(4.79) and employing the definition (4.84), we find

ik 4 _
Cponlocal (4, 1. o) — me% dT'y ATy dT" dS (k) (27h)*6™ (k + k' — k1 — ks)

w M@1@2B182 jrr1720102 [h(k75)7/yﬂ]ﬁ/ ,
X {5(1/&155’51 h52042 (klvsl)hﬁfh (klagl)hﬁQ’yz (k2752)au [f(:z:, kl,sl)f(:zz, k2552)]
- hﬂl'Yl (k1751)h/3272 (k2752)h520¢2 (klvsl) [5a/a1h515/(k‘,§) + haray (kvg)551ﬁ’]

X O [ (@, k,8) fa, )] (4.90)

Since the distribution functions only depend on the spin variable at first order in A, which follows

from the fact that A* ~ O(h), we may omit the spin arguments and perform the s-integral trivially to
obtain

. 4
CInonlocal(x,k75) _ %%/dl—\l ng dF/ (27‘(’5)45(4)(16‘ + k_/ _ kl _ k2)Ma1a2f31ﬁ2M’71725152
X h52a2 (klvs/)hﬁlm (kl’sl)hﬂz”fz (k2752) [h<k75)7vu]61a1
1
<0, | f(o b)) = 30,01 (191)

Here we used that {[h(k,s),7v"],AT(k)} = [h(k,s),v"] since h(k,s)(f —m) = 0. In the second
contribution to the nonlocal collision term, the uy, us-derivatives act on the remaining projectors in
Eq. (4.74). Performing the same steps as outlined above, we compute

ih m*

Cﬁonlocal(x, k,ﬁ) = _%7 d]_"1 d]_"2 dF/ (27Th)45(4)(k + k/ _ kl _ kg)MalaZﬁlﬂZM’YlWéléQ

X {f(xv k2) {aﬂf(x’ kl):| h’52a2 (k/75/)h52"{2 (k2’52)h51a1 (kvg) [h(khsl)’ ’Y‘u]ﬁlfyl

£ k) [0, (ko) Bssas (8 Y, 1 1), 9) [k, 2). 9%,
— (@, k) [0 f (2, k)] hpyyy (K1, 81) Bpyns (K2, 52) sy, (K, 8) [R(E,87), M5, 00

s[RI k) — B )]
X hﬁl’h (kl’ﬁl)hﬁfm (k2a52)h52a2 (k/’5l) [h(k,ﬁ),’y“blal } : (4'92)

When comparing to the nonlocal collisions for spin-0 particles, cf. Subsec. 4.3.3, Egs. (4.91) and (4.92)
are the essential new contributions that arise from the nontrivial internal structure of the particles.
The remaining contributions were already present in the scalar case, where we proved that they vanish.
Indeed, as we will show now, this is also the case for DIRAC fields, such that the contributions from the
positive-energy projectors is the only source of nonlocality at first order in the PLANCK constant.® The
third contribution consists in the u, us-derivatives acting on the arguments of the WIGNER functions
in the loss terms, leading to
Cnonlocal _ th m4 /I 1Q 45(4) /
it (x,k,8) = “am A dl'; dTo ATV dS(k) (27h)* 6"V (k + k' — k1 — ka)
% Me1a2B182 ) 1728162 w}pctf(x’ k)] [3Mf($, k’)]

X gy (k1,51)h/32,y2 (kg,sg)h52a2 (/{3/,5/) [h(k:,s), h(k, 5)]51&1 . (4.93)

60ne may wonder why there are no contributions that contain momentum-derivatives from the so-called “Poisson-
bracket terms” that arise in the literature [148, 149]. The reason lies in the h-gradient expansion, in which these terms,
corresponding to the nonlocal contributions III and IV, only give nonvanishing corrections at second and higher orders.
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After performing the dS(k)-integration trivially, this term vanishes since h(k,s) and A (k) commute.
In the fourth contribution, the derivatives act on the delta functions in the loss terms, yielding

i 4 _
CR™o (b, 8) = = - [ APy Ty dE S (k) (2nh) 64 (s + K — by — a)
x Mere2P1Bz 71720102 hﬁl’n (k1751)h52“/2 (k2752) [h(k7 5)7 h(k’ g)}(;lal

X [Ouf (@, k)] [Poyas (K',8")O4 fa, k') + {r(K',5"), 7" 5,0, F2) K] . (4.94)

As has been the case with Cﬁ‘}“local(az, k,s), this term vanishes after performing the dS(k)-integration.
Then, the total nonlocal collision term is simply given by the sum of Egs. (4.91) and (4.92), i.e.,

; 4
Chonlocal (7, k,8) = —%% / A0y dTo Y (27h) 6 (k + k' — Ky — ko) M 1025182 pprivziide

X {f(xa k2) [aﬂf(wv kl)] h520¢2 (klvﬁl)hﬁz’m (k2’52)h510¢1 (k‘,S) [h(klvﬁl)”yu}ﬂlfyl
+ f(.%', kl) [auf(xv kQ):| h52a2 (klvs/)hﬁl’h (/{1,51)]151(11 (k, 5) [h(k2752)> ’yu]ﬁ272

- f(fE, k) [altf(x’ k/)] hﬁl’n (klvﬁl)hﬁzu’h (k2752)h(51(11 (kvﬁ) [h(k/vsl)v 7#]62012
- f(I, k/) [auf(l'v k)] hﬁl’Yl (klvgl)hﬁf)’z (k2752)h52012 (klvgl) [h(k75)7 7#]61(11

— O Fla k) f (@ k) = fla B fla K)

X hg, (klaﬁl)h52’72 (k2,52)hs50, (k/aﬁl) [h(kaﬁ)”y“]élal } ’ (4.95)

Interestingly, the terms that are proportional to the derivative of f(x, k) cancel each other, which will
get a clear interpretation in the next subsection.

4.4.4 Summary

Collecting the local and nonlocal contributions to the collision kernel given by Eqs. (4.85) and (4.95),
respectively, the BOLTZMANN equation for the on-shell distribution function in extended phase space
takes on the form

k-0f(x, k,s) = C(x, k,s)
1 - :
=5 / dry dDy AT dS(k) (27h)* 6@ (k4 k' — ky — ko) W/

x [f(a:+A1 — Ak, s f(@+ Dy — A kg, 52) — f(x,k,8) f(z + A —A,k',s')} :

(4.96)
Here we defined the (local) transition rate”
4
WP i TP P (k51 (K2 52) s ()
X s, 5(k,8)hpa, (F;8) + hs, 5 (K, 5)hpa, (K, 5)] (4.97)

and interpreted the nonlocal terms (which are proportional to gradients of the distribution functions)
as the first-order correction in a TAYLOR expansion, e.g.

fx+ A k,s) = f(x,k,s) + A-0f(x,k,5) + O(h?), (4.98)

7Compared to Ref. [46], there is a discrepancy of a factor of two in the kinetic equation, which is compensated by
corresponding inverse factors in the transition rate and the nonlocal shifts. The difference merely lies in where the
volume factor belonging to the integral over 5 is put.
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and analogously for the other terms. The spacetime shifts A, which are of first order in A, are defined
as

ih  m?*
Af = s MO M0 g, (i, 2) s (8 Vs () [, 0),9"] 5,
(4.99a)
12 ih m4 ajasf1B2 3 fy1720102 .y y
AQ = _%WM M hﬁl'yl (kl’sl)h520¢2(k S )h51a1 (/45,5) [h(k2a52)77 ]52’}’2 )
(4.99b)
A= us Mere2B B2 N2 by (ke 51) By, (K2, 52) s,y (K, 8) [B(K 87),7¥]
= 8m W(/2) B1y1 \K1,581) By~ (K2,582) 105,01 (K, , el PP
(4.99c¢)
AP = _ﬁmiZleaz,&ﬁzM'ywzél%h (k )h (k )h (k/ /) [h(k ) M]
T 8mwCA) Bryr F15 81) 055 \F25 52 ) 053000 (F5 5 5)s Y S0 0
(4.99d)

and they are orthogonal to their respective momenta, i.e., they fulfill A; - k; = 0, where A; €
{A A" Ay, Ag} and ky € {k, k' k1, ko }

The interpretation of the nonlocal terms now becomes clear: They represent a spacetime shift of
the colliding particles. More specifically, each particle j is shifted by a (different) amount A;, in
addition to a global shift of —A. This also gives a meaning to the fact that there are no nonlocal
terms proportional to the gradient of f(z,k,s), since in that case the individual and the global shift
cancels. The fact that the particles do not collide at the same spacetime point is in fact mandatory for
particles with spin, since only in that case there is a finite orbital angular momentum at the point of
the collision. This, however, is necessary to enable the exchange of orbital angular momentum and
spin in a collision, since only the total angular momentum J* = (h/2)SE" 4 2l#k¥] is conserved [44].
At this point, we remark that similar nonlocalities have also been obtained in a nonrelativistic setting
[148, 150, 151]. Furthermore, we stress that the shifts (4.99) are LORENTZ-covariant objects, and
thus, apart from situations where the collisions are local and all shifts vanish identically, there is no
possibility to choose a so-called “no-jump frame” where they become zero [152].

We can now also see that the form (3.106) which we assumed for the antisymmetric part of the
energy-momentum tensor, while conveying the right idea, was a little too simple, since the shift A
depends on all momenta. We will come back to this quantity in Subsec. 6.2.2, where we will deduce
its correct form from the conservation of the total angular momentum, and compute it explicitly in
Appendix B.3.

To conclude this section, we seek a connection to the standard BOLTZMANN equation (4.3) and consider
the case where the distribution functions do not depend on their respective spin variables. Then, we can
perform the integrals over spin space, such that the factors of h(k;,s;) in W/2) become positive-energy
projectors. The unpolarized transition rate is obtained by averaging over the incoming and summing
over the outgoing spins, yielding

1 ~
(M (kb ey ) P o= D0 (ks £k 0%) [

rr! r2

(k2)AS,

d1a1

(k)AT

= dm* Mool 00 N E (k) A T (k) (4.100)

B2v2

Using the definition above and averaging over the spin variable s [i.e., integrating Eq. (4.96) over s
and dividing by two|, we obtain the known form of the spin-averaged BOLTZMANN equation

|M (K, k', ky, ko) |?
16
X [f(xa kl)f(xv k2) - f(mv k)f(xv k/)] ) (4101)

k- 0f (x, k) = g/dkl dKy dK'(27h)* 6™ (k + k' — ky — ko)

where the spin-degeneracy factor is g = 2.
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4.5 Vector fields

The methods that have to be applied to determine the kinetic equation for (massive) vector particles
with spin 1 are in essence identical to the ones employed for DIRAC spinors, since both types of fields
transform in a nontrivial representation of the LORENTZ group. Nevertheless, there are some technical
differences due to the different constraint equations that they fulfill.

4.5.1 Rewriting expectation values

In the case of spin 1, the “in"-fields are given by
f d*k 0 2 2\ =ik (Np/\a
= FLZ WG)UC )o(k* — m?)e” n¥ T NVE (K)ay, (k, o) (4.102)
A

where the prefactor of v/ is needed to recover the correct units of the vector field and is the same
as in the scalar case, cf. Eq. (4.30). Here, the spin index A runs from —1 to 41, and ¢M# (k) are
polarization vectors which are required to be orthogonal to their associated momentum k. They are
constructed to fulfill the following orthogonality and completeness relations,

e*w“(k:)eff,)(k) = by, (4.103a)
Z NI ()N (k) = — KM (4.103Db)

Note that the negative signs are necessary because of the signature of MINKOWSKI space. Consequently,
we define the “in”~-WIGNER function for the PrROCA field,

Wl (z, k) = — /d%e‘ﬁk v <VT“ (33 + ) Vir (:1: — %)> , (4.104)

where it should be noted that the LORENTZ indices are switched when compared to the general
convention (4.10), which however will not influence the calculation significantly. Specializing Eq. (4.23)
to the spin-1 case, it reads

4 " d4k n ez
Z On s -pinn (2" F )HW (25, k) (4.105)

Jj=1

where we defined

! g (_1)n/ d4un <<7 un O |F un / >>
Onpsvy i, ("5 K") = k" — =2\ O [k + —; A"
o 7 ) 2" (2mh)tn Am o m in 2 3 in
- fugz; (N (5. Wi *(A ) ( )
Hler € (kj 2) B+ (4.106)
J:

Note that, as mentioned before, compared to the general case the LORENTZ indices of the WIGNER
function are reversed, which is due to its definition (4.104), but plays no role otherwise.

Expressing C*¥ in terms of W/.”

As we have done in the previous sections, we now turn to expanding the collision term C*” in terms
of the “in”-WIGNER function (and thus in terms of the full WIGNER function). First we rewrite the
collision term as the following FOCK-space average,

CH (2, k) = <e%ﬁ'$cf>u”(k)e*%ﬁ-$> : (4.107)
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with the operator

e [t P ()5 () ()7 (D)

Note that in this case, as for spin-0 particles, we do not have to use the HEISENBERG equation of
motion (4.63), since the equation of motion for V* is of second order already and there are thus no
additional differential operators acting on the source terms, in contrast to the case of DIRAC spinors.
Making use of Eq. (4.105), we can express the collision term as

"y - 1 —n d4]%n v —n.L.n = L5 V5 = L
CH (k) =) a/d‘lx /Wwwr,_#nyn(x k) [T Wit (@ + 25, k) (4.109)
n=2 j=1

where we introduced

o (71)71 d4un <<_ u™
ol "k k) = E"— —: A"
nv/ill/l"'ﬂnl/n(x k" [k) on (27Th)4n Z 27

s\ 1
)\n’Anln

P+ (k)

y H e%“]"ifeff;ﬂ') (]%J B %) 6;;)\]‘) (EJ + %) . (4.110)
j=1

As discussed before, we will restrict ourselves to the binary-collision approximation and truncate the
sum over n after the first term. Furthermore, it should be noted that, considering Eq. (3.165), only
the parts of ®* orthogonal to k* will contribute to the kinetic equation.®

Inserting a complete set of “out”-states and performing the integration over v yields

<k2 _ %Q’AQ

_ ! a2y
S [ (Mo

ot ot
k‘,o> <k,0
out out

In order to evaluate the expectation values involving the full vector fields at the origin, we need to
relate them to their “in”-counterparts and the retarded propagator via the YANG-FELDMAN equation
for spin-1 particles,

B (k) [k + 5

2
k2 4 u;)\/2>

p*(0)

[17*“(0)

. ! ’. !
k,0> </€,0
out out

2
k2 + %; /\’2> @rh)* 0™ (k+ K — ki — ko) . (4.111)

in

— 71 (0)

70)

~

V) = V40 + [ ' Gy (-apita) (4.112)

Inserting this relation into the expectation values in Eq. (4.111), we obtain

’. !
<k: o
out

= Vh(2rh)32k" [GWM (k:l + %) 5@ (k' ko — %) Sorn, + (1 2)]

+Gh <k1 ol 2 TE2 ;“2 - k:) <k’;0’
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v (0)

k2 + u227)\/Q>

in

pv(0)

2 u’ 2
k +?;/\ , (4.113)

in

8This is a consequence of the fact that the distribution function § in extended phase space is constructed to contain
only the independent components of the WI1GNER function.
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where we used the FOURIER decomposition of the retarded propagator. Inserting Eq. (4.113) into Eq.
(4.111), we find

2
2 U 2
in<k 2 ’)\
= —% Z/dK’(Qwh)46(4) (k+ K — ki — k) ( <k’; o'
o’ out
367270 [ _*(A1)p ULy 3) (1 Uz ,
X{Jﬁ(%h) 2% [e <k1 2)5 (k ko + 2)5”#(192)}
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2
ca (k) (i
out

2 u’ 2
k —&—?;/\ . (4.114)

In order to evaluate the matrix elements of the source terms in Eq. (4.114), we first rewrite

3
ko k? 4 ’Uj )\/2 — § gaae(a)u k+ Ui + Uz 6*(0')0( k4 uy + U
out 7 27 i 2 2

in  o=0

X </€'; o’
out

where we introduced a timelike polarization vector e(O# (k) := k* /k, such that

o (k)

’LL2
k2 Bl )\l2
" 2 7 in

p"(0)
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k? i )\12
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P& (0)

p1(0)

Pa(0)

p"(0)

~ 2, W
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3
> g7 () (k) = B+ KM = gt (4.116)
o’=0

It is important to note that the term containing the timelike polarization vector in the sum in Eq.
(4.115) is actually one order higher in % than the others. To see this, consider the action of the
respective four-momentum on the source term,

<ka+u?+u%) <k/;0'/ k2_|_u2;)\/2> _ <k¢l;0',
2 out 2 in out
2
—ih <k’;a’ k2+“;x2> .
out 2 in
(4.117)

If the source was conserved, this term would vanish identically. Even though we do not assume this,
we will see shortly that such a term will not contribute to the BOLTZMANN equation to first order in
h. The contraction of a polarization vector with a source term can be related to the transfer-matrix
elements through

[7a(0), P°]

2
k2+u;)\’2>

al0) ;

(@-p)(0)

D% () oo (K3 07 [ (0) K75 X), = f\if (k, K5 0,0"[E|k*N%) (4.118)
h
From this equation and Eq. (4.117) we deduce that all transfer-matrix elements in which one of the
polarizations is timelike, i.e., where ¢ = 0, are one order higher in A than their counterparts where all
polarizations are spacelike. Next we recall Eq. (3.141a) and write the retarded vector boson propagator
in terms of the retarded GREEN’s function of the KLEIN-GORDON field,

ALY A v k? v
G (1) = Balh) (9 - L5

3
~ k;2
= Ag(k) > 77 (k)e @ (k) (1 — m2500> . (4.119)

o=0
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Inserting Eqgs. (4.115), (4.118), and (4.119) into Eq. (4.114), we obtain
2 2
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where we inserted identities in order to be able to factor out the sums over o and ¢’. As done in the
previous sections, in the first four terms on the right-hand side of Eq. (4.120), we separate the real
and imaginary parts of ¢ and ¢ in order to make use of the optical theorem

% (k?; >\2|tA_ t1 [p*: N?) = (271Th /dQl dQ2 W (g1 + go — k1 — k2)
><<k2;)\2|t’q 0°) (¢%5p |tT’p;)\’2> . (4.121)

As mentioned previously, we will not consider the VLASOV-type contributions from the real parts of
the transfer matrix further. Lastly, in order to obtain a manifestly covariant expression, we need to
relate the transfer-matrix elements to the tree-level vertices of the theory via

(ko k'5 0,0 [T|R2 N2) = €5 (k)ex®) (k) (hy )02 (o) M2 (e, 1 Ry o) (4.122)
Since vector particles constitute bosons, we have the following symmetry relations,
M17v20182 (k, kl, k1, kg) — M2710182 (k/, k, k1, k2) — M17v20201 (k, k/, ko, kl) ’

while the assumption that M is symmetric under the exchange of incoming and outgoing momenta
(together with the fact that T =t at tree level) yields

(R N2 Tk, K5 0,07) = 00 (k) es ™) () el (k) el (k) MOW022 (e 1Y ey k) (4.123)

From now on we will only consider the part of the collision term that is orthogonal to the four-
momentum, which we will label by an index “1”, and split it into on- and off-shell contributions, i.e.,

CH (k) = P KO (2, k) = 4nhd(k* — m®)CYY (2, k) + C1Y g snen (2. K) - (4.124a)

As in the previous sections, the off-shell terms are assumed to be nonsingular on the mass shell.
Similarly, we define the on-shell components of the WIGNER function through

WH (k) = dwhd(k* —m* )W o, k) + W g (@, k) (4.124b)
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and neglect the off-shell contributions inside the collision term on account of Theorem 1.

The following steps are the same as in Secs. 4.3 and 4.4: We use the completeness relation of the
polarization vectors (4.103b), expand the WIGNER function to first order around z; = Z3 = 0, and
perform the dZ2-integrations, such that we obtain
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(4.125)

As in the previous calculations for particles of spins 0 and 1/2, we were able to employ the relation
(4.45) since the difference of the retarded GREEN’s function and its complex conjugate can be evaluated
at the same momentum. Furthermore, we defined the projectors orthogonal to the sum of momenta k
and g as

(k+q)"(k+q)"

(k+a)*(k+qa

In Eq. (4.125), it can be seen that to first order the terms in the sum in Eq. (4.120) that include
timelike polarizations, i.e., where o = 0 or ¢’/ = 0, do not contribute to the on-shell collision kernel
orthogonal to the four-momentum. This is due to the fact that the transfer-matrix elements containing
timelike polarizations are one order higher in the h-gradient expansion than their counterparts which
include only spacelike polarizations, cf. Eq. (4.117).

(K+Q1" =g —

When comparing Eq. (4.125) to its spin-!/2 analogue (4.74), it becomes clear that the projectors
orthogonal to the momentum, which arise from the completeness relation (4.103b), take on the role that
the positive-energy projectors AT played in the case of DIRAC fields. Thus, we may expect that the
nonlocality of the collision term will, to first order in A, arise solely because of the w1, us-dependence
of these projectors. As we will see in Subsec. 4.5.3, this is indeed the case. In the remainder of this
section, we will again assume for simplicity that the vertices M do not depend on the momentum.
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4.5.2 Local collisions

Taking into account the terms without uq, ug-derivatives in Eq. (4.125), we find

1
CH et (2, K) = 25 / dKy dKy dK' (20h) 6@ (k + k' — ki — ko) MY1720102 ppGrcammna feue frvB

x [K?lh"/z K1751/31 K2752/32 Kly‘IlCl K27042€290”71 9871 W:nl-f}llell(x’ kl)W(iifﬁell(x’ kQ)

1
- 5 ;]252 c/xQ'ngl,51C1 K2752C2 (Kn1ﬁ1gaalgﬁ’v1 + KOél’YlgOtmgﬁﬁl)

x Wbl (g kYW (2 k)| . (4.126)

on-shell on-shell

In order to be able to translate this expression into extended phase space, we notice that all WIGNER
functions in Eq. (4.126) are contracted with projectors that are orthogonal to the respective momentum.
Since this contraction removes the components that are parallel to the momentum, we have

«@ v % kOf v
K/LQKVBW g (xa k) = K" fK,OH-Sh611($7 k) + ¢! QEEGOH‘She“ﬁ(xv k) + F%,on-shell('xv k)

on-shell
= /dS(k)h””(k,s)f(x,k,s), (4.127)
where we defined
h (k,s) = Lgme 4 Lamwaska g o (4.128)
’ 3 2 m P af ’

cf. Egs. (3.154), (3.168) and (3.175). Then, Eq. (4.126) becomes

1 _
CH e (2:K) = o5 / dl'y ATy dIY dS (k) (2mh)* 6@ (k + k' — Ky — ko) MY1720192 ppicamnz feno jevl

X |:h{)/2772 (klvsl)hﬁél (k1751)hC252 (k2,52)g(xmg,8'ylf(1'7 k1751)f(x7 k2752)
1

- ih’)’ﬂh (k/,ﬁl)h<151 (k1,51)h<252 (kQa 52) [ham (ka g)gﬁ’)’l + Gam h’Ylﬁ(k?g)]
x f(x,k,5) f (x,k',s’)} , (4.129)
where we used that
K* o h (k,s) = h*(k,s) K" = W (k,s) , (4.130)
as well as
/ AS (k)R (k, 5) = K (4.131)

Lastly, we use that the on-shell part of the collision kernel in extended phase space can be written as’

C(x,k,s) = Hyu(k,s)C" (x,k) , (4.132)

where we defined ) ]
i

HW (k. 5) = KM 4 =

(k,5) = S KM + &

cf. Eq. (3.166a). At this point it is interesting to note that in the case of DIRAC fields we did not have
to distinguish between h and H, as is evident from Egs. (4.79) and (4.84). Furthermore, note that
Egs. (4.128) and (4.133) differ only at second order in the spin vector s. Utilizing Eq. (4.132), we find

k 5
ehvaB iﬁg + gKf;ﬂs“sB , (4.133)

1 _
Olocal(xa k,s) = 674 /drl dl dr’ dS(k)(QWﬁ)45(4)(k K k- kg)M71725152M§1C2771772
X h/ (k/,ﬁl)hclgl (kjl,sl)hgzgz (k‘g,ﬁg)

Y2M2
X [hay (k. 8) Han, (K, 8) + Hy, (K, 8)han, (K, 5)]
X [f(l’, klasl)f(z7 k2352) - f (I, k7§> f (Ia k/agl)] ) (4134)

9We can omit the index “1” since H is orthogonal to the four-momentum anyway.
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where we used that
/dg(k) [h,* (k,8)Han, (K, 8) + Hy, * (K, 8)han, (k,8)] = 2Hy,y, (K, 5) . (4.135)

Note the remarkable similarity of Eqs. (4.85) and (4.134), where the difference in prefactors arises
because of the different normalization of basis spinors u, (k) and polarization vectors ¢(*) (k), which are
2m and 1, respectively. Furthermore, as we found in the spin-1/2 case, the loss term in Eq. (4.134)
depends on (k,§), and not on (k,s). Contrary to the case of DIRAC fields, in the case of particles of
spin 1 or higher it is not possible to redefine the collision term in extended phase space to remove the
integration over s except in some special cases, such as the equilibrium one discussed in Sec. 4.6.

4.5.3 Nonlocal collisions

The steps to obtain the nonlocal part of the collision term are essentially the same as the ones presented
for DIRAC fields in Subsec. 4.4.3: Integrating by parts in wuy,us in Eq. (4.125) leaves us with four
contributions, which we label by Roman numbers. The first contribution consists of the derivatives
acting on the projectors (K 4+ Uy /2 4+ Us/2)*” in front of everything on the right-hand side, which we
evaluate by using that

1 o KRR
}Tngwku — (4.136)

%
o (K + g)

Note that the second term in the equation above will not contribute since the first index of the
projectors which the derivative acts on is contracted with a projector orthogonal to k. As a result we
obtain

u=0

ih i
2m? 32
< M 20102 JréiCemnz (KPMkOZKVﬂ _ KMaKpukﬂ)

cor (z,k) =

1 ,nonlocal,I

/ dK, dK, dK'(20h)* 6D (k + K — ky — ko)

X {K;MZ Gan1 981 0p [Won-shell,¢c; 5, (T, k1) Won-shell, .5, (%, k2)]

1
- 7K1’51C1K2,52C2 (gaa19571K77151 + ganlgﬂﬁ1Ka1’Y1)

2
X 8p |:Won—shell,'y2n2 (x’ k/)WoO:nl-flllcll(mv k):| } ) (4137)
where we used that
WH (2, k) = KM fre (2, k) + O(h) | (4.138)

and thus K*, W8 (z,k)Kz" = WH (z,k) + O(h). Translating this equation into extended phase space
and using the fact that the distribution functions are independent of the spin variable at zeroth order
in i we find

ih 1
2m? 32
x M71725152MC1C2771772].L’Y2"2 (k/"g/)h<151 (k1751)hC252 (k2352)

1
X [Hpm (kvﬁ)k% - H%p(kﬂs)km] ap f({,C, kl)f(xv k2) - §f($v k)f(.%‘, k/)
(4.139)

Clnonlocal(x’ I{i,ﬁ) — _ /dl“1 dFQ dl“’(27‘f’ﬁ)45(4) (k‘ + k‘/ _ k‘l - k2)



4.5 Vector fields 7

In the second contribution to the nonlocal collision term, the u;, uo-derivatives act on the remaining
projectors, giving

in 1
2m? 32

X {f(xv k2) [apf(xa kl)} h’)’2772 (k/,sl)h<252 (k2752)H’Yl771 (k75)

x [Ws, (k1,81)k1,¢c, — he,P(k1,81)k16,]

+ (@, k1) [0pf (2, k2)] hyoa (K, 8 )y 5, (K, 1) Hoyy, (K, 8)
X [hP5,(ka,82)ka ¢, — hey’ (Ko, 82)ka s,

- f(xa k) [apf(xa k/)] hC151 (k1’51)h4252 (k2752)H71771 (k75)
X [h”m(k’,s’)kgz — hw”(kz’,s')k;z]

= U R0, () = £ 000, oK) s Ot 1) s, (ks 52)

creo (z, k,s) = / dDy dTo ALY (20h) W (k + k' — ky — ko) M 1720192 JfCacamn:

xmmwwm%wwmfm%mm@. (4.140)

The third and fourth contributions to the collision term consist of the derivatives acting on the WIGNER
functions and momentum-conserving delta functions in the loss term, respectively. As we showed in the
previous section for spin-1/2 particles, these terms vanish to first order in 7, which is also true in the
spin-1 case. The reason is the same as discussed in Subsec. 4.4.3, namely that the two contributions to
the loss term cancel, since the momentum-space shifts w1, us appear with opposite signs in them and
the WIGNER functions are proportional to momentum-space projectors to zeroth order in A. Thus, we
have to first order in the PLANCK constant!®

Cmanlocal (y | g) = 0 (4.141a)
Oz, k,5) = 0, (4.141b)

such that the total nonlocal collision term for spin-1 particles is given by the sum of Egs. (4.139) and
(4.140),

h 1
Ononlocal(xa ]4;,5) = QZW?TQ /dF1 dr, drl(zﬂ_h)45(4)(k iy Ey — kg)M’YWle&MClCinnz

X {f((E, kZ) [apf(xv kl)] h"/2772 (k/75/)h§252 (k2a52)H71771 (k,ﬁ)

X [Ws, (k1,81)k1,¢c; — he,P(k1,51)k1,6,]
+ [, k1) [0p f (2, k)] oy, (K, 8 ) hey5, (K1, 81) Hoyy oy (K, 8)
x [hP5,(ka,82)ka,c, — he,” (ke,82)k2 5,
— [z, k) [0, f (@, k")) heyoy (K1, 81) heyo, (K2, 52) Hey oy (K, 5)
X [P, (K, 8" )KL, — hw"(k’,s’)kgz]
— [z, K'Y [0, f (2, k)] heyoy (K1, 81) heyo, (K2y 82) Ry, (K, 87)
X [Hpm(kvﬁ)k’h - H’Ylp(k75)km]
= Op [f(x k) f 2, k2) — fla, k) (2, k)] heyo, (Fry51)hess, (K2, 52)

x%MMﬂW%&Mm}%%@%@. (4.142)

As in the case of DIRAC fermions, the terms proportional to the gradient of f(z, k) cancel each other.

10As we shall see in Sec. 5.5, this is in accordance with the fact that in the KB approach some contributions belonging
to the Poisson-bracket terms vanish.
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4.5.4 Summary

We add the nonlocal collision term (4.142) to the local contribution (4.134) and interpret them as the
first two contributions in a TAYLOR series, such that the BOLTZMANN equation can be cast in the
following form,

k-0f(x,k,s) =C(z,k,s)
1 _
=5 / dT; dTy AT dS(k) (27h)*6@W (k + K — ky — k)W

X [f(iC + A1 - Aa k1751)f(x + AQ - A7k2a52) - f(.’E, k,ﬁ)f(x + A/ - Aaklvﬁl)] )
(4.143)

which is formally identical to Eq. (4.96). In the spin-1 case the local transition rate is defined as

1
W(l) — §M71726152MC1C2W1W2h4161 (k1a51)hC262 (k2’52)h72n2 (k’,s’)

X [h’Yla(k7§)HDm1 (k75) + Hﬂqa(k)s)h(wh (kag)] ’ (4144)
while the spacetime shifts read!!
1 ih 1
bt
A= 352 W
x [hts, (K1, 81)k1,c, — he, ' (R1,51)k1s,] (4.145a)
_ 1 i 1
To332m2 W
X [Ps, (K2, 82)k2,c, — he," (2, 82)k2,s,] (4.145D)
_ 1 i 1
To332m2 W
x [h#’ﬂz (k‘l/75/)kfyz - hV2lu(kJ?5/)k:72] ’ (4145(3)
1 ih 1
= gWW(l)M71726162MC1<2n1n2hC151 (k1>51)hC252 (k2752)h72712 (k/asl)

X [H#m (kvs)k’h - H’Yl#(kjas)km] . (4145d)

M%’mél% MC1C2W17I2 h(252 (k2752)h"/2772 (k/7 EI)HVNM (k’ 5)

M71726162MC1<27]1”2 h4151 (klvsl)h’Yzﬁz (klvsl)Hvﬂh (k‘,ﬁ)

M71726162MC1<2771772 h<151 (k1751)h‘4262 (k2’52)H71771 (k,s)

As before, they fulfill A; - k; = 0. Interestingly, even though spin-1 particles have a richer internal
structure than their spin-1/2 counterparts, to first order the BOLTZMANN equations for DIRAC and
PRroOCA fields are formally identical, with minor modifications in the definition of the spacetime shifts
and transition rates. In our formalism, the differences between particles of different spin is encoded in
their dependence on the spin variable s, in the sense that the distribution function of a spin-j particle
contains contributions of all orders < 2j in s.

Lastly, we seek to establish a connection with the usual BOLTZMANN equation (4.3). Computing the
unpolarized transition rate

1 ~ 2
|M (k, K k1, ko) |? = 5 DSOS kKA N E R A%
AN A2
1

516 /
— §M’Y1’Y2 1 2MCICanQK1,5141K2,52C2K771'y1 an’yz ,

(4.146)

integrating Eq. (4.143) over s, and dividing by three, we find the spin-averaged BOLTZMANN equation

|M (K, k', ky, ko) |?
16
X [f (@, k) f (@, ko) — fla, k) f(x, k)], (4.147)

where, as expected, the spin-degeneracy factor is now g = 3.

k-of(x, k)= %/dKl AdKy dK' (2nh)*6@ (k 4+ k' — k1 — ko)

M The factor of 1/3 has to be present to cancel the factor of 3 that arises from trivially computing the dS(k)-integral.
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4.6 Equilibrium

The main results of this chapter are the kinetic equations for the distribution functions in extended
phase space, given by Eqgs. (4.51), (4.96), and (4.143) for spin 0, 1/2 and 1, respectively. While in the
case of scalar fields, the spin space is trivial and the collisions are purely local, in the cases of nonzero
spin the particles do not collide at the same spacetime point . We will now see what effects this
has on the local-equilibrium distribution function feq(z, k,s), which is defined by the property that it
makes the collision term vanish, i.e., it fulfills C[feq](z, k,s) = 0. Note that this distribution function
does not need to satisfy the BOLTZMANN equation [43, 115], which is what defines global equilibrium.

From the form of the kinetic equations, where quantum-statistical effects were neglected, it is apparent
that the local-equilibrium distribution function should be of MAXWELL-JUTTNER form,

feq(z, k,8) = exp [g(z, k,5)] , (4.148)

where g(z, k, s) has to consist of summational invariants, i.e., quantities that are additively conserved in
a collision. In our formulation, which assumed a monatomic gas, there are three distinct summational
invariants, namely a constant which we take to be unity, the four-momentum k* and the total angular
momentum J#”. Taking the function g(x, k,s) to be a linear combination of these quantities, we have
[44, 45, 47]

feq(z, k,8) = exp [ao(x) —bo(z) - k+ ;Qo7uu(x)J"”}
= exp [ao(x) — Bolz) - k+ UZQO,W(Q:)EQW] , (4.149)

where o € {0,%,1} is the spin of the particles and ag(z), Bo(z), and Qo(z) are arbitrary functions
of spacetime, which act as LAGRANGE multipliers and can be associated to the chemical potential
over temperature, the four-temperature and the so-called spin potential, respectively. Note that in the
second step we used J* = oh¥4t” +z#k¥]| where ¥4 has been defined in Eq. (3.97), and absorbed the
second part (constituting the contribution from the orbital angular momentum) into the LAGRANGE
multiplier By(z), which is defined as

Bo (x) = by (x) + Q" (x)2s - (4.150)

Inserting the Ansatz (4.149) into the generic form of the collision terms (4.96), (4.143) and expanding
to first order in A, we find

1 . ,
Clfeal (@, k,5) = 5 / dT; ATy AT dS(k) (27h)* 6@ (k + K — ky — kg)W(?) 20 —Fo- (kKD
h‘ LV v
X [UQQO,W (SHY 4 21 — S8 S 4+ (A + Ay — A — A') - Doy
— (AVEY + ABKY — AFEY — AMEY) 0,80, | (4.151)

where we also used the conservation of momentum.

Weak equivalence principle
At this point, we run into a problem: In order to proceed, we need to use the conservation of the total
angular momentum, which reads

T (k) + T (2, K 8') — TP (2, Ky, 81) — JHY (3, k2, 82) = 0. (4.152)

However, the terms involving the microscopic dipole tensor ¥ are not proportional to s, but to . In
order to remedy this, we have to remember the fact that only quantities which are integrated over the
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spin variable s correspond to observables, which means that, as long as the integrated quantities stay
the same, we are free to redefine the objects in extended phase space. Specifically, we may reformulate

C(z,k,s) = Cla, k,s),  fla,k,s) — f(z,k,s), (4.153)
as long as [44]
/ AS(k)s - 5% F(a, k,5) = / AS(k)s" - - 5" f(z, k,5) (4.154a)
/ dS(k)st - s C(x, k,5) = / dS(k)st - s C(x, k, 5) (4.154D)
where n € {0,---,25} for spin-j particles. From the definition in terms of the components of the

WIGNER function, we immediately obtain f(x,k,s) = f(z,k,s), which leaves the collision term to
be modified such that the terms which depend on § switch their argument to s. In general, this is
not possible for particles of spin higher than 1/2. Since we are interested in equilibrium, however, we
may use that the equilibrium distribution function only features a linear dependence on s up to first
order in A, which stems from the fact that quantities of higher order in spin (which may be related
to higher-order polarization phenomena, such as alignment [18, 28]) are not connected to conserved
quantities directly. Then, it suffices to consider Eq. (4.154b) only up to n = 1. For parity-conserving
interactions it holds that

/ A4S (kYW@ s =0, / S (k) S, (k)W) st K3 5967 = 0, (4.155)

where s;,5; € {s1,52,5,5,5}, since the quantities in Eq. (4.155) transform as pseudotensors under
parity, while the only tensor structures at our disposal are given by an odd number of powers of
momentum, which transform as tensors. We then make use of the equalities

/ AS (k) [0 (k)07 (,5) + 0 (5,50 (k,5)| = 2027 (k, 9) (4.156a)

/ dS(k)s*dS(k)s [h“a’(k,s)ha’ﬁ(k,g) —&-h““/(kj)h“/ﬂ(k:,s)} =2 / dS(k)s*s”ho? (k,s) , (4.156b)
for the terms appearing in the spin-1/2 case, and

/ AS (k) [H" (k, 5)ho” (k,5) + h"® (k,8)Hy" (k,5)] = 2H" (k,5) , (4.157a)

/ AS(k)sPdS (k)7 [HM (k,5)ha (k. 8) + h" (k, 5) Ho* (k. 5)] = 2 / AS(k)sPs” HM (k,s) . (4.157b)

for the quantities appearing for spin 1. Subsequently, we may replace § with s and remove the
dS-integral in Eq. (4.151) while redefining the transition rates as
]7\}/(1/2) — mA 12182 (kK kq, kg)MMWle& (k, k' ke, k2)
X hﬂl’h (kl ) 51)h6272 (kQ’ 52)h510t1 (kv 5)h520t2 (klv 5/) ) (4'158)

and

—~ 1
w = 1—6M'7”25152 (kK Ry, ko) M2 (kK key ko)
X HC151 (k1751)H<262 (k2752)H"/1?71 (kas)H’Yz?h (k/vsl) ) (4159)

respectively.'? After using the conservation of the total angular momentum, we then find

~ 1 —~ ,
Clfeal(@, k,8) = 5 / ATy dDy AT (27h) 0@ (k 4 k' — Ky — ko)W(@) 20— Fo-(k+kT)
h ’
X {02 Qo — @) (ZE + SV — S8 — S) 4 (A + Ay — A — A') - Dag

1
~5 (AYEY + ALkY — APEY — AME") 0,80, | - (4.160)

2Tn Eq. (4.159), we used that h*¥ (k,s) = H*¥(k,s) to linear order in s (which are the only relevant terms for this
case).
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From the equation above, we see that the collision term vanishes exactly only if
1
8(M50’V) =0 , aﬂao =0 , Qo)ﬂu = Wuv = 756[1460,,/] . (4161)
The conditions above imply that 8y is at most a linear function of z, i.e.,
By ="+ o, , (4.162)

with b, @ = const. Note that this form of the four-temperature 8y coincides with the one in Eq. (2.28)
derived from the global maximization of the entropy. Consequently, the conditions (4.161) constitute
global equilibrium, which not only makes the collision kernel vanish, but also fulfills the BOLTZMANN
equation. Inserting the equilibrium distribution function subject to the constraints (4.161) into the
left-hand side of the kinetic equation, we indeed find

h
k-0 [exp <a0 —buk" — kot x, + a2ww,2‘5“’>] =0. (4.163)

Thus, for particles with spin, when defining the state of local equilibrium by requiring the collision
term to vanish exactly, it coincides with the state of global equilibrium. We will inspect this statement
more closely when developing dissipative hydrodynamics with spin in Chapter 6.
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Chapter 5

The kinetic equation in the KB
approach

In this chapter, we show an alternative way of expressing the collision terms (4.2) as functionals of the
on-shell distribution functions f(z, k,s) in extended phase space. This method is originally accredited
to KADANOFF and BAayM [147, 149] and is based on the DYSON-SCHWINGER equations. Compared
to the GLW method treated in Chapter 4, this approach has the advantage of retaining the effects
of quantum statistics, which we expect to appear in the kinetic equation on the grounds of standard
kinetic theory, cf. Eq. (4.3).

5.1 Two-point functions

The objects we are going to analyze in the following are the different possible two-point functions of
the system in question, which encode correlations between the fields @ at different spacetime points.
Note that we will always assume the vacuum expectation values of the fields to vanish, i.e., (¢) = 0.
Considering the fields at the two spacetime points x; = (¢t1,x;) and 23 = (f2,X2), there are four basic
two-point functions. Firstly, we may not impose any time ordering and define two-point functions
where the fields appear in the same (opposite) order compared to the arguments of the GREEN’s
function, thus yielding the greater (lesser) propagators!

Goy(1,22) = <$a(x1)$b(x2)> 5 (5.1a)
G, 2) =+ (By(@2)Bal1)) (5.1b)
where the plus and minus signs apply to bosons and fermions, respectively. Alternatively, we may order

the field operators according to whether #; is larger than ¢» or vice versa. Opting for the standard
time ordering, denoted by the operator T, gives the FEYNMAN propagator,

~

Gry(m1,m0) = <T [@ (ﬂfl)ab(wz)b

=0O(t; — 1) <<,0 1)y (22 > +O(ty —t1) <$b(x2)@a(xl)>
= O(t1 — t2)Go (z1,m2) + O(ty — t1)G 5 (21, 22) (5.1c)

1We use the term “propagator” somewhat loosely here, since the two-point functions that we are using are differing
from the actual propagators by appropriate factors of 4, compare, e.g., Refs. [86, 135, 153].
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Figure 5.1: The closed-time path €.

Choosing the anti-time ordering, for which we use the operator fA, yields the so-called anti-FEYNMAN
or DYSON propagator [154],

GFb(.’L‘l, IQ

Ta [Ga(@1)Bo(2)] )

O(tz — 1) (Pu(e1)By (@2)) + O(t1 — t2) (By(22)Bule1))
@(tQ — tl)Gab(l‘l, .IQ) + @(tl — tQ)Gab(.Tl, .IQ) (51d)

These two-point functions are not all independent; indeed we manifestly have
GF+GF =G~ +G<. (5.2)
Furthermore, we define the retarded and advanced propagators,

ng(.fcl,l‘g) = @(tl — tg) [G;b(l‘l,l‘g) — Gfb(xl,xg)] y (53&)
Gay(1,22) = —O(t2 — t1) [G7 (21, 72) — Gy (21, 22)] (5.3b)

Finally, note that the following relations hold,

GF =GR+ G<=G62+G", (5.4a)
GF=G>-GRh=G<-G*. (5.4b)

5.1.1 The KELDYSH contour

The four basic propagators defined in Egs. (5.1) can be combined by evaluating the two-point function
along the so-called KELDYSH contour [155]. This contour, which we denote by &, runs from ¢, to
0o, where it turns around and runs from oo back to to, cf. Fig. 5.1. We then define contour-ordered
correlation functions, indicated by the operator T, such that the fields are ordered according to where
their time arguments appear on the KELDYSH contour, i.e., the field appearing at the first position
has the time argument that is the farthest on the contour. Note that, if fields have to be permuted,
appropriate minus signs are added for fermions. Specifically, we consider the contour-ordered two-point
function

Gupla1,22) = <ﬁg [@a(xl)ab(mg)b . (5.5)

Depending on where the arguments ¢, and ts lie on the contour ¢, G will assume different forms. To
see this, consider the situation where both ¢; and ¢ lie on the upper half of the contour; in this case
the contour-ordering Tt will be equivalent to the standard time-ordering 7'. Similarly, if both ¢; and
to lie on the lower half of the contour, T% acts the same way as the anti-time ordering T)4. If ¢; and
to lie on the upper (lower) and lower (upper) half of the contour, respectively, to (t1) will always be
further advanced on % and thus appear in front. Summarizing, we may write

r1,%2), if t1,t3on upper half |

Gap(T1,72) = (5.6)

(
(
(z1,22), if tyon upper half, ¢; on lower half |
(

)

Z1,%2), if t; on upper half, t5 on lower half
)
)

x1,22), if t1,toon lower half .
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Denoting these four cases by “++7, “+—", “—+7 and “——", where + (—) indicates a position on the
upper (lower) half of the contour, we can put the contour-ordered two-point function in the following

matrix form,
Gtt Gt- GF G=<
= (G+ G) = (G> GF) : (5'7)

The DYSON-SCHWINGER equation for the contour-ordered two-point function reads

Go eGP (w1, 22) = —ic*P 5,6 (21 — 22) + 2 /d4m’2;46€(x1,x’)CCDGgB(m’,xQ) . (5.8a)
Here, G 1is the inverse free propagator for the respective fields, and ¥ is the self-energy of the
field. Furthermore, we defined ¢ := diag(1, —1), where the minus sign is needed due to the different
orientation of the lower half of the contour. The factor A, which was introduced in Eq. (4.8) and is
equal to vk and 1 for bosons and fermions, respectively, is convenient to factor out due to different
powers of i appearing in the inverse free propagators on the left-hand side. Note also that in Eq.
(5.8a) the inverse free propagator is taken to act on the argument z1, and in the case of vector fields
the KRONECKER delta has to be replaced by a metric tensor. The adjoint of the DYSON-SCHWINGER
equation is given by

GfCB(xl,xg)%_?;;; = —ic*B50W (x) — 20) + /d4x'GAC(x1,x’)CCDEg,B(x',xQ) , (5.8b)

AQ

where the inverse free propagator now acts on . Explicitly, we have for the lesser propagator

|:GO }Lc_ )\QZMF(xl):| G(ja(xhl?) /d4 ' EF .%‘1, )G;(x’,xg)—E(fc(xhx')Gfb(x’,xg)}
_ /d4 SR (1, 2) G5 (2! 22) + S5, ) GA (2! 22)] |
(5.9a)
as well as
- . . / )
Goelar, z2) [Gézi—;ﬁﬁ%z)} = 5 [ 49 [Gh(e1,2)T50 22) - G (ar 2 S5 (@ 22)|

=z /d4 "[GE (21,2")55 (2, 22) + Gz, 2) 25, (2, 22)]
(5.9b)

where we employed Eqs. (5.4). Here we took into account that the self-energy in principle contains a
mean-field part that is responsible for mass- and momentum corrections, i.e.,

S (2, 2') = S (2)6W (2 — ') + 2F (2, 2') | (5.10a)
S (z,2) = —SMF(2)0W (2 — o) + £F (2, 2') (5.10b)

whereas we have X (z,2') = 5 (z, 2/).

5.2 The KADANOFF-BAYM equations

In order to arrive at a quantum kinetic theory, we do not need to consider the lesser propagator per se,
but rather its WIGNER transform

G5, (2, k) ;:/d%e Aalens ( - ,x+9> , (5.11a)

whose inverse is given by

A% i T+
Gjb(xl,:cQ):/Wen’“<'2 1ES, (12219) : (5.11b)
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This definition differs from (the expectation value of) Eq. (3.31)? only by a factor, i.e., G<(x,k) =
+W(x, k)/k, where k depends on the spin of the field and has been introduced in Subsec. 3.2.2. In
order to conform with the standard notation, we will keep using G<(z, k) for the WIGNER function in
this chapter.

In the following we list some identities of WIGNER transforms [86]. First, as already remarked in Egs.

(3.36), a derivative acting on a function f (which may be matrix-valued) will become a BOPP operator
after the WIGNER transform,

0 ., 0 .
zha—ﬂf(:cl,xg) — D, f(z, k), —Zha—mgf(xl,l@) — D, f(z, k) . (5.12a)

Second, the product of two (possibly matrix-valued) functions, where one of them depends on only one
argument, becomes in WIGNER space

f@)g(zy, x2) — flx)g(x, k) — %[%f(w)] [OFg(a, k)] + O, (5.12b)
f(@2)g(x1,w2) — fl2)g(z, k) + %[%f(x)] O g(w, k)] + O(R?) . (5.12¢)

Finally, the convolution of two functions becomes
[ ag(a' aa) — o Rgl k) = 5 L), g0 D)o + OGP (5.124)

where we defined the POISSON brackets

{f (@, %), 9(z. k)}pp = [0uf (x, B)] (0] 9(w, k)] — [0F f (2, k)] [Oug (. k)] - (5.13)
Note that these brackets fulfill (for matrix-valued quantities A and B)
{A’ B}PB,ab = - {BT? AT}PB’ba ) (514)

where T denotes the transpose. Equation (5.12a) was already proved in Sec. 3.2.2 for the case of the
WIGNER function, but can be shown to hold for any WIGNER transform by considering

D¥fa k) = [ atye it [w + 2oy 85‘)} flz=5o+3)

2 2
Cigew | ih v v
:/d4ve Wk {zh%+2(ai‘+8§‘)}f<x2,x+2)
— 4, —tkwvgh v v
—zh/d ve n 81f(x 2,.%'—|-2) . (5.15)

Here, we defined 0y (02) as a derivative w.r.t. the first (second) argument of the subsequent function.
In order to prove Eq. (5.12b), we compute

oo [ o021 (- 3)o e o)

— /d%e‘iﬁk'” {f (z) — %v : 8f(:6)} g (:c — S+ E) +0(r%)

2 2
= /d4ve_%’“’ {f (z) — %h:‘?_g . E)f(x)] g (m - g,x + %) + O(h?)
= f(z)g(x, k) — %[%f(x)] [OFg(x, k)] + O(K?) . (5.16)

Here, we assumed the function g(z1, z2) to be sharply peaked at x1 = x5 [86], such that we may expand
the quantities in the integral around v = 0. The idea behind this expansion is that the function g

2We repeat that, compared to Refs. [28, 45, 54], we use a different convention in that we assign the factor of (27/)*
to the momentum-space measure, in accordance with Ref. [46].
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will be taken to be one of the propagators; if we are in a regime where quantum kinetic theory is
applicable, there has to be a sufficient separation of microscopic and macroscopic scales, as we already
discussed in previous chapters. While the macroscopic scales will in this case be either related to
inverse macroscopic gradients or the mean free path, the microscopic scale is characterized by the
range of the interaction, which manifests itself in the correlation length between fields, i.e., the values
of the two-point functions at different spacetime points. The proof of Eq. (5.12¢) works in the same
way as shown in Eq. (5.16), such that we now concentrate on proving Eq. (5.12d),

/d4xfx1, g2, z2)
4 4,1 —ikw v / v
—>/dv/dxeh f(z: 2,x)g(x,x+2>
/ ’ I R ’ !
:/d4y//d4ze hk(y-i—z)f(x Y+ z>g<x+y Z,x+y+z>
2 2 2 2
/ / / /
1 [ gty etk +2) I N Y LY
/d /dze 7 {f(x 2,x+2) 5% azf<m 2,x+2>}
x S Zer D)+ o0
gx2m2 BV Oty
ih
(2. kgl k) = 5 { [0uF (2 1)) [0 9, k)] —
ih

f
f

In this calculation, we substituted v =y’ 4+ 2/, 2’ =z + (y' — 2’)/2 and expanded f (g) around z’ =0
(y' = 0). Both of these expansions are permissible since the relevant expansion point is ' = 2z’ = 0.

Making use of Egs. (5.12), we obtain from Egs. (5.9)

)
{Go L T @) - o (05N )] 0 63

A2 [ER (2,k)G5 (2, k) + S (2, k) Gay (2, k)]

+ 55 [{ER 2, k), G5 (2, 5) ) g oy + {57 (2 k)7GA(z7k)}PB,ab} + O, (5.184)

as well as

= 7 7
6o { G5 - 35247 @) + 5 (0,547 )|

=— [GR (2, k)25 (2, k) + G (2, k)25 (2, k)]

+ 535 [{GR 2, 0), 5@ k) Yo gy {GS @, R), B @, 8) | + O (5.18b)
where G|, ! now denotes the appropriate WIGNER transform of the inverse propagator. Equations
(5.18) are the KADANOFF-BAYM (KB) equations in general form, which we will analyze in the following
for fields of different spin. Note that they are expanded to second order in the PLANCK constant. This
is necessary since we will have to cancel a factor of & on both sides when deriving the kinetic equations,
cf. the discussions that led to Egs. (3.50), (3.83), and (3.153).

Quasiparticle approximation

In order to simplify the KB equations, we will furthermore need to introduce the so-called quasiparticle
approzimation, which builds on the fact that, as long as we are in a regime where quantum kinetic
theory is valid, the transformed lesser propagator should behave like a distribution function for particles
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Figure 5.2: Greater and lesser self-energies (in phase space) in the T-matrix approximation.

on the mass shell. Explicitly, we consider the WIGNER transform of a retarded or advanced quantity
X, which can be both the GREEN’s function and the self-energy [156]. Making use of Egs. (5.3) as
well as the FOURIER transform of the HEAVISIDE function,

~ 1 1 1 1 1
==4 — P = lim — 1
Ow) 2 (W) + 27rigw 30 270 W — i’ (5.19)
where & denotes a principal-value integration [cf. Eq. (4.44)], we find
XB(x, k) = 1 lim/dpoi1 (X7 (z,po,k) — X<(z,po, k)]
’ 214 n—0 po — ko —1n T T
1 1 X~ (z,po, k) — X<(z, po, k)
= [X7 (2, k) — X~(,k —Q/d L T 5.20
2 [ (.’17, ) (.’L‘, )] + omi Po Do — kO ( a)
as well as
XA(z, k) = 1 lim/dp(); [ X~ (2, p0, k) — X<(z,po, k)]
9 2 70 Po — kO ¥ “7 9 ) 9 )
1 1 X~ (%, po, k) — X=(z,po, k)
= [X7(2,k) — X<(a,k —@/d = e 5.20b
9 [ (‘ra ) (SE, )] + 2 Po Do — k'O ( )

With these relations, we are able to express the KB equations solely in terms of greater and lesser
quantities. The quasiparticle approximation then consists in inserting Eqgs. (5.20) and neglecting the
principal-value integrations, which depend only on the off-shell parts of the quantity X. These parts
are, according to our analysis from Chapter 3, which of course remains valid, at least of first order
in A, such that their contributions in the POISSON bracket terms is of third order. In fact, we will
verify in the following sections that these off-shell components are of second order in #, such that the
principal-value integrals enter at third order only. Thus, neglecting these terms does not introduce a
further approximation besides the h-expansion.

Self-energies

Another approximation, however, has to enter when expressing the self-energies. In this thesis, similar
to Ref. [46], we consider the self-energies in the T-matriz approximation. In this formulation, the
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greater and lesser self-energies are given by the FEYNMAN diagrams displayed in Fig. 5.2. After a
computation shown in Appendix B.2.1, we obtain them as

22 (2, k) = 2rh) 6@ (k 4+ K — ky — ko)

1 / d*ky  dihy  d4
2X6 | (2wh)* (2rh)* (27h)4
x G2y (2,k1)GZ (2, k)G o (2, k') Maarayas My, byt - (5.21)

Here, M, as introduced in Chapter 4, denotes the tree-level vertex of the theory, which we assume
to be independent of momentum. In the case of spin-0 particles, it is a scalar quantity, while for
higher-spin particles it is given by a rank-four tensor in the respective internal space. For example,
if we were to consider DIRAC fermions in the NAMBU-JONA-LASINIO (NJL) model, the interaction
Lagrangian reads [157, 158]

Lo = Y Ge [9(@) (@) [B@)r @) . (5.22)

Here, the index ¢ runs over the possible channels [i.e., scalar (S), pseudoscalar (P), vector (V), axial
vector (A), and antisymmetric tensor (T), weighted with couplings G|, while the matrices I' denote the
corresponding element of the CLIFFORD algebra, i.e., I'9) := 1, (") := —jryg, T(V) 1= 44 T(A) = ygyh,
and I'") := ¢, where a sum over the possible LORENTZ indices of T' is understood in Eq. (5.22). In
this setup, the vertex is [46]

Mer2Pife — 2? (I‘(f arfi(c)azfs _ F(C)Ouﬂzr(c)(hﬁﬁ) 7 (5_23)

where the minus sign is necessary to preserve the antisymmetry under fermion exchange. Similarly, if
we were to consider massive vector bosons interacting via a scalar four-point interaction of strength G,

Loy = hG (fﬂ : 17)2 : (5.24)

the vertex would read [28§]
M = 2h2G(gM(¥gVﬁ + gﬂﬁgml) ; (525)

where the positive sign takes care of the symmetry under boson exchange.

Note that we did not consider the mean-field part of the self-energies in this approximation, which
corresponds to tadpole-type diagrams [86, 146]. These contributions, as can be deduced from the KB
equations (5.18), are responsible for corrections to the momentum and the energy of the particles
as well as VLASOV-type terms, which are usually written on the left-hand side of the BOLTZMANN
equation. The fact that we set SMF = 0 is equivalent to neglecting the real parts of the transfer matrix
in the GLW approach in Chapter 4, cf. the remarks after Eqs. (4.42), (4.70), and (4.121).

Taking these considerations into account and inserting Eqgs. (5.20) into the KB equations, we arrive at

GoacGo(a. k) = W [2> (2, k)G5 (2, k) — S5, (2, k)G (2, k)]

W [{z> 2, K), G (2. k) } o0y {E<(x,k),G>(x,k)}PB7ab} . (5.26a)
Go(a k) Goy = w (G2, (2, k)55 (@, k) — G (@, k)52 (x, k)]

+ o {{G> k), @) Yo gy — G @ R) 7 (@, K) g ]+ (5:26D)

where terms of third and higher orders in & have been omitted. In the following sections, we will use
this form of the KB equations to derive kinetic equations for particles of spins 0, 1/2, and 1.
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5.3 Scalar fields

Let us consider Egs. (5.26) for charged scalar fields; in that case the inverse free propagator in real
space is simply given by G Y(x) = O+ m?/h2, such that the respective WIGNER transforms read

h2

PGyt =m? — D* = —k® + m® —ihk -0 + 70 (5.27a)
Gt =m? — D2 = k% £ m? ik 9 + EQE . (5.27b)
Multiplying Egs. (5.26) by 1% and remembering that A\ = v/A, we thus find
( +m? —ihk - 8+h2D) G<(z,k)
gy

[ (z,k)G<(z,k) — % (z,k)G” (z, k)]
+ Z {Z7 (2, k), G (x, k) } o — {E5(2,k), G (2, k) } o] (5.28a)
( E* +m? +ihk -0+ hQD) G=(z,k)

[G>(ac k)S<(x,k) — G< (2, k)% (2, k)]

+ — [{G> 2, k), 85 (2, k) fop — {GS (2, k), 57 (2, k) } o] - (5.28Db)

Taking the sum and dlfference of Egs. (5.28) and truncating at first order in %, we obtain
(k* —m?) G=(2,k) =0, (5.29a)
k- 0G<(x, k) = % [G> (2, K)=< (2, k) — G< (2, k)= (2, k)] . (5.20)

Here we canceled a global factor of ik in Eq. (5.29b) and employed Eq. (5.14), which for scalar
particles simply reads

{Gg,E%}PB . {zz,Gg}PB . (5.30)

Equation (5.29a) reveals that the WIGNER function G< is on shell up to first order in A. Thus, we do
not need to invoke Theorem 1 to evaluate the BOLTZMANN equation (5.29b) on the mass shell, since
up to first order in & no off-shell contributions arise. Comparing Eq. (5.29b) to Eq. (3.50), we can
identify the collision terms,

1 i ~
5 167 @ WIS k) = G (@, BT (@, k)] = _mm/d‘lve*ﬁk'v <¢T (x + g) ﬁ(x - g)> . (5.31)
Writing the lesser and greater GREEN’s functions as
G<(x,k) = 20h26(k* —m?) f(x, k), G (x,k) = 2xh26(k* — m?) f(x, k) (5.32)
where we used that k = 2/h for scalar particles, and inserting the self-energies in the T-matrix

approximation (5.21), we arrive at

1
ke 0f(w,k) = /dK’ dK dKy(2rnh)* 6@ (k 4+ k' — ky — k)W

X [f(ac, kl)f(x7 kg)f($, k)f(xv k/) - f(.%', k)f(x, kl)f(xa kl)f(xv kZ) ’ (5'33)

where the restriction to the mass shell is understood and we defined W(®) := M?/16. The function
fE 1+ f gives the BOSE enhancement factors, which is shown in Appendix B.2.2. As expected, our
result agrees with the expectations from standard kinetic theory (4.3). When comparing to the result
from the GLW approach (4.51), it becomes apparent that in the KB approach the effect of quantum
statistics is retained rather easily.?

3These effects are also obtainable in the GLW approach, cf., e.g., Ref. [144]. However, the required amount of work is
higher, since the expansion of the collision kernel in terms of WIGNER functions has to be extended to fourth order.
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5.4 Spinor fields

Next we turn to the description of DIRAC fields, which is more complicated due to the internal structure
of the fields and thus of the WIGNER functions. Considering our results from Sec. 4.4, we can already
expect that the collision term will acquire nonlocal parts.

5.4.1 Structure of the equations

The first difference to the case of scalar fields lies in the inverse free propagator, which now takes the
form Gy '(x) = i) — m/h in real space. Thus, the needed WIGNER transforms are given by

hGglle—m:k—m—&—%(ﬂ, (5.34a)
WG = B —m—f—m— %3. (5.34D)
Omitting the spinor indices, the KB equations then read (using that A = 1)
(1 —m) G=(a,k) = Lon , (5.352)
G<(z,k) (%* - m) = 'yOIZOH’yO , (5.35b)

<_
where it is understood that p* =~ - E* and we defined

Loy = % (S (2, k)G (2, k) — 5= (2, k)G (2, k)]

+ % {E7 (2, k), G (2, k) } o — {Z°(2, k), G™ (2, k) } o] - (5.36)

Here we employed that 7°(G<)Ty? = G< and similarly for the self-energy. Furthermore, we used the
relation (5.14), which for DIRAC fermions takes the form

{0755, =" {56

Comparing Eq. (5.35a) to Eq. (3.75), we can connect the collision terms,

:
o 5.37
s (5.37)

_ 4, —ikv [T VN ~f VU
Teon = ﬁ/d ve <w (m—i— 2),0(3: 2)> . (5.38)
<_
Acting with ) + m on Eq. (5.35a) and with I)* +m on Eq. (5.35b), we find

(D* = m?) G=(z,k) = (I +m)Lcon , (5.39a)
(D*2 = m?) G<(2,k) = 7° [(D +m)Leon] 7° , (5.39b)

Adding and subtracting these equations yields

2 2 712 < _ 1 0 0

k*—m 1 O) G (x,k) = 5 (D +m)eon + v [($ + m)]cou} b, (5.40a)

. 1
ihk - 0G< (2. k) = 5 { (B +m)Leon =7° [(D+m)Leon] 1"} . (5.40)

Since we want to compute the distribution function in extended phase space, we make use of the
definition (3.85) (together with the fact that x = 1 for DIRAC fields, i.e., G< = —W) to obtain

(k2 —m2Z = TD) fla, k,s) = —%Re Tr [(]l +754) (D + m)[con] , (5.41a)

hk - Of(z, k,5) = —%ImTr (1 +v58) (I + m)Leon] - (5.41b)
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Structure of the WIGNER function

Before being able to evaluate these equations up to first order in the PLANCK constant, we need to
clarify the structure of the WIGNER functions appearing inside the collision integral I..;. At this point
we introduce another approximation (that was also employed in the GLW approach), namely neglecting
collisional contributions to the WIGNER functions that appear inside the collision terms themselves.
This is justified since the self-energy (5.21) is of second order in the coupling, such that collisional
contributions to the WIGNER functions inside ¥2 would be at least of fourth order. Practically, this
means that the structure of the WIGNER function is determined by (a subset of) Egs. (3.79) and (3.80)
with the right-hand sides set to zero. As before, we decompose the WIGNER transforms of the greater
and lesser GREEN’s functions in terms of the CLIFFORD algebra,

1 1

G =1 (]—'+ 5P+ ¥ +vs.A+ 2UWS“”> : (5.42a)
1(=, .~ 5. =~ 1 =

G” =1 <]~'+ 5P +V + A+ 2%5‘#”) : (5.42Db)

Then, up to first order in &, the components of the WIGNER function which are not independent read

kH h 1
~ Iz ~ v ~ (1] _ nvap
Plx,k)~0, VH(x, k)~ m]:(:c,k) , S (x, k) ~ 2m23 KV F(x, k) —€ ko Ag(x, k),

(5.43a)
Pl k) ~0, VH(x, k)~ ﬁ]?(:c k), SM(x, k)~ iawwf(z k) — L wasy, 7 (z,k) .
) ) ) m ) ) ) 2m2 ) m avAp\L,
(5.43b)
We may thus write the greater and lesser GREEN’s functions as
G2 (2, k) =~ GZ. (2, k) + GS(,k) , (5.44)
where we introduced the “quasiclassical” contributions
1
Gz, k) = 5AJr(k) [F(z, k) + v Az, k)] (5.45a)
1 o ~
Gl k) = AT (k) [.7-'(33, k) + s Az, k)] : (5.45b)
as well as the “gradient” terms
GS(x, k) = n Mk,0,F(z, k 5.46
V(x7 )_WO' vl (.I‘, )a ( a)
h y ~
Go(x, k) = Wdﬂ k,O,F(x, k) . (5.46b)

The quantities AT (k) = (f + m)/(2m) denote positive-energy projectors and have been introduced in
Eq. (4.57). Furthermore, it is important to note that the quasiclassical terms have contributions both
at zeroth and first order in %, while the gradient terms are of first order only. From Eq. (5.40a) we see
that off-shell effects are either of second order in A or of collisional origin, such that we may approximate
k? ~ k2 ~ k'? ~ m? inside the collision integrals. Translating the components of the WIGNER function
into extended phase space via Eq. (3.89), we can express the quasiclassical contributions as

Geo(w, k) = —4mmhé(k* — m?) / dS(k)h(k,s)f(x, k,s) , (5.47a)

GZ.(x, k) = 4mmhd(k? — m?) / dS(k)h(k,s)f(z, k,s) (5.47b)
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where the quantity h(k,s) = 1(1 + v5§)A T (k) is known from Eq. (4.80) and the prefactors are in
accordance with earlier definitions, cf. Eq. (3.100). Note that the minus sign in G, is needed because
of the definition (5.1b). The gradient contributions on the other hand read in extended phase space

GS (2, k) = —dmmhd(k* — m%gia*t”kyap / dS(k)f(x, k,s) , (5.48a)
G (x,k) = 4mmhé(k* — o k,0 / AS(k) f(x, k,s) (5.48b)

where we again took care of the minus sign from fermionic statistics.

Structure of the self-energies

Since the self-energies (5.21) contain GREEN’s functions, we can also split them in the same way as
shown before,

22 (@, k) ~ B3, (x, k) + S (2, k) - (5.49)

Here we defined the quasiclassical contribution as

1 [ d%y diky  d4E
PI5s = orh)*6™ = M :
ean(®F) 2/(27rh)4 () eyt O 0N ) Moot Mo
X G2 g (@ k)G o (2, k2)GE, (2, K) (5.50)

and the gradient part reads

1 d*ky  dky  dK
»2 = = 2rh) 5@ r_ M, ,
Vaﬂ(‘r7 k) 9 / (271_}1)4 (2’/Th)4 (2 h)4( 7Th) 0 (k+k kv — k2> ac’araz By 8288
X |G (K1) G5, (0 B2) G 1 (0, K)

<
+GqC a1 ($ kl)GV Otzﬁg(x kQ)ch,ﬁ'a/(x7k/)
<
+GCIC 01,31(x kl)GQC 042/32(‘%’]62)6‘%,[3@’(1'7]{/)} : (5.51)

Note that we could restrict ourselves to terms that are linear in the gradient contributions to the
GREEN’s functions, since they are already of first order in h. Employing Eqgs. (5.47) and (5.48), we
can express the quasiclassical parts of the lesser and greater self-energies as

3
Y qeap (T, k) = m? /drl ALy AT (20h)* 6™ (k + k' — k1 — k2) Maarayas Ma, g6
X hOtlBl (k1,51)ha2@2 (k2’52)h5'0¢' (k/,ﬁl)f(l‘, kl,ﬁl)f(l', k2752).]?(x7 klvgl) (552&)
and
m3
Sgeas(@ k) = == /dr1 ATy AT (27h) 6™ (k 4+ k' — k1 — ko) Maarayas M, gy 55

X halﬁl (kl’ﬁl)ha2[52 (k2;52)hﬁ’a’ (klvﬁl)f(xa k1751>.]?(xa kg,ﬁg)f($, k/aﬁl) 3 (552b)

respectively. The gradient parts on the other hand take the forms

55 0@ k) = 8—— / ATy dDo AT (27R) 4@ (k + K — k1 — ko) Maorayan M, 5255

X {0a1ﬁ1k17Vha2,32 (k2,52)hﬁ/al( , 5 )|:8Hf($7]{71,51):|f($, k‘z,.ﬁg)f(l’, k ,5’)
By (b1, 80) 00 5, R b (K, 8') (@ b 50) |0, f (2 by 52) | F oK)

oy (k1,51 hiay (k2 32)0 7 KL (0, R 50) Ko 52) [0, (e K 5]} (5.530)
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as well as

h om?

Z%,aﬂ(%k) = T'm2 2
X {Uglllﬁlkl’,,ha#h (/ﬂg,ﬁz)hﬂ/a/ (kl,ﬁl) {aﬁf(x, k1,51)} f(x, k2,52)f(;v, k‘/,ﬁl)
=+ halﬁl (klaﬁl) a ﬁsz uhB’ (k,,5/>f($, k1751) [a/Lf(xv k2752):| f(‘ra k/asl)

+ha161 (klysl)hazﬁz (k2a52)ag’ya/kzljf(x7 kla£1)f(£7 k2>52) |:6/J«f(x7 klvs/):| } - (553b)

ATy dDo AT (27h) AW (k + K — k1 — ko) Maaray s Mp, 85"

With these expressions, we are now able to take on the BOLTZMANN equation in a structured manner.

5.4.2 Evaluating the kinetic equation

Considering Eq. (5.41b) in conjunction with the decompositions (5.44) and (5.49), we can split its
right-hand side into four contributions,

dmmhd(k* — m*)k - 0f (2, k,8) = Tye(w, k,5) + To(x, k,5) + Iy (v, k,5) + Ipp(z, k, 5) , (5.54)

where we already discarded the off-shell contributions on the left-hand side due to Theorem 1.* Here,
the first term contains all quasiclassical contributions,

1
Toe(x, kys) = ZRe Tr {(L+vs8)(k + m) [S5.(z, k)Goo(a, k) — X2 (x, k)G (x, k)| }
=mReTr {h(k,s) (S5 (2, k)Go.(x, k) — 25 (2, k)G (2, k)] } (5.55)
where the real part arises because of the imaginary unit in the collision term (5.36) and we employed
the definition of h(k,s). Note that Z . contains parts of zeroth as well as first order in s. Comparing
T to the collision term (5.36), there is a global sign change due to identifying G< with the negative

of the distribution function, cf. Eqgs. (5.41). The second term on the right-hand side of Eq. (5.54),
which is of first order in h, denotes the contribution from the derivative contained in the operator I,

Iy(z, k,s) = —gImTr{(IL +758) [ (@, k) Gop (2, k) — Xo (2, k)G (2, k)] } (5.56)

while the third term (which is also of first order in %) collects the gradient contributions from the
propagators inside the collision terms [cf. Eq. (5.44)],

Iy(x,k,s) = mRe Tr{h(k,s)[S5.(z, k)G (2, k) — X5 (z, k)G (x, k)
NS (2, k)G (2, k) — D2 (2, k)G (2, k)] ) (5.57)

qc

o]
(¢}

The fourth term finally contains the contributions of the P0oIssON-brackets,

Ipp(z, k,s) = m—hImTr{ {{E< x, k), Go.(x, k) }PB {S5. (2, k), G5z, k) }PB}}
- m—hImTr(h( ){ (0,55 (2, k)] [01 G2, k)] — [01S5 (2, k)] [0,G2(2, k)]
— (0,52 (2, k)] [0 G (w, k)] + [0 (2, k)] [0,G ()] }) , (5.58)

where we could neglect all gradient terms, as they would be at least of second order in A. In the
following, we will compute these four contributions, with the result that the quasiclassical one Z
gives the local collisions, while the terms Zy, Zy, and Zpp are responsible for the nonlocal parts.

4 Actually, when considering the mass-shell equation, one can show that the off-shell terms are zero up to first order in
h, as was done in Ref. [46].
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Quasiclassical terms

The quasiclassical terms are obtained straightforwardly by inserting Egs. (5.47) and (5.52) into Eq.
(5.55), giving the known form of the local on-shell collision term,

Toe(, k,5) = 4mmhd(k* — m2)% / ATy dDy AT dS(k)(2nh) 6@ (k + k' — ky — ko)W

X (f1f2f/f* J?lfzf/f) ) (5.59)
where we abbreviated

fl = f(kalasl)a f2 = f($7k2;52) ) .f/ = f(x’klasl) ’ f:: f(xakvg)' (560)

Note that, due to the WIGNER functions always including one spin-space integral, the distribution
function f does not depend on s, but rather s. The transition rate reads

WU = m'Re [Maa’almeﬁlﬁzﬁB’halﬂl (k1751)h6¥2[32 (k2ﬂ52)h[3’a’(kl75l)h57(k7§)h7a(k’5)]

m

= 7Maa’a1cx2 Mﬁ1ﬁ2ﬁ5’ha151 (klaﬁl)hazﬂz (k2752)hﬂ’0¢/ (klvﬁl)

X [hgy(k,8)hya(k,8) + hgy(k,8)hyo(k,5)] | (5.61)
which agrees with our result from the GLW approach (4.97). Here we used that hf = 1°h+°, together

with the symmetries of M. In particular, besides the antisymmetries upon changes in the first and
second pair of indices due to fermionic statistics, we assume that

0 0 * 0 0
Yap Vo8 Mpgr 8, 52 V8101 Voo = Masazaar (5.62)

cf. Eq. (4.73).

Gradient terms

Next we take on the gradient contributions Zy and Zy to the collision kernel. Upon inserting the
expressions for ¥2 and G<, the former becomes

To(z, k,5) = dmmhé(k* — m"‘)% / dTy dDy AT dS(k)(2rh) 0@ (k + k' — ky — ky)

RS (f1f2f7/f~l* ﬁfzf/f) : (5.63)

where we defined

hm?3
771((1) = _Tlm (L +958)v6 (Vu)saMaoaras Mp, g5

X ha1,31 (kl ) 51)ha2ﬂ2 (k2752)hﬂ’a’ (k/’ 5/)h57 (kv E)]

ihm?
- 16 Mo‘o‘/alaszﬁl[bﬁﬁ’thm(kla51)h06252(k2a52)h5’a’(k/75/) [h(k75)77#]6a . (5'64)

Here we used the symmetries of M in the second step, together with the fact that we can approximate
h(k,s) ~ 1A (k) since the s-dependent part of f(z,k,5) is at least of first order in A, such that the
neglected terms are of order O(h?). Furthermore, we employed that 54 and AT commute. Note that,

comparing to Eq. (4.99d), we have ’775‘1) = —IWUAA,.
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The second gradient contribution Zy becomes

Ty (z, k,s) = 4mmho(k? — mQ)% / dly dDo AT dS(k)(2rh) 6@ (k 4+ k' — ky — ks)
x {T{“’kl,y (@b T T = @uF) ot £] + T ko [£1(0u12) F T = Fi(0uT2) £ f]

ST 1020 - FR )] + T (1527 0.) - Rt @u1)] |

(5.65)
with the quantities

nz him? I i ’o =

T = TRe _hva(kaE)Maa/a1a2M51525ﬁ/0a161ha2ﬁ2 (k2752)hﬁ’0/ (K',s )hﬁ’v(k’s)} ) (5.66a)
v hm?2 r v _

7—2H = TRQ _h'ya(ka5)Maa/o¢1o¢2Mﬁ1ﬁ2ﬁﬁ/h&1ﬁ1 (klvﬁl)ggzﬁzhﬁ’a’ (klaﬁl)hﬁ’v(kas)} ’ (566b)
y hm?2 r v _

T = TRG _h’Ya(ka5)Maa/a1a2Mﬁ1ﬁ2ﬁ/3'hQ151 (klvﬁl)h!l2ﬁ2 (k2’52)05/a’h5’)’(k75):| ) (5.66¢)

hm? r v
TH = TRG _h’m(ka5)Maa/a1a2Mﬁ152ﬁﬂ’ha151 (klaﬁl)ha252 (k2,52)h5/o/(k/a5/)agy:| : (5'66d)

In order to simplify these expressions, we note that
oM k1, =im [V AT (k)] 0" ko, =im [y AT (k2)] . o™k, =im [y* AT (K)] . (5.67)

Since the contributions of the distribution functions that are proportional to s1, $2, and s’ are of first
order in A, we may replace

k1, ~im [y h(k1,81)] . 0" ke, ~im [V, h(ke,s2)] . o™k, ~im[y*, h(K',s")]  (5.68)
inside the collision terms. To simplify Eq. (5.66d), we compute
ok, h(k,s) =i (" F — k*) h(k,s) = imy"h(k,s) — ik"h(k,s) . (5.69)

Inserting these results into Egs. (5.66) and using the symmetries of M, we obtain

v ihm?
7'1N kl,l’ = _TMaa’alcwMﬁlﬁzﬁB’ [h(k1,51)7’y”]a151 hoczﬁz (k2752)h6’0/(k/7Sl)hﬂa(kvs) ) (5'708‘)

v ihm3
7—2N kQ,V = _TMaa/ala2M,Bl,32ﬁ5lhalﬁl (kbsl) [h(k2752)7wu]a2ﬁ2 hﬁ'a’(k/Jsl)hﬂa(kﬂs) ) (5'70b)

1w . ihm? ronN

Tk, =— S Maararas Mp, 8,88 Mot 8y (khsl)hazﬁz (k2’52) [h(k .8), ]ﬁ’a’ hﬁa(k‘,5) ’ (57OC>

y ihm3
Tk = _?Maa/alazMﬁlﬁzﬁﬁ’halﬁl (kl’sl)ha232 (k2’52)h5'a'(k/’5/) [h(k’s)’,yu]ﬂa . (570d>

Comparing these expressions to the results (4.99) from the GLW approach, we find

Ty, = WORAE - Tk, = WORIAL | Tievg! — WA - vy, — Loy an
N2 ) U ) v ) v 2 -
(5.71)

PoI1ssON brackets

The final contribution to the collision term is given by the P0OI1SSON-bracket terms, where we have to
evaluate spacetime and momentum derivatives acting on the GREEN’s functions and the self-energies,
cf. Eq. (5.13). In order to compute the momentum derivatives acting on the (quasiclassical) GREEN’s
functions, we note that

Ofh(k,s) = ——(1+ 581" (572

m
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which yields

G, k) ~ —4mmhd(k* — m?) / dS(k)% B; + Aﬂk)@,@‘} f(z,k,s), (5.73a)
O Goo(w,k) ~ dmmhs (k> — m?) / dS(k:)% B:l + A*(k)é),@‘} fla, k,s) (5.73b)

where we used again that f(z,k,s) is spin-independent and on shell up to terms of order O(h). The
momentum derivatives applied to Ei only act on the momentum-conserving delta functions. As we
already did in the GLW approach, we rewrite them as derivatives with respect to ¥’ and perform

integration by parts. Then, we find

3
RS, (pla k) = —% / A0y ATy A (20R) 38D (k + K — ky — ko) Maararas Ms, .55

qc,af
1 _'7# ot u_ r
X halﬁl (k1751)h0¢252 (k2a52)f1f2§ T + A (k )6k’ f ’ (5743)
L 2T dp8a’
3
oL sla k) = —% ATy dTy AT (20h) 6@ (k + k' — k1 — ko) Maarayay Ms, g 85
1 [ + 1t u_ ’
X ha1ﬂ1 (k;l,sl)hazgz (k2752)f1f2§ % + A (k )8k’ . (574b)
L d8a’

Inserting these expressions into the PoissoN-bracket contribution to the collision term (5.58), we
obtain

Tep(x, k,s) = 4mmhd(k? — m2)% / dly ATy AT dS(k)(2rh) 0@ (k 4+ k' — ky — ky)
x {7;5“ (@ 12T T = (0" R Rof ) | + T [ f1 1 (0°F) = BTaf (001)]

T @i 2T V0L T = Dui fod VOLT + 11 F2(00 F)OuT = TiF2 (0} 1) 0uf | } :
(5.75)

where we introduced the quantities

hm?
7;(17) = TIHI [h'Ya(kvE)MQO/O&lOQMﬁlﬁzBﬁ’hlllﬂl (kl?sl)hQQBQ (k2752)hﬁ’&’(k/75l)(7#)57]
ihm3 /o
= TMaalalagMﬁlﬁ2ﬁﬁ/halﬁl (klﬂsl)hoézﬁz (k2752)h3’a/(k )8 ) [h(kVE)’,y/J],Ba )
1
- 7;(@) = _§W(I/Q)AH , (5.76a)
T o T (k8 M, M B, g, (k1. 51)hay s, (k
weoTT R m[ Ba( ’5> ac’araz VB B2 8B alﬁl( 1751) CVQBQ( 2’52)(’7H)5’a’]
=0, (5.76Db)
— hm4 /oL
7= TIm [hﬁa(ka5)Maa’a1a2Mﬁ15255’ha1ﬁ1 (k1751)ha252 (k2=52)hﬁ’a’ (K',s")]
—-0. (5.76¢)

The fact that both 'EL(C) and T vanish follows after using the symmetries of the vertex M to show that
the expressions in square brackets are purely real.’

5We remark that the statement that those terms are zero is related to the vanishing of the third and fourth contribution
to the nonlocal collision term in the GLW approach, cf. Egs. (4.93) and (4.94), and generalizes that result to quantum
statistics.
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5.4.3 Summary

After collecting the results from the previous subsection, we find from Eq. (5.54)
k-0f(x,k,s) = % /dr1 AT AT dS (k) (27h)*6 W (k + K — ky — ko)W/?)
<A AT T~ BBl 1+ - a0 [@u0) 27 T~ @) For ]

(88 = &) [11(9uf2) FT = 1 (0uF2) 1]

o - ) [2(05)T - AE@u1)1] | (6.77)
When interpreting the quantities of first order in 7 as the leading terms in a TAYLOR series, we obtain

k-of(x, k,s) = % / ATy dDy ATV dS(k)(2rh)20W (k 4+ k' — ky — ko)W/2)
X [F@t A= A ks f@+ Ao = A ke, s2) [(@ + A = AK,5) f(a, k,5)

—Fa+ Ay = Ak, 51) F(@ + Ay — A ko, 52) f(z + A — ALK 8) f(x, k,ﬁ)}
(5.78)

Provided that f=1— f (cf. Appendix B.2.2), Eq. (5.78) provides the generalization of Eq. (4.96) to
quantum statistics, and reduces to that equation in the limit of classical statistics, where f—> 1. All
conclusions that were put forward in the preceding chapter, such as the connection to the case where
there is no dependence on the spin variables, cf. Eq. (4.101), of course remain valid. An important
novel effect that arises when including quantum statistics consists in an altered equilibrium state, as
we will see in Sec. 5.6.

5.5 Vector fields

Finally, we will consider the KB equations for charged massive vector fields, akin to the discussion
in Sec. 4.5. Note that, compared to the earlier definition of the WIGNER function for spin-1 fields
(3.146), the GREEN’s function G<#” is defined with the indices switched, i.e., G<H¥ = —(h/2)W"H.

5.5.1 Structure of the equations

The inverse free propagator for PROCA fields reads in real space®

—1,uv m2 v v
—Gy M (x) = <D + h2) gt —oro” (5.79)
such that its WIGNER transform is
—h*Gy ' = (=D? + m?) g" + D'D" , (5.80a)
%
WG = (= D 4 m?)g + DD (5.80b)
Then, the KB equations (5.26) (with A = v/A) read
(=D? +m?) G<*(z, k) + D" Do G=* = -1, (5.81a)
(=D*2 +m?) G<" (2, k) + D DLG<F* = —T"1H" (5.81b)

6Compared to the discussion in Sec. 3.5.1, there is a sign difference. Alternatively, we could have defined the
self-energy in a different way, cf. Ref. [86].
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where we defined

o 225 [Z>“a(a§ k)G (2, k) — B4 (2, k)G (x, k)]

coll *

[{z> 2, k), G=(z,k) ot — {5 (2, k), G (2, k) }1or] - (5.82)

Note that (G<)! = G< is hermitian, and the identity (5.14) for the POISSON brackets reads

v

{Gg(z,k),zz(z,k)}; __

{65 @1, 52, k)}:: . (5.83)

Acting with D,, (D;) on the first (second) equation of (5.81), we find the subsidiary conditions

DG (2, k) = D " D:G<M (z,k) = D I (5.84)

coll coll »

which are complex conjugates of each other. Putting them to use, the KB equations become

(=D? +m?) G (z,k) = =1l + LD Dol s (5.85a)
(=D** +m?) G (x,k) = -1 + LD*”DQI:S# . (5.85b)

Comparing these to Eq. (3.149), we can identify
I = —hz/d4ve_fk Y VT” (J: + g) pt (x - g)> ) (5.86)

where the flipped LORENTZ indices and the prefactors arise due to the definition of G<#¥. From Egs.
(5.85) we find the mass-shell and BOLTZMANN equations,

2
(k2 —m? — ZD) G (x, k) = (Igg”n — D* Do ISH + h.c.> , (5.87a)
k-0G<M (x,k) = ~5r <I;‘0”H — D*Do I35 h.c.> : (5.87h)

In order to translate these expressions into extended phase space, we have to contract them with

1 i k 5
HM (k,s) = = KM 4 —etveB X%, 4 S8 5.88
(k,5) = GK™ 4+ Semved g, o+ 2R (5.59)
cf. Eq. (4.132). Based on the discussion in Subsec. 3.5.2, we can argue that parts of the terms
on the right-hand sides of Egs. (5.87) involving BOPP operators acting on the collision integrals do
not contribute in our truncation of the hA-gradient expansion. The reason is that the operator H*¥
is orthogonal to the four-momentum, thus projecting out contributions where D* is given by its

zeroth-order term k*. Then, to first order in /& we can write the mass-shell and kinetic equations as”
2
(2 = ) o kos) = 2 | Hoolho) (125 - g 0b12 )| (5.59)
2 " zh
k . 8f(3;‘, k,s) = —ﬁlm HH'V(k:"g) ICOH 78 k COH 3 (589b>

where we used the fact that H is hermitian, H**” = H"*. From this point on, we can proceed as in
the previous section.

7As remarked before, we used that f = H,,WH" = —(2/h)H,, G<*, where we also employed that xk = —2/F.
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Structure of the WIGNER function

Similar to the case of DIRAC fields, we have to discuss the structure of the GREEN’s functions that
appear inside the collision integrals. As before, we can neglect collisional contributions to the GREEN’s
functions since the resulting terms would be of fourth order in the coupling. Then, their structure is
determined by Eqgs. (3.151) with the right-hand sides set to zero. We remind the reader that these
constraints result from the fact that free PROCA fields have a vanishing divergence, thus reducing the
number of independent degrees of freedom. When decomposing the WIGNER functions as

ke ke ka
G (a,k) = B fim + K" fic + 5 F )i 5 h4 i PGl PR (5.90a)
N jA ~) JA. . Bka )
GZM (x,k) = E™ fg + KM fx + ﬁF + Z%F + et Gﬁ + FM (5.90Db)

we can, according to Egs. (3.159), express the dependent parts up to order O(h) as

h
fp=0, F§=0, Fj~_K"0,fx, (5.91a)
~ ~ ~ h ~
fr=0, F§=0, Fj=~_K"0,fx. (5.91b)

With these results, we can decompose the GREEN’s functions into quasiclassical and gradient contribu-
tions,

GZH (1, k) ~ G Y(z, k) +G<’W(x k), (5.92)
where we defined
G (k) = K" fx (2, k) 1 ienweska G, k) + Ff (2. k), (5.93a)
G (@, k) = K" f (@, k) 4 jenvas Fa Gﬁ(x k) + FI (2, k) (5.93b)
as well as
G (0 K) = o 0 i, ) (5.94a)
G (2, k) = ;h K19 Fre (2, k) . (5.94b)

Here we already employed that we may take all momenta in the kinetic equation to be on shell.
Remembering the definition of A*¥ from Eq. (4.128),

1 kq
h* (k,s) = §KW + 26’“’0‘5 s+ Khjs“s” (5.95)

we can express the quasiclassical contributions in extended phase space,
v . 2 2 2 v
G;C" (z,k) = =2nh°0(k* —m )/dS(k)h H(k,s)f(x,k,s), (5.96a)
ng — 2 2 2 v ry
G;C’ (x,k) = =2mh?6(k* —m )/dS(k)h Hk,s)f(x,k,s), (5.96b)

where we again used that G<*¥ = —(h/2)W"#. The gradient contributions on the other hand read

ih

G (. k) 1= —2mh?5(K? —m?) 3 k0¥ S /dS(k)f(z,k,s) : (5.97a)

zh

G, K) = —2mhS(K — ) kL / AS() F(z. &, 5) - (5.97b)
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Structure of the self-energies

The results for the structure of the WIGNER function can now be inserted into the self-energies to
obtain -
B2 (2, k) = B3 (2, k) + DS (2, k) (5.98)

where we defined (remembering that A = v/h)

S22, k) = @rh) SO (k + K — ky — kp) M mnz ppvar

1 / d*k;  d*ky  d*E

T 2m3 | (27h)* (27h)* (27h)4
X G2y (1, 51) G2 s, (. K2) G2 (2, K (5.99)
% [GZ i (251G (0, 72) G (2, K)
+ G (0 k1)GF i, (0 k2) G (2, K)
G5y (081G (2, K2) G ()] (5.100)

These terms can then be translated into extended phase space, with the results

1 ’ /
SR (o k) = — ¢ / ATy dTy AT (20h) 6 (k + k' — ky — k) MM 11042 A2

X hl’lul (khﬁl)huzuz (kQ, Sz)hp/,/ (k’,s’)f(x, k1751)f($(:, k2752)f($, kl,ﬁl) y (5.1018,)

1 ’ ’
S k) = — 15 / Ty dTy dTY (2mh) 6™ (k + k' — ky — ko) MM #ak2 ppvivary

X th,ul (klvﬁl)hvz,tQ (k2;52)h,u’u’(k175/)f(xa klvﬁl)f(xa k2752)f(x7 klvﬁl) ) (5101b)

and
S (k) = — e DL L ar, ar, dr @mh) 6@ (k4 K — ky — hp) M sz v
v(x,)—_ﬁﬁg 1dl2 dIV(27h) (k+ K — ki — ko)
X {hugp,z (k2a52)h;ﬂu’ (kj/asl) {kl,[ulaul}f(x7 klvsl)i| f(wv k2552)f($7 klvs/)
+hulpl(k1a51)hww(/€’75’)f(x, klvﬁl)[k2,[u28,u2]f(1'7k2,52)} }T((E,]g/’gl)
g (1,80 g (2, 82) £, i, 50) £ (2, Kz, 2) [0 (o K080} (5.102)
v ih 11 wp iy oo grivavy’
ST (2, k) = —ﬁﬁg/drl AT, AT (27h) 6 (k + k' — ky — ko) MM 1102 N[

x {hum(kg,sg)hw(k’,s') {kly[,,lam]f(x,kl,sl)} Fla, ko, 52) f (2, K, 8')
+ hl/l,ul (klasl)h,u’u’(k,vﬁ/)f(xa klvﬁl) [kZ,[uzaug]f(wv k2752)] f(‘ra k/asl)

+hV1H1 (khgl)th/w (kg,ﬁg)f($, klvgl)f(x, k2,52) [kfu/ﬁl,/]f($, k/,ﬁl):| } . (5102b)

With the self-energies and the WIGNER functions expressed in this way, we are in a position to compute
the kinetic equation.

5.5.2 Evaluating the kinetic equation

According to Theorem 1, we only need to evaluate the on-shell part of the BOLTZMANN equation
(5.89b). With the aid of the results of the previous subsection, it can be expressed as

4rhé(k* — mAk - Of (x,k,5) = Lye(2, k, 8) + To(z, K, 5) + Iy (2, k, 8) + Tpp (7, k, 5) | (5.103)
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which looks very similar to Eq. (5.54). As before, the term Z . collects the quasiclassical parts of the
collision terms,

Too(, by 5) = %Re [, (k8) [SS00 (2, k) G2 o (k) — 2092, K)GS (@, B)]) . (5.104)

qc,a

The action of the derivative on the collision term is captured by Zy,

To(x, k,5) = ﬁlm {Hw(m)aﬂk {z@ﬂ(x RK)GZ, 5" (2, k) — S200 (2, k)G, 5 (x, k)]} , (5.105)

qe,B

while Zy contains the gradient terms,

Tv(z, k. 5) = %Re{Hw(k,s)[E;C““(:c,k)G%a”(x,k) S (@, k)GE, o (2, k)

e
+ S (2, k) G2 o (2, ) — B2 (2, k) GS (o, k)} } . (5.106)
The PoissoN-bracket terms are described by Zpg,
Top (@, k,5) = %Im{ (. 5) {{z< 2, k), G, k) Y = {52 (w0, k), G (2, ) “””
= gim (M h,9){ 10,550 [0 G.0"] - [azzsgta] 0,G”]
— 0,550 [0 Grea’] = [00752°] [0,Giea”] }) - (5.107)

In the following, we compute these contributions, showing that Zy and Zpp are responsible for the
nonlocal collisions.

Quasiclassical terms

Inserting the quasiclassical GREEN’s functions and self-energies (5.96) and (5.101), we readily find
1 _
Toe(, k,5) = 4mhd(k? — m2)5 / ATy dTy dTY dS (k) (27h)* 6™ (k + k' — ky — ko)W
< (fRfF-hRrT) . (5.108)

where we used the abbreviations (5.60) and defined

1 , /
WO = Re [ M b p e hl,lm(kl,51)h,,2u2(/cg,52)hw,/(k’,ﬁ’)H#a(k,ﬁ)hm,(k,5)]

1 ’ /
- @MWL M h’l’llll (k1751)hl/2u2 (k2752)h,u’1/(k/75/)

X [H,*(k,5)hay(k,8) + h,“(k,8)Hay (K, s)] . (5.109)

In order to arrive at this expression, we used that h and H are hermitian, as well as the assumed
symmetry of the vertex M*HH Hik2 — NfH1k2Bl  Ag expected, it agrees with the local result from the
GLW approach (4.144), with the difference that quantum statistics are included.

Gradient terms

We compute the term Zy first, obtaining
1 _
Toe(, k,5) = 4whd(k? — m2)5 / ATy dTy dIY dS (k) (27h)* 6™ (k + k' — ky — ko)W

o (flfzf’f— flfzf’f) , (5.110)
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where we defined
y(a) = h ].

P = 721761111 [MML 2 MY By (K 1) g (k2352)h#’l/'(klvﬁl)k#Hpa(kvﬁ)hav(kvg)}

h 11 ’ o
= m?2 EgIm [MNM e M h"ll‘l (kl’ﬁl)hl’zkm (k2752)h,u'1/(k/»5l)kquv(ka5)}
ih 1 i/ vivovy’
= 64m2 3MW Hrkz M hV1u1 (klvsl)hwuz(k2752)hu’y’(k/75/>
X [Hpy(k,s)ky — Hyup(k,s)ky] (5.111)

Here we used the fact that h*”(k,s) can be replaced by + K*¥, since the distribution function f(z, k,3)
is spin-independent at zeroth order in h. Comparing to Eqs. (4.145), we see that Z,(a) =—IWwA,.

The contribution Zy can be evaluated to

Ty (z, k,s) = dwhé(k* — mQ)% /dr1 ATy AT dS(k)(27h)*6@ (k + K — ki — ko)
x {%p (@p10) £oT T = 0o F0) Fod £| + T | 1100 82) T F = F1(0pF2) £

+ 7 [ 1120,V ] = R0tV 1| + 77 [ 112 (0,F) = oot (0,1)] } . (5.112)

with the tensors

ho1
TP = =z [Mw sz N pavery 60 l]hl,wg(kz,52)hw,/(k’,ﬁ’)HM"‘(km)hm,(k,ﬁ)} ,
(5.113a)
ho1 i
Tf = ool [M““ pe N (ks )R 00 By (K, 8) Ho‘(k,s)ha,,(k:,s)} ,
(5.113b)
h 1 ! 140% l/l//
TN = =l Im [MW e N (ke $0) g (ko 52) K080 Hy® (K, 8) o (k s}
(5.113¢)
ho1 , ,
N —Wghn [MMH Hipz | frivavy hvlul (k1751)hl/2#2 (k‘Q,ﬁQ)h#/w(k/,H/)Hﬂa(k’,ﬁ)k[adﬁ]} )
(5.113d)

In order to simplify these expressions, we use the fact that the components of fi, fo, f’, and f that
depend on the spin variables are at least of order O(k). Then we may replace

1
“k
3 bl

and similar for the cases dependent on ko and &’. Furthermore, for the same reason we can approximate
h (k,8) ~ $ KM in Egs. (5.113a)—(5.113c). Lastly, in Eq. (5.113d) we utilize that H is orthogonal
to the four-momentum. With these results and the symmetries of M, we find

X ’fl By =k, B (R s) (5.114)

ih 1
V= g g M M s (b, 52) s (K5 H o (h, 9)
X 17 iy (kyy51)R1 = Ky By P (ks 50)] (5.115a)
Zﬁ 1 4 vivavy’
2p B 32m? 3MHM M thMl (k1a51) ( ) ,ul/(k75)
x [h “2(k2’52)k2 V2 k2»H2 V2 (k2752)] ) (5.115b)
Zh 1 10% l/V
= M AA By (K 0 (s, 52) H )
[hP (k,’ﬁ)klt/ - v'h ’p(k/ﬂsl)] ) (51150)
p_ ih 1

© 64m2 BMM# ”1”2MV1V2VV thMl (klasl)hwltz (k2’52)hM/V'(kJ75/)
« [H? (k. 5)ky — ko Ho 2 (k,5)] (5.115d)
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Comparing to the shifts (4.145), we find

1
TP =whar g =wWOAL g =wWHAP g = §W(1)A” : (5.116)

Po1ssON brackets

In order to evaluate Zpg, we first need to compute the momentum derivatives acting on the GREEN’s
functions and self-energies. For this we note that, since we may approximate the GREEN’s functions
on the right-hand sides of the BOLTZMANN equation as being spin-independent, we can evaluate the
momentum-derivative acting on the quantities h approximately as

v 1 v 1 v
We then obtain from Eqs. (5.96)
NG (2, k) ~ —2wh?§( /dS = (—g P +K”"8p) [z, k,s), (5.118a)
1 kv ~
NG (2, k) ~ —2wh?§ (K — m2)/dS(k)g (—g me 4 K”ﬂaf') flx,k,5), (5.118b)

where we could neglect the off-shell contributions since they are of higher order in either & or the coupling
constant. The momentum derivatives on the self-energies, which act only on the momentum-conserving
delta function, are again rewritten as k’-derivatives, giving

T (2, ) ~ / ATy ATy T (20h) 6@ (k 4+ k' — oy — o) M 1182 pravavs

(v

1 ~
X hl/lNl (k1751)hu2lt2 (k'2a52)f1f2§ (_ g”)” + K’”“(’),Z,) f/ 3 (5.119&)

1 ! ’
WX (2,k) ~ o / ATy Do AT (27h)A6™W (k + K — ky — ko) M #abz ppravevy

(v

1
X hl/lHl(k1751)hu2ﬂz(k2a52)flf2§ (— g’ + K”’“@,’j,) . (5.119Db)

We compute the contribution as

Tep(x, k,5) = 4whd(k? — m2)% / ATy dDy AT dS(k)(2h) 6@ (k 4+ k' — k1 — kg)
|70 (@ 10T - @FRNI + 70 (5 £7 @) - R @)

T 0N 1T VKT - OuRFs VL + 0 T)0,T ~ R0 1)0,5] }
(5.120)
where we defined

o1 / /
%(b) = 39m, 2§Im |:M/JM Hikz ppravary hmul (klyﬁl)huzurg (k2752)hu’y/(k/35/)Hua(k5as)k(agu)p]
iho 1
- 6£m2 §MW MIMMVWWV hl’l#l (klvﬁl)huwg (k2752)hu’v/(k/751)

X [le/(kas)k# - kuHup(kas)] ) (5.121a)
h 1 / v
32m2 glm [M/JH H1p2 | TV1V2 hl’l,“l (k1751)h’l/211.2 (k’g,ﬁg)kzy,gul)lew(k7ﬁ)]
=0, (5.121b)
hy— h 1 ’ ’
= 32m2 glm [M## K12 ) rrivavy hl/lul (k;l,sl)h,jzuz (k2’52)hu/u’ (kj/aﬁl)ij(k‘,ﬁ)}
=0. (5.121c)




5.6 Equilibrium 105

As expected, we find %(b) = —%W(l)Ap.

5.5.3 Summary

Collecting our results, the kinetic equation becomes
k-0f(x,k,s) = % /dr1 ATy AT dS (k) (27h)*6@ (k + K — ky — ko)W
x {flfzf'f ~ Rl (A = A [(0u01) 2T T~ (0uF1) P ]

(A8 = A [11(9uf2) FT = Fi(0uF2) £1]

+ (A = A [ 1120 )T = i Fa (00 ) ] } : (5.122)
or, in a more compact form,
1
2
x [f(x S A=Ak s)f(z 4 Ay — Ak, so) f(z+ A — ALK, 8 f(a, k, 5)

k-of(x,k,s) = /dn ATy dT dS(k)(27h)* 6@ (k 4+ k' — ky — ko)W

T A — Ak F(@ 4 Ag — A kays2) f(z + AT — ALK 8 f(x, k,g)} :
(5.123)

As in the scalar case, we have f: 1+ f, which tells us that this equation generalizes the result (4.143)
obtained in the GLW approach to quantum statistics, and reduces to it if we take the limit f — 1.

5.6 Equilibrium

With the collision terms for particles of spins 0, 1/2, and 1 at hand, we are in a position to compute
equilibrium. In principle, the discussion of Sec. 4.6, in particular the concept of using a weak equivalence
principle to redefine the transition rates in order to be able to use the conservation of the total angular
momentum, remains valid, so we do not repeat it here. The most important modification to the case
of classical statistics lies in the form of the equilibrium distribution function: in order to be able to
use the summational invariance of charge, four-momentum, and total angular momentum, we have to
demand that the distribution function takes on the following form,

~1

fea(, ky5) = {explg(a, ky5)] +a} " (5.124)
where g(z, k, s) consists of summational invariants. In the case of bosonic fields, such as the KLEIN-
GORDON or PROCA ones, we have to set a = —1, leading to a distribution function of BOSE-EINSTEIN

type. On the other hand, for DIRAC fields which follow fermionic statistics, it holds that a = 1, which
yields a FERMI-DIRAC distribution function. In order to recover the form of the distribution function
for classical particles that was introduced in Sec. 4.6, we simply have to set a = 0.

Since the conclusions of that section are still valid, we find that, in order for the collision term to
vanish, it has to hold that
1

8(u50,y) =0, QLCVO =0 ) QO,;LV =W = _ia[uﬁo,u] 3 (5125)

showing that, when defined in the usual way, local implies global equilibrium as soon as the particles
have a nonvanishing spin. When moving on now to derive hydrodynamics from quantum kinetic theory,
we will argue that this statement can be somewhat relaxed, provided that suitable conditions are
fulfilled.
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Chapter 6
Dissipative spin hydrodynamics

After having computed the kinetic equations for the on-shell single-particle distribution function
in extended phase space, f(z,k,s), we will now return to the problem of developing dissipative
hydrodynamics with spin that was initially posed in Chapter 2.

6.1 Relevant scales and local equilibrium

At the end of Chapters 4 and 5, we found that, for particles with nonzero spin, local and global
equilibrium coincide, a fact that hinged on the spacetime shifts Aj, Ay, A’ and A appearing in the
collision integral. This statement is rather contrary to the usual way of deriving hydrodynamics from
kinetic theory, where, in local equilibrium, the LAGRANGE multipliers ag(z) and fBy(x) are arbitrary
functions of spacetime [43, 115, 153], which is consistent with the way we introduced hydrodynamics
in Chapter 2. As we shall discuss now, it is possible to transfer the concept of this kind of local
equilibrium to spin hydrodynamics as well, namely by considering the different scales that are involved
in the problem. When constructing hydrodynamics from kinetic theory, there are three characteristic
length scales one has to consider: the effective range of the interaction £, which should be a lot
smaller than the mean free path Anyg, of the particles. Furthermore, the hydrodynamic length scale
Liydro, i-€., the scale over which macroscopic quantities vary considerably, should be much larger than
the mean free path in order for the hydrodynamic limit (where collisions take place so frequently
that local equilibrium in the usual sense is reached quickly) to be valid. In the case of kinetic theory
with spin, a fourth scale enters through the spacetime shifts, which are of the order of the COMPTON
wavelength A¢ [as evidenced by the factor i/m in Egs. (4.99) and (4.145)] and should therefore be at
most of the order of the interaction length scale in order for the quasiparticle picture (and thus kinetic
theory) to work. In total we then have the following ordering of scales,

AS Eint < )\mfp < Lhydro . (61)

~

From these scales, we may construct two dimensionless quantities: first, the usual KNUDSEN number
[cf. Eq. (2.66)]
A
Kn:= —2f (6.2)
Lhydro
which controls the applicability of the hydrodynamic limit. Second, we can define a “quantum KNUDSEN
number”

A
= < Kn, (6.3)
Lhydro

where the inequality follows from the ordering of scales (6.1). Note that, in principle, one could assign
another scale £yory ~ |w| ™! to the vorticity [82, 83, 159], which is different from the other hydrodynamic
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gradients since it can be present even in global equilibrium, but for simplicity we will not do so here,
i.e., we will assume that £yor, ~ Liydro-

Taking into account these dimensionless quantities, it becomes clear that the terms in the second and
third lines of Eq. (4.160), which are responsible for the equivalence of local and global equilibrium, are
much smaller than the usual hydrodynamic corrections. Thus, we may redefine the necessary condition
on the local-equilibrium distribution function f.q to be

Clfedl(@, ky5) ~ O(3) (6.4)

such that the collision term does not have to vanish exactly, but rather be sufficiently small. This
definition also ensures that the local-equilibrium distribution function only needs to make the local
part of the collision term vanish. Then, the local-equilibrium distribution function is given by

Fools iy5) = {exp {ao(x) B @)k, — aZQO,W(ngV] + a}_l , (6.5)

where the LAGRANGE multipliers «y, 8y, and €2y are now arbitrary functions of spacetime, in line with
the usual formulation of hydrodynamics. At this point we reiterate that Eq. (6.5) is to be understood
in a perturbative way, i.e., in practical calculations we have to use the form

feq(CE, k:,s) = fOk(:L‘) |:1 + J?Ok(-T)UZQO,;w(x)EI;V} + O(hQ) , (6.6&)
Jox(z) = {exp [—ao(z) + B (z)k,] + a}_1 ) (6.6b)

Without loss of generality we may split the full one-particle distribution function into equilibrium and
dissipative contributions,

fx,k,8) = feq(z, k,8) + 6 fis - (6.7)

In order for dissipative hydrodynamics to be a viable approximation, we will require that the inverse
REYNOLDS numbers, which have been introduced in Sec. 2.3, are small, Re ™! <« 1. In terms of the
distribution function, we have

of

feq.

However, we have to distinguish between different inverse REYNOLDS numbers. Since we may expect
the effects of spin to be small, the quantities that originate from the parts of the distribution function
which are linear or bilinear in the spin vector s should be smaller than the usual dissipative corrections.
In the following sections, we will derive hydrodynamic equations up to second order in both KNUDSEN
and inverse REYNOLDS numbers.

Re ' ~ (6.8)

6.2 The method of moments

While the equilibrium distribution function (6.5) is known, we do not know the functional form of the
deviation ¢ fxs. Following Refs. [51, 83], we will employ the so-called method of moments (which is
essentially a multipole expansion in momentum space) to isolate the parts of d fis that are important
for hydrodynamics.

6.2.1 Expansion of the single-particle distribution function

First, without loss of generality, we may write the deviation from equilibrium as

8 fics = forcfor (P — 5.8 + 5,55 K00 L) (6.9)
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where ¢k, (x, and & are functions of the momentum only. Note that this does not constitute an
approximation since, for particles of spin j < 1, the distribution function in extended phase space
depends on at most two powers of the spin vector.! These functions may then be further expanded as

o0

b = Z P TR R (6.10a)
=0

Gk = anmmwk(m T k#z) ) (6.10b)
=0

L=y gk (6.10c)
=0

where the tensors A, 77, and 1 are functions of the energy in the fluid-rest frame, Fy, only. Equations
(6.10) constitute expansions in terms of the set of irreducible tensors?

1, k) o) plegr gL (6.11)

which form a complete and orthogonal basis. Specifically, for any function F' depending on Ey only,
we have the orthogonality relation

|
/deml . ~/<;”">k;<l,1 ook, F(Ey) = M AR bom /dK (m* — E2)" F(Ex) . (6.12)

2m + I

The tensors introduced in Eqgs. (6.10) can be further expressed as

AL He — Z cgl'“ueplgov@) , (6.13&)
n=0

phebahe = Z dﬁ,ulwuzplgl:f) 7 (6.13b)

n=0
o

YRV e Z eﬁi”’“l"'“eplii’e) 7 (6.13c)

n=0

)

where the quantities Pg;z are polynomials in energy fulfilling

14

m(mz — B2)" for fox - (6.14)

/ dKw O PO pID — 5

In the massless limit, the Plgf) are given by associated LAGUERRE polynomials. From demanding that

Plg)’@ =1, we find the normalization to be
—1)¢ oI,
W = % ,  where J,, = 5‘@5 , (6.15)
and
—1)4 e
Ing(@0, Bo) = (2(q+)1)” / AT B %Y (m? — B2 fox . (6.16)

The thermodynamic integrals I,,, defined above are ubiquitous in the following calculations, and we
show how to evaluate them analytically for BOLTZMANN statistics in Appendix F.2. Employing the

LIf one would want to analyze higher-spin particles, higher powers of s have to be included. Analogously, for spin- 1/2
particles, we have simply {x = 0, while for spin-0 particles only ¢y is nonzero.

2Irreducibility is to be understood with respect to the little group of the four-velocity u*, i.e., the subgroup of
LoreNTzZ transformations that leave the four-velocity invariant. For massive particles, this group is isomorphic to the
rotation group SO(3); the decomposition into irreducible tensors is thus equivalent to an expansion in terms of spherical
harmonics [43].
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orthogonality relation (6.12) as well as the spin-space integrals (3.167), we can express the tensors
introduced in Egs. (6.13) as integrals over 0 fis,

w®
= / APPSOk k)6 fg (6.17a)
0
o — gv‘;' /drplgf)ﬁuk(m kM6 e (6.17b)
O
elrp e — %{] VV£| /drK&LZsaﬁBP]Ei7l)k<Hl ---k"‘>5fk5 ) (6.17c)

Subsequently, we define the set of so-called irreducible moments of 9§ fys,

prhe /drE{(‘kwl kPO fies (6.18a)
Thap e /drEIT{’ﬁuk(#l k)6 i (6.18b)
v /dFEﬂKggso‘sﬂk(“l ~~I<:"“>5fk5 , (6.18¢)

which will constitute the dynamical objects of our theory. The polynomials Plgb’é) can be expanded in
powers of energy as
n
y ,
P = N iy (6.19)
T‘ESE{j)

where the coefficients aﬁljr’e) are determined by GRAM-SCHMIDT orthonormalization [51]. Explicitly, we
show how to construct them in Appendix F.3.
By inserting Eq. (6.19) into Egs. (6.17), we are then able to express the functions ¢y, (x, and &
through the irreducible moments,

Y
¢k = Z Z ,Hkon )pgl /"'Zk<u1 e k/u) 3 (620&)
£=0 neSéO)
C{: — Z Z Hl({lyze),r#,ﬂy..uzk(“l . k/‘l) , (620b)
=0 pes()
v - N NTI
g =30 3 HE R, Ky (6.20c)
£=0 e
where we introduced
1 ) J =0 5
0 _ W 0 G i :
HOD = 3= > POV g0 =L0g2 =1, (6.21)
- mesf? 59/8 L j=2.

The quantity Sy ) denotes the set of moments of spin-rank j and tensor-rank ¢ that are included in the
employed basis,? and thus quantifies the truncation that is used for practical calculations. To obtain
exact results, the size of the basis should be infinite and thus Sy ) Np.

3For comparison with, e.g., Ref. [51] it should be noted that sums running from 0 to N, appearing in this reference
correspond to SEO) ={0,1,---, N}
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Note that, when combining Eqgs. (6.9), (6.18), and (6.20), we can express any moment in terms of all
others with the same tensor-rank in momentum and spin,

= S O (6220
nGSéO)

7_#7”1‘..,” _ Z ]:(717;,2727—##1”%(’ (6.22b)
nGSy)

w/;u,uy"/tz: Z ].‘Ezrenwl“/ﬂ‘l . (622C>
negéz)

Here we introduced the thermodynamic integrals

1 ¢
(J £ . ray0, 5) 2 2
Fy = g(]) 2€ TN /deOkfokE Hy ( Ek) . (6.23)
The expressions (6.22) are exact if the irreducible moment on the left-hand side is included in the basis,
and an approximation in the case that it is not. In particular, Egs. (6.22) can be used to approximate

moments with » < 0.

Lastly, we remark that not all components of the irreducible moments of nonzero spin-rank [cf. Egs.
(6.18b) and (6.18¢)| are independent due to the spin vector fulfilling k- s = 0. To see this, consider the
projection of the moments of spin-rank one onto the four-velocity,

wy T = /dFET 15 L) g, o) S fis - (6.24)

The expression above shows that the component of 7/#1#¢ that is parallel to the fluid four-velocity
in its first index is not an independent quantity; a similar reasoning also holds for the components of
Whvs#ite parallel to w” in any of the first two indices. In order to explicitly remove these dependent
components, we make use of the fact that s and (i are orthogonal to the four-momentum and write

Ew k w _ y
5uCe = 5, (A +ulu,) G = s, <AMV E2 >> Ck =s5,ZM, 1<< ) ) (6.25)
where we defined
cuv A Lol o (v) (6.26)
B
Similarly, we can rewrite
SassKolel = sqsg Ko7 E0e) (6.27)
where we introduced accordingly
SR L e =5 =
BN = 5 (BFoEY 5 + EVoEHp) — == EMEY 20 Esp (6.28)

with 22 := EME,, =2+ m*/Ey. Using this method to only retain the independent components of
the irreducible moments, the expansion of the deviation of the single-particle distribution function
from local equilibrium assumes the following form,

0 fus = f()kﬁ)k Z k<#1 .. k#U Z 7‘[(0 ) plare SME#V Z 7‘[1({17;@)7'7§U>7M1”'M£

£=0 nes{” nesi?
af=ys (2,0) AN
a8 KOYTN0 S H Sl | (6.29)
nGSéz)

Up to this point, as long as all irreducible moments are included, no approximation has been made, i.e.,
knowing the evolution of all irreducible moments is equivalent to solving the full BOLTZMANN equation.
However, in order to arrive at a finite set of equations of motion describing the hydrodynamic degrees
of freedom, we need to establish a connection between the kinetic expressions of the conserved currents
and the irreducible moments.
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6.2.2 Conserved currents and ideal spin hydrodynamics

In this thesis, we consider the modified GLW pseudogauge, i.e., Eq. (3.60) for spin 0, Egs. (3.127) and
(3.128) for spin !/2, and Eqgs. (3.195) and (3.196) for spin 1. Supplementing the energy-momentum
and spin tensors listed in those equations by an expression for the particle-number current, cf. Eq.
(3.54), we have up to order O(h)

NH(x) = /dl"k“f(x,k,s) ) (6.30)
T (z) = / ATKARY (b, 5) | (6.31)
SMY (1) =& / dADEASHY £, K, 5) (6.32)

Note that the spin-0 case, where the spin tensor vanishes, is included in this formulation. Considering
the definitions of the irreducible moments (6.18), we can express the particle-number density and the
diffusion current as

ng = U#Nél = IlO s (633&)
n* = AM§N, = pl . (6.33Db)

The matching condition (2.50b) lets the dissipative part of the particle-number density vanish,
on =u, 0N =p; =0. (6.34)

The components of the energy-momentum tensor read

g0 = uuw, I8 = Iy, (6.35a)
Py = —%AWT(#” =1In, (6.35D)
m— —%AwéT’“’ . —%2,00 , (6.35¢)
T = ALZOTP = pf” (6.35d)
Here, we already used the matching conditions (2.50a) and (2.52), which imply that
0 = u,u, 6T =py =0, (6.36)
B = AFOuP§Ts = ph = 0. (6.37)

Since the variables characterizing local equilibrium in kinetic theory are ag and Sy, it is advisable to
rewrite the equations of motion for €y and ng (2.54) in terms of these quantities. By employing the
relations

g0 = Joocto — J3050 fio = Jrodo — Ja0f0 (6.38)
we find
1
Go = Do {=J30 (nof + 9unt) + Joo [(e0 + Po + 1) 0 — 70, ]} (6.39a)
20
. 1
o= 57— {=J20 (nof + Oun”) + Jig [(e0 + Po +11) 0 — 70, ]}, (6.39Db)
20
1
ut = (F* + VI — Ta* + 74, — AP VT,,) (6.39¢)
co+ Py
where we defined
an = Jn+l,qJn—1,q - JELq . (640)

At this point, we remark that the relation*

@I# B co+ Py
Bo Bo

4We remind the reader that F* = VHF Py, I* .= VHag.

Fr— V4 By (6.41)
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holds.

In the more involved case of the spin tensor, we first insert the local-equilibrium distribution function
(6.6a) into Eq. (6.32) to obtain

w  20%h v Vo
S(/)\l = m? [UAU[”KO](WQJw — J30 + J31) + u e Pugwg s(mJig + 2J31)
—ult By 0 5T + A’\[“ng]Jgn]
20%h y
= g(:TLZ [—QUAU[MKO]ng + ’U,)\Eﬂya’g’uawo’g(l‘go — J31)

—u[“e”])‘aﬁuawo,Bng + A’\[“fig] ng} , (6.42)

where we used the fact that integrals of an odd number of spin vectors over spin space vanish, and
decomposed the spin potential according to Eq. (2.73). Furthermore, we employed that m?2.Jyq =
J30 — 3J31. Comparing this expression to the more general one (2.75), we find the following explicit

expressions for the quantities Ag,- -, Ey in terms of thermodynamic integrals,
20%h 20%h 20%h
Ao = Jio , By=—=Js0, Co=Dy=Ey=—-——7Ja1. (6.43)
gm gm

Making use of the definitions of the irreducible moments of spin-rank one [cf. Eq. (6.18b)], the
matching condition (2.78) yields

uUN6SMY = — T euwap (UaT2,3+T1,8,0) =0, (6.44)
m
from which it follows that
Tl[ﬂ’u] = U[HT;] . (6.45)

Note that only the antisymmetric part of the moment of spin- and momentum-rank one is determined
by 74', while the symmetric part remains unconstrained. Then, the dissipative part of the spin tensor
takes the form

o 1 1
(sS)\’“j = _Eep«wlﬁ §Ua’7'17(<ﬁ>7<)\>) + gA)\a (mQTQﬁ - Tg’ﬁ) -|—7'07[3),1A . (646)
In the following, we will rename the moments that appear in the equation above as®
= 7'0<H> , nt =7l M = 71(<“>’<V>) , g = g (6.47)

It should be noted that these types of moments are connected to certain higher-order ones, as we can
see by employing Eq. (6.24):

w T = =T (6.48a)
1 v v
u T = e g ( 2 - Tfﬁl) ; (6.48b)
2 v v
w TN = A : (mQTT(_’lM _ T:-&-’f\)) ) (6.48¢)

Inserting Eqgs. (6.43) and (6.46) into the equations of motion for the components of € (2.80), we find
the equation of motion for kg to be

402h 402k
am

1
+ ie”mﬁuu [J31Vawo,s + wo,5 (K311a — K41V a o))

. ) : 4 1 vaB. -
Jsll‘iém = { — kg (K:ﬂao — K180 + 3J319) - §J306“ Puytiawo g

1 1
+ §J31 (c" + ™) /-i07,,} + getr By, {2(0,\0( + w,\a);,ﬁ)‘

1
+3(Va - te)(m?pg — ng) 4+ (V* — u*)qm} - %T[W]uy , (6.49a)

5In contrast to Ref. [82], we define p* to be orthogonal to the fluid four-velocity.
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whereas the evolution of wq is determined by

202h . 202h . . 1
o= (J30 — JSl)w(()m = - g { [(Kso — K31)ag — (Kao — Ka1)Bo + <J30 - 3J31) 9} wk
+ P, [J31Vako,s + Ko.s(K311a — Ka1VaBo) — 3J311ako,s]
1
(o i b= = A A (T~ i)
1 v v 2 v 2 m vaf
~3 ot + Wt — §9A“ (mp, —n,)| — Ee“ wTop - (6.49Db)
Here we introduced the thermodynamic integrals
oJ, 0?1
K, = - = na . 6.50
1 8a0 604(2) ( )

Note that the last terms in the equations above are not problematic in the limit of & — 0, since the
antisymmetric part of the energy-momentum tensor is at least of second order in A.

The system of eleven equations which is given by Egs. (6.39) and (6.49) specifies the time evolution of
all components of the LAGRANGE multipliers ag, 84, and €4, and thus provides the foundation of
ideal spin hydrodynamics. In order to close the system of equations, we need to determine the evolution
of the dissipative quantities IT, n*, 7%, p*, 3V, and ™. Note that we do not need to consider the
evolution of n*, since its independent components are determined by the matching condition (6.45).
In particular, using Eq. (6.24), we have

2 m?
Zalw) — —gqvr 7 e 6.51
3‘1 qa "y 3 p ( )

The antisymmetric part of TH¥

We still need to express the antisymmetric part of the energy-momentum tensor which appears in Egs.
(6.49) in terms of kinetic quantities. When taking the divergence of the spin tensor, we find

1 —
hONSMY = hos / [AT](27h)*6@W (k + K — ky — k)W) 51
x [f(x F ALk s1) f(x 4 Ao ko, s2) F(z+ ALK, 8 fla + ALk, 5)
- ~(I + Ala klvﬁl)f('r + AQa k2752)f(93 + Alv /{,,5/>f($ + A7 k,ﬁ):| ’ (652)

where we introduced [dT"] := dT'dl’; dT'y dT”. Note that we neglected a term ~ A-9(f1 fof f— ﬁf;f’f),
since it is at least of order O(h s Re ~1). Furthermore, we already employed the weak equivalence
principle, which is applicable due to ¥4" being linear in the spin vector and the assumption (4.155)
on the transition rate. Subsequently, we may use the symmetries of the collision term as well as the
conservation of the total angular momentum (4.152) to write

1 N
RONSMY = —2 / [dL](27R) 6@ (k + K — ky — ko)W (H”M + R A gl Ak kg”Ag])
x {f@? + Ay kys1) f(z + A, k’z,sz)f(x + A, k:’,s’)f(x + Ak, s)

— o+ Ay ks f(a 4 Ao ko, so) f(z + ALK 8 fz + A, k,s)] . (6.53)

Then, by employing the symmetries of the collision term again, we find a familiar form for the
antisymmetric part of the energy-momentum tensor,

] — %/[dl“](?ﬂﬁ)45(4)(k +k —ky — kg)W(U)A[“k”] (6.54)

X (o) £k, 52) Fl, K80 o k,8) = Fla ko) f@, ko, 52) f @, K, 8) f (2, 5)
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Here we did not consider the nonlocal contributions to the distribution functions since expressions
which are quadratic in those shifts go beyond our truncation. Note that, while we derived it here via the
conservation of the total angular momentum, we can also compute T explicitly, as is demonstrated
in Appendix B.3. After splitting the distribution function into local-equilibrium and dissipative parts
and only considering terms linear in gradients or dissipative quantities, we find

%TW] - % / [AT)(27h)* 6@ (k + & — &y — kg)VNV(“)%A[“k”] fore fox Fore, foxs
Uﬁ o o @ @ o4 [e%
X {— 5 (Qo aB — wa/ﬂ) (k’151 + k252 ks” — k' 5/ﬁ) — Sa (Ckl +Ck2 =G — Ck’) )

(6.55)

where we defined Q* = envoBQ), s. Here, we already multiplied by a factor of m/h ~ )\61 as it appears
in the conservation equations (6.49). Furthermore, since ¥5” is linear in the spin vector, only the
moments 7t#1"#¢ can contribute.

In order to get a clearer interpretation of Eq. (6.55), we have to ask on which quantities it can depend,
which are constrained by the requirement that T!#*! is an antisymmetric second-rank tensor. We
can see that the only terms dependent on the local-equilibrium quantities that fulfill the required
symmetries are the components of the difference between the spin potential and the thermal vorticity,
ie.,

ulr (Qg]a - wula) ue  and (Qg~><v> - w<“><”>> . (6.56)

Note that these contributions do not have to be present with the same coefficient. In the dissipative
sector, we have to remember that the moments 7/#1*#¢ transform as axial vectors in the first LORENTZ
index. Then, the only types of tensors that we can build which transform appropriately are the duals
of uaTr g, Tn,a,p, and uqt, g, where th = 7#,. Thus, we can write the antisymmetric part of the
energy-momentum tensor as

%T[IW] N 7 (“S] + w”]o‘ua) + T (EumﬁuawO’B _ w(u)(l/))

e fug Yy s+ Y W T tua Yo v tes |, (657)
nesit nesit nesg

where we defined the coefficients
I =13 / [T} (2mh) 6D (k + K — Ky — k)W AR fore fone Forey foe,
X U AU € o (kf‘sf T ESSE — kst — k’%’ﬂ) : (6.58a)
r@ — —% / [dL)(27R) 0@ (k + K — ky — ko)W AR fou for fox, foxs

X ALAT g (Kis] + k5s5 — kos® — K7 | (6.58b)

which are related to the components of the spin potential, as well as the quantities
1 =M ~
7O = 5 /[dF](Qwh)4§(4)(k +k =k — kZ)W(U)%AMkaOkak/fOkl Joks

X e = s, (MG + MG~ HE - HEY) | (6.58¢)

kQTL

1 — M : oz
A = — 51 /[dF]( AW (k+ K —ky — kz)W(")%A“k'jfokf()k'foklfok2

X e =5y (HEVRS + HEDRS — MO VRO - HG D) (6.584)

kon

1 (o) T o
WD = / [AT)(2mh)* 6@ (k + K — Ky — k2) W == Ak fore fore Fore, fore

X et Zons” (HEDRCEY + HEDRL KD — HOPRORD) — uE DR ORD) | (6.58¢)
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which multiply the respective irreducible moments.
Then, using Eq. (6.41) to replace the gradients of 8y and introducing the vorticity vector w* :=
1emvBy, 005, the quantities that appear in the evolution equations for £} and w} read

FH (=)
= Ty = -1 [”“Bzo <€+P *“)] TRt X el (6.50)
0 0 n€S§1)
— e, Tp = D) (wf + o) = Y A0 m = ST AP (6.59b)
nES(()l) nESgl)

where we also defined the dual of the irreducible moments of spin-rank one and momentum rank two,
wh = Py, 5 (6.60)

Note that here we explicitly computed the components of the thermal vorticity,

1 _ Bo jalt _ IH
nv — ®o_ H — (i [ .61
@y = 5 (Bou” — V*By) 5 (€0+P0 + > 57, (6.61a)
e“”aﬁuywag = —2Bqw* , (6.61Db)

where we made use of Eq. (6.41). In the following we will define for brevity T!) := (2h)~.

Summarizing the equations for the spin potential

Putting the considerations on the antisymmetric part of the energy-momentum tensor to use, we may
reformulate Eqgs. (6.49) as

40°h _ .
P Jsrid + T el 4 Z Dt

nESEl)
BOF(H) ( ) (I) 402h
=————Fr 4+ TWTWIH 4
o+ Py qgm

. : 4
{ — Kb (K?,loéo — K4180 + 3J319)

1 . 1 v y
- 56“”‘5%/ [J30Uawo, g — J31Vawo, s — wo,g (Ks11a — K41Vafo)] + 5:]31 (o +wh) Ho,u}

1

1
+ get Py, |:(O—)\a + wra)p™ + 3

. (T = )5 = 03) + (7 = )| (6.622)
202h

am

(o = Jan)es +Duhi+ 35 90mii+ 32 42
nESél) neS(Ql)

202h . . 1
- { [(K30 — Ks1)ag — (Ka0 — Ka1)Bo + <J30 — 3J31> 9] wh

am

= — BTt
+ Py, [J31Vako g + ko.s(K31le — K41VaBo) — 3J310ako,g] — Ja31 (0 + w‘w)wo,u}

1
— 0‘|:(1l)\ — V,\)g’\” + UVAHQ(V,\ — a}\)q[ua])\ -

2 3

1 2

= (U”” + wh’ — 39A“”> (m?p, — nu)} , (6.62b)
where we used the equation of motion for the four-velocity (6.39¢c) and neglected nonlinear terms.%
This form of the evolution equations for the components of the spin potential makes it clear that,
provided that I'*) and T'“) are positive, they are of relaxation type. The respective relaxation times

6In principle, since we aim to provide a theory that is accurate to second order in KNUDSEN and inverse REYNOLDS
numbers, we should keep these terms. We neglect them for consistency since they constitute nonlinear contributions
emerging from the collision term, which will be omitted also in the following section. However, considering the results of
Ref. [160], they should be included in the future.
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are controlled by the nonlocal part of the collision terms, as is manifest from the coefficients (6.58).
More specific, the relaxation times will be determined by the inverses of I'®) and I'“), implying
that, in line with our expectations, larger nonlocal contributions lead to faster relaxation towards the
respective components of the thermal vorticity. In the limit of local collisions, where A — 0 and thus
') T — 0, the relaxation times become infinite and the components of the spin tensor will follow
wave-type equations [119]. Moreover, since the coefficients I'*®) and I'“) originate from the nonlocal
part of the collision term, we expect them to be small, such that the damping of the spin waves is low,
necessitating a dynamical treatment of the spin potential, as opposed to taking it to be equal to the
thermal vorticity. Further research on this point will be undertaken in the future.

Furthermore, some of the dissipative terms in the equations above are of first order in KNUDSEN and
inverse REYNOLDS numbers, which will make it necessary to include the equations of motion for wf
and kf in the truncation procedure which we will establish in Sec. 6.3. This is in contrast to the
equations of motion for aq, By, and u*, which do not couple to dissipative quantities at first order in
KNUDSEN and inverse REYNOLDS numbers. Note that, when setting all terms of second order to zero,
we obtain algebraic relations for the components of the spin potential, which, if dissipative quantities
are set to zero as well, reduce to the appropriate projections of the thermal vorticity.

6.2.3 Tensor polarization

Evidently, in the preceding discussion of the conserved currents, the moments of spin-rank two
(6.18¢c) did not appear at all, which raises the question of their significance. In order to get a clearer
understanding of what is relevant, we have to remember that the quantities which are measured in
experiment are certain entries of the spin-density matrix g(k) of the particles [5, 10, 16, 18]. The vector
polarization of a particle is encoded in the expectation value of the PAULI-LUBANSKI operator [15]

St (k) = Tr [§“§(k)} : (6.63)

where

~ 1 ~ ~
SH = —Q—GWCWJMPﬂ , (6.64)
m

with J and P being the total-angular momentum and momentum operators in the relevant representa-
tion, respectively. However, the spin-density matrix of a particle of spin j > 1 has a richer internal
structure, featuring higher-order polarization observables that involve more powers of the PAULI-
LUBANSKI operator. In particular, the tensor polarization, which constitutes a traceless symmetric
tensor,” is defined as [15]

0" (k) = ;\/z”ﬁ { {§<ﬂ§”> + 2"(”3“);(#} a(k)} . (6.65)

In Appendix C, it is shown that these quantities can be connected to the single-particle distribution
function in the following way,

S (k) = ﬁ / A5, / AS(k)s" f(z, k. 5) | (6.66)

oM (k) = ;\/EN% / d¥yk? / dS(k)Khys®s f (2, k,s) (6.67)
where we defined
N (k) = / as kY / AS(k) (2. k. 5) - (6.68)

Thus, the components of the distribution function that are bilinear in the spin vector (i.e., the moments
of spin-rank two) determine the tensor polarization of particles.

"We remark that this type of polarization becomes the linear polarization of light in the massless case.
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When integrating the expressions (6.66) and (6.67), which determine the so-called local polarization,
over momentum space as well, we find the expressions for the global vector and tensor polarization,

5= %/dKN(k)S“(k) - ;/dEA< Zi/de*Q“ak ForJor + w47 ) . (6.69)

0" = %/dKN(k:)@””(kz) =3 ‘;;/d& (u*wl 1/)“”) : (6.70)

where we introduced

N = /dKN(k:) . (6.71)

Note that, just as the moments of spin-rank one, the irreducible moments of spin-rank two that appear
here are connected to the traces of higher-order ones,

wb ==y (6.72a)
Ut A = O — S (AP — YY) (6.721)
WA = i % (2 = oY) (6.72¢)
uuuyi/)fV’A WWQ)\W 5 <m2 ffi);’u — WW’M) — %uuuy ( 1/)‘”)‘ wf”’A> ) (6.72d)

6.2.4 General equations of motion

It is clear that, in order to arrive at hydrodynamic equations, we need to know the evolution of the
irreducible moments (6.18). In order to obtain these, we rewrite the BOLTZMANN equation in extended
phase space as

Sfs = E 'O (2, k,8) — foq(w,k,8) — B kN, fog (2, Ky 5) — B 'k MV 40 fics - (6.73)

Then, by acting with a comoving derivative on the definition of the irreducible moments and using Eq.
(6.73), we are able to derive exact evolution equations for them. The explicit calculations are shown in
Appendix D.

Spin-rank zero

As is evident from Egs. (6.33) and (6.35), the dissipative components of the particle four-current and
the energy-momentum tensor are determined by the moments of spin-rank zero and momentum-rank
zero, one and two. Thus, we compute the equations of motion for these type of moments. Defining the
thermodynamic integrals

Grm = n0Imo — Jnfl,OJerl,O ) (674)

we find for the moment of zeroth rank in momentum after a longer, but straightforward computation

Gay Gay Ga, §
pr— Crq = a9 — 22116 + —27#“’0“,, + 22 ount + (r—1)pt? o
20 Dy Doy
. 1
+rpl_yiy, — Vel — 3 [(r+2)p, — (r —1)ym?p,_5] 0, (6.75a)

where we made use of the equations of motion for ag and By [cf. Egs. (6.39a) and (6.39b)] and defined

1
T D (Gar(c0 + Po) — Garno] - (6.76a)
20



6.2 The method of moments 119

The equation of motion for the moments of momentum-rank one is
1 .
P = O = a1 plut + Sl = mply — (r 4 3)pk)0 — AV ol

1 1
2 [@r—2mipy — 2r+ )] ot + 5 [mPrpe1 — (r +3)pya] i

3
ﬁOJT-&-Q 1 T m m Av 1 “w 2 22N
Boletaet g — gutt 4 ARONT) — VR (20,1 — pria) + (7 — Dl drne
co+ P 3
(6.75b)
where we employed Eq. (6.39¢) and introduced
n
o= g — — 2 ooy (6.76b)

eo+ Py

Note that the equation of motion has been projected orthogonal to the four-velocity, i.e., we have

p'fn“ )= At u - OpY. Lastly, the moments of rank two in momentum follow the evolution equation

2
pr = O = 2aor — |20+ 5)pX0 —2m(r = )2 o) + 20200,

2 2 v v
2 {0+ )i — (2 4 3)mp 4 (r — D, oo™ + 2V () —m?l))

15
2 1 , .
— [l =Pl | i = 2 [ )k = m (= 1l 0
+(r = D)p or, — ARGV AP + rpl iy (6.75¢)
where we defined
a® =Tyo1 4+ (r— 1)y . (6.76¢)

The second terms on the left-hand sides of Eqs. (6.75) are called generalized irreducible collision terms
and are defined as

Cr(m--w) — /dpEﬁkwl --~k’“>C(x,k75) . (6.77)

Note that in Egs. (6.75) it appears that no moments of spin rank higher than zero enter; however, we
will see in Subsec 6.3.2 that the generalized collision terms will introduce a coupling to the moments of
spin-rank two.

Spin-rank one

The calculation to obtain the equations of motion for the moments of spin-rank one [cf. Eq. (6.18b)] is
similar to the one for the moments of spin-rank zero. The main difference consists in the fact that the
equilibrium contributions are now given by the terms of first order in % in Eq. (6.5). We find for the
moments of rank one in spin and rank zero in momentum

. O'h . . Sy .
7 — Q@l = gm{Qwo [Kr+1,00¢0 Kyi2.0B0 + (Jrg1,0 +7Jri11)0 } + Jri10 (QWSW - Qé” Uu)
— Jr 11 ANV, Q)Y — ﬁ(()u)v (Kri11l, — Kry2,1(VyBo + Boti)] } + T?lyﬂ@f”
1
+ (r— l)aam'( A”VV 4 ~3 [(r +2)7H — (r — 1)m27<”>} 6. (6.78a)

Comparing the right-hand sides of Egs. (6.75a) and (6.78a), we see that the only difference in structure
comes from the equilibrium terms, since the contributions that involve the dissipative quantities arise
solely from the rank of the projected momenta that appear. Furthermore, note that we, in contrast
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to Eq. (6.75a), did not insert the evolution equation for «yg, By, and u* yet for brevity. For the spin
moment of tensor-rank one in momentum we find the equation of motion

v h < v ~ ~
) — ) = _;fm{Jrﬂ,lQéM Dt Jp2a A us VI + 280K 45205 0 s

+ 2wl [Kyyo11" — Kri31 (VY B0 + Bot”)] + Qé“><y> (Kr+2,1do — Ky y3.150

5 1 v
+ gﬁoKr_i_&ge } + w” pTr {udop + g |:(7" — 1)m27'7§ﬁ>2’ ( + 3) {u)ov :| 6
1 1
+ - 5 [(27" —2)m T<“>’ —(2r + 3)7’5”“} o’ + ga” {m2r7<“> (r+3) i_‘:)l}
— fA”V" (m? A TH_I) + rU,T, <“>’Vp — ASARY 77 A (r — 1)0’)\pT< A AP
(6.78b)

where we see the same similarities to Eq. (6.75b) that were mentioned in Eq. (6.78a). Finally, for the
spin moment of tensor-rank two in momentum the equation of motion reads

v 2 h =~ . ~
74 A) Qi@ﬁ A — gim{QW(” [Kr+3721’\> — Kiya2 (V’\>50 + 501/\))] + Kr+3,2A5AZ?3VQQW

v 2 v .
. 260KT+4,2W(I]L } + T”Up (N), Ap + g |:7,,m2,7_7§l/‘>1( (T’ + 5) 75+>1< u)\)

— AMALRV, T 4+ AL AV AVE (TP = mPr)

+ 3 [0 = w4 ) M} 0+ (r — 1)y yro07

+ % [2(r — 1)m2r P (o 4 5)Tr<u)7/1<V] o) + 27

+ 135 [(r - 1)m4q-r< mo_ (2r + 3)m2TT<H) +(r+4) fffé} . (6.78¢)

The generalized irreducible collision terms appearing on the left-hand sides of Eqs. (6.78) (which we
denoted with a different font to preclude ambiguities) are defined as

¢§u>,<m~w> — /dpEﬁs(mk(m ~--I<:W>C(x,k:,s) ) (6.79)

Spin-rank two

The equations of motion for the irreducible moments of spin-rank two are again obtained by acting with
a comoving derivative on Eq. (6.18¢) and using the BOLTZMANN equation (6.73). For the moments of
tensor-rank zero in momentum we find

) 1 v w . v),
w;w @i 1> =3 [(r — 1)m2w£62) —(r+ 2)¢§; ' o+ Tuvwffif 2l
= ANV (r = )i g (6.80a)

Again, we notice the same structures appearing on the right-hand side as in Eqgs. (6.75a) and (6.78a).
However, in contrast to the moments of spin-ranks zero and one, there are no terms present that emerge
from local equilibrium, since there is no conserved quantity associated with the tensor polarization.
The equation of motion for the moment of tensor-rank one in momentum reads

i{ur V), 1 v . 1 v « «
U — e O = S ) — (e 4 )l | @t = SALEYA (mPuf) — )

1 v
+ ¢§W>=aw)‘a + 3 [(r - 1)m21/)£‘12>’)\ —(r+ 3)¢§W>A] 0
1 V), v
+ R [(27" — 2)m2¢§ﬁ2>7 —(2r+ 3)1/J£” >’a} oo’
it = MGV 4 (r = 1)) P ous . (6.80b)
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while the one for momentum-rank two is given by

7 v v . 2 o o
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For reasons that will become clear later, we furthermore need the equations of motion for the moments
of tensor-ranks three and four in momentum, which read
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respectively. Note that these equations are equivalent to the ones presented in Ref. [161] for moments
of spin-rank zero. In Egs. (6.80), the generalized irreducible collision terms are given by

gl e = /dFE’" KX s k0 k0 O, b, 5) (6.81)

6.3 Closing the system of equations

The equations of motion (6.75), (6.78), and (6.80) are exact (besides the approximations made in
deriving the BOLTZMANN equation), but do not form a closed system of equations. This can be
straightforwardly seen by the fact that the evolution of the moment of tensor-rank ¢ in momentum
depends on the moments of tensor-rank ¢ + 1 and ¢ 4+ 2. Furthermore, a moment of rank r in energy
couples to moments of energy-rank r — 1 and r — 2 as well. Thus, one has to find a way to sensibly
truncate and close this system of equations, which we will do by keeping terms up to second order in
KNUDSEN and inverse REYNOLDS numbers.
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6.3.1 IReD: Basic idea

We explain the scheme that we will use by first considering the example of a fluid made of spin-0
particles, where the distribution function does not depend on the spin variable and the moments
THob e and PP vanish. Then, one can express the generalized irreducible collision terms (6.77)
in terms of the irreducible moments as [51]

ey = = 30 AQph + ORe %), (6.:82)

nGSEO)

where A® is a matrix whose dimension is equal to the number of elements in the basis SEO). Note that
here the second terms on the right-hand side denote nonlinear contributions to the collision term that
are at least quadratic in inverse REYNOLDS numbers. Then, the moment equations (6.75) take the
form of a system of coupled relaxation-type equations. One possible way to truncate the system, which
we denote “DNMR approach” and is detailed in Ref. [51], consists of diagonalizing the matrices A
in order to find the slowest eigenmodes, i.e., the eigenvectors of A®) that correspond to the smallest
eigenvalues.® Subsequently, one can re-express these eigenvectors in terms of irreducible moments
and, neglecting terms of third order in KNUDSEN and inverse REYNOLDS numbers, close the moment
equations in terms of the fluid-dynamical ones, i.e., po, pjy, and pj".

In this thesis, however, we will use a different approach, which has its nonrelativistic origins in works by
STRUCHTRUP [48] and has recently been employed for deriving second-order dissipative hydrodynamics
with multiple conserved charges [49]. In this approach, one first multiplies the moment equations (6.75)
with the inverse of the linearized collision matrix, 79 := (A®))~!, such that they take the form

3
> b+ pr = —5¢:0 + O(KnRe ™', Re %), (6.83a)
nes(® m
7 e 4 plt = k" + O(KnRe ™! Re ~2) (6.83b)
nes(®
> T2+ o = 2,0 + O(KnRe ™', Re ?) (6.83¢c)
nESéO)

where we defined the NAVIER-STOKES values

Y D, k= Y Aol p= Y Pa®. (684

nES(O) nESgo) nES(QO)

Noting that the first terms on the left-hand sides of Eqs. (6.83) are of order O(KnRe ~!), we find the
asymptotic matching conditions for the moments,

=RWp, +h.o.t. (6.85a)
=RWp £ hoo.t. (6.85b)
,of;” =REp 4 hout., (6.85¢)
where we defined
RO = & RW .= @) (6.86)
Cn Rn MNn

80ne has to pick the smallest eigenvalue of A®) since the relaxation times 7 that appear in an equation of the type
Tp+p=--- are related to the inverse of A, such that the smallest eigenvalue gives rise to the longest relaxation time.
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and abbreviated the terms of higher orders in Kn and Re ~! as “h.o.t.” (higher-order terms). Choosing
n = 0 in the equations above, we are able to express any moment in terms of the hydrodynamic
quantities,

3
pr = _WR%)H +h.ot., (6.87a)
o =R Un* +hot. (6.87b)

P =R L hot. . (6.87¢)

These relations can then be used to replace all moments in Egs. (6.83) evaluated at » = 0 to obtain
hydrodynamic equations of the form

mll+1T=—(b+T +R, (6.88a)
T 4t = oI + TH + R, (6.88Db)
Tt ) ot = oot 4 TR 4RIV (6.88c¢)

where the relaxation times are given by

mm X AR nm X ARD. e X A2R2 o)
nes{” nes;” nesg”

and the second-order terms on the right-hand side have been introduced in Egs. (2.69) and (2.71).

We note that this method, which has been termed Inverse-Reynolds Dominance (IReD) approach
[50] or order-of-magnitude approximation [49], is equivalent to the DNMR approach up to second
order in Kn and Re ~!, as has been shown in Ref. [50]. However, a major advantage compared to the
DNMR method is that no terms of second order in the KNUDSEN number appear in the equations of
motion. These terms, which are written in the most general form in Egs. (2.70), can potentially render
the equations parabolic (and thus acausal), and are consequently omitted in practical applications.
However, in the IReD approach, the effect of these terms, which is potentially large [160], is resummed
into the (hyperbolic) terms of first order in both KNUDSEN and inverse REYNOLDS numbers [cf. Egs.
(2.69)], manifesting itself in different expressions for the transport coefficients [50]. Furthermore, we
note that, in contrast to the results of the DNMR method, the values of the transport coefficients in
the IReD approach are compatible with the constraints imposed from a phenomenological expression
for the entropy to second order such that the second law of thermodynamics is fulfilled [52].

Thus, assuming that KNUDSEN and inverse REYNOLDS numbers are of the same order of magnitude,
in order to stay accurate to second order also in practical applications this method is preferable over
the usual DNMR prescription. Indeed, in Ref. [162], the DNMR and IReD approximations were
considered in the context of an exactly solvable system of coupled relaxation equations akin to the
ones arising from kinetic theory, and it was found that IReD is able to stay accurate in a wide range
of situations. In comparison, the accuracy of DNMR depends on how much the slowest microscopic
timescale dominates the macroscopic dynamics. Furthermore, the results of that reference confirm
that the performance of DNMR is impeded by neglecting the terms of second order in the KNUDSEN
number.?

6.3.2 Generalized irreducible collision terms

In order to develop spin hydrodynamics for particles up to spin 1, we will now apply the truncation
prescription outlined for spin-0 systems in the previous subsection to the moment equations (6.75),

9We remark that a similar picture emerges when considering the results of Ref. [163], where the heat-flow problem
was solved with the DNMR approach. In particular, the “21/37” approach introduced there, which works rather well, is
similar in spirit to IReD, although more moments are made dynamical.
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(6.78), and (6.80). In order to see which moments couple to each other, we first have to evaluate Eqgs.
(6.77), (6.79), and (6.81) for the relevant ranks in momentum.

Inserting Eq. (6.7) into the generic form of the collision integral developed in Chapter 5 and linearizing
the resulting expression in the deviation from equilibrium § fys, we find

C(z,k,5) = Co(z, k,s) + C(x, k,5) . (6.90)

Here, the first term collects the nonzero parts of the collision term that depend only on the local-
equilibrium distribution function,

1 — ~ ~
Co(x, k,s) = 5 / Al ATy ALY (27R)46™W (k + k' — k1 — k)W fore fow for, fores
[ oh

X

- (QOW - z%w) (Kls? + ki'sh — kbs” — k'hs™)

1
+ (0u00) (A -+ A — A = ) 3 (ALK + ALK = AR = AEY) 0 |
(6.91)

Note that this term is merely the part of the collision term that we neglected while defining local
equilibrium at the beginning of this section, cf. Eq. (6.4).

The second term in Eq. (6.90) on the other hand describes the contributions from the deviations from
equilibrium,

_ 1 _
Cla k,s) =5 / ATy dDy AT dS(k)(2nh) 6™ (k + k' — ky — ko)W )

X for forr foter fores (G, + Py — Ok — D1 — (510Gl + 52,08k, — 5uCl — 5,800
+51,061, K7 ,U,fkf + 52,a52,ﬁK;ﬁyfﬁ: - EoﬁﬁKﬁff — 6 55K/aﬁf ] . (6.92)

Note that in both equations above we again neglected terms of order O(»xRe ~1) as well as terms of
second order in inverse REYNOLDS numbers. While the former contribution will give corrections to the
contributions (2.69), the latter one leads to terms in the hydrodynamic equations that are nonlinear
in the dissipative currents, cf. Eq. (2.71). The coefficients in front of these terms do not necessarily
need to be small, as shown in Ref. [160]. However, due to the complexity of computing the nonlinear
contributions of the collision integrals, we postpone their analysis to future work.

In the following, we will evaluate the generalized irreducible collision integrals, which always feature
integrations over both momentum and spin space. To simplify the notation, we introduce the
nonvanishing integrals over spin space involving the transition rate,

1 —
M = 5 rh) 8O (k + K — k1 — k) / [AS]dS (k) W), (6.93a)
1 —
Ny = 5(27771)45(4)@ + K — k1 — ko) / [dS] dS(k) W sl's! | (6.93b)
1 —
N = 5(27771)45(4)(16 +k —ky — k) / [dS]dS (k) W K1iss” | (6.93c)
v, 1 a o v «

Ny = 42%)45(4)@%/ — k1 —k2) / [AS] dS(k) W KL 5757 K 8587 (6.93d)
égyis]) — :;/(XJV’(/;(IEJ) , (6936)
Méw — H%éN(Z(; ’ (6.93f)
ol = SN (6.938)

In these expressions, s; € {s1,52,5',5,5}, and the momentum k; is determined by the associated spin
vector, i.e., ki by s1, k2 by s2, ¥’ by &', and k by s and 5. Similarly, Z; is the tensor = introduced in
Eq. (6.28) with the momentum being k;.
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Spin-rank zero
Inserting the moment expansion (6.29), Eq. (6.77) becomes
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=0 | pes® nes?
e 0!
Here we used that, when considering interactions that do not violate parity, all integrals over the

transition rate weighted with an odd number of spin vectors vanish, cf. Eq. (4.155). Furthermore, we
defined

(Arn)l;ll,itfl — / [dK] E{;_lkwl . kw>f0kf0k’ﬁ)k1 ﬁ)k2 (,Hl((?e )k(1 by k17w/>
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= Moo Mg Ky, =Ky = Mo "'kum) : (6.95D)

Considering the irreducible moments fulfilling the required symmetries, we find the irreducible collision
terms of spin-rank zero to be

Z A0 p, — Z A2y (6.96a)

nes(® nes®
¥ == 3 Al = 3 AL - ST Al (6.96b)
nes{® nes{® nes{?
Ol == 37 ARk = 37 AR = 3T AR = 3T ARG (6.960)
nesy” nesi? nesy) nesy?
2 0 2 4

Here, we introduced for brevity the partial traces of moments of spin-rank two that transform as
scalars, vectors, and traceless symmetric tensors, respectively:'°

Pn = M(fw)’uu ’ pﬁ = wgw‘)’a ’ qu = wﬁlam’“aﬂ ) = '(/) (2B)y AMV ’ /“/ = w (),
(6 97)
In Egs. (6.96), the coefficients A,,, determining the coupling of the moments of spin-rank zero to

themselves read .
AL = mﬁﬁﬁ'ﬂlﬁz (Arn) L0 (6.98)

10We remark at this point that the equations of motion for these moments can be obtained by taking the appropriate
traces of the moments of spin-rank two and momentum-rank one to four, cf. Egs. (6.80).
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while the quantities A,,, that control the coupling of the moments of spin-rank two to the ones of
spin-rank zero are given by

1 T,V U ovy
Ag‘?f) = 5Ap 7 2(AT7I)PU,V1V2 ’ Agn,l) = 5AZA (Arn)ga,ul ’
1 v T, V2V I v
ASL,B) = 7A 1AP vz S(Arn)zd,VleVg ) Ag‘%l’O) = 5AZV(AT'”)5O' )
AR = *AZ%A T (Aot e s A = §AZ¥2A”””’3”4 (Arn)ponvavsv - (6.99)

Evidently, there is a coupling between the moments of spin-ranks zero and two through the collision
terms.'t The moments of spin-rank one on the other hand do not appear because of their transformation
properties under parity. Furthermore, note that the terms Cy do not contribute to the equations above,
since there always appears an odd number of spin vectors in these integrals.

Spin-rank one

In the case of the irreducible moments of spin-rank one, there are two contributions, one from the
equilibrium terms (6.91), and one from the terms explicitly involving ¢ fxs (6.92). We can immediately
write down the generalized irreducible collision integrals as

U Gpnue) _ Z ST Bt g pi v 4 gl (6.100)

r— lllll l/e/ n
/=0 pes(®)
where we defined
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and collected the terms coming from the local-equilibrium distribution function in
el = /dF Er gl gro Oy, by 5) (6.102)

Note that, in our power-counting, there are no first-order terms on the right-hand sides of Egs.
(6.78), such that the NAVIER-STOKES values of the moments of spin-rank one will be provided by the
generalized irreducible collision terms (6.102). Since we are interested in keeping only the irreducible
moments which are hydrodynamically important, i.e., whose NAVIER-STOKES values are of first order
in the KNUDSEN number, we only evaluate a subset of the collision integrals corresponding to these
moments. Given the vectors and tensors at our disposal, there is only a limited number of quantities
of first order in Kn which are orthogonal to the four-velocity and transform as an axial vector in one
index, namely an axial vector, two antisymmetric tensors, and a rank-three tensor, i.e.,

({N)g” - z%’“’) Uy = 2wl + 2Bgw* ﬁéﬂ><l’> — im) , e””aﬁualg , and ap<”e’\>“°‘pua

Orienting on the equations of motion for the spin potential (6.62), we reformulate the antisymmetric
tensors that may appear as NAVIER-STOKES values equivalently as vectors, namely

2FH I#
o+ Fo Boh

I and By, (ﬁaﬁ — Wap) = 2k4 + Po (

where we used the equation of motion for the fluid four-velocity and neglected nonlinear terms, in
accordance with our earlier approximation to the collision terms. Accordingly, we can anticipate that

\We remark that a coupling of this form has also been obtained in Ref. [73].
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only the antisymmetric components of the moments 7" will have nonvanishing NAVIER-STOKES
values, such that we may equivalently consider the moments w! defined in Eq. (6.60). Furthermore,
the symmetries of the NAVIER-STOKES values suggest to decompose the moments of tensor-rank two
in momentum according to

T,<.“>’”>‘ = gAM"ti‘) — ;t,«,po‘el’mapua + 7',<.“”’>‘> , (6.103)
with
th =150, =T, 4 5<“6”>°‘6”up . (6.104)
Then, after defining
e =P, g, Y = g g ey, (6.105)
the relevant collision integrals are
e = 2900 (wf + fowr) = Y BOTH — 3T BOAw, (6.106a)
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Furthermore, we defined gg) = gﬁa) — gff”) /h and introduced the coefficients
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x P, saks (Mg + Dgp — Ay — A (6.108d)
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which will determine the NAVIER-STOKES values of the components of the spin tensor. From these
equations, we can see that the irreducible moments of spin-rank one do not feature a coupling to
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moments of spin-ranks zero or two, but couple among themselves. Furthermore, it is apparent that
the symmetric moments of tensor-rank one in momentum are, in our power-counting, not among the
quantities which are hydrodynamically important in the sense that they do not have NAVIER-STOKES
values which are of first order in the KNUDSEN number. The same holds true for the completely
traceless component of the irreducible moment of spin-rank one and momentum-rank three, cf. Eq.
(6.103).

Spin-rank two

In the case of the generalized irreducible collision terms of spin-rank two, Eq. (6.81), we can already
anticipate that the equilibrium-type terms (6.91) will vanish. Then, we can write
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(pv),(pape) 222y ARy 7 pPO) V1 Vs 1222V 5% V1 Vs
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Since the equations of motion for the irreducible moments of spin-rank two (6.80) do not feature terms
of first order in KNUDSEN or inverse REYNOLDS numbers on the right-hand side, contributions of this
order can only arise from the generalized irreducible collision integrals (6.81). The previous discussion
of the possible tensor structures appearing in these terms makes it clear that the terms responsible
for these first-order contributions are the ones involving the moments of spin-rank zero. However,
there one only needs to take into account the moments up to tensor-rank two in momentum, since the
NAVIER-STOKES values of higher-order moments are also not of first order, cf. Egs. (6.75). Thus, the
generalized irreducible collision integrals of spin-rank two which contain first-order contributions read

€f~_1j1> - _ Z DS’QL)'L/)»SLW _ Z D(O 2) /Al/ _ Z D(O 4) lw . Z D$9L2)pzu 7 (6.111&)
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where the quantities p,, and g, have been introduced in Eq. (6.97), and we defined the corresponding
collision terms as

— ooB, m . lpa), M . gabB.p
Q:Pﬂ“—l T Q:rflotﬁ ’ Q:p.,rfl T 67,71 @ th,rfl T Q:rfl afB

e = AL e = (6.112)

The coefficients D,.,, appearing in Egs. (6.111) that determine the coupling between the moments of
spin-rank two read

DY) = LAL(D ) DU = L AL AC I (D)
DU = SALBAPI D s DY = A Au(Dr) i
P = A SO DY = AT A O i
DA = LA A 0 (D) 387 DU i= S ASAT I B (Drn )23
DI = SADAPTI A (DS DU = LALAT A (D)3
DY = LA AT (Do) sy DY = FALAT A 5D
D) = SALATTIN s (D i DR = S AP AL (DR, L (6113)

while the quantities D,.,, which characterize the coupling of the moments of spin-rank zero to the ones
of second rank in spin are given by

1 1
D(0’2) — ZAVIV2 (Drn)ul’ DT(%,Q) — gAg{ym (Drn)ab’,'yéAms ,
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6.3.3 Obtaining the NAVIER-STOKES relations
Spin-ranks zero and two

From the discussion in the previous subsection, it has become clear that the equations of motion for the
irreducible moments of spin-ranks zero and two are coupled and must thus be solved together. When
considering the relevant scalar moments (i.e., p, and p,), we can write the system of Egs. (6.75a) and
(the contraction of) (6.80¢) as

A0 40,2) p a®
Z<D(2,o> 5@ (p) :( 0 ) 0, (6.115)

n

where the omitted terms are at least of second order in Kn and Re ~! and we used the form of the

collision terms C,_; and €, ,_1, cf. Egs. (6.96a) and (6.111f). From this point on, we omit the sets
that characterize the truncation for notational simplicity (they are implicitly contained in the size
of the linearized collision matrices). After inverting the matrix on the left-hand side of the equation
above [excluding the rows and columns corresponding to p; and ps, which vanish due to the matching
conditions (6.34) and (6.36)],

—1
Tép) Tépp) _ A0) A(Oj) (6.116)
Tépp) Tép) . peo  p? ) .

N
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we find the NAVIER-STOKES solutions

3 3
pr = WC’I‘G ) Dr = ﬁXre ) (6117)
where we introduced
épr)n (0) Z Srn (6118)

Similarly, Egs. (6.75b) and the respective traces of Egs. (6.80b) and (6.80d) yield

AD A0 4(13) p* a®
pwy  p)  p3) pt|l ~| 0 ", (6.119)
n \ DG pGB1L  pB) . ), 0/,

which, after defining the inverse

T‘(/p) T‘(/pp) T‘(/Pq) A A 403\ T

(pp) 7.‘(/p) 7_‘(/pq) — [ ph  pl)  p3s) , (6.120)
(qp) (ap) (9) pDBL  pBL  pB)

Ty Ty Ty rn n

where the row and column corresponding to pf' is excluded due to the matching condition (6.37), gives
the NAVIER-STOKES values

N N Sy S (6.121)
where
ZT@% ) D A Zr&fﬁb ON (6.122)

Finally, the equations for the tensor-valued quantities, i.e., Egs. (6.75c) and (6.80a) together with
appropriate traces of Eqgs. (6.80c) and (6.80e) read to first order

AR A0 4(22)  4(24) P 20(2)
D0:2)  p0) p0,2) p04) ) 0 Y
Y.l pea peo pe pew 2l N B (6.123)
" \p@2 puo pU2 pM ) 0o/,
We define the inverse matrix
TP}P) T(Pd’) Tq(ﬂpP) (PQ) A® A0 422 424 -1
T:(pr) T(w) Tj(}lm) (W) B D02  pO)  pO2) PO4) 6124
(v0) < v o w0 | = pea peo p@  pea (6.124)
Tr Tr Tr
(ap) ( ¥) (ap) (9) pDW2) p40) pA2)  pA)
Ty T 7 ) rn
and obtain the NAVIER-STOKES values of the tensorial moments
P et ) a0 @ g 2ot (6.125)

where the coefficients are defined as

Ny = Z T;plna (2) Z T(wm ’ &2) — Z Tq(ﬂz,gfr)lag) ’ Z T(qp) a(2 .

(6.126)
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Spin-rank one

In the case of the relevant irreducible moments of spin-rank one, we have to consider the moment
equations (6.78) in conjunction with the equations of motion for the components of the spin potential
(6.62), since the latter are of relaxation type as well. Then, in the NAVIER-STOKES limit we have the
following system of equations for the axial-vector valued quantities,

dno  WTE AP TN wh -1
o206 BY BGY | A | ~ | 20 | Bowt (6.127)
m\=20%6,0  BEY B th 29(2)

where we used the expressions (6.106). Inverting the matrix

T gl g 1 3O 5@ e\
g g gl | _2g ©  BO B(0.2) : (6.128)

ff:w) TST) rz(:) o 7@ B B2 .
where §U) == (g(()j), e 7gﬁj))7 and analogous for 79) and ‘fg), we find the NAVIER-STOKES relations
wh = —e@h | T~ (O H th ~ @k | (6.129)

where we introduced

€)= o |55 23 (Tgl + 35 gf?)] , (6.130a)
el = gy |-G + 22 (T(ng(o) +TFY g2 >)] , (6.130D)
e = o | T4 + 22 (5o i%gf))] . (6.130¢)
The vector-valued moments w# have to be combined with the component x/ of the spin potential,
yielding
60 %(11)/1*(%) (m“) ( -1 ) BoFH (r(D)
~ W) | ———= + " 6.131
Z ( 205,0 B4 ) \wh) " \20) e+ B T \gt) (6131
We then invert the collision matrix
K 2(kw _, K —1
LI T ( L, T )) : (6.132)
ggvn) z%}ﬂ) . —2g () B .
and find the NAVIER-STOKES values
B —qWpr o gt~ M pr ppH (6.133)
Here we defined
) . _ Po () _ o (x) %) . (D) (k) () 6.134
a o <s Zzwgn>, b = T +angn , (6.134a)
. P 5 (%) (0 = (P 4 134b
0= g < )+ Z o) gl ) , b .=g + ZTVmgn . (6.134D)

The equations determining the NAVIER-STOKES values of the tensor-valued moments, which are not
connected with any component of the spin potential, read

Z B th? = h® o (6.135)
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With the inverse

T = (E(”): : (6.136)
we find the NAVIER-STOKES values
W~ @ (6.137)
where we introduced
(2) = 8o Z‘Z;)mhg) ) (6.138)

It is important to note that, as in the case of the moments of spin-rank zero, when inverting the matrix
in Eq. (6.127), one has to exclude the rows and columns corresponding to the moment 7-2<” ) = n)
since it is fixed by the matching condition (6.51).

6.3.4 The choice of closure

The NAVIER-STOKES relations (6.117), (6.121), (6.125), (6.129), (6.133), and (6.137) are crucial, as
they can now be employed as shown in Subsec. 6.3.1 to close the equations of motion of a given
tensor-rank in spin and momentum in terms of any moment that fulfills the required symmetries. The
final question to answer consists in the choice of moments that are used to describe the system.

Spin-rank zero

The choice of moments of spin-rank zero is obvious, since we are aiming to describe the dynamics
of the energy-momentum tensor and particle four-current. Thus, we choose II, n*, and 7" as the
dynamical quantities, and find the asymptotic matching conditions

pr —WRS,%)H , e RWne g e RP (6.139)
where
Ry = % . R = % . RE = % . (6.140)
Note that we can extend these relations to moments with r < 0 by defining
Zf“ RY (6.141)

cf. Egs. (6.22).

Spin-rank one

Similarly, in the case of the moments of spin-rank one we may choose the moments that appear in
the spin tensor, i.e., Eq. (6.46). These moments are expected to yield the most important dynamics
since the spin tensor in our chosen pseudogauge is conserved in the absence of interactions or in
global equilibrium, whereas, e.g., the canonical spin tensor is not conserved even in these cases. This
consideration fixes the choice of closure for the moments of momentum-ranks zero and two, but not
for those of momentum-rank one, since just their antisymmetric part is hydrodynamically important,
whereas only the symmetric part of 74" appears in the spin tensor. We then choose to close the system
for these moments in terms of 7", since this quantity appears in the global vector polarization (6.69).
Restricting ourselves to the hydrodynamically important moments that have NAVIER-STOKES values
of first order and defining g := ¢/, w# = w{), as well as t** := ¢/”, we find the asymptotic matching
conditions to be

W QP e P, wh ~ Qg+l o~ Qg (6.142)
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where we defined

10 1 3 (2 m? 12 el 22 o)
Q7("0 ) = (O) ( ) (1 - 5 ) 56(() )(STQ - 2 57“2 ) Q£0 ) = 822) s Q’E“O ) = 0(2) 5 (61433)
0 0

as well as

(6D 4 o0 6 _ )

11 ._

_ (r)
"0 ap) + al o)

T

. 6.143b
a)b{ + al o) ( )

Note that the moments w# cannot be expressed only in terms of w#, which is a consequence of two
NAVIER-STOKES values appearing, namely F* and I*.1? In order to make Eq. (6.142) hold for any
r, we had to include the case r = 2, where the matching condition (6.51) has to be obeyed, which
is the reason for the peculiar form of Q%O). These relations are again extended to include r < 0 by
introducing

_lf)o' Z]:T}II)Q 5 (QZ) = Z‘Fr(rl/)nge 5 Z]:Mlzl)gno . (6.144)

Using Egs. (6.48), this asymptotic matching allows us to express the components of the moments
THoH e that are parallel to the fluid four-velocity in the first index as

w, T~ X10p 4 (12 gr (6.145a)
U, TH o~ TR~ () for £>2, (6.145Db)
where we defined
1
200 = 1 (200, - QU),) . A0 = Q0 (6.146)

Note that we already made use of the fact that the symmetrized components of the moments of
spin- and momentum-rank one that are orthogonal to u* are to be neglected since they do not have
NAVIER-STOKES values of first order.

Spin-rank two

Lastly, the moments of spin-rank two are different, since they do not appear in any conserved quantity.
One way to close the system of equations there would be to choose the moments that appear in
the global tensor polarization (6.70), i.e., ¥} and wg'/”\. However, in this work we go in a different
direction by returning to the original problem that second-order hydrodynamics was introduced to
solve, namely the acausality (and thus instability) of the relativistic NAVIER-STOKES theory. This
acausality is rooted in the fact that inserting the NAVIER-STOKES solutions for dissipative quantities
into the respective conservation laws leads to parabolic equations. However, since the moments of
second rank in spin do not appear in any conservation law, this problem never arises there, which
is why we simply stick with the NAVIER-STOKES solutions [i.e., Egs. (6.115), (6.119), and (6.123)]
for these moments. Notice that, up to second order in Kn and Re ~!, we can relate the moments of
spin-rank two to the bulk viscous pressure, the particle diffusion current, and the shear-stress tensor
via

3
x-S TOOL T g =T
P = T = T g = T (6.147)
where
) )
00 Xr 11 Pr 13 Pr
T = G 7;(0)_/%’ 7;(0)'_/%’

(0) (2) (4)
T = 577— . TEY = 77— . TR = 5; : (6.148)

0 0 0

121n order to relate (I{g, wi) to (Iig, wH), one has to solve a matrix equation, leading to both Iig and wH appearing.

This is very similar to the case when multiple conserved charges are present, cf. Ref. [49].
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Equations (6.147) can be extended to r < 0 via
T = Z}'(Q Otm (6.149)

Evidently, there is a large number of possibilities to construct these kind of relations; one could also, e.g.,
relate the moments p# and g# (or their tensorial analogues), which would introduce an ambiguity in the
second-order terms of their respective evolution equations. By considering only the NAVIER-STOKES
limit of the moments of spin-rank two, we circumvent these ambiguities, and may simply use Eqgs.
(6.147) to replace the moments of spin-rank two in the evolution equations for II, n*, and 7#¥, thus
closing the system in terms of quantities appearing in the energy-momentum tensor and the particle
four-current. Nonetheless, as we shall see in the following section, due to the evolution equations of
the moments of spin-rank zero and two being coupled, we do need the second-order equations (6.80),
as they will be responsible for corrections to the second-order transport coefficients appearing in the
equations of motion for II, n#, and 7+¥.

Finally, we remark that this asymptotic matching permits us to write down explicit expressions for the
components of the irreducible moments of spin-rank two that are parallel to the fluid four-velocity,
which read

u, )~ Op” (6.150a)
Uy, PP —%TSOO)H , (6.150b)
wpP A Y2 A %ADATSO)H ’ (6.150¢)
Uy PP~ YDA (6.150d)
U A o gﬁ?l) AvPpa) (6.150¢)
Uty PN = YA (6.150f)
u A o~ gﬁ?’?m"%a@ : (6.150g)
Uy PN oy P APY () (6.150h)
Here we defined the coefficients

TOU = _7;(71?’0 ’ (6.151a)
YO0 2(5(00))‘17;(9%),0 = -1 (6.151b)
02 i g (ﬁfi‘i)o A T0) ~ T (61510
T = Y ) [709) 4 2 ( 27, — 7;(31))} : (6.151d)
TED % (T(ﬂ)o szgl) ) _ 7;@?&) , (6.151e)

T = $(0) T<22 o+ ‘71 (m? T2, ~ ) + 125 (m T2, —2m? 720 + T(i%)o)} ,
! (6.151f)
TG % (7;(?,0 B szT@?O) — T, (6.151g)

which contain the matrices

£100) = % (260 +m2FEY,) (6.152a)
g0 .= % (46, +m2F2D,) | (6.152b)
AR % (65m + mQFQ(Z,’f?n) . (6.152¢)



6.4 Hydrodynamic equations 135

These expressions follow from Egs. (6.72) and the asymptotic matching conditions (6.147). Furthermore,

we used the relation between the original moments ") #17#

valued traces,

and their scalar-,vector-, and tensor-

¢§uu),>\ ~ gAM“pZ> ’ (6.153a)
Pl o %A””*Mpr + 1—72A75A’\0‘”<”p‘;>5 , (6.153b)
MCELLEN %Aﬂ”ﬁ%igfqg , (6.153¢)
PNy g INCLINCSr S (6.153d)

where terms of second order in Kn and Re ~! have been omitted.

A note on pseudogauge dependence

Before we go on to write down the final hydrodynamic equations, let us come back to the issue
of pseudogauge dependence raised in Chapter 3. A priori, kinetic theory does not know about
pseudogauges, since the conservation laws, which are built on collisional invariants, are independent
of any such choice. Nevertheless, the pseudogauge choice does enter in the hydrodynamic theory
that we are constructing, and this happens through the choice of closure which we discussed above.
Even though we may separate the moments according to whether their NAVIER-STOKES values are
of first order in Kn, the question in terms of which moments to close the system remains open. The
way we answered it simply consisted of keeping the moments that appear in the conserved currents,
which is a pseudogauge-dependent statement. However, since to second order in Kn and Re™! the
asymptotic matching, i.e., Egs. (6.139), (6.142), and (6.147), can be done to relate any two moments
that transform in the same way, all possible closures of the system of equations should be equivalent.
This statement is valid provided that we are in the appropriate hydrodynamic regime and that the
transport coeflicients are completely resummed, i.e., that the size of all bases is taken to infinity,

sY) - Ny V£, j.

6.4 Hydrodynamic equations

Now that we have obtained the asymptotic matching conditions (6.139), (6.142), and (6.147), we can
follow the procedure outlined in Subsec. 6.3.1 to close the system of equations.

6.4.1 Energy-momentum tensor and particle four-current

We start by outlining the procedure on how to obtain the hydrodynamic equation for the bulk viscous
pressure, with details relegated to Appendix E. The full system of equations for p, and p, reads

. 0 402 (0)
pr A P\ _(a
(}%«) + Z (D(ZO) 5 ) <p> = ( 0 ) 04, (6.154)

where the dots denote terms of second order in Kn and Re ~! which we do not write explicitly here,
but are shown in Appendix E. We then invert the collision matrix as shown in the previous section,
which lets the equation for the bulk viscous pressure (given by the first row of the resulting vector
equation) become

. . 3 3
Z (Téﬁ%npn + Té’,?}fn) —oall= WCOG +-- (6.155)

n
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Employing now the asymptotic matching conditions (6.139) and (6.147), we find a relaxation-type
equation

THH 4+ 1l =—(ob — gV -n — mren - F — 6l — Appn - T + )\Hﬂ—TerO'IW R (6156)

where the transport coefficients are listed in Appendix E. Note that no potentially problematic terms
of second order in the KNUDSEN number appear (denoted by K in Ref. [51]), which is an effect of
performing the asymptotic matching in the IReD way, i.e., by relating only terms of first order in the
inverse REYNOLDS number. Furthermore, due to the replacements (6.147) we are able to absorb the
effect of the moments of spin-rank two into a modification of the transport coeflicients without altering
the form of the relaxation equations. At this point, we remark that the modification of the shear
viscosity was already noted in Ref. [73], where it was referred to as a deviation from the “isotropic
viscosity”.

The same logic is applied to the system of equations for the moments p#, p#, and ¢¥, yielding the
following equation of motion for the particle diffusion current,

Tt 4t = ko I* — Aponw™™ — 8ppnt0 — Lan VP + £, AFYN 1, + T ILEH
— Tpa T F, — Ay o?® + XonIlIH — N\ o1, (6.157)

with the coefficients listed again in Appendix E. Lastly, we apply the procedure outlined above to the
system of equations for pi", ¢§# ) piv | and g"¥, obtaining

s Pr o

Tai ) o = 2noc™’ + Ao N — 6 g — 7 g M)\ N e

— Tan Y 4 0, V) 4 X n e (6.158)

The system of equations (6.156)—(6.158), together with the evolution equations for the equilibrium
quantities ag, By, and u”, cf. Eqgs. (6.39), governs the time evolution of all components of the
energy-momentum tensor and the particle four-current of the system up to first order in & and second
order in Kn and Re ~'. Remarkably, these equations are formally identical to their spin-0 counterparts
given in Ref. [50], with the feedback effects from the dynamically generated tensor polarization in the
system encoded in a modification of the transport coefficients. Furthermore, it is apparent that the
degrees of freedom contained in the spin tensor do not influence the standard hydrodynamic quantities,
which is due to our assumption that the interaction conserves parity in combination with the restriction
to first order in the PLANCK constant. Lastly, we remark that in principle there should appear terms
of second order in inverse REYNOLDS numbers in Eqgs. (6.156)—(6.158), which we neglected when
linearizing the collision terms. These contributions can in principle be calculated in the same way as
the coefficients of order O(Kn Re 1), although they are rather difficult to compute explicitly [160] and
are thus left for future work.

6.4.2 Spin tensor

As is evident by our analysis of their NAVIER-STOKES limit (6.127), the equations of motion for the
axial vectors wf, p# and t* are coupled and have to be treated in the same way as illustrated in the
subsection above. The resulting set of equations is then given by

Twwé/‘> + Twpﬁ,(w + quC'I“L) + Wg

= _e(w)wu + ﬁwé‘ewg + ﬁw@pepu + ﬁw(iqaqu + ﬁwoo—ﬂywo,u + ﬁwapawjpu + ﬁwa’qo—uyqu + ﬁwttiju
+ elwaﬁuu (bwmvamﬁ + hwnvaﬁo,ﬂ + ﬁwImIamﬂ + ﬁwFt’oF’osz + ﬁwlnla’io,,ﬁ + ﬁwFﬁFaK’O,ﬂ> )
(6.159a)
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Tpﬁ(lﬁ + quq(u) + prw(()m 4oph
= e{Vw" + Rpobp" + Rpaafa" + Rpouwl + Koo Py + Rpoqo™ G + Rpow w0, + Ryt w,
1 evaby, (hpmvamﬂ +bpVakos + Rprwlatog + RprwFatog + Rprelakos + ﬁpFHFaﬁo7ﬂ) ,
(6.159D)
and
Tad + quwéw + Tqpp ) + g
= e w + Rq000" + Rqou 0wl + Rqopfp" + Rae0""qy + Row ™ wou + Raopa™ Py + Rqtwy,
+ P, (b Vatvs + Bax Vario s + KarroLatos + Kqrr Fatog + Rqrelatio s + RrwFario s) |
(6.159¢)

with the explicit expressions for the coefficients relegated to Appendix E. The vectorial quantities r}
and 1w follow the equations

TKI%J(<)M> + T 0+ Kb
= —aWpr ppe 4 R0k + Ruon 00" + Rip0 Ko p + Rrowo™ 10, + Reww" Koy + Rrwow! 10,

+ bf{tAu)\vutV)\ + JEi/{[’ttluj]'l/ + ﬁnF’ttuyFL/ + euuaﬁuy (bnwvaw(l,ﬂ + bﬁpvapﬁ + hnqvaCIB
+ RK,IWI()LWO,,B + ﬁfc]p[ozpﬁ + ﬁanIan + ﬁnF‘wFawo,ﬁ + RK,FpFapB + RchqFan) ) (61603)

and

Tmm<”> + Tmnké“) + ot
= a(()l)F” + bél)f” + Rwgbro? + ﬁmg,ﬁﬁg + Rwo 0" 10, + Rupord” Koy + Rpwww! 10, + Rpwrw" Ko u
+ B AP AV A + R 1t 1, + Rt F, + %Py, (bmwvaWO,B + bwpVabs + bogVads
+ Rwiwlawo,g + Kwiplabs + Rwiqlads + RwrwFawo,s + RwrpFabs + ﬁquFaqﬁ) , (6.160Db)

respectively. The equation for the traceless symmetric tensor t** on the other hand is simpler to obtain
and reads

A g = 0 - BBt + iV 0” + h VR 4 Rir I 107+ R F P r0”)
+ ﬁtlnl<u"§g> + ﬁtFRF“Lng) + -ﬁtwww(<)MwV> + Rtwpp<#wu> + Rtwqq<#wy>
+ 00 Mg (Rigowon + Riophy + Rioqly) - (6.161)

The equations of motion (6.159)—(6.161) provide the time evolution of all degrees of freedom of the spin
tensor, both equilibrium (wf, £}) and dissipative (p#, q*, ", t**) ones.'®> Also here there should in
principle appear both terms that are nonlinear in the moments p*, g#, to¥, and t*”, as well as terms of
second order containing the usual dissipative quantities I, n*, and 7#", and fluid-dynamical gradients.
These contributions, as the nonlinear ones in the previous subsection, were neglected due to linearizing
the collision integrals.

6.5 Polarization observables

By now we have achieved our main goal of determining the equations of motion of all components of
N#, TH  and S* which are hydrodynamically important in the sense that they have NAVIER-STOKES
solutions of order O(Kn). What is left to do is to relate the observables that are measured in experiment
to these quantities.

3When counting the number of independent degrees of freedom, we find that the spin tensor consists of 34+-3=6 ideal
and 3+3+3+5=14 dissipative quantities, yielding a total of 20 components. This is lower than the theoretically possible
24 independent degrees of freedom, and has its roots in our kinetic description of the spin tensor.
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6.5.1 PAULI-LUBANSKI pseudovector

In order to obtain the local polarization in terms of hydrodynamic quantities, we need to evaluate
Eq. (6.66). Inserting the local-equilibrium distribution function (6.6a) as well as the expansion of the
deviation from equilibrium in terms of irreducible moments (6.29) and truncating the expansion such
that only quantities with first-order NAVIER-STOKES values are retained, we find

g re a v
Sﬂ(k) — ) /dZ)\kAfokfok{ — 79” ko + 2KWY_.,W [II(JO)]J +Ig0)q

N(k)

P g (e85 + 1 Ono.s ) + 17k E g0+ 1P kiaka e Pus | } . (6162)

where we defined the coefficients

ZC;(JO) _ ZH O)Q 10) _ 7_[(1 0 (6.163a)
n;é2

(0 = H(l 0 (6.163b)

. - ZHl((lnl)Q 11) (6.163c)

W= Z%«Z”Qﬁ”) 7 (6.163d)
3

I512) = ZHl((lf) U2 (6.163e)

I?) R ZH(l 2) (22 (6.163f)

and also used the asymptotic matching (6.142). Note that this expression is only accurate up to first
order in KNUDSEN and inverse REYNOLDS numbers due to the usage of the asymptotic matching. The
expression (6.162) determines the local polarization, i.e., it retains the dependence on momentum space.
If instead we are interested in the global polarization, we have to consider the integrated expression
(6.69), which yields

— o 2ho
S N/dZ,\{ ~ (qu{)‘Jzo + ulw) Joy — e“mﬁuaﬁoﬁt}m)
+ Q(lO) At 0 1 2 ~(10)  ~(10) 12) 1 praB 6.164
10 UPp u 3 mgfLo Qi P + 0] +2€ U t0g o . (6. )

where we employed that ﬁg V= —Qu[“wlol} + 2Vl Uqko,8- It is instructive to compute these expressions

in the NAVIER-STOKES limit as well to be able to relate the polarization to gradients of the standard
hydrodyamical variables. We find for the local polarization

o ~ 2ho
Sks(k) = N(k)/dEAk’\fOkak{ R~ [ @yl emvaly (b(")lg - a(")Fgﬂ k,

+oKMIE,, [ (Pgo)egm NECR (2)) o (&)b(()n N ;g1>b<n>) B s
+ (Isnl)aél) _ I,(ﬂl)a(m)> uaﬁék, UBF6 + I(2) (Q)k(uka>w (2)082)k< k’ﬁ) « Buépu6:| } .
(6.165)
Note that there appears a term proportional to the shear tensor, which is similar, although not identical,

to the one found in Ref. [11]. In the aforementioned reference, this type of term was found to be vital
to match the experimental data on the local polarization. The answer to the question whether the
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shear contribution in Eq. (6.165) is able to do the same is left for future work. The global polarization
on the other hand reads in the NAVIER-STOKES limit

= 2h
S;S = % /dZ/\{gTZ [e(w) (Jzoqu“ + leu”of‘) — Jor e By, (a(H)Fﬂ _ b(H)I/B)] + Q%O)eéo)qu“
1 1
—ut |:3 (mQQ(j? Q(lo)) eéo) + Q(112,)0282)] w™ + §€“>‘(X'BUQ (a((Jl)FB + bél)jﬂ) } . (6.166)

Here, the shear-dependent term from the local polarization has vanished upon performing the integration
and thus only contributes to the local, but not the global polarization.

6.5.2 Alignment

In order to compute the tensor polarization, we now have to evaluate Eq. (6.67). Notably, there will be
no contributions from local equilibrium in this expression, since feq(x,k,5) is at most of first order in
the spin vector. Inserting the expansion of the deviation from local equilibrium (6.29) and truncating
the sums such that only quantities with NAVIER-STOKES values of first order are kept, we arrive at the
following expression:

O (k fN dEAk)‘fOkakK“””W [U(l) af U(Q)A%Bk(vk a0 4 0(3)k<ak6k7k5>7r 5
+ ok 4 gDk n, 4+ Unk<°‘k5>ﬂ] . (6.167)

Here, the asymptotic matching (6.147) was used in conjunction with Egs. (6.153) and we defined the
coefficients

p) = Z o Tao” (6.1682)
@) _ 12 (22).7-22)
2 = ZH (6.168D)
5
0 =3 Z HEDTEY (6.168¢)
ZH@ Dy (6.168d)
p2 = ZH‘Q D9 (6.168¢)
2)
5m2 Z”H T00 (6.168f)

Equation (6.167) clarifies that all dissipative currents that are present in the energy-momentum tensor
and the particle four-current contribute to the tensor polarization of the system. In order to relate this
to the quantity that is measured in experiment (which is called alignment), we have to consider the
00-element of the spin-density matrix. As is shown in Appendix C, the alignment is given by

o00(k) = 5 - \[3 i () (k)0 (k) (6.169)

where eo‘)“(k) denotes the polarization vector of a spin-1 particle with momentum k and spin-projection
A onto a given quantization axis, such that, in the particle-rest frame where k* = (m,0,0,0), we
have ¢(©*(k*) = (0,0,0,1)* when choosing the z-axis. The value of gy = 1/3 corresponds to the
unpolarized case, whereas the second term ~ ©%#(k*) determines the degree of tensor polarization.
Note that, in our expression (6.67), the fluid-dynamical gradients enter at first order, even though they
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will be multiplied by (potentially small) viscosities p, 79, and conductivity xo. This is in contrast to
quark-coalescence models (see, e.g., Refs. [24, 26, 27]), where the tensor polarization of a vector meson
is built from the (vector) polarizations of its constituent quarks. In that case, the resulting polarization
has to be of second order, since the quark polarization is mainly induced by vorticity.'* Whether the
expression (6.169) is able to reproduce the large values of the alignment observed in experiment [18]
will be the subject of future work.

Lastly, the global tensor polarization is given by Eq. (6.70). Making use of the expressions (6.150), we
can express it to first order in Kn and Re ~! as

—w 1 [31 1 3 3
" =5\5% /dEA { (u“u” - 3A'“’) (—WT§°0>UAH+ Tg”)nA) + 5T A

1
Tl (rg‘%w - AP0 Té”%r“”) + Tl%z%w} : (6.170)

A simple application

To get a clearer understanding of what our theory tells about the alignment of vector mesons, let
us consider the basic case treated in Ref. [28], where the effects of the bulk viscous pressure and
the particle diffusion are neglected to study the effect of the shear stress on the tensor polarization.
Choosing the simplest possible truncation, we set

s’ =8 =P =sP? =sP =sP =0, s ={0}, sP={1}. (6.171)
Then, Eq. (6.169) becomes

4 [ASakE B iy e S K 2y e

1
,Qoo(]{?) = - — — 5 (6.172)
315 fasake fo (1 3HG"T/m2 + HG mewk ik,
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Note that this coeflicient is the only quan-
tity in Eq. (6.172) that depends on the 0.02
microscopic interactions of the particles,

and can be computed via a method sum-

marized in Appendix F.4. In the case of

a four-point interaction, this coefficient f 0.01 | ,
is of the order of a percent, cf. Fig. 6.1.
However, one should keep in mind that
this result assumes a fluid that is made
solely out of a single species of spin-1 par- 0 | | |
ticles, and thus the numerical value may 2 4 6 8 10
change when developing a theory that mBo

incorporates the coupled dynamics of a
more realistic system consisting of both
spin-1/2 and spin-1 particles.

Figure 6.1: The coefficient ¢ for the case of a four-point
interaction, Lin, ~ (V- V)2.

141t is easy to see this from a symmetry perspective: ©#” is a symmetric traceless second-rank tensor, and the only
way to build such an object from vorticities is by combining two of them, e.g., w{tw®).



Chapter 7

Conclusion and outlook

After finishing the program of constructing dissipative spin hydrodynamics from quantum field theory,
let us briefly review the steps needed to achieve this goal and comment on tasks that can be undertaken
in the future.

7.1 Summary

In Chapter 1 of this thesis, we initially posed the question how a fluid comprised of particles with spin
behaves. As was elaborated in Chapter 2, fluids are characterized by the fact that their microscopic
and macroscopic scales are sufficiently separated, such that it is expected that the dynamics of the
system can be sufficiently well described by the quantities appearing in the conserved currents. In
the case of fluids consisting of particles with nonzero spin, the conservation law for the total angular
momentum has to be included explicitly since it does not follow immediately from the conservation of
the energy-momentum tensor, which can acquire an antisymmetric part. This, in turn, necessitates
including the components of the spin tensor as additional hydrodynamic degrees of freedom, both in
the ideal and the dissipative case.

Since the goal was to derive a theory of relativistic dissipative spin hydrodynamics, it proved necessary
to provide a description of the dissipative degrees of freedom that went beyond usual NAVIER-STOKES
theory in order to avoid acausal and thus unstable behavior. To provide this description, we employed
the formalism of quantum kinetic theory, which describes the behavior of quantum fields in the limit
that the wavepackets are localized enough to treat them as quasiparticles. In Chapter 3 we computed
the conserved currents given by the underlying quantum field theories for particles of spins 0, 1/2,
and 1, and connected them to phase-space integrals over the WIGNER function, which constitutes a
quantum field-theoretical generalization of the classical single-particle distribution function. However,
the conserved currents are not uniquely defined, but only up to pseudogauge transformations, which
leave the conservation laws and the total charges invariant. The standard canonical currents have
the drawback that the energy-momentum tensor is in general not symmetric even in the case of
free fields, which implies that the spin tensor is also not conserved in that case. For our purposes,
we chose the modified GLW pseudogauge, which features the property that the energy-momentum
tensor is symmetric in the case of free fields and in global equilibrium, and thus provides an intuitive
representation of the currents in phase space.

In Chapter 4, we computed the collision terms appearing in the kinetic equations for the WIGNER
functions. Employing the GLW method outlined in Ref. [43], we computed both local and nonlocal
collision terms. It turned out that, to first order in 4, KLEIN-GORDON fields do not feature nonlocalities,
in contrast to DIRAC and PROCA fields. This aligns with the intuitive picture of orbital angular
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momentum and spin being exchanged in a collision which does not take place in a single spacetime
point. The shifts that specify how far the particles are displaced from the center of momentum have
been calculated in a covariant form, showing that there does not exist a “no-jump frame” where the
collisions are local, except in the case where the shifts were identically zero to begin with.

Chapter 5 repeated this calculation, but in the approach pioneered by KADANOFF and BAYM, which
is based on the DYSON-SCHWINGER equations on the KELDYSH contour. While the method seems
different at first glance, we were able to demonstrate that, as long as the same approximations as in
the GLW approach are made, the KB approach leads to the same collision terms, with the important
modification that quantum-statistical effects are retained. Taking these into account enabled us to
show that, in equilibrium, the distribution function has to be of BOSE-EINSTEIN or FERMI-DIRAC
form, depending on whether the particles are bosons or fermions, respectively.

In both approaches, in order for the collision term to vanish exactly, we found that the conditions
have to be those of global equilibrium, i.e., the four-temperature has to be a KILLING vector and
the chemical potential over temperature has to be constant. This is at odds with the concept of
local equilibrium known from standard fluid dynamics, and constitutes an effect of including nonlocal
collisions.

In order to formulate a theory of spin hydrodynamics that reduces to the familiar hydrodynamic form
if spin effects are excluded, we modified the definition of local equilibrium in Chapter 6, allowing the
collision term to be nonzero, provided that the corrections originate only from nonlocal terms, which
are comparatively small. With this definition of local equilibrium, we separated the dissipative parts of
the distribution function, and applied a generalization of the method of moments that included both
its dependence on momentum as well as on spin.

After having derived the equations of motion for all irreducible moments, we had to close the system
with an appropriate truncation to extract the dynamics of the hydrodynamic degrees of freedom. This
closure was then achieved via a suitable application of the IReD method, which expresses all moments
solely in terms of the dissipative quantities of interest. In this way, we obtained equations of motion
for all components of the energy-momentum tensor and the particle four-current. Interestingly, the
degrees of freedom connected to the tensor polarization of the particles couple to these quantities,
modifying the resulting transport coefficients.

We furthermore showed that, in addition to the six degrees of freedom characterizing the ideal part of
the spin tensor, 14 dissipative quantities (two axial vectors, one vector, and one traceless symmetric
tensor) feature NAVIER-STOKES values of first order and are thus hydrodynamically important. Because
the spin tensor is not conserved, all of these quantities follow relaxation-type dynamics. While the
relaxation of the dissipative quantities to their NAVIER-STOKES values is determined by local collisions
and can be attributed to particles moving with the fluid that tends to isotropize, the spin potential
relaxes to the thermal vorticity on a timescale determined by the nonlocal contributions to the collision
term.

Lastly, we employed these results to derive formulae for the observables related to polarization, namely
the PAULI-LUBANSKI vector and the alignment, expressed solely in terms of hydrodynamic fields.
With these expressions, it is then possible to relate the microscopic properties of polarization to
the macroscopic conserved currents, which are governed by hydrodynamics. The result for the local
polarization shows a dependence on the shear tensor, which has already been observed in earlier studies,
albeit in slightly different form, and has proven crucial to explain the measurements. The formula
for the alignment on the other hand shows that, in this framework based on quantum kinetic theory
that takes the vector mesons as the fundamental degrees of freedom, the tensor polarization of spin-1
particles is a purely dissipative effect that depends on the magnitude of the shear-stress tensor, the
bulk viscous pressure, and the diffusion current.

7.2 Future perspectives

There are various ways to build on the work done in this thesis. First, the formulae which determine
the polarization and alignment of particles should be tested in hydrodynamic simulations of heavy-ion
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collisions to see if they are able to describe the data. In particular, whether or not the expression for
the alignment is able to explain the large measured signal for ¢ mesons lets one assess the viability of
a hydrodynamic treatment for vector mesons inside the QGP.

Since we have provided explicit expressions for all resummed transport coefficients, one can compute
them to arbitrary precision. This is especially important when considering the linearized theory, since
in order for it to be symmetric hyperbolic, certain relations between transport coeflicients have to be
fulfilled. In the case of ultrarelativistic (spinless) fluid dynamics, these conditions have been found not
to be valid in the DNMR truncation, whereas the IReD approach preserves them, given that the size
of the basis is sent to infinity [52]. Thus, it is important to check whether or not the IReD approach
taken in this work also features this desirable property.

In order to improve our understanding of the QGP with quarks and gluons as the fundamental degrees
of freedom, the work done here for spin-1 particles can be extended to cover the case of originally
massless gluons. This will introduce complications related to gauge symmetry, as well as the non-abelian
nature of the particles. Nevertheless, most of the methods presented here should be applicable with
suitable modifications. Following this line, a coupled theory including both fermions and bosons would
be of interest. Steps towards this goal have already been undertaken in, e.g., Ref. [86], and our results
on the dynamics of the spin degrees of freedom in the presence of nonlocal collisions can be used to
extend it.

Finally, the effects of electromagnetic fields were not treated in this work, even though some studies
on their inclusion have been done, cf. Refs. [28, 54, 55]. In order to treat them properly, the effects
of the (in GLW language) “pure-spin exchange” terms, or equivalently (in KB language) “mean-field
self-energy” have to be included, since they lead to the emergence of VLASOV-type terms in the kinetic
equation. The formulation of such a theory of spin-magnetohydrodynamics would be desirable as well,
since, especially in the early stages of heavy-ion collisions, the magnetic fields can be very strong.



144 Conclusion and outlook




Appendix A

Cancellation of off-shell terms

This appendix contains the proof of Theorem 1, which is valid for general fields as we introduced them
in Subsec. 3.2.2. In addition to possible constraint equations, any field fulfills the KLEIN-GORDON
equation

m2 —~ —~
(D+h2>s0=p, (A1)

where p is a general source term depending on the interaction Lagrangian.

Stating the ingredients

For a more compact presentation, let us recapitulate the basic objects introduced in the main text.
The WIGNER function is defined in accordance with Eq. (3.31)

Wz, k) = f{/d4ve_ﬁk” ? o). (A.2)

We remind the reader of the notation

/\-‘— ..
~ e, 7 1nteger ,
= A3
4 {@WO , 7 half-integer , (A.3)
from which it follows that the WIGNER function fulfills W = W*, where
W wT, ] integ.er , (A4)
FYOWTAO j half-integer .
Acting with the BopP operator D* = kH 4 %8“ on the WIGNER function gives
D*W (z, k) = ih/ﬁ/d%@ wk ( orp_), (A.5)
D W (2, k) = —ihx / dtoe BI04 )5) . (A.6)

General proof

Applying a combination of BoPP operators such that the left-hand side of Eq. (A.1) is reproduced
under the integral, we find

(D* —mH W (z, k) = —h2n/d4vef%k‘“<$+ﬁ_> =: hC(z, k) . (A.7a)
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We can repeat the same procedure now with the complex conjugated BOPP operators to obtain

A~

(D*2 —m?)C(z, k) = B’k / dtve= #5 V(G 5) = hZ(x,k) . (A.7b)

Note that, as for the WIGNER function, we again have Z =2 Applying the “tilde”-operator to Eqs.
(A.7) and using the relations for Z and W, we can isolate the real and imaginary parts, i.e.,

(D>~ m?)ReW = 2(C+0), (A.8a)
(D* —m?)ilm W = g(c -0), (A.8b)
(D2 — mQ)%(C +C) = hRe Z (A.8¢)
(D*2 — m2)%(C’ —C) =ihlm Z . (A.8d)

Here we suppressed the arguments (x, k) for brevity and used that
1 —~ , 1 —~
ReWzi(W—i—W), zIszi(W—W), (A.9)

and similarly for Z. At this point we remark that

h? h?
D2:k2+ihk-8—ZD, D*2:k2—ihk-8—ZD. (A.10)
Abbreviating
1 ~ 1 ~
Cg = §(C+ C) R Cy = 5(0 — C) , (A.ll)

we obtain the real and imaginary parts of Eqs. (A.8) as

2
(k;2 —m? — ZD) ReW = hReCyg , (A.12a)
k-OReW =ImCg, (A.12b)
2 2 ﬁ —
E*—m 1 O)ImW =hlmCy , (A.12¢)
—k-0ImW =ReCyu , (A.12d)
2
<k2 —m? - ZD) ReCg + hk - 0Im Cg = hRe Z , (A.12¢)
2
<k2 —m?— ZD) ImCg — hk-OReCg =0, (A.12f)
2
<k2 —m? - ZD) ReCyp + hk-0ImCy =0, (A.12g)
2
<k2 —m? — ZD) ImCy — hk-0ReCa = hlm Z . (A.12h)

We now expand all quantities as power series in A, e.g.,

W=> Wwo. (A.13)

J=0
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Then, Egs. (A.12a), (A.12¢), (A.12f) and (A.12g) become mass-shell like equations,

(K2 —m?)ReW") =ReCY ™" + %Re we-2) (A.14a)
(2 —m?) ImWW =tmc§ Y + %Im wo=2 (A.14b)
(K2 —=m®) ImCY) = k- 9Re CY~ ”+f1 cy?, (A.14c)
(¥ = m?) ReCY) = —k-gtmey™ 4 2 < Re eCy™?, (A.14d)

while Egs. (A.12b) and (A.12d) become kinetic equations,

k-OReWY) =ImcY) (A.15a)
k-0lm W) = —ReC) . (A.15b)

In these expressions it is understood that quantities formally of negative order in / are set to zero.
Comparing this equation to the formulation in Eq. (4.28), we can identify

C=ImCs—iReCy4 . (A.16)

Splitting the WIGNER function and the collision kernel into on- and off-shell parts,

W = 5( 2)Wo(2she11 + chlzf)shell ) (A.17)
C(J = 5( Q)CS' on-shell + CS off-shell » (A18)
C(J = 5( 2) A ,on-shell + CA off-shell » (Alg)

we obtain the off-shell components from Eqs. (A.14) as

: r . 0 _
ReW =k —m?) ' |ReCy ™V + JRe W<J2>] : (A.20a)
, r . 0 4
WP, =& —m?) " [Ime{ ™ + 4ImW0—2>] : (A.20D)
m O e = (K2 — m2)_1 k-0ReCY™Y —I cy=? } , (A.20c)
ReCt =k —m?)! kot 4 R cli=? } (A.20d)
A,off-shell A : :
Then, the off-shell parts on the left-hand sides of Eqs. (A.15) at order j read
k-0Re WS | = (k2 —m?)~! [k; OReCY ™V 4+ 41 mCyY~ 2>] : (A.21a)
. . 0 o
k- olm W@ = (k2 —m?)! [k otm ey — 7 Re cl 2’] : (A.21D)
where we used Eqgs. (A.15) at order j — 2. Comparing to Egs. (A.20c) and (A.20d), we find
k- ORe Wo(lzfzshell = Im Cgﬁ))ff—shell ) (A.22a)
k- OIm ngsheu = —Re CX,LH-sheu ) (A.22b)

implying that the off-shell terms cancel in the BOLTZMANN equation to any order in A. Thus, we can
write

k aR‘e chn)shcll - Im CS on-shell ? (A23a)
k- 6Im chn)shcll = —Re CA7on_sh011 9 (A23b)

where the restriction to the mass shell is understood. This proves our theorem.
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Appendix B

Notes on the collision integrals

In this appendix, we present calculations on the GLW and the KB approaches that concern the
computation of the collision integrals. In the GLW approach, we will relate the “in”~-WIGNER function
to the full one, and show that both can be identified up to first order in /4 and to lowest order in the
density, neglecting contributions of collisional origin inside the collision integrals themselves. In the
KB approach, we will compute the self-energy in the T-matrix approximation, which has been shown
to fall in the class of approximations to the self-energy that preserve the macroscopic conservation laws.
Furthermore, we will show that the functions f in the KB approach incorporate quantum statistics.
Lastly, we will explicitly compute the antisymmetric part of the energy-momentum tensor in the GLW
pseudogauge.

B.1 GLW: The WIGNER function and its “in”’-counterpart

Here we will show that, to lowest order in the density, the WIGNER function is equal to its “in”-
counterpart.

We start by restating the observation from Eq. (4.25), namely that the WIGNER function can be
written as the following FOCK-space average,

Web(z, k) = <e%ﬁw\/1\lab(k)e_%ﬁ'$> 7 (B.1)

(k) = m/d‘*ve*%k-va" (%) o (%) : (B.2)

Since the “in”-states are eigenstates of the total momentum, we may replace e~ i |E™0™), =
H? 1 e~ kT kN o o™).,. Rethinking the steps that led to Eq. (4.23), we find

. > 1 I L i T —"
W (x, k) = Za/d‘lx /W\Pn”b @k k) [T W™ (o + 75, k) (B.3)
n=0 j=1

where

- 1 " d4um _ u™ ~
ab =M. LN R n )
\:[Infalbl"'anbn(‘r ik ‘k) = (H}\QT]2> / (27Tﬁ)4" z : ' <<k - 9 O

on 7a-/'IL m

where

ﬁen% LU, ( j— J> U, (E?j-i-%,()';) . (B.4)
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Following Ref. [43], we compute W2 for n = 0, 1.

In the case n = 0, inserting Eq. (4.16) and making use of the completeness of the “out’-states, we
obtain

i (0[k) —KZ Tt Z/‘”"” B (0) k™0™

X o (K307 (0) [0) (2rh) 160 (k *i’w> 7 (B.5)

=1
where we employed the fact that the “out™states are eigenstates of the momentum as well. Since the
zeroth component of the momentum is always positive, the delta function vanishes, such that

Wab(0k) =0. (B.6)
Similarly, the n = 1 case yields

\I’Lll,bcd(x;p‘k):%w/ 2 Ze"wUd< 37)Te(r+5:9)

X { <P—§;U“T’ab p+ 5;0/>, - <p—;;a‘p+g;a’>m<0‘\f/“b O>} .

Note that the second term vanishes for the same reasons as ¥g’. Inserting a complete set of “out™states
again, we have

1 — u
U a(wsplk) = 5 M Zewvd( 5:0)Te (p+5.7)
> u b
m o, = 'm., _m
x;wm!;/dlj in<p 5309 (0))p™0 >Out

X <p’m;am ?*(0) ‘p—l—g;o”> (27ch)*6™ <k+2pe ) . (B.7)
out

[153e b}

Using the fact that the one-particle “in”- or “out™states are orthogonal, we find that [using Eq. (4.8)]

{0z

which may be used to obtain an explicit expression for the m = 0-term in Eq. (B.7). The other terms
in the respective sum require that

’p+%;a’>in:)\U“ (p—i-g,a’) , (B.8)

= (k+p)?=2m?+2k-p' > 4m?,

which implies including the possibility of creating particles with masses larger than twice the mass
of the original one. This possibility we will neglect, such that only the m = 0 term in Eq. (B.7)
contributes, yielding

W', s plk) = 1/m4ze oy (= b0) e (p+ 2o

< T (p- 5, o) Ut (p+3 S0 ) (2rh) 6@ (k — p) . (B.9)

Truncating the sum in Eq. (B.3) after the first term (higher orders would lead to nonlinear dependencies
of W2 on W2t which are of higher order in the density) and expanding the “in”-WIGNER function
around x, we obtain

Wab(z, k) = /d4uZUd )Uc<k+%,0')ﬁb<k—%,0)Ua (k—l—g,o')

x {m;d(z, k)6@ (u) — ik [355<4> (u)} 8, Wed(z, k)} . (B.10)

At this point, we differentiate between particles of different spin.



B.1 GLW: The WIGNER function and its “in”-counterpart 151

Spin 0

In the case of scalar particles, we have n = 1 and U = 1, such that the second contribution in Eq.
(B.10) becomes a vanishing boundary term. Then we simply find

Wz, k) = Win(a, k) | (B.11)

allowing us to identify the WIGNER function and its “in”-counterpart inside the collision integral.

Spin 1/2

For DIRAC particles, n = 2m and U = u, where u is the usual basis spinor fulfilling the orthogonality
and completeness relations (4.56). Then, the WIGNER function becomes

Wagp(z, k) = A:A/ (k)VVinﬁg(x, k)A;ﬁ(k)

—ih / d'uhl, (k + g) A, (k - %) [855<4>(u)] 8, W (. k) . (B.12)
We then integrate by parts in the second term and employ
oA+ (k + %) - ﬁw , (B.13)
such that
Weas () = Ay ()W, RIAZ (8) 4 o[98 Ay () = AL, (R3] 0, Wina( ) . (B14)

Subsequently, we use that, by virtue of Eqgs. (3.79) and (3.80), the structure of the “in”-WIGNER
function in DIRAC space is given by

1 h
Win(z, k) = §A+(k) [Fin(x, k) + 757 - Ain(z, k)] + WU“”kyﬁu.}}n(m, k) . (B.15)

Employing that, because A% is orthogonal to the four-momentum, A* (k) and 57 - A;, commute, we
find (neglecting terms of second order in k)

1 ih
Wos(,K) = SN (8) [FinC,K) 957 i b))+ e 38, A2 () = AL (k)] 0 )
1 oo
= §A+(lc) [Fin(z, k) + 757 - A (x, k)] + WU“ k0, Fin(2, k)
= VVin,oz,B(xa k) ) (B]'G)

where we used Eq. (4.78). As expected, W and W, are equivalent up to terms of higher order in the
density and h.

Spin 1
In the case of PROCA fields, we have n = —1 and U = ¢, where the polarization vectors e fulfill the
orthogonality and completeness relations (4.103). Using these, Eq. (B.10) becomes

“w v
W = KFKSWE (2, k) — ik / dtu <K - (2]) (K + g) [655(4) (u)} WPz k),  (BAT)
a B

where we defined

<Kig)w = g — (k£ u)2 (kig)” (ki%)y . (B.18)
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Integrating by parts and using

U\"
P bl
o (102 2)

as well as the fact that k- OW/" (z, k) = 0, we can evaluate the second term in Eq. (B.17) to get

o1 o kPkREY
_:Fk2(2gp(uk)_ - > (B.19)

u=0

0, WP (2, k)
u=0

, o U\" U\”
W (a,k) = KEKEWR! (. k) +ihd, | (K =5 ) (K +5
B

[e3

= KEKSWEP (2, k) + 152 (00kia) Iy — 0k 1) W (2 K)

Remembering that k, W5, ~ O(h?) and k, W4 = (ih/2)0" fx i + O(h?), cf. Egs. (3.159), we may
rewrite this expression up to first order in A as

W (2, k) = KEKEWES (2, k) + %%aﬂ frein(z, k) = W (2, k) . (B.20)

Manifestly, we may again identify the WIGNER function with its “in”-counterpart to this order.

B.2 KB: Self-energy and quantum statistics

B.2.1 Approximating the self-energy

In this part of the appendix, we motivate the form of the diagrams considered in Fig. 5.2, and show
how to compute them.

Notes on deriving the self-energy

The self-energy appearing in the KB equations has to be approximated in some way, as computing it
exactly is usually impossible. As has been shown by BAYM in Ref. [164], an approximation preserves
the macroscopic conservation laws if it is “®-derivable”, i.e., if there exists a functional ® such that!

30[G]

_ B.21
SGABb (31 1,) ( )

SaP (z1,22) =

The ®-functional that we consider is given by the set of closed two-particle irreducible (2PI) diagrams in
Fig. B.1, where the plus and minus signs are for fermions and bosons, respectively. The combinatorial
prefactors become unity when taking the derivative with respect to the GREEN’s function. Note
that, as mentioned before, we do not consider the HARTREE-FOCK contributions, which renormalize
the energy and momentum of the particles and provide a self-consistent VLASOV-type term in the
kinetic equation. In order to include these contributions, we would have to consider an additional
“double-bubble” like diagram in the ®-functional (together with the corresponding exchange term due
to boson or fermion exchange symmetry) [135].

n Ref. [165] it has been shown that the conservation laws are even obeyed exactly, i.e., not only to the order in
the coupling that defines the truncation of the self-energy. This also holds when the (%-)gradient approximation is
implemented consistently.



B.2 KB: Self-energy and quantum statistics 153

KA
I
N

Figure B.1: The ®-functional consisting of closed 2PI diagrams. Note that the HARTREE-FOCK
contributions are omitted.

Figure B.2: Greater and lesser self-energies in position space. The dots connected by dashed lines
symbolize the tensors V.

Computing the diagrams

The self-energy diagrams shown in Fig. B.2 are obtained from taking the variational derivative of the
®-functional. Their diagrammatic form is easily constructed by removing one internal line from the
closed diagrams in Fig. B.1. Then, they read

DRCIENE / d'2’ 4%y Vaataran (01,2 Woatwo(ys22) |Gy, (01,22 Gy, (0,4 ) Gy (0 2)
G 0, (@1, 4)Gy, (0, 22)GF o (0 )| (B.22)

Here, the quantities V', which are fourth-rank tensors in the internal space of the fields, are symbolized
by the dashed lines. Furthermore, the plus and minus signs belong to bosons and fermions, respectively.
For simplicity, we take the quantities V' to be local, i.e., Vaarayas (2,%) = Vaaraya,0 (z — y), where
Vaa’aras 18 & constant. Then, the self-energies are given by
> > > <
S5(@1,22) = Vawaras Veaivs |Gy, (01,82)G 5,0, (01,2)G5 1 (22, 1)
> > <

iG;bz (33‘1, .Z‘Q)G(Zbl (1‘1, Z‘Q)Gia, (1‘2, 1‘1)] . (B23)

After inserting the WIGNER transform

d* i 1+
2 _ D —ip(zi—z2) 12 1 2
G5 (1, 22) / (27771)4@ m Gab< 5 ,p) , (B.24)
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the self-energies become

> d4k1 d4k2 d4k/ _ i
L5y (21, 22) = / (2rh)* (27h)* (2rh) Vaarayas Vosorop€™ ™

«laz, (BE™ e Vo2, (B2 ) es, (BE22
101 2 202 2 2
xr1+x T +x 1 +x
G§1b2 <1227k1> Gbel ( - 9 23k2) G%a’ ( - 9 27kl):| . (B25)

The WIGNER transform of the self-energy then reads

(k1+ko—k")-(z1—z2)

Efb(m,k) = /d4ve_%’f'”2§b (:Jc — g,x + %)

_/ dik;  d'ke  dU
= (@rh)t (2xh)t (2xh)
X |G, (0. 10) G, (3 52) G (0, K) £ Gy (2, 1) G

a2b2

1/ A4k, dYk,  dAK
2 (27h)t (2wh)* (27h)
x G2, (2,k1)GZ

azb2

1 (27Tﬁ)4(5(4)(]€ + k/ - kl - kQ)Vaa’maz %2b1b’b

2
a b1

(v, k2) G )]

S ) W (k+ K — ki — ko)
(l‘, kQ)G!%a’(:E’ k/) (Vaa’a1az + Vaa’aQal) (%2b1b’b + ‘/bleb/b) . (B26)

Next we define 1
= F
where the factors of )\ are necessary to be consistent with the earlier definitions.? Note that we have
by construction the symmetries Mya/a,0, = TMa'aaras = TMaa’aza,- Then , we find

Vaa’alag + Vaa’azal Maa’alag ) (B27)

2mh) 6@ (k + k' — ky — ko)

4 4 41./
Zi(x,k):i/dkl d*ky, d*k (
a 2X6 | (2rh)* (27h)* (2rh)

x G2, (2,k1)G2

azb2

($7k2)G§a’ (.T, k/)Maa'a1a2Mb1b2bb' : (B28>

Thus, we have obtained Eq. (5.21), which represents the diagrams in Fig. 5.2 in phase space.

B.2.2 Quantum statistics

Here we want to prove that the distribution functions f introduced in Egs. (5.32), (5.47) and (5.96)
indeed represent the expected PAULI-blocking and BOsSE-enhancement factors.

Starting from Egs. (5.1), we find that

< {@a(xl), ib(xz)} > for bosons ,

Goy(@1,22) — Gy (w1, 22) = <{A () (B.29)

) ib (x2) } > for fermions .

Then, we remember the expression for the (anti)commutators of massive fields of different spins [166],

[q?(xl)ﬂ(@)} = ihA(z1 — 22) | (B.30a)
{Bale), Ds2)} = (0 + m)apiA(a — 22) | (B.30b)
[f/u(zl), f/*u(:@)} = —ih <g’“’ + :;auaV> Alzy — 23) (B.30¢)

2Actually there should be a factor of 1/\% since the vertices M are contracted with four fields, but we factored out a
contribution of 1/A2 in the KapANOFF-BAYM equations for convenience.
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where

. d* i
iA(0) — w2) = / Gt E0)? —m)e ke (B.31)

denotes the invariant PAULI-JORDAN function. Computing the WIGNER transform of Eq. (B.29) yields
for the different fields

G” (z,k) — G<(x, k) = 2wh?5(k* —m?) | (B.32a)
G4z, k) — Gog(x, k) = 4mmhAT (K)o (k* — m?) (B.32b)
G (2, k) — G<M (2, k) = —2nh? KM 5 (k* — m?) | (B.32c)
where we assumed that kg > 0. Then, we express the WIGNER functions as
G=<(x, k) = 21h?5(k* — m?) f(z,k) , (B.33a)
G (z, k) = 2nh28(k* — m?) f(z, k) (B.33b)
GS, (2, k) = —dmmhs(K — m?) / AS(K)hs (k,5) (2, F 5) (B.33¢)
G2, (. k) = dmmhs (K — m?) / AS(K)hes (b, 5) F (. b, 5) | (B.33d)
G<M(2,k) = —2mmh?5(k* — m?) / dS(k)h"*(k,s)f(x, k,s) , (B.33e)
GZM (z, k) = —2mmh?5(k* — m?) / dS(k)h"*(k,s) f(z, k,s) , (B.33f)

where we could neglect the gradient and off-shell contributions, since they fall outside our employed
truncation as all WIGNER functions treated here appear inside the collision integrals. Finally, we insert
spurious spin-space integrals on the right-hand sides of Egs. (B.32b) and (B.32¢), obtaining

9rh25(k2 — m?) [f(x, k) — f(z, k) — 1} ~0, (B.34a)
dmmhé(k* —m?) /dS(k)haB(k,s) [f(x,hs) + f(z,k,5) — 1} =0, (B.34b)
2rh?5 (k% — m?) /dS(kz)h““(kz,s) [f(:c, k,s) — f(x,k,5) — 1} =0. (B.34c)
Thus, as expected, we can conclude that, to first order in A, we may identify
flz k) =1+ f(z, k) for KLEIN-GORDON fields (B.35a)
flz k,s) =1— f(x,k,s)  for DIRAC fields , (B.35b)
f(x,k,s) =1+ f(z,k,5)  for PROCA fields . (B.35¢)

B.3 The antisymmetric part of the energy-momentum tensor

In this section, we will explicitly compute the antisymmetric part of the GLW energy-momentum
tensors for spin-1/2 and spin-1 particles, in order to confirm that they indeed take the form (6.54) which
was obtained by postulating the conservation of the total angular momentum J** = oh¥t” + Alrgvl,
We will carry out this computation in the KB formalism, since it is more straightforward to implement
and retains quantum-statistical effects.

DiIrACc fields

From Eq. (3.123), we have

) _ b ARy
T = m/@mpvk . (B.36)
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Using the definition of Dy, (3.78a) and connecting it with the collision integral in the KB approach
(5.36), we obtain

Dl K) = gIm Tr [y (57 G~ 5°G7)] | (B.37)

where we omitted the PoissoN-bracket terms. Taking only the quasiclassical contributions (5.52) to
the self-energies and writing the WIGNER functions in extended phase space according to Egs. (5.47),
we find

Dl (x, k) = —4mmhd(k* — m2)% / ATy ATy ATV dS(k) dS(k)(27h)* 6@ (k + K — ky — ko)

xut ([RJT-RRLS) (B.38)

where we defined?

3
m
Ut = TIm [Moea’alagMB]BgB,B’halﬁl (klvﬁl)hoﬁﬁfz (kiz,ﬁg)hﬁ/a/(k’/,sl)hg(s(]{i,ﬁ)’)/ga]
_ %Wo/z) AP (B.39)

Then, after using the weak equivalence principle, the antisymmetric part of the energy-momentum
tensor becomes

T =3 / (AT} (2rh) 6@ (b + K — by — ko) WP ALK (11, F - FRSF) (B.40)
in agreement with Eq. (6.54).

PRrocaA fields

In the case of vector fields, we start from Eq. (3.188),

4
wv] _ d°k k [# [#) v
Tp Dg ) k7. B.41
m_/ 2mh)4 2m P ( )
Using the definitions (3.152) and (3.157), we can express the relevant collision terms as
k 1
3 (Ch + DY) = —Re C"k,, = —7Im [k, (Z<V0GLH =22 Gt (B.42)

where we employed Eq. (5.82) in the last equality and neglected the PO1ssON-bracket terms again.
With the quasiclassical contributions (5.101), we find Eq. (B.42) to be

1 _
g (Cl + DY) (w, k) = 4mhs(k> — m?)3 / dTy AT, AT dS(k) dS(k)(20h)* 6™ (k + &' — ky — ks)

<" (Fff F= LEfT) . (B.43)
where we introduced*
Hi= _%%Im {MW pabz ppeavzeVip (k1 $1) Ry, (K2, 52) Ry (K 8" )R o (K, 8)k }
%QW(”N : (B.44)

Using the weak equivalence principle, we thus find
v 1 ) TN R T
1) = 5 [r)enn SO+ K — b~ kWO (1 £ F- RIS (B.45)

as expected from Eq. (6.54).

3Note that there is an additional factor of 1/2 due to the spurious dS(k)-integral, which is necessary since w/2)
depends on 5.

4We replaced H by h in the definition of A since the components of spin-rank two will not contribute in the final
expression.



Appendix C

Polarization observables in kinetic
theory

To give a clearer meaning to the different components of the WIGNER functions introduced in the
main text, in this appendix we will connect them to the observables related to polarization that are
measured in experiment [5, 10, 16, 18]. This discussion largely follows the one presented in Ref. [167]
for spin-1/2 particles.

The spin-density matrix of a particle is defined as
(@ (k)aq (k)
3o (@l (k) (k)

The goal is to relate the WIGNER function [i.e., the normal-ordered expectation value of Eq. (3.31)] to
the averages over creation and annihilation operators appearing in Eq. (C.1). Expressing the fields in
terms of creation and annihilation operators

0ot (k) = (C.1)

= 3% [ ak [k (o), (k) + eV B (C2)

and inserting them into the WIGNER function, we obtain W = W, 4+ W_ + Wg, where W denote the
particle and antiparticle contributions, respectively (i.e., their associated momenta are timelike with
kY > 0 or k° < 0), while Wg denotes the WIGNER function whose momentum is spacelike. These three
quantities read explicitly

Wi =53 far faraanys® (- EgE
P P'(2 —
(k) = d dP'(27h)*s 5

« et (@—P") zU (p, U (Y, o) (@ T(p)aa @), (C.3a)
W (x, k) = iWZ/dP/dP’ 2rh)4s(4) <k+p+p)

x BV . 0) V0! ) B ()5 (0) (C.3b)
Wb (x, k) = X Z/dP/dP’ (2wh)*s™) ( 2p )

x [eh T (p, ) Vo' o) (@l ()D], (1)
+ e FEHT (o ) U, o) (b () ()] (C.3¢)
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where the positive and negative signs in W_ correspond to bosons and fermions, respectively. The
integral of the positive-energy WIGNER function over a hypersurface ¥ reads

/dEakan’(:c,k) = k:o/dB:c Web(z, k)

= % @2rh)d(k2 — m2)O(k) T (k, o)U° (k, o' ) (@ (k)ap (k) . (C.4)

o,0!

Making use of the orthogonality relations of the polarization vectors (4.9), we find the sought-after
relation
2
= e
which lets us express the spin-density matrix of the particles as
[ dZa kU, (k, o)W (2, k)Uy(k,0")

k) = al . C6
0oe (K) S [ A8k, (k, o) Wz, k) Uy (K, 0”) (C.6)

Note that a similar relation holds also for the antiparticles.

(27h)6(k* — m?)O(k°) (@l (k)a, (k) / AX kU o (k, o YW (2, k)Uy(k, o) | (C.5)

In the next step we will derive expressions for the vector and tensor polarization, which are defined as
(for a particle of spin S) [15]

S(k) =Tt [@L@(k)} : (C.7)
O (k) = ;\/gﬂ{ {§<ﬂ§”> + QS(S;DKW] §(k)} , (C.8)

where

. 1 o~
Sh = _%eﬂ"aﬁjmpﬁ (C.9)
denotes the PAULI-LUBANSKI operator divided by the particle mass [140, 167]. Here, JH is the
generator of LORENTZ transformations, while P* generates spacetime translations. We can represent
the matrix elements of the operator S* as

(k,0| 5" k,0’) = —%E“V‘Xﬁkul)s([k])_lDS(JaB)DS([’f]) ; (C.10)

where D(J*) and D®([k]) are the spin-S representations of the total angular-momentum operator
and the standard LORENTZ boost to the four-momentum k*, respectively. From this relation we can
infer

§(k) = — 50k, Te [DS (k) ™ D¥ (Jas) D ([K]) o(R)] (C.11)
0 (1) = 5/ 3{ = 3o e R (D) D (1) DS (o) DS (D)
+ L(S; D) KW} . (C.12)

At this point, we treat the cases of different nontrivial representations of the LORENTZ group! separately.

DiIRAC fields

In the case of DIRAC fermions, we have to consider the (1/2,0) @ (0, 1/2)-representation, where (making
the DIRAC indices i, j, - -- and the spin indices 7, s, - - - explicit)

1
V2m

IFor scalar particles, which transform in the (0, 0)-representation, both the vector and tensor polarization vanish.

1

D (Jap)ij 1

['7(177,3]% ) DS([k])T,i = ur,i(k) > (C.13)
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with the basis spinor u. Then, upon using the completeness relation of the DIRAC spinors (4.56b), we
find for the vector polarization

SH(k) = _Ldluaﬁkyi [LAENEMTr {(F + m) [Ya, v8] (K + m)W (2, k)} .

4m?2 4 [ AZNRANT [(F + m)W (2, k)]

(C.14)

Decomposing the WIGNER function according to the CLIFFORD algebra (3.73), evaluating the traces
and making use of Egs. (3.79) (with vanishing right-hand sides) yields

1 [ AR ENAR (2, k)

SH(k) = . C.15
(k) 2 [dX kA (2, k) ( )
When translating this expression into extended phase space, we find
SH(k) = EL/dE k”/dS(k)s“f(m k,s) (C.16)
2 N(k) vy ) I b
where we defined
N(k) == / A5 kY F (2, ) = / a4, / AS(k) f(x, k,5) (C.17)

The tensor polarization on the other hand is given by

2% _ 1 3 afBy(u v)po kak}\ degk‘fTr{(}é—|—m)hg,%y][’yp,vg](k—&—m)W(x,k‘)} iz
© (k?) B {e B( € ) >‘64m3 deEkETI' [(k+m)W(x, k)] + K } ’

4V 2
(C.18)

and vanishes upon performing the traces, as expected.
Proca fields

For massive spin-1 particles, we work in the (1/2,1/2) representation of the LORENTZ group, where

D% (g )" =i(ghgy — ghg) . (D (Jsy) D (Jpa )" = 9595 9v0 + 9195950 — 9595970 — 94195950 -

In a basis where the polarization vectors in the particle rest frame [i.e., the frame where 129“19:)
(m,0,0,0)#] coincide with the Cartesian axes, ¢M#(k*) = —g™M we can furthermore express the
standard LORENTZ transformation as
D[R] = eMH (k) . (C.20)
Upon inserting this representation into the vector polarization (C.11), we find
2l
$¥ (k) = _iewaﬁ’;:f ({ ;ﬁiﬁ; Z%EZ(?/{) , (C.21)
which in extended phase space becomes
S (k) = ﬁ / ds K / AS(k)s" f (2, k,5) | (C.22)
where we redefined
N(k) = /dkaVKp(,W""(x,k) = /dEvk"’/dS(k)f(:c,k,s) (C.23)

and used Egs. (3.168). Note that, although the quantity N (k) is now defined in terms of the spin-1
WIGNER function, the expressions for the vector polarization (C.16) and (C.22) (up to an expected
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factor of two) formally coincide when expressed in extended phase space.? The tensor polarization
becomes

1 /3 kak [ AN kWS (2, k) 4
pv N paBy _vpoX ValvA € 5 & oy
O (k) = 2\/g [26 Ty SRR s ek, e (e, k) T3

3 [AS RWeB (2, k) 2
=/2 |(K'KY — K"K, 7 ’ G
\/; {( ah B)deVkVKp(,WPU(x,k) 3

A8 KYWB (2, k
:\/gKﬂg J d, (@.k) (C.24)
2B T AS, kK o WP (z, k)

where we employed the completeness relation of the polarization vectors (4.103b). Translating this
expression into integrals over spin space, we finally have

oM (k) = ;\/ENE]{) / dx, k? / dS(k)Khys®s® f(z, k,s) . (C.25)

2This is of course also an effect of suitable choices of the measure in spin space.



Appendix D

The evolution equations of the
irreducible moments

The purpose of this appendix is to show the steps to arrive at the equations of motion for the irreducible
moments, i.e., Egs. (6.75), (6.78), and (6.80) in the main text. Considering the definitions of the
moments (6.18) in conjunction with the fact that the spin vector is not a function of spacetime, it
becomes clear that the only difference in the equations of motion for moments of different rank in spin
can come from the equilibrium terms in the BOLTZMANN equation (6.73). Thus, we will consider a
general moment

X = /dFF(s)E{(kW kS fies (D.1)

where the function F'(s) can be 1, s*, or K ggsasﬁ , depending on the spin-rank of the moment one
wants to consider.

In the following we will use the following identities for the irreducible tensors,

K o) = gleg) 4 %AW (k<5>l<:§) , (D.2a)

B 0 N = gl kD) 4 % (AW}M +2 perm.) (k@kg) , (D.2b)
) ) BN ) — i A ) 4 % (A/wkukm 45 perm_> (k:<5>k:5)

+ %5 (A‘“’A/\p + 2 perm.) (/ﬂ<€>k£>2 , (D.2c)

1
() ) o (0 (o) = (g A P ) 4 5 (Awkuk;}kw +9 perm.) (k<£)k£)
1 2
+ 35 (A“”A)“’k<a> +14 perm.) (k<5>k§> , (D.2d)
1
1) ) o) o0 o (@) 1 (B) — ol kA kP o B = (Awkuk%akm 14 perm,) <k<e>k§)
1 2
+ = (AWAW<%B> + 44 perm.) (k<€>k§)
1 UV AP A Q3 (&) s
+ — (A" AMA*P 4 14 perm.) (k: k‘g) , (D.2e)

105

which, in conjunction with
kO ky =m? - EE,

will allow us to use the orthogonality relation (6.12). In the expressions above, “+ x perm.” stands for
x other distinct permutations of LORENTZ indices.
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Momentum-rank zero
We apply the comoving derivative on the definition (D.1) and obtain

xﬁﬂwﬁ4+/amgqmm (D.3)
Making use of the BOLTZMANN equation (6.73), we find
Xr — Criy = Pl — / AT F(s)Ep~* (Ek foq+ K-V feq) - / AT F(s) By 'k, V0 fis ,  (D.4)
where we defined the generalized irreducible collision terms
@lphe) = /drF(g)E;Wl KM C(x, Ky 8) (D.5)
We start with the last term in Eq. (D.4) and compute

- / dATF(s)Ey 'k, VS fis = —0xr — VuxZ_q + (r — 1)(V"ub) / AT F(s) By Ky k(0 fics

v 0
= 7VIJXZ—1 + (7’ - 1)0—[LVX¢—2 - g [(T + Z)Xr - (T - 1)m2Xr—2} ) (DG)
such that we find
. r—1 ¢ ¢
Xr — Qr—l = - dFF(ﬁ)Ek (Ekfeq + k- Vfcq) - g

+ iy = Voxyg + (r=1ouwxis . (D.7)

[(r+2)x, — (r— 1)m2xr_2]

The term that distinguishes the cases of different ranks in spin is the first one on the right-hand side
of the equation above, which is nonzero only for spin-ranks zero and one. In the case of the irreducible
moments of spin-rank two, this term vanishes, such that we find Eq. (6.80a) in the main text upon
setting x = 1. To evaluate the nonvanishing equilibrium contributions, we note that

/ds(k)feq = gfox , (D.8a)
/dS(k)s“feq = —%thkﬁ)kﬁngu . (D.8b)

Furthermore, a derivative acting on fyx can be written as

0
0" fox = 0

("0 — Exd"Bo — Bok(ay 0 u®) . (D.9)
0

In the case of the irreducible moments of zeroth rank in spin [i.e., F(s) = 1], we compute
_/dFEIlZ_1 (Ekfeq +k- vfeq) = _g/dKEl:_l (Ekak +k- vfok)
= —Jroto + Jr+1,0/80 +0 [(1 - T)Irl - ITO] : (D.IO)

Note that, in order to obtain the term proportional to the expansion scalar, we used the product
rule instead of directly evaluating the derivative acting on the local-equilibrium distribution function.
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Inserting Eq. (D.10) into the general expression (D.7) and making use of the evolution equations for
ap and Sy, we obtain Eq. (6.75a) in the main text. In the case where F(s) = s, we evaluate

- /dFﬁ"El’;_l (Ekfeq +k- erq)

h S
— % AKE! ™" (Byu- 0+ k- V) fox fouS%"k,

h Spv QLY he v e fi
= gaim (Jr+1,096‘ u, — Jry 11V Qf ) + %Qﬁ /dKEk Yk (B 0+ k- V) fou fox
oh <y oY% > j
- gm{Jr-H,OQSL uy — Jrr1,1 Vo QT 4 2wl [KH-I,OO‘O = Kri2,000 + 0(Jr1.0 +7Jr411)
+ BoK 42,19 i, — O (Kri111, = Kry21V,50) } : (D-11)

Here, we used that ﬁg “u, = 2w/. With these equilibrium terms, we obtain Eq. (6.78a).

Momentum-rank one

We act with the comoving derivative on the moment of tensor-rank one in momentum,
d
X = Aﬁ@ /dFF(ﬁ)Eﬂk<”>5fks
1 .
= rla X" + 3" [m2rxe—1 — (r+3)xr41] + AL / ATF(s)ELk™)6 fies (D.12)

and subsequently evaluate the second term by employing the BOLTZMANN equation:
Al / dTF(s) Epk®) 8 freo = € — Al / ACF(5) By kY (Bicfe + kp V7 fo + kp V76 fis) - (D.13)
First, we analyze the last term in the equation above:
— A / AT F(s) B Yk, V6 fies
=AMV, { / dTF(s)EL W (Ekuﬂ + k<P>) 5 fks}
F(r—1) / AT F(s) EL 2k (k, VP By) 6 fics + A" / AT F(s)EL k(P (v,,k<”>) 8 fico
= _§9X¢ — ALV, X — %V” (Mm*xr—1 = Xr41) — (6" — W) Xra
+(r—1) [g (m2xt_, — x") + X" 5000 + % (m?x?_y — x°) a“p} ) (D.14)
Then, we can combine our results so far to yield
X — Qﬁffﬁl = —/dFF(s)EIC_lkw> (Ekfeq + kpvpfeq> + %u” [m*rxr—1 — (r +3)xr41]
ol oxe — AbV X — %V” (m*Xr—1 = Xr41) + g [(r = Dm*xt_y — (r 4 3)x]
+ i XM+ % [(2r —2)m®Xx2_y — (2r + 3)x3] o¥a + (1 — DX““Boqp . (D.15)
In the case of the moments of spin-rank two, x = v, the equilibrium terms vanish and we find Eq.

(6.80b). For spin-ranks zero and one, we need to evaluate these terms separately again. For x = p, we
compute

—/dFEf;_lMM (Ekfeq + kpvpfeq) = Jrp1, 1" = Jrgo1 (VP B + Bout) (D.16)
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which, after inserting the result into Eq. (D.15) and making use of the equation of motion for the
four-velocity, yields Eq. (6.75b). Analogous to the previous case, for x = 7 we have

- / drs* Btk (Ekfeq +ka”feq)
Jh

AKEL R (Byu -0 + k- V) fo ol ko

h - ~ ~ h ~
N 79%1 (Jr+2,193<u> + Jr+2,1uuvugéy> + QSV% AK B kY (Bxw - 0+ k- V) forcfow

oh * ~ _ ' ' 5
- gm{ — JT.+2,1QS‘<M> _ 7.+2,1uyV#QS\V + QgW) (_K7.+2,1Ozo + Krt3.180 — 350Kr+3,29>
— 260K, 139007 0", + 20 [~ Ky 1 1" + Koyz1 (VHBo + Bot™)] } - (D.17)

Inserting this result into Eq. (D.15), we find Eq. (6.78b) in the main text.

Momentum-rank two

Differentiating the moment of second rank in momentum and projecting the result onto the subspace
of tensors that are orthogonal to u*, symmetric and traceless, yields

X = Am ddT / AT F(5) Epk k) § frs
=AM [rm / AT F(s)Ep kR BNV S g + / dTF(s)E} < ddT O‘km) 6 fxcs
- / dUF (s)ELE“kP) § f'ks] . (D.18)
We start by computing the first term in Eq. (D.18),
A“BTUA/dFF VELECRD RN fig = rino + i i <m2X:>—1 - Xﬁl) : (D.19)

Using the projected derivative of the traceless symmetric projector of rank two orthogonal to the
four-velocity,

d

Abg AN = — i A ug) (D.20)
the second contribution in Eq. (D.18) gives
NG e (4 ar s (2
v | AUF(s)Ey Ek k71 ) 6 fis = =20 X,y - (D.21)

Putting the BOLTZMANN equation to use, the third term in Eq. (D.18) reads

/ dUF (s)EL kM kY S fro = €1 — / ATF () Bk k") foq — / AT F(s) Ef K PRV A ) fog

- / AT F(s) B KM EY AV AG fes - (D.22)
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As in the preceding computations, we first concentrate on evaluating the contributions that contain
the deviation of the distribution function from equilibrium. Considering the last term in Eq. (D.22),
we find

- / AT F(s) EL 7 B EY AV A6 fues
=~ AV, [/ dFF(s)EI’;lk“‘kB)k“V(kas} +Agg/drF( )V (E “llagBg )5fk
v « 2 v v
= — 0X7‘ AM VA ﬂ>\ - gv<u (m2X7> 1 sz,-l)
+ / AT F(s)k™ {E;;lAggv (k<a>k Aaﬂk ) +(r— 1)El:2k<”k”>k<p>VAup] 8 fis
174 « 2 v v
= — Oy AMBV,\ ,6’>\ _ gv(u (mQXr> . Xri—l)
1
+ / dUF(s)k™N {— 2B ALGEV AU + (r — 1) B2 <k<“>k<”> - 3A*”’k<">ka> k<p>VAup] 6 fics
v Oc v v 17 1% 1 v
= 0Xr A# ﬁ)\ - 7v< (m2Xr>—1 - Xri—l) - 2X7)4\<# <U >)\ —w >)\ + EGA >A>
urAp 2 2 A (p Mp v)
= DVau 0 + 26— 1) (m20% - x2®) (2075 + 268
1 » 2 ,
S(r =18 (m*X0y = xi) + = [m*(r = Dxr—2 = m?(2r +3)xr + (1 + 4)xp42] 0" . (D.23)

=

Combining these results, we find

_|_

X - e = — / AL F (8) Bk VK" foq / ALF (5) B KPR IV fug
2 2 Ny )\,uz/
+ B [ (7” - 1)Xr—2 -—m (27" + 3)XT (7” + 4)X7~+2:| o”" + TU)\X
2 ' v 2 v v
+ gum [rm2xr> 11— (r+ 5)XT+1} — gVW (m2Xr> . Xr>+1>
0
T3 [mQ(T — 1Yy = (r + 4)xff”] +(r = D3 on, — ALEV Y + 200w
2
+Z {2m2(r — )0 = 2+ 5)X¢<N} o)y . (D.24)

Setting F(s) = Kggﬁ"‘ﬁﬁ (and thus x = v), the equilibrium terms vanish and we find Eq. (6.80c). For
the moments of spin-rank zero, x = p, the equilibrium term becomes

- / AT F(5) Epk‘OkP) foq — / AT F(s) EL KPRV AV ) foq = 260 43,207, (D.25)
which then yields Eq. (6.75¢) by virtue of the identity
ﬁanq =lIp-1,9-1+ (n — Qq)In_l,q . (D26)
For x = 7, the equilibrium terms are computed as

— / ATs* Epk kP fo — / AT Er kMR PV g foq

= O AR B R ke (B - 0+ k- V) forfor

m

- QQLT:{KM&QAZZV“QAB + Qe [Kr+3,2fy> — Kria2 (vy>50 + 5011”))}

— 2,60KT+4’2(,080'HV} , (D27>

leading to Eq. (6.78c).
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Momentum-rank three

The moment of tensor-rank three in momentum works as the ones before. Applying the comoving
derivative gives

uw vy d r
XA = Al - / ACF (5) gk kP kY6 fics

aBy

=AM {mn / AT F(s) EL B CRPEV B 6 fies + / dTF(s)E} (§k<“k5k”’>> 6 fxs
T
+ / dFF(s)Eﬂkmkﬁk”&f'ks} . (D.28)

The first term in the equation above yields

3 v v
A it / ALF(8) B KRR 6 g = i 4+ Zril (m?x ) -y ) . (D29)
whereas the second term becomes
d v
N / dT'F(s)Ey, (dkaﬁW) Ofico = =30"X/3) (D-30)

After employing the BOLTZMANN equation, we obtain for the third term in Eq. (D.28)
/ AT F(s) Bk RV EN 6 fire = €4 — / AT F(s) B KRR RV KRV 06 fes - (D.31)

Note that we could set the terms involving the equilibrium distribution function to zero already,
since no first-order structure involving only fluid gradients with the appropriate symmetries exists.
Considering the second term in the equation above, we compute

- / AT F(s) B KPR kY KV 06 fcs

= —AMVY, { / AT F(s) Er kR ER) § fks} +ar2 / dTF(s)k"V (E{;‘lk@‘kﬂkW) 8 fics

12 v RO 3 v 1%
— Oy AF Ay X 113“/ _ ?vw <m2xri>l _ erl)

r afy ¥ FAr—

+ / AP ()5 [ B AMA kR R + (r = DB 2R R Y D V| 6 fic

3 v v
= 20X — ALDV x0T — ;V“‘ (m2xrf>1 - erl) = 3xE N gyl

6 v A KpuUV 0 v v
- gam (m2xi‘) - XTLQ) +(r—1) [Unpxrﬁ’é At 3 (m2x’r‘_’; — XM ’\)
2 r{pv rluy 6 v
+ 3 (mQXTSMQ — xrle ) oM+ 735005 (m4xi‘>_2 —om?x) + X:‘j_g) } . (D.32)

Combining the expressions, we find

v 6 . Ruv
X — e = o [ e = DXy = m2(2r + 50 + (r + 6| + rina

3 . 14 v 3 14 1%
+ §U<“ [TWQXTﬂ —(r+ 7)X'ri>1:| - §V<M (mngi>1 - Xri\L)l)

9 v v VAPK v afyk

+ 5[ = DN = (5 4+ (= D0 — ALV
1 K v

+ 3+ < [2m2(r Vs 7)X:~<W} oM. . (D.33)

Upon specifying x = v, we obtain Eq. (6.80d).
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Momentum-rank four

Letting the comoving derivative act on the irreducible moment of tensor-rank four gives
X = AZZQS% / AT F(s) Bk kKRS fics
= AkPe [mﬁ / AT F(s)EL KRRV ED k)6 fieg + / dTF(s)E}, <(i_k<“kﬁk7k5>> 8 fics
+ / dUF(s) Bk kP kKO § f'ks} . (D.34)
The first two terms give
AF L, / ACF(8)EL KRR R k8 freg = rite M + gmw (m“‘xii’ﬁ - X:i’?) (D.35)

and
d v
Aggf‘y’g /dFl (5)E17; (d’rk«lk’ﬁkwké)) 5fks = _3Q(HXT-)&\-F1> ’ (D36>

respectively, while the BOLTZMANN equation lets the third term take the form
/ AT F (8) B kY EMEP)§ fie = €473P — / AT F(s) Er KRR EM P KRV 16 fres (D.37)

where we employed again that the equilibrium terms vanish. With the help of the identities (D.2) we
find

- / AT F(s) B KRR R P B9V 06 fie
= —AMPEY, { / AU F(s) By kPR RO | fks}
+ AN / ACF (5)k Ve (B KRR R ) 6 i
= Oyt — AR, g () )
aBys

+ / AT F(s)k") [Eﬁ_lA“”A”Vkakﬁk”k& +(r— I)E{;_Qlc(“kz”k’\kp)k<5>VAu§} 3 fics

= 20— AR ST () X)) = P

T afyo
12 .. A v 0 v v
- ot (mQx?"> - Xr—’i)->2) +(r—1) {Ungxff’é et 3 (mzx’;‘_é" - X A”)
8 w{pv rluy 4 v
+ ﬁ (m2xr<_;12 A XTW A) O-P)ﬁ + ﬁo-w (m4X;\ﬁ>2 _ 2m2X7>"\p> + X;\-?Q) :| ) (D38)

When putting these expressions together, we arrive at
Auv v 4 v A A . KUV
X {de) Q:ffil P _ ﬁo'<u [m4(r — 1)Xrﬁ>2 —m?(2r + 7)) + (r + 8)X7‘—7->2] + Xt

4 y VA 12N 4 N VA VA
i o2 =09 - e (mh )

9
9 v 1% v K v @ K
+3 [mz(r — DX = (r 4 6)xk A”} +(r = DX o — ARDAV XY
4 K v
+ x4 I [QmQ(r — D - (2r 4+ 9)xf<‘”*} oy, (D.39)

which yields Eq. (6.80e) when setting x = .
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Appendix E

Calculations for second-order
hydrodynamics

In this appendix we will show how to arrive at the equations of dissipative relativistic second-order
hydrodynamics (6.156)—(6.161), and list the transport coeflicients appearing therein.

E.1 Derivation of the hydrodynamic equations

In order to derive the hydrodynamic equations, we start from the equations of motion for the irreducible
moments and use the asymptotic matching conditions to rewrite the terms of second order as functions
of the hydrodynamic variables. Then, it is straightforward to obtain the final form of the second-order
equations through the inversion of the linearized collision matrix.

E.1.1 Energy-momentum tensor and particle four-current

The quantities appearing in the energy-momentum tensor and the particle four-current, i.e., the bulk
viscous pressure II, the particle-diffusion current n*, and the shear-stress tensor 7#*, all couple with
certain contractions of moments of spin-rank two, as was discussed in the main text. Thus, we have
to evaluate the respective equations together, which we group by their transformation properties.
Explicitly, we have two types of scalar moments (p, and p,) that can be matched to II, three types of
vectorial moments (p¥, p¥, and ¢#) that will play into the equation of motion for n#, and four tensorial

moments (p, Y, pi and gi¥) contributing to 7.

Note that, beside the asymptotic matchings (6.139), (6.142), and (6.147), we need to express the
comoving derivatives of «q, By, and u* that appear in terms of second order in the moment equations.
For them, we employ the evolution equations (6.39) to first order in Kn and Re ~!, giving

. i
vo ~ HO , ~ HO , o — E.1
Ao Bo U ) (E.1)
where we introduced
Py) — — P —
2y Jao(e0 + Po) — J30mo 77— Jio(eo + FPo) — Ja0mo ' (E.2)

Dy ’ ' Doy
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These relations can then be used to express the derivatives of any function .# which depends on the
equilibrium distribution function as

TN

a a
0F ay) e (a,/ 1 a/) Bo 0F .. E3)

OMF ~ur | —H+ —H — —

Y (aao 9By €0 + Py 06
Here we defined the enthalpy per particle h :== (eg + FPy)/no and replaced the gradients of fy via the
relation (6.41).

Scalars

First, we rewrite the moment equation (6.75a) by employing the asymptotic matching (6.139), yielding

m2

2
N . m ~ N ~ ~ ~
T+ =Gy = —?ago)ﬂ—ﬂnnmvun”—TnnyrnuF“—(5HH,,«H9—)\Hn,TnMI“—&—)\Hm«w“”aﬂy . (E.4)
Here and in the following, the r-dependent coefficients are listed in Subsec. E.2.1. The second scalar
equation is given by the contraction of the moment equation (6.80c). Here, we have to employ the
asymptotic matching (6.147) for the moments of spin-rank two, as well as the expressions (6.150) for
their components parallel to u#. Taking these together with Egs. (6.153), all moments of second rank

in spin have to be replaced via the following rules:

3 1
YR ~ —WTQO)H (u“u” — 3A‘“’) + T£01)u(“n”) + 7;(020)7#‘” , (E.5a)

wﬁy,)\ ~ Tgll)n)\ (uuuy _ ;Aplj> + T£12)U(M7TV)>\ _ %Tglo)l—[u(pAu)A + gﬁ%nﬂ(ﬂAuM ,
m

(E.5b)

phvAa o p(22) pha (uuuu B ;A‘“’) + g—rgl)u(MAu)(z\na)
_ 3 g0 gamaa {12002 A Axaq(uns (E.5¢)

5m2 0 7 10 v )
prvAos ; Y62, (1 AV A aB) %7?(013) NN (E.5d)
prrAeBY 87;(024)A“”7”"A2:g;’774’7 . (E.5e)

All moments of spin-rank two and momentum-rank higher than four do not feature contributions of
first order in KNUDSEN and inverse REYNOLDS numbers. Then, the contraction of Eq. (6.80c) reads

2

~ : s ~ = g 3 v
7—pl_[,'r‘l_[ + ?Qp,rfl = _gpl_[n,rvun“ - Tpl‘[n,rn/AF‘H - pHH,rHe - Apl‘[n,rn,ulu + )\pl_[ﬂ',rﬂ—u Ouv (E6>

which (as expected) looks very similar to Eq. (E.4), with the difference that the first-order term ~ 6
is absent. Upon inserting the form of the linearized collision terms C,_; and €, ,_; and inverting
the corresponding matrix [cf. Eq. (6.115)], we obtain Eq. (6.156) in the main text. The coeflicients
appearing therein are listed in Subsec. E.2.2.

Vectors

Rewriting the moment equation (6.75b) with the asymptotic matching (6.139) gives

Fp i — O = oI — 5 ' — 8 o0 — Loy VPIL 4 Ly n APV AT, + Fry  TLFH

- 7-n7r,7"7r'uVF1/ - S\nn,ralwnv + S\TLH,THI# - 5\nﬂ',rﬂ'#ylu s (E7)
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where the coeflicients are listed again in Subsec. E.2.1. The equations of motion for the moments
of spin-rank two that are relevant (namely p# and ¢/) are obtained by contracting Egs. (6.80b) and
(6.80d). They yield

Fong ) — €8 = =X = Oy o0 — Cptt,e VP + L p APV AT + T o ITFH
— Fonr T Fy = Aprnr 0™ 1y 4 At o LT — N o7 1, (E.8)
and
Fanat ¥ — €= =X = Sgnn "0 — Lontty VAT + Lgnr n A VAT, + Fopr o TTFH
— Fgnm T Fy = Xgnn 0" + Agnit o JUH — X 7771, (E.9)

respectively. Writing the three equations above as one vector equation and inverting the collision
matrix (6.119) then gives Eq. (6.157), with the coefficients defined in Subsec. E.2.2.

Tensors

Applying the asymptotic matching (6.139) to the moment equation (6.75¢) of energy-rank r gives
73,77"7%<””> - Cﬁ‘fjl) = 2a£2)0‘“’ + 27~'W7r7r>\<”w”>>‘ - Sﬂmﬂr’“’ﬁ - %ﬂmer“Jl’))\ + S\WHmHJ’“’
S ALY SO VAT LR W ALY COB (E.10)
After applying the asymptotic matching (6.147), Eq. (6.80a) becomes
%wmrﬁ<“”> — Ci‘tfl) = waw’rWA<“w”>’\ — Swwmrﬂ“l’ﬁ — ﬁpﬂmrw’\(“aw,\ + S\,MH’THU‘“’
— T F 4 Ly V0 4 Xy o T (E.11)

In order to obtain the remaining two tensor equations, i.e., the equations of motion for p#* and ¢/,
we have to contract Egs. (6.80c) and (6.80e) appropriately, which yield

v

~ . (pv o Y 12PN < v ~ A v 3 v
Tpm,«ﬂ'w ) — Cr = /\pﬂwﬂn\(“w ™ Oprn ™0 — Tprm T {1 >>\ + Aprrr,pLlo

— ?pm,ran”> + lzpﬂnwv(“n”) + S\Z,ﬂnwn(“l”) (E.12)
and
7~—q7r,7"7:r<ﬁw> - Qf;)l;fl = 5‘(]71’0.1,7“71—)\ (uwu>/\ - Sqfr'n',rﬂ—uye - 7~—q7r7r,r7r>\<ua'u>)\ + 5\q7rl_[,r]~_*[0+“/
— Ty 4 Ly V0 4 Xy oM7) (E.13)

Then, after inverting the collision matrix (6.123), we obtain Eq. (6.158) in the main text.

E.1.2 Spin tensor

In the case of the spin tensor, there are two moments of axial-vector type (Tﬁ“ ) and t#), which have to

be treated together with the respective component wf of the spin potential. Similarly, one vectorial
moment w# is determined together with xl, whereas there is only one moment of tensor type t”
that does not couple to the spin potential. First, we have to express the moments that appear in the
second-order terms of Eqgs. (6.78), i.e., we have to write down relations analogous to the ones in Egs.
(E.5). Taking into account Egs. (6.145) as well as the asymptotic matching (6.142), we find

= QVp (E.14a)
1
TV o X0y 4 X2 ypqv 56“”0‘6ua (Q%l)mg + Qﬁ“)mo)/g) , (E.14b)
3 2
T,f“’)‘ ~ EQ%z)AM”q)‘) — §Q%2)tp@e”>“°‘pua , (E.14c¢)

while the higher moments can be approximated as zero. We can then proceed in the same way as
shown before.
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Axial vectors

We have to start with the evolution equation for the magnetic component of the spin potential, wj,
which reads

7~—L«JU:)(§H> - Q:l:; = ﬁuﬁewg + ;%o.ﬁpep'u + -ﬁwaguywo,u + ﬁwapal“/pl/ + ﬁwtt'uywl/

—+ GMVQB’U/V ({]wﬁvaﬁo,ﬁ + ﬁwm,rfaﬁo,ﬁ + ~éu)F/{,'r‘F‘ozHO,B) 9 (E15)
where we defined
7(0) 722)
— I3 n !
= —wl = > o > oyt — Bow” (E.16)
n n

cf. Eq. (6.62b). After using the relations (E.14), we find from the moment equation (6.78a):
%p,rf’m + %pw,rwém - Q(fi)1 = Rpo,r 00" + Rpoq.r 00" + Rppw r0wh + Rpor 0 Py + Rpoq,r o’ dy
+ jNipaw,7"(7MUWO,1/ + EMWXBUV <6Pm,rvamﬁ + Epn,rvaﬁO,B + jil?'Im,rIozmﬁ

+ .;’ime,rFamg + .Nﬁpln,rfalioﬁ + .épp,.;mFano,g) . (E.17)
The moment equation (6.78¢c), after being contracted with A, becomes
%q,qu) - szfla = ﬁq@,req# + ﬁq@p,rep# + kqo,roﬁuyqu + ﬁqaw,ro"uywO,V
+ fsqcr;:n,ro'wj*:'y + ﬁqt,rtiju + euuaﬁuy (Eqm,rvamﬂ + aqn,rvaﬁoﬁ + ﬁq[m,rl—amﬁ
+ ﬁqu,rFamB + -éqln,rIaKO,B + ﬁqF&,rFaKO,B> . (Elg)
The r-dependent coefficients can be found as before in Subsec. E.2.1.
Note that in these equations there are no terms ~ w"”p,,w*”q,,w"wy ,,. The reason for this lies in
the fact that up to second order we may replace p*, ¢*, and wj) by their NAVIER-STOKES values, which
are proportional to w*, and we have w*”w, = 0. Similarly, there are no terms ~ 6<“>Va’6wl,a/€5, since
we cannot have four linearly independent vectors orthogonal to u*. Lastly, terms ~ Uuptype”“‘s'yu(;

vanish to second order since t* ~ g,

The inversion of the collision matrix (6.127) then produces Eqgs. (6.159), with the transport coefficients
again given in Subsec. E.2.2.

Vectors

The first vector-valued quantity appearing in the spin tensor is the electric part of the spin potential
kly, whose evolution equation reads

7~—l<al.€é)#> - Q:;P{L = ﬁnaaﬁg + ﬁnaouymo,u + ~é/w.)(*)wjlf(),v + EntAM)\VVtUA + ~émF’L{MU-FI/

+ euuaﬁuy (wavawo,ﬁ + Bﬁpvapﬁ + ﬁanIawo,B + -échwFawo,ﬁ + -éanFapﬁ) ’
(E.19)

where we defined

e o A (E.20)



E.2 Transport coefficients 173

cf. Eq. (6.62a). On the other hand, contracting Eq. (6.78b) with e***fu,, gives
7:m7rr'0<”> + %mm,rkf(gu> - Qf:;ﬂ-_l = ﬁm@,remu + kmﬁn,reﬁg + ﬁma,ro-lwml/ + ﬁ\no’mrauy"@O,u
+ ﬁmw,rwuymu + ‘émwm,rwuyﬁO,V + EmtJ'A#)\VUtV)\ + ~~QmIt,rtl“/IV
+ ﬁmFi,rtuyFu + e;wozBuV (Gmp,rvapﬂ + qu,rvaqﬁ + ﬁmlw,r-[awo,ﬂ

+ -émlp,rlapﬁ + iﬁm[q,rjaqﬁ + -Nﬁme,rFapﬁ + équ,rFaqﬁ> .
(E.21)

Inverting the collision matrix (6.131), we find Eqgs. (6.160).

Tensor

Contracting the moment equation (6.78¢) with A%’e‘saﬁ”up yields
7:t7r£<lw) - Qﬁ:_l = ﬁt@,retlw + 6tm,rv<umu) + Em,rv(“fi? + -;?itIm,TI“LnJV> + JZitFm,r—F%MtUV)
+ kt[ﬁ,’r"]('uﬁ? + ﬁtF&,’rFW"Qg) + ﬁtww,rwéuww + ‘é’cwp,?"p<'u("-)l/> + -é’w.zq,rq<HWU>
+ o-a(uev)aﬁ’Yuﬁ (ﬁww’rwo,’y + ﬁ{apwpy + ﬁwq,r%) , (E.22>

which, after the inversion of the collision term, gives Eq. (6.161) in the main text.

E.2 Transport coefficients

In this section, we list the transport coefficients appearing in the main text as well as in the first part
of this appendix. To obtain them, one has to perform the contractions of the various moment equations
as described in the previous section. The following contractions of irreducible tensors prove helpful in
performing these computations,

RO 20+ 1 g v 7 v
AP = o AN AAQAT s = AN (E.23)

cf., e.g., Ref. [43] for the first identity.

E.2.1 Primary coefficients

To keep the presentation clear, we first list the r-dependent coeflicients appearing in the moment
equations after performing the asymptotic matching, but before inverting the linearized collision terms.

THY : Scalars

The coefficients appearing in Eq. (E.4) read

e =R (E.24a)
~ m? [ Gy, (1)

L i O E.24b
Mn, 3 (D20 R, 1,0) ( )

m? (1) G, aRE}—)l 0
Tn,r = TRT, - + = 5 E.24c
i, 3(e0 + Po) ( Y0 Dy 9Info ( )
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The ones in Eq. (E.6) on the other hand are defined as
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NH# : Vectors

The quantities appearing in Eq. (E.7) read
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5 Bodri21 1 (0 0)
Enl_[,r = m + 7Rr+1,0 — RT—LO R

) B0Jr+2 1 (2)

£n7r p = — R _ s

’ €0 + PO r—1,0
0
P 1 Boriza RO T +30 87%5_)170
MU o+ Py \ g0 + Po r=LOE 2 L0 H1n B,
2
~ . 1 ﬂOJr+2,1 (2) 8R7(~_)170
Tnrr = - TRr—l 0~
o+ P\ eo+Fo ’ dln By
1
A = = |2+ R =20 = mPR, |
T R, 1R, 1 (0RE,  19RY,
nll,r = 80(0 h 8ﬂ0 mQ 60(0 h 8ﬂ0 )
o 873527)1,0 1 0R>” 1,0
nm,r — 60[0 h 6/60 )

(2r + 5)T<22>}

0
1 8735421 0

m? 91n B,

0
+(r— 1)725«—)2,0 )

9T - 0= DT |

(E.24d)

(E.24e)

(E.24f)

(E.25a)

(E.25b)

(E.25c¢)

—(r +4)T<0°>}

(E.25d)

(E.25¢)

(E.25¢f)

(E.26a)

(E.26b)
(E.26¢)

(E.26d)

(E.26¢)

(E.26f)
(E.26g)

(E.26h)

(E.26i)
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whereas the ones in Eq. (E.8) are given by

Tpnr = Too
S\Imw.,r = 7% r(()ll) +§T£2,1£ + g5) (szS)l) Tfffi) ’
gpnn,r = (H(;ZO + H(’fﬁg) ’7;(011)
~ 3 [ 0T - Y - 31 - (e -
e = =T %

~ 1
epnﬂ',y- = g (7;(42_? 0~ 2T(20 ) - 7:«(321)70 5

00)
s = o g {100 4 3 [0+ 9T =T
b S (T80~ T, e, — e, )
S = (T =T+ T B - 07,
- e - 2merT Y, - er 18TV
Apnit,r = % (820 - ;({92) T,
1

U G m2 T2, — T2 (22)
Apnr,r = <8a0 7 86 m=T. 210 = Trivo + 37-71,0) :

01
T

(E.27a)
(E.27b)

(E.27c)

(E.27d)

(E.27¢)

(E.27f)

(E.27g)

(E.27h)

(E.270)

(B.27j)

Interestingly, due to the contraction there now appears a nontrivial transport coefficient coupling n*

and w¥. The coefficients in Eq. (E.9) are

Fomr = T0 Y,

Agrao,r = gTr(olg) ,
Sqnnr = ('Haio +Haz) ,7_(13) + - 3 {( + 5)7(13) m?(r — 1)7;(71?5)70} :
Cgnttr = 5% (7;(2(1))0 m? T 00) ) 7
),
%““%i%{iﬁ”ﬂﬁ%m%ﬁﬁJiaj%( o7, -

_ TT(24) _ 87:(3?,0 }

=10 9In 50 ’

ST

- % [m4(r ~ DT - m2(2r + 5)7;(0“ +(r+6)T 18]

5 _ 3 9 190 2.-(00) (00)
Agnll,r = ) <8a0 + h%) (m T 10— r+1,0> )

(E.28a)
(E.28Db)

(E.28c¢)
(E.28d)
(E.28¢)

(E.28f)

(E.28g)

(E.28h)

(E.28i)
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N 0
>\qn7r,r = < +

8040

THY . Tensors

The coefficients in Eq.

19 N\[6/ @ (22) (24) ~
e ) [35 ( T 270 — Toia 0) +T. 200 - (E.28j)

(E.10) are defined as

P RO (E.29a)
(2)
5 1 (2) 2 (2) aRro IR
enr = {(r+4)7€r0 m2(r 1)7@_2,0} R (E.29b)
2
Famr = = [(27“ +5RP —am?(r — 1)739_)270} : (E.29¢)
< 2
Atty = == [( + 4RO, o — 2 + 3)m>RY) + (r — 1)m47€£,07)2,0} : (E.29d)
oR ") R
~7rn r = 5 R(l) R(l) r+10 2 r—1,0 E.29
Tonr = 5 gy | ko T RS0+ Gy at —m (E-29¢)
. P
brnr = 5 (Rﬁgl,o - m2R£17)1’0> ) (E.29f)
- 2 [or 10RY orM 10RY
Aeng = = HLO | Z 02 Lo - Lo (E.29g)
’ 5 80(0 h 850 8040 h 860
The terms appearing in Eq. (E.11) on the other hand read
72’(/)71’,7“ = 7'(20 , (ESO&)
5\1/171'0.1,7“ = 2T7(~1,2; ) (E30b)
< 1 7—(20) 87'(20)
Symmyr = % [(r + 27,50 —m2(r — DT + 212+ H +H 7 (E.30¢)
3 dag 9P
12
Tommr = 20,2 = Z(r = T2, (E.30d)
5\ _ 200 3 (00)
Agrllr = Eprrfl - W(T - 1)7;7270 ) (E.30e)
3 aT(ll 0 (11) 2
T T, — + T + 7T$01) s E.30f
Tymn, 5(€0+P0) ( OJln fy o+ Py ( )
~ 3
Ewﬂn,r = _77‘@?0 5 (E30g)
- 3071, 1307y,
A T,y — — - Tz ’ 5 E.30h
wmn, 5 (90[0 hb 6&0 ( )
whereas the ones in Eq. (E.12) are given by
S (E.31a)
Moo = Tro (E.31b)
N _ 0 29 17 o (22) (22)
Spmmr = (Haao +Haﬂ> (AREE [m (r =T — (r + 4T } : (E.31c)
- _ 3 0 2 \(22) 722 20
P = 25 {2m (r =T, = (2r +5)T, } T2
2
-2 [ = DT - w2+ 9T + (r )7;%3%} , (E.31d)
5 7 10 10
/\pﬂ'l_Lr 15m2 (WQTS»_% - TE«+1)) 5 (E316)
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5 1 7 11 11 1 13
Tprn,r = ot B {50 {(7’ + 5)7;(+1?0 —m®r r(—l),O} - Eﬂ;(q)o
O [T ( aray (11) pCE)
- i |35 (T = T00) + 5T | (E311)
5 7 11) 11 1, _as
gp‘ﬂ'n,r = % (7;(-{-1 0 2T( ) ﬁﬁ(—l%o 9 (ESlg)
< 3] 10 1
)\ T, T T a 2 (1 (11) Py (13) . E31h
= (e * 7350) |35 (7700 = T40) + 1570 (B.31h)
Lastly, the coefficients in Eq. (E.13) are defined as
7~—q7r ro= T(24) ) (E32a)
< 10
>‘QTrw,7" = _37;(024) ) (E32b)
- Ty _aTeY 1, (24) (2a)
Sgrmp = Mgt 4 Hogthe — 2 (= DTEG, ~ (0 + 6T (B.32)
7, = 10 {(2 +9)T( *) —m2(2r — 2)7'(24) }
qmT,T 49 7‘72,0
288
— 5 [ = DT —mAer + DT + (r+ T (E.32d)
< 36
Agert = =1 [m‘*(r ~ D79 - m?@r + TS + (r+8)7,05) 0} : (E.32e)
- 12 (13) _ 2 (13) 9 2-(13) _ £(13)
e = gy |4 T =T = 2O (2700 -0 (e
;. 12 s (a3 _ g (3)
gqﬂ'n,’r T 35 ( T ’l‘+1,0> ’ (E32g)
5 9 19 27019 (13)
Agrn,r = — <(%40 + haﬂ()) (m Tr—10— T 0) : (E.32h)

This concludes the list of coefficients appearing in the equations for the components of the energy-

momentum tensor and particle four-current.

S v . Axial vectors

First, we list the coefficients appearing in Eq. (E.15),

202
Tw = ————(J30 — J31) ,
7, mgF(‘*’)( 30 — J31)
~ 202k — 1
Roo = ———=— |(K30 — K31)H — (K40 — Ks1)H + ( Js0 — 5J31 ) |
mglw) 3
2
~ om
Ruop = 3@
N 202Hh
Roo = ——=—J. y
mgI‘(W) 31
2
~ om
Ruop = @
~ o
ﬁwt = m 5
- 202k
bwn — _W 31

~ 20%h 1
ﬁw Kk T T T oy K3 — - K )
Ix, gD ( 81— 5 41)

(E.33a)
(E.33b)
(E.33¢)
(E.33d)

(E.33¢)

(E.33f)

(E.33g)

(E.33h)
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~ 202k 1

b = T (8K — . E.33i
RuFe, gl @ 20+ Py (BoKa1 — 3J31) (E.331)

The quantities appearing in Eq. (E.17) read

e (E.34a)
20h
Nwr:: - dJp 5 E.34b
Thw, g Lo ( )
~ 1 (10) 2 (10) (10) 0 o0 (10)
Rpo,r = =3 [( +2)Q, —m (r—1)Q, 5+ X, 1} H(?ao + Haﬂ 9,0 (E.34c)
~ 1
Rpgq,r = —gX,fi? : (E.34d)
~ 20h — 2
Rpow,r = om |:K7'+1,OH — Krjo0H+ Jry10 + (7‘ — 3) J7'+1,1:| , (E.34e)
Rpor =219 (E.34f)
~ 3
Rpoqr =~ + (r - 1)3Q513%,0 ; (E.34g)
~ 20h
R ocw,r = ——dJp 5 E.34h
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Do, = Qﬁ”f 0 (E.34i)
~ 20h
Ry = —dJr 5 E.34j
Dpx, Qr 10t gm +1,1 ( j)
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Rpror == =—+ = 10 E.34k
otor =5 (50 *+ 3770 ) @20 (B34
= 1 1 897«111 0 (11)
R == E.341
pFw,r g0+ Py <2 dIn By Q’"O ’ ( )
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Roppri== 2 422 Ky - - K, , E.34
Pl 2 (8@0 + h3,80> QT Lo gm ( LT +2’1> ( m)
- 1 100", , w20k
RpFrr = —— = — — —J . E.34
Pl eo+ Py ( 2 0lnfy Q gm +1,0 ( n)
Similarly, the coefficients in Eq. (E.18) are defined as
Fm QUD (E.35a)
~ 2 12 12 1 12) 0 0 12
Rao,r = 9 (Xv"(+1) - m2X7~(—1)) + 3 [( Lm Qi 2,0 —(r+ 4)9( } <7—l + H% Q( ) )
(E.35b)
. P
Raop.r =5 (Xr(iol) - szﬁOl)) ; (E.35¢)
= 1 12 12 1 12 12
Raoir = 15 [2(7’ —1)m*Q"Y) ) — (2r +5)Q%% )} + = (XT( 12)_ mzqu,l)) , (E.35d)
~ 4oh
ﬁqow,r = _TBOKT+4 2 (E35e)
~ 2 10 10) 10 1 10 10
Rarpr = 72 |(r = Dm QL — (2 + 9m? Q" + (r+ Q) o| + 17 (A5 —m2a1))
(E.35f)
~ 10
ﬁq{,r = _§Q£202) ) (E35g)
= 1 11
hqm,r = 6 (Q£+£’0 QQT 1 0) ) (E35h>
~ 1 . " 10 oh .
ban 6 (Qi_;,_)l - mQQf«_)1> + ?gim r+3,2 » (E351)
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%mm>é<§;+i£;>@ﬁﬁo7ﬁQﬂh), (E.35))
Roror = g [P0~ 490 - - (G, - meel )] L (masw
Ryt = % <aio - iag() (9511 m? Q" ) + ?;—Z (KT+3,2 - ;LKH“) , (E.351)
Rypny = - j_ Pofli [ 20 — (r+ 5)9521 61 7o (95?1 ~m2Q"” )} . (E.35m)

SAHY . Vectors

The coefficients that appear in Eq. (E.19) are given by

. 40°h
Tk — ng( )J31 9 (E36a)
~ 40°h — 4
= ——2" (KyH-K T, E.36b
Reo gL ( 31— KnH + 3 31) ( )
= 202h
ﬁno = ng(K) J31 3 (E360>
~ 202h
Rpw = ——=~J: s E.36d
gmI(®) 73 ( )
~ g
Drt = T (E.36¢)
~ o
Rert= =5, E.36f
FCT T (e + o) (E.36f)
~ 202h
Kw — T B E.36
f gmI(®) 31 ( g)
2
~ om
Drp = ST (E.36h)
= 202h 1 )
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~ 202h 1
Ropn = =2 (ByKu — Jso) E.36]
F gl 20 + Py (BoK a1 — J30) (E.36))
2
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R =_———. E.36k
KE'p QF(”)(€0 + PO) ( )
On the other hand, the coefficients in Eq. (E.21) are
Froy e QD (E-37a)
N o Aol
Frorr = QW) + X Jyan (E.37b)
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= 1 11 11) 0 0 11
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~ 20h 1 . .
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180 E Calculations for second-order hydrodynamics
Rrow,r = %Q%” : (E.37g)
Rrown,r %Qsﬁ) 2o0h 2.1 (E.37h)
Dot = O, (E.37i)
Rt : (azo + ;Lazo) o* ), (E.37j)
Rrorir 50+1 7 ( o™, ah?ﬂQi”i,o) : (E.37k)
Buop.r = ( 2019 Qiﬂo) : (E.371)
fuar = 1012, (B.a7m)
Rrofwr : 2907mh <Kr+2,1 - ]11Kr+3,1) ) (E.3n)
Rrotpr = é (JZO + ;Laaﬁo> ( 201 Qf}f},o) , (E.370)
Rrorqr: —% ((;ZO + i%) o, (E.37p)
Rt =~y |9 - (490U + 5l (0, - o) | L (Bama)
(e0 + Po) d1n By
Forar = 5 (190 + s 9%) (5.37%)
SAHV : Tensor
In Eq. (E.22), the following coefficients were introduced,
For = Q0 (E.382)
R = 3 [m?r = 1@, — (r+ 902 - <H8io +Ha‘;0> Q) | (F.38D)
B = 15 (A0~ m?Q,) (5.35¢)
Bue,r : 1% (Qiil m2Q\™, ) (E.38d)
Rums = 15 (50 * 1o ) (9o = m*el,) | (5380
s = gy 0o~ 49098~ g (O —mee) L @
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Ripny = m [erfoi)l —(r+ 5)Q£’21 81 B (Qii)l - Q(R) )] (E.38h)
Ror = 7, s (E.38i)
Riop,r = % (259 - m2a9) (E.38))
Riwgr = % (Xﬁﬁ) 2X“2)) +— Qm) (E.38K)
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. doh oh

Rta’w,’r‘ = _TBOKT+4 2+ 7Kr+3 2 (E381)

i 1

Ruopri= =5 (A7 —m Xf D) + 22 [t - QMY — 2r + 3w + (r + 9O, |
(E.38m)

. 1 1

Rioqr =5 (Xfff - m%\fﬁ'ﬁ)) -5 [2(7‘ ~1)m?Q\)  — (2r + 5)Qf,102)} . (E.38n)

E.2.2 Total coefficients

After inverting the linearized collision terms, the transport coefficients appearing in Eqs. (6.156)—(6.161)
are simply given by weighted sums of the r-dependent coefficients appearing in the previous subsection.

Components of TH” and N*

The second-order coefficients in Eq. (6.156) are given by

m=Y (nggﬁn,r + Té?gg%pn,r) , (E.392)
b = > (" e + T ) (E..39b)
Tiin = Z (Té% Tlin,r + TS OTTpnn T) (E.39¢)
b = Y (78, Omm + 7y ) (E.39d)
A= 3 (7S A + 788 Ayt ) (E.39)
A = 3 (780 At + 78 Mgt ) (E.39f)

The first contribution denotes the case where there is no tensor polarization, while the second terms
give (presumably small) corrections. Similarly, the second-order transport coefficients in Eq. (6.157)
read

o= 3 (A + e+ 78 (0
Mo = 3 (4 75 i + i ) (E.40b)
bun = I (T asOnnr + T + TS, ) (E.40c)

nn Vv.orYnn,r Vv,0rYpnn,r v,0rYqnn,r ) .
born = Z (T\(/p()JrénH r+ T‘(/ Orgimn r+ T‘(/ Ozgqnn r) R (E40d)

— (p) 7 (pp) (pa) 7
bor = (T olnmir + T oM omm s + T o lgnmr ) (E.40e)
I (T&’gﬁnn,r + D F it + T‘(/f)gZi'an,r> , (E.40f)
o (p) (pp) ~ (Pq) ~ E.40
Tnm = Z TVOTT’I‘HT r+ Ty, or Tpnm,r + Tv,0rTqnm,r | ( . g)
Aun = ( 7O A+ TE Dy + 7 Q))\qmm) : (E.40h)
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)‘nl'[ = Z (T‘(/ﬁ%rj\nn’r + T‘(/pngan r + T‘(/ OqunH T) s (E401)
T
Aur 1= 30 (10 A+ 7 A + T A ) (E.40j)

T

Finally, the second-order transport coefficients appearing in the equation of motion for the shear-stress
tensor (6.158) are defined as

T = 30 (T T+ T P + T T+ T T ) (E41a)
= 3 (ol o R+ A o) .
Orm = Z (Tép())rgm rt T}p&)%mr + Tg,)o?)«‘spm rt TT Or5q7"77 r) ) (E.41c)
B R M S M o
Arll = Z (7'; ())TS‘WH rt 7'T 0 )Awwn rt+ T; 02;\p7rH rt+ TT Or)‘qﬂ'n 7) ) (E.4le)
o= 3 (e 4 A P 7+ e )
brn = Z (T; ()JTZW” rt TT 0 )fwm rt TT O’I“Epﬂ'n rt Tépgrngn r) ) (E.41g)

T
Ao = 3 (72 Awnr + 70 N + T A+ T A ) (E-41h)

Components of S ¥

We now turn to the transport coeflicients that are present in the equations of motion for the components
of the spin tensor.

The coefficients in Eq. (6.159a) read

o =TW5, + Z T P (E.42a)
Tup = Zs(”) For s (E.42b)
Tugq = Z T 7 (E.42c)
Rup =T R + Z@”)ﬁpew,r , (E.42d)

Ry =T Regp + Z (z‘“%,,g -+ T Regy, ) , (E.42¢)
Rpg = Z ( "”.)ﬁpaq T R ) (B.42f)
Rw =T Ry + Z (557 oo + T57 Reor ) (E.42g)
Ry = T Ry + Z (57 R + T50 Rapr) (E.42h)

Rug = Z (@m Rovar +s(wt) ng) , (E.42i)
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Rt = ‘IA wt T Z‘I(wt atr (E.42j)

Buoro = Z (i(”)hpm o+ T B, ) : (E.42k)

b = Tt > (557 0+ 55 Bnr) (E.421)

Rorw = Z (T(M)ﬁpnu r+ T(A T)-qum,r> , (E.42m)

RoFw = Z ( T Ry + Ty Rarwr ) (E.42n)

Rore =T Ry, + Z (57 Rorer + 57 Ratnr ) (E.420)

Rore = TP Rer + 3 (557 Rorwr +T57 Ry ) - (E.42p)

Here, there are no contributions from moments of other spin ranks. However, the quantities transforming
as axial vectors (w#, p#, and g*) couple to each other, as can be seen in the transport coefficients.
Similarly, the ones in Eq. (6.159b) are given by

Tp = E :(ZAOTTPT )
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(E.43a)
(E.43Db)
(E.43c)
(E.43d)
(E.43¢)
(E.43f)
(E.43g)
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The coefficients in the equation of motion for g# (6.159¢) are defined as

- Z{E(Af,)oﬁqm ) (E.44a)

Tow = TZX,“B)% + Z T o T (E.44b)
Tap = Z T o Tor (E.44c)
Rqo = Z ( /;:TO)TRPO%T + SE:,)OrﬁqG,T) ) (E.444)
Ryow = (tw Rue + Z TA Orﬁpew " (E.44e)
Sate = T8 R0 + Z (sf;grﬁpg T Raop, ) : (E.44f)
Ryo = Z (SSTOT’QPUCI rt SS)OT ~clw) ; (E.44g)
Ryow = sﬁjjg R + Z (S Rporr + T 00 Rarinr) (E.44h)
Raop = T(tw Ruop + Z (E(X%rﬁpg r+ S(A)Orﬁqu ) ; (B.44i)
Rt = T4 R + ZSA orRatr - (E.44)
Baw = Z (ifif&hpm,r + T 00 Bawnr) (E.44K)
Bar = (tW)wa + Z ({S(fo)r()pnm + {SE:,)OTECIH»T) ) (E.441)
R = Z ( :&Rplm,r + gz,)of'ﬁqlmw) J (E.44m)
Rarw =3 (o Rerwr + T4, Rarmr ) (E-44n)
Ry = (tw Rors + Z (SSTO)r;iPI"%T + ‘I(X,)mﬁqlm> ; (E.440)
Rare = T Romy + Z (4o Rornr + T4, Rarer ) - (E.44p)

The quantities appearing in the equation of motion for < (6.160a) are given by

=T+ Z T o (E.45a)

Tar = ZS(“‘“)* (E.45b)
Ruo = 33‘)5@9 + Z T Rt (E.45¢)
R = ZS‘““’)ﬁme . (E.45d)
Rpo = S(“)ﬁm + Z T R (E.45¢)
Ruon = Z‘S‘”“’)ﬁma " (E.45¢)

Ry = z“)ﬁm + Z T Rrowre,r (E.45g)
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R = Z T Rrowr (E.45h)
Boe = T bt + > T0 Rt (E.451)
Rert = ngf:ﬂu)ﬁmlt,r s (E-45j)
Rept = izf)uémm + ZS(V*fi”)ﬁmFm ) (E.45k)
Brew = T B , (E.451)
Brp =TV Dy + Z T Do (E.45m)
Bog = ZS(“’”)hmq . (E.45n)
Rt = ‘Z( Rt + ZT(”“’)F{MW . (E.450)
Rurp = ZS‘““’)QM . (E.45p)
Rurq = Zs‘“w)ﬁmlq . (E.45q)
Rppw = ‘z<v“ Reru s (E.451)
Rerp =T Ry + Z T R (E.45s)
Repq = ZT(W)ﬁqu r- (E.45t)

The coefficients in Eq. (6.160b) read

T = Z Kzgj)O)r%mﬂ‘ ) (E.46a)
T : S(“’”) 7+ Zs%ﬁm . (E.46b)
Ry = Z T Rt (E.46¢)

Rroon = s(“’“)ﬁ + Z T Rrotier (E.46d)
Rwo = Z S&grﬁma,r ) (E.46¢)
Broow = 37%“)@&0 + Z T R (E.46f)
Riows = 3 T4, Reowor (E.46g)
Rrown = ST(‘}”O”)QM + Z T Rrownr » (E.46h)
Dot = T4g Bet + Z T Rt (E.461)
Rori =Y T%)Tﬁmn . (E.46;)
Rwre= T Ropc+ DTV Ruorr (E.46k)

Brow = T B (E.461)
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Drop = E(wn)bm + stmbmp r (E.46m)
Brog = Z T(V“f&ﬁmq,r : (E.461)
Rrotw = fs%“)ﬁm - Z T Rt (E.460)
Ruorp = vamﬁmlw ) (E.46p)
r
Rwiq = nggrﬁmlqm , (E.46q)
R puw = TE%{)ﬁan ; (E.46r)
Rorp = T%‘)ﬁm + Z ‘Igf’)o)r.’vﬁme,r ) (E.46s)
r
Rwrq = Zﬁ%rﬁmm,r . (E.46t)

Lastly, the coefficients appearing in the equation of motion for the tensor t** (6.161) are given by

Ty = Z fgf,)o,ft,r ) (E.47a)
R = Z TT OTﬁta,r ) (E47b)
Biw = Z f:p,wf)tm,r ) (E.47¢)
Bus = Z T o Doer (E.47d)

R = Z T Rt (E.47¢)
Rirw = Z TT ) RiFon (E.47f)
Run = Z T Retir (E.47g)
Ry = Z T Rernr (E.47h)
Ripw = Z T R (E.AT)
Rup = Z T Rtop.r (E.47j)
Rig = Z T Rewqr (E.47k)
Rigw = Z T Rewr » (E.471)
Riop = XT: fgf,)mﬁtow ) (E.47m)

ﬁ’wq — Z {‘CT orﬁtaq,r . (E47Il)



Appendix F

Useful formulae

This appendix is concerned with deriving several expressions that are used in the main text. Specifically,
we show how to compute general spin-space and thermodynamic integrals in Secs. F.1 and F.2, whereas
Sec. F.3 demonstrates how to construct the orthogonal polynomials used in the expansion of the
distribution function. Lastly, the purpose of Sec. F.4 is to show a method to treat collision integrals
one may need to compute.

F.1 General spin-space integrals

We want to consider a general integral over spin space of the form
- /dS(k) g (F.1)
where the measure is in general (for on-shell momenta where k? = m?)
ds(k) = S0£d455(52 +¢2)o(k - s) - (F.2)

Comparing this to Egs. (3.90) and (3.162), we can see that ¢ = 3 and Sy = 1 for DIRAC fermions,
whereas ¢2 = 2 and Sy = 3/2 for PROCA particles. Given that the integral (F.1) only depends on the
momentum k and has to be orthogonal to it in all indices, it can only depend on combinations of the
projector K*¥. Considering its symmetry, we find that it has to be of the form

Iul---un _ I(n)K(N‘lu2 e K,"Lnflun) , %f n %S even , (F.?))
0 , ifnisodd.
Here, the round brackets denote the symmetrization in all indices,
1
Kape | gbm-ipn) T JHB2 L fCHn—1bn F.4
(n—1)N ; ’ (F-4)

where the factor (n — 1)!! counts the terms in the sum over permutations, which is denoted by P. At
this point, we only need to compute I(™). In order to do this, we first notice what happens when we
contract the tensor (F.4) with K, ,,. We have

n+1
n—1

K K(Hluz e Kllfn—l;ufn) —

H1p2

K (Bspa | CHn—1bn) , (F.5)
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which becomes clear when considering which types of contractions can happen inside the symmetrized
tensor of rank n. Then, we have upon complete contraction

Koy - Ky, KR L Hn—1iin) — oy ] (F.6)
Now we are able to compute I as
(n) 1 e 2)n/2
I = mKMIUZ T K/"fnflllwnll Vb = n + 1 /dS (F7)

The last integral is a LORENTZ scalar and easily calculated in the particle rest frame, where 6(k - 5) =

3(s°)/m,

S
/dS 20 /d35(5 —s? +¢%) = 2n /d35(5 —|s| +¢) =25, . (F.8)
In total we thus have
2(_§2)n/2 (p1p Hn—1fn) i i
/dS(k)s“l g = S0 B R, i s even (F.9)

0 , ifnisodd.

In particular, the first few nonzero integrals read

/ dS(k) = 25 , (F.10a)
22
/ dS(k)sts” = —SO?K“” : (F.10b)
/ dS(k)st's"ss” = 52 T (K“"Kaﬂ KreKYP + KM (F.10c)

F.2 Thermodynamic integrals

The basic thermodynamic integral we have to evaluate is given by [cf. Eq. (6.16)]

- n—=2q (e, |
Ing = (2q+1)”/dPEk (=Fka ) fon

1 .
T 2¢+ )1 /dPEk 0 (Bg —m*)" fo (F.11)

where we used that k(' k, = m? — E2. Since this integral is a scalar, we can evaluate it in any frame,
which most conveniently is chosen to be the fluid rest frame, where u* = (1,0) and Fy = k° = vk2 + m?2.
Switching to spherical coordinates and performing the angular integrations, we find

g 1 > 2q+2 (1.2 2\(n—1)/2— [ BoVEZFmZ—o ]71
ILygy=—"—— dk E*17=(k a|ero 0
“ (2q+1)!!27r2/0 (k" +m”) ¢ T
—n—2 [e%s}
g Bo 2 2\q+1/2 p_2 —a -1
= — d — 9 ey F.12
(2¢ + DI 272 / y (" =) Ty e a] (F.12)

where g = 2s + 1 is the degeneracy factor for spin-s particles and we substituted y := Byvk2 + m?2 in
the second equality. Furthermore, z := mpgy is the ratio of mass over temperature that quantifies how
far we are in the relativistic regime. In the following we consider classical statistics, i.e., a = 0. The
remaining task then consists of evaluating an integral of the form

o b— o —
Zon(2) ::/ dy (y2 —22) 1/2y e v, (F.13)
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with @ = n — 2¢ and b = ¢ 4+ 1. In the ultrarelativistic limit z — 0, the integral is evaluated
straightforwardly as

Z.(0) = / dyy** T le™¥ =T'(a + 2b) . (F.14)
0

In the case where z > 0, it is advantageous to first define x := y/z, such that
Tap(2) = za+2b/ do (22— 1)V goem= | (F.15)
1

Then, we note that the following recursion holds,

Iab(z) = Ia+27b,1(z) - Ia,b71<z) , (F16>

which can be applied iteratively to obtain

ZLas( ZEb: <)Z I Tatav—2;,0(2) - (F.17)

Jj=

However, the integrals Z,,25—2j,0(%) can be evaluated by remembering the definition of the BICKLEY-
NAYLOR function [168]

Ki, (= / drcosh™ _ZCOShT:/ dz ; e =2"T_,0(2), (F.18)
1 VaZ —1

which then yields

—z“”bz ( )Klgj 2b—a(2) - (F.19)

Summarizing our results, we have

q+1

n +1
_ge™ 50"2 HE: <q )Klzyzn(), z>0
= . (F.20)
(2¢+ 1)1 272

In order to implement Eq. (F.20) efficiently in the case z > 0, we note that the BICKLEY-NAYLOR
function fulfills the following recursion relation for r > 2,

rKir11(2) = (r — DKip—1(2) — 2Kir(2) + 2Kir—2(2) , (F.21)
with the starting values given by [169]
Kip(z) = Ko(z) , (F.22a)
Kiy(2) = g{l —z[L_1(2)Ko(2) + Lo(2) K1(2)]} (F.22b)
where K,.(z) is the modified BESSEL function of the second kind and L, (z) denotes the modified
STRUVE function. In the cases where r < 0, the BICKLEY-NAYLOR function can be expressed as

Kiv(2) = (-1 1 Ko(z) (F-23)

The result (F.20) is the general solution that will hold for any value of n and ¢, as long as the integral
converges, which is ensured by demanding that ¢ > —3/2 for z > 0 and n > —2 for z = 0. Nevertheless,
for the cases where n — 2¢ > 0 we may establish a simpler formula that circumvents the use of
BICKLEY-NAYLOR functions. Orienting on the method presented in Chapter XIII of Ref. [43], we first
note that we can express the integral (F.13) as

Tap(2) = (—1)"(2b — 1)!!z“+2b;—aM (F.24)

za b7
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which is easily proved by employing the integral representation of the modified BESSEL function

Kr(z) = (Q%_Tl)” /:o dr (r* - z2)r_1/2 e’ (F.25)

and substituting y := 7/z in the integral. Note that the relation (F.24) holds for all a € Z, where
derivatives of negative order are to be interpreted as integrals of the respective positive order. On the
other hand, as long as a > 0, it is also possible to establish

a z La/2] . a (2
d Kb( ) _ Z (_1)0.—](2]' _ 1)”(2])[(});2;-;() , (FQG)

dza 2b ,
J=0

which is based on the identity
d Ky(z) Kpy1(2)

=_ F.27
dz 2P zb ( )
and can be proved by induction. Combining Eqs. (F.24) and (F.26), we obtain
La/2] 4 “ 4
Tap(z) = (2b — 1)1 > (=1)7(25 — 1! (2j> IR i(2) (F.28)
§=0
which in turn allows us to express the thermodynamic integral I,,4 for n —2¢ > 0 as
antn 2q)/2] ' n—2g '
Iy = ge®® 02 — >, (12— 1)!!( % )z"+1_q_JKn+1qj(z) . (F.29)

=0

Here we assumed that z > 0, since the z = 0 case does not change compared to Eq. (F.20).

F.3 Orthogonal polynomials

(J)

In this section, we show how to evaluate the coefficients asy’ introduced in Eq. (6.19), orienting on

Ref. [51]. Requiring that the polynomials Plin ) are orthonormal, cf. Eq. (6.14), we have

Sm /de(f) Z Z al3:0aG0 prts

T’GS(]) SES(J)

=3 Y alagn S (F.30)

Jae,
res{?) sest ’

n)

Next, we define the matrix DU whose elements are DS{;’K = Jrys+aee [51]. Note that the dimension

of this matrix is as large as the number of elements included in the basis Séj ) that are smaller or equal
to n. Then, the orthonormality requirement reads

S 3 i DalIDE = by Vmm € SY) . (F-31)
resi) sesy

To see what this equation tells us, consider it for m = sg, where sy denotes the smallest element of the
set S;Z):
n

> aIDEM =0, (F.32)

T80
T‘ES;J)



F.4 Collision integrals 191

Moving on to m = s;, where s; is the next-smallest element, we find after using Eq. (F.32)

Z agly;é)pﬁjs',f") =0. (F.33)
TESEJ)
Iterating this procedure, we find
Z a;jr’e)Dg’E") =0 Vs#n. (F.34)
sES;j)
In the case s = n, we obtain
n
0D S aGODE = gy, (F.35)
reng)

where we used Eq. (F.34). In total, we thus have

no (0
Y Brpim = e (F.36)
o (4:6)
’I‘ESEJ) nn (ann )
The solution of this equation is
. 2 i in ) D—l (-77@’7’) ]
(a,(f;f)) = (D‘l)ff,’f )J2u , aﬁf;,f) = Ma(ﬂ) , (F.37)

(D—l)(jln) nn

nn

which is the explicit relation were looking to obtain.

F.4 Collision integrals

As has become clear in the main text, almost always collision integrals have to be evaluated to compute
transport coefficients. While in rare cases these integrals can be done analytically [170, 171], in most
cases they have to be performed numerically. Since the expressions we deal with often involve a large
number of terms, in this section we present a method introduced in Chapter XIII of Ref. [43] that can
be used to automatize this computation. The basic idea consists in separating the integrals into a sum
of elementary collision integrals

Jlabdef) .= / [dK]e PPr (PR (Pr - w)"(Q - w)(Q - w)(—Q - Q) 6W(k + k' — ky — ko), (F.38)

where the momenta k, k’, k1, and ko can be expressed in terms of the total momentum Pr and the
relative momenta @, Q’ via

i — % (P4 Q") | (F.392)
K — % (PE— Q) , (F.39D)
e — % (P4 Q™) (F.39)
B — % (Pl Q™) . (F.39d)

Next we follow the steps in Ref. [43] and make use of the identity

b
° b—1/2 o _ a (Y.
/ dy (v° - 2°) 12 yeey = 042 E (=1)? (j)KIQj—Zb—a(Z) ; (F.40)
z =0
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which we proved in Sec. F.2. The result for the basic integral (F.38) then reads

min(d,e) d+e
abod.e a— o_op 1673 +€ + 1
Jlabdef) - 4-2a—b—d—e—2f Z K(d, e, g)o a9 Z 1)h
(2mh)12
9—0 h=0
(oo}
% / dv [’UQ . (22)2} (d+e)/2+f+1 ’U2(a_1)+b+3Kifb7d7872+2h(’U) 7 (F41)
2z
where we introduced the following factors,
dle!
, if (d—g), (e —g) even
K(d,e,g) =1 (d—g)l(d+g+1)ll(e—g)li(e+ g+ 1) (d=g), (e—9) (F.42a)
0, otherwise ,
fta )
por (B9
2g+1 , if (f —g) even,
o(f9) — (29 )(f+ +1)! (ng). (/=9 (F.42Db)
0, otherwise .

The remaining task then consists of expanding the collision integrals in question as sums of the
basic integrals (F.41). Note that the tensors 2+ EF ﬁ which may appear in the integrals related to
irreducible moments of spin-rank higher than zero, do not allow for a straightforward expression in
terms of polynomials of Pr, (), and Q’. This is the case because of the factors of energy appearing in
the denominator, leading to

(PY + Q) (P + QW)
(Pr-u+Q-u)? '

T = AP 4 (F.43)

and similarly for = 5 In order to bring these terms into the form required by Eq. (F.38) as well, we
expand them around the nonrelativistic limit [formally equivalent to taking the limit k* ~ (m, 0)#],
leading to

Y~ APV EZ; ~ AZ; . (F.44)

The plot 6.1 is generated with this leading-order approximation.
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