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Abstract

The motivation for this master’s thesis is to explore the potential of predictive
data analytics in the field of medicine. For this, the MIMIC-III dataset offers an
extensive foundation for the construction of prediction models, including Random
Forest, XGBOOST, and deep learning networks. These models were implemented
to forecast the mortality of 2,655 stroke patients.

The first part of the thesis involved conducting a comprehensive data analysis
of the filtered MIMIC-III dataset.

Subsequently, the effectiveness and fairness of the predictive models were
evaluated. Although the performance levels of the developed models did not match
those reported in related research, their potential became evident. The results
obtained demonstrated promising capabilities and highlighted the effectiveness of
the applied methodologies. Moreover, the feature relevance within the XGBOOST
model was examined to increase model explainability.

Finally, relevant subgroups were identified to perform a comparative analysis of
the prediction performance across these subgroups. While this approach can be
regarded as a valuable methodology, it was not possible to investigate underlying
reasons for potential unfairness across clusters. Inside the test data, not enough
instances remained per subgroup for further fairness or feature relevance analysis.
In conclusion, the implementation of an alternative use case with a higher patient
count is recommended.

The code for this analysis is made available via a GitHub repository and includes
a frontend to visualize the results.
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Abstrakt

Das Ziel dieser Masterarbeit ist es, das Potenzial prädiktiver Datenanalyse im
Bereich der Medizin zu erforschen. Hierzu bietet MIMIC-III Datensatz eine umfan-
greiche Grundlage für die Erstellung von Vorhersagemodellen, darunter Random
Forest, XGBOOST und Deep-Learning-Netzwerke. Diese Modelle wurden einge-
setzt, um die Sterblichkeit von 2.655 Schlaganfallpatienten vorherzusagen.

Im ersten Teil der Arbeit wurde eine umfassende Datenanalyse des gefilterten
MIMIC-III Datensatz durchgeführt.

Anschließend wurden die Effektivität und Fairness der entwickelten Vorhersage-
modelle bewertet. Obwohl das Leistungsniveau der entwickelten Modelle nicht an
die in verwandten Forschungsarbeiten berichteten Werte heranreichte, wurde ihr
Potenzial dennoch deutlich. Die erzielten Ergebnisse zeigten vielversprechende
Anwendungsmöglichkeiten auf. Zudem wurde der Einfluss der Features auf das
XGBOOST Modell untersucht, um die Erklärbarkeit des Vorhersagemodells zu
erhöhen.

Schließlich wurden relevante Untergruppen identifiziert, um eine vergleichende
Analyse der Vorhersageleistung zwischen diesen Untergruppen durchzuführen.
Dieser Ansatz kann zwar als nützliche Methode angesehen werden, doch war es
nicht möglich, die Gründe für mögliche Unfairness zwischen den Clustern zu unter-
suchen. Innerhalb der Testdaten blieben nicht genügend Instanzen pro Untergruppe
für eine weitere Fairness- oder Merkmalsrelevanzanalyse übrig. Abschließend wird
die Implementierung eines alternativen Anwendungsfalls mit einer höheren Patien-
tenzahl empfohlen.

Der Code für diese Analyse wird über ein GitHub-Repository zur Verfügung
gestellt und enthält ein Frontend zur Visualisierung der Ergebnisse.
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1 Introduction

1.1 The Potential of Prediction Models in Medicine

Predictive data analytics are going to have a tremendous impact on the field of medicine.
Especially recent advancements in computer science, like the development of Machine
Learning (ML) models based on electronic health records, can immensely support health-
care professionals in their daily work.

Novel tools in healthcare have the potential for various applications, including healthcare
research, early diagnosis, and real-time monitoring of risks [1]. In the context of this
thesis, the specific focus lies on mortality prediction, as advancements in this field can
have a direct impact on saving lives. By accurately predicting mortality risks, healthcare
providers can make informed decisions and optimize healthcare services to improve
patient outcomes. This has the potential to bring about significant changes in medical
treatment and ultimately enhance overall healthcare delivery.

However, the development of these predictive tools must be accompanied by careful
examination and reflection. Models like deep learning networks, which are often referred
to as Artificial Intelligence (AI), make it increasingly difficult to retrace the calculations
on which they were based. For such “black-box” models, the decision process from input
to output is often not retractable [1]. These unclear decision processes introduce potential
risks that are specific to this technology. Especially, unclear accountability, a lack of
transparency, potential unfairness, and inadequate data protection are some of the main
concerns regarding predictive AI tools [2].

While the benefits of predictive models, such as improved patient management, are
widely acknowledged, the risks associated with their deployment emphasize the need for
responsible implementation. As these aspects are especially relevant in the healthcare
sector, some researchers advocate for establishing “uniform international standards, not
at least from a medical ethics perspective” [3].

The societal impact of predictive AI models is currently the subject of intense public
discussion and the relevance of these concerns is underscored by the introduction of new
regulations, such as the European AI Act1. Herein, the need for careful oversight in the
field of artificial intelligence is recognized. Specifically, AI systems deployed in the context
of medical assistance are classified as high-risk. The designation further highlights the
importance of ensuring the safety, effectiveness, and fairness of AI technologies used in
healthcare settings.

In line with this, the World Health Organization has published guidelines addressing the
use of digital tracking devices. They emphasize the necessity of safeguarding patients’
rights while also ensuring acceptable working conditions for healthcare workers [4].

A final important aspect to consider is the issue of equal treatment, which is a fundamental

1https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52021PC0206
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principle of the medical system. There is a concern that advancements in computational
profiling techniques may inadvertently reinforce existing biases and prejudices. This
could further “deepen existing inequalities and reinforce already entrenched practices of
discrimination” [3]. This underscores the crucial requirement for the medical field to not
only pursue performance advancements in the development of digital solutions but also
prioritize the explainability and fairness of such approaches.

Should predictive algorithms prove to be unfair, the confidence and trust in these emerging
tools would experience a significant decline. These concerns account for the increased
importance of an enhanced perspective on data analytics. To this end, the inclusion of
fairness metrics and feature relevance can improve the explainability of such models.

1.2 Research Question

The practical focus of this thesis is a use case of mortality prediction of stroke patients in
the Intensive Care Unit (ICU). The data originates from the publicly available Medical
Information Mart for Intensive Care dataset (MIMIC-III, v1.4).

The primary objective of this thesis is to evaluate and compare various prediction models
in terms of their performance and fairness. The aim is to determine whether accurate
mortality prediction is achievable for stroke patients. Moreover, different subgroups shall
be detected for which the predictive quality might differ. Clustering methods and fairness
metrics may be supportive of predictive approaches by making such relevant subgroups
visible.

The overarching research question to be addressed is: Does the MIMIC-III dataset
provide adequate suitability for investigating these research objectives, and can potential
subgroups be effectively identified within the dataset?

Given that this is not a medical thesis, the emphasis is placed on the comparison of
prediction models rather than drawing specific medical conclusions. Consequently, this
thesis aims to primarily benefit the field of machine learning and, in turn, contribute to
research in the healthcare sector.

1.3 Thesis Outline

In the following Chapter 2 the related research and expected results are introduced. Next,
Chapter 3 explains the technical pre-processing steps that were realized for the setup
of the use case. Chapter 4 summarizes a descriptive data analysis of the dataset. In
addition, the feature correlations are presented. This is followed by a clustering analysis
in Chapter 5. In Chapter 6 the results for different prediction models are discussed. The
chapter is concluded with an analysis of feature importance. Next, Chapter 7 introduces
a fairness analysis based on three examples. The final analysis step is implemented in
Chapter 8, where a methodology to investigate subgroups is proposed. In conclusion,
Chapter 9 lists potential steps for future research and summarizes the results of this
thesis.
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2 Related Work

This section provides a summary of previous research that was influential for this thesis.
Additionally, the expected results of this thesis are outlined.

2.1 Influential Research

Previous research on the MIMIC-III dataset can be broadly categorized in three direc-
tions.

First, there is research based on the hourly prediction of the occurrence of sickness, death,
or complications like sepsis. Therein, the goal is to achieve earlier predictions compared
to scoring methods that are currently implemented in hospitals. In this regard, hourly
time-series data is commonly employed as a basis.

A second direction is the prediction of the onset of an illness using general data averages
rather than hourly data. However, achieving accurate predictions in this context necessi-
tates a comprehensive understanding of the medical factors involved and the progression
of the illness.

The last research approach is to predict the general development of a patient. For this,
different use cases are possible: length of stay, probability of a secondary stay (relapse),
and mortality prediction. This last case describes the intention of this thesis: the
prediction of death within the hospital stay, within 30 days, and within 365 days.

Up until now, most papers that are based on the MIMIC-III dataset either focus on
prediction models with hourly time-series data, as can be seen with Moor et al. 2021 [5],
or on natural language processing approaches. Furthermore, a lot of research exists
regarding the general prediction of mortality, length of stay, and readmission rates, as can
be seen with Purushotam et al., 2017 [6]. Their paper also offered a precise descriptive
analysis of the complete MIMIC-III dataset.

When looking at research with a focus on specific illnesses, research regarding heart
disease patients is prevalent. However, the methodology therein can be transferred to the
stroke use case in this thesis. In this way, a paper by Vazquez et al., 2021 [7] provided
a useful reference. They thoroughly examined risk markers for gender subgroups of
patients with acute coronary syndrome. As of yet, the focus on underlying factors across
subgroups, like gender differences, is not common in this field of research. Another
insightful example of a heart disease use case is presented by Barrett et al. 2019 [8],
wherein patient mortality was predicted with deep learning networks.

In comparison to that, little research was found for the prediction of mortality of stroke
patients. A possible reason for this is that there are fewer cases compared to other
illnesses, such as heart failure. Moreover, previous stroke-related research mainly focused
on Natural Language Processing (NLP). For example, a model, that was also published
through PhysioNet, has been developed to derive the NIHSS (National Institutes of
Health Stroke Scale) scoring system from free-text patient discharge summaries [9].
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One noteworthy paper in relation to stroke within the MIMIC-III dataset was published
by Li et al., in 2022 [10]. They developed a nomogram for mortality prediction of stroke
patients. The performance of their model is used as a reference point for the machine
learning models in this thesis.

The relative scarcity of research dedicated to stroke is astonishing, considering that it
remains one of the primary contributors to global mortality [11]. Stroke comprises various
subtypes, each exhibiting distinct patterns of fatality among men and women. In terms
of overall stroke-related deaths, Rexrode et al. state that, in 2019, stroke accounted
for 6.2% of all female deaths and 4.4% of all male deaths [12]. This discrepancy in
prevalence between genders presents an interesting dimension for investigating equal
prediction quality across subgroups. The limited amount of stroke-related research within
the MIMIC-III dataset, coupled with the critical significance of this illness, was decisive
for the selection of this use case.

2.2 Expected Results

Throughout this thesis, multiple data analysis tools and methods, like correlations,
clustering, and classification, are applied to the MIMIC-III dataset. It is expected, that
these methods can provide solid and reliable results, as there is already a number of
comparable research based on the MIMIC-III dataset.

A particular focus lies on the performance and fairness of the implemented prediction
models. The AUROC (Area Under the Receiver Operating Characteristic) score is a
widely used metric to evaluate the performance of a classification model. It ranges from
0 to 1, where a score of 0.5 represents a random classifier and a score of 1 indicates a
perfect classifier.

In a paper by Purushotham et al., this score was estimated to be about 0.75 for comparable
machine learning models [6]. They further claim, that their own deep learning model
performed between 0.87 to 0.94 depending on the feature set. It must be noted, that
their prediction task differed slightly, as they predicted general mortality throughout the
complete dataset. However, similar research within MIMIC-III regarding heart failure
led to comparable results [8].

Finally, the paper by Li et al. [10], with a focus on stroke mortality, claims that a model
simply based on the Oasis score shows up an AUROC score of approximately 0.70, while
their nomogram achieved about 0.80. These values can be seen as potential benchmarks
for the prediction models in this thesis.
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3 Use Case Setup

This chapter describes the selection and filtering of the dataset. Especially the fundamen-
tal pre-processing steps that were implemented for this use case are presented in detail.
Furthermore, the chapter introduces the supplementary frontend that was developed as
part of this research.

3.1 The MIMIC-III Dataset

This master thesis is founded on data from the Medical Information Mart for Intensive
Care dataset (MIMIC-III, v1.4) [13]. The data was collected in the Beth Israel Deaconess
Medical Center, Boston, between 2001 and 2012. It comprises over 58,000 hospital
admissions of over 45,000 individual, deidentified patients who stayed in critical care
units. A multitude of features was measured per patient on an hourly basis. As was
previously shown, MIMIC-III has already been successfully implemented in previous
research papers [5] [6]. Moreover, the dataset has been the foundation for multiple
public PhysioNet challenges2. Thus, this complete dataset presents a reliable source with
sufficient size for machine learning.

While in theory, the data of the MIMIC-III dataset is publicly accessible, it may only
be distributed by PhysioNet3, where a user needs to apply for access. PhysioNet also
demands users to finish the “CITI Data or Specimens Only Research” training4, which
emphasizes responsible data handling.

Lastly, a credentialed user is required to accept the Data Use Agreement, wherein one is
further requested to publish the code that was employed for dataset analysis. Facilitating
this request, the complete code of this thesis is made available through a GitHub

repository5, ensuring accessibility and transparency.

As a first step of this thesis, the MIMIC-III dataset was imported into PostgreSQL6,
which proved suitable as a local Relational Database Management System (RDBMS).
Necessary database setup files for this process were distributed by PhysioNet7. This
setup procedure is described in detail in a provided paper [14].

3.2 Filtering and Pre-Processing

3.2.1 Patient Selection

The initial filtering of patients determines, which admission are at all suitable. The
complete process is also visualized in Figure 1, in the subsequent section.

2https://physionet.org/about/challenge/moody-challenge
3https://physionet.org/content/mimiciii/1.4/
4https://physionet.org/about/citi-course/
5https://github.com/JayVeezy1/MA_thesis
6https://www.postgresql.org/
7https://github.com/MIT-LCP/mimic-code/tree/main/mimic-iii
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While there are 58,976 unique admissions in the dataset, many patients are underage
or need to be excluded because of missing data. Moreover, only patients were kept for
which actual measurements of vital signs, also referred to as “chart events-data”, were
available. This resulted in approximately 40,000 relevant admissions. This filtering step
was conducted in line with Moor et al. [15]. Furthermore, their guidelines for structured
work with MIMIC-III were mostly adopted for this thesis. They also provided the code
for their paper and offered valuable pre-processing references.

Next, the feature “icustay id” was selected as the relevant key to remove duplicate
patients. Otherwise, duplicate instances would occur when using hospital admissions as
the primary key, as some patients undergo multiple transfers to the intensive care unit
within a single hospital stay. In addition, all ICU stays with less than 24 hours were
removed as they do not offer sufficient data. After these filtering steps, there were 32,220
unique icustay ids left. This filtering step was based on concepts from previous research
by Alistair et al. [16].

In numerous publications, an additional filtering step was implemented based on the
hospital database system software utilized. Over the course of data collection, the old
“CareVue” system was succeeded by the “metavision” system, which resulted in distinct
chart event-ids and item ids. As a result, it is a tremendous challenge to map the
roughly 12,000 “CareVue” variables, encompassing vital signs and lab events, to the 2,000
“metavision” variables. However, a separation would have been regretful, as the 18,837
“CareVue” patients make up a large amount of the MIMIC-III dataset. Still, the complete
integration of those two systems was not conducted, as it is a major task in itself. Thus,
only for the selected features, described in the following section, the respective “CareVue”
features were mapped to the “metavision” features. Future researchers may expand this
mapping to additional variables or work exclusively with the “metavision” system.

12



3.2.2 Use Case Selection

As mentioned in the previous sections, the selected use case for the master thesis is the
mortality prediction of stroke patients. The final filtering led to 2,655 patients with
stroke.

Figure 1: Overview of Filtering Steps

Patients were filtered for their illnesses based on the ICD9-codes8 of their diagnosis at
admission. ICD-9 codes, which stand for the International Classification of Diseases,
Ninth Revision, are a standardized index used for classifying and coding medical diagnoses
and procedures. It is possible to change the use case through the selection of ICD9-
codes in the supplement file “selection ICD9 codes.py”. This step is fundamental and
requires some medical background knowledge. In addition, related papers, for example
by Woodfield et al. [17], offer helpful guidance on this topic.

It should be noted, that this selection can have some pitfalls, as some ICD9-titles might
seem like they have medical relevance, but they were used differently in the actual
diagnosis of patients. For example, not all cerebrovascular ICD9-code titles that sound
like they indicate stroke can be accounted as stroke cases. The code “43883 - Facial
Weakness” might be considered a valid medical indicator. However, after cross-referencing

8https://www.cdc.gov/nchs/icd/icd9.htm
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the “diagnosis text” for all the patients with “43883”, it became clear that those were
mainly heart attack patients. Thus, “43883” was removed as a selector for stroke. Of
course, if one of those patients showed up with another actually valid ICD9-code, like
“430 - Subarachnoid hemorrhage”, then they were kept in the dataset. This example
shows, that it is crucial to select the correct ICD9-codes, as a reliable patient selection is
one of the most important steps of the analysis.

The following Table 1 offers an overview of the implemented ICD9-codes based on official
guidelines9.

Stroke Type ICD9 Codes

hemorrhagic 430, 431, 432, 4329
ischemic (& transient ischemic attack): 433, 4330, 4331, 4332, 434, 4340, 43400,

43401, 4341, 43411, 435, 4350, 4351, 4353,
4359, 436

other (& late effects of stroke) 437, 4370, 4371, 4372, 4373, 4374, 438, 4381,
43811, 4382, 43820, 4383, 4384, 4385, 4388,
43882, 43885

Table 1: ICD9-Codes to identify Stroke Types

This filtering is in line with the ICD9 guidelines and should make it possible to differentiate
between hemorrhagic and ischemic cases. Hemorrhagic stroke encompasses various types
of stroke characterized by internal bleeding within the brain. On the other hand, ischemic
stroke refers to cases where an artery is blocked by a blood clot, resulting in a disruption
of blood supply to specific regions of the brain.

However, the occurrence of hemorrhagic cases seems higher than expected. Using the
diagnosis as a filter for stroke types might be problematic, as it seems that the medical
staff sometimes used ICD9-code 430 “general stroke” for ischemic and hemorrhagic cases.
This might explain why there are unexpectedly more hemorrhagic cases than ischemic
cases, even though ischemic stroke commonly accounts for 80% of all cases [10].

The differentiation between hemorrhagic and ischemic stroke might still be used as a
filter. However, for the subsequent analysis, the complete dataset, containing all stroke
types, is used. It is important to keep in mind, that ischemic stroke and hemorrhagic
stroke have different occurrences and specific characteristics. Thus, it may be beneficial
to improve the filtering between these cases. Moreover, different subtypes of these stroke
types might offer another promising field of further research. For example, research
has shown that while hemorrhagic stroke was more common among men, cardioembolic
stroke, which can be more fatal, was more prevalent amongst women [11].

9https://health.mo.gov/data/mica/CDP_MICA/StrokeDefofInd.html
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3.2.3 Feature Pre-Processing

As the MIMIC-III dataset contains over 12,000 available features, identified by their
related “item-ids”, these are too many features for any useful analysis. Thus, a user has
to select, which features are relevant for the respective use case. Regardless of the user
selection, patient demographics and the admission diagnosis are always included. Patient
vitals and lab results should be selected after the estimation of relevance. In total, a
selection of approximately 40 of the most relevant features is recommended.

For each patient, these pre-selected features are extracted from the original dataset into
an individual .csv file. The features included for this use case are displayed below in
Tables 3 and 4.

This process is currently solved hardcoded in the setup function ’export final dataset’ in
the supplemented code. For future development, a solution similar to the factorization
table, which is described further below, might offer a more flexible approach to this
feature selection.

This pre-selection naturally requires some medical knowledge, thus it is also recommended
to use previous research as a guideline. A user can later select inside the script or inside
the frontend, which of these pre-selected features to actually use for the correlation
analysis and the creation of prediction models. Overall, the topic of the pre-selection of
features, as well as the actual feature selection for the model creation, still has potential
for future improvements.

As another part of the pre-processing pipeline, there are two steps for outlier removal.
At first, for each patient and each feature in the time series data, values that are bigger
or smaller than 100 times the mean of the respective feature are removed. This intends
to remove extreme values like measurement errors. Secondly, the central data table
“average patient cohort” is derived from the time-series data. From this table, patients
whose average values are higher than 10 times the mean of the respective feature are
removed. This removes a small amount of patients, who diverge too strongly from mean
values.

At last, this “average patient cohort” contains all relevant patients with their feature
averages. A previous comparison of prediction results from studies where only mean
values per Patient were used [7] [10], with research where hourly time-series data were
implemented [6] [15] was conclusive. Based on this, it became apparent that mean values
are indeed sufficient for initial mortality prediction. Thus, the implementation of this
table containing feature averages was chosen as the main data source for the following
analysis steps.

Furthermore, the categorical features were factorized with the supplementary table
“factorization table.xlsx”, a section of which is displayed below. The factorized values
for each feature were selected manually with the subsequent correlation analysis in
mind.
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feature unfactorized value factorized value

admission type ELECTIVE 0
admission type EMERGENCY 1
admission type URGENT 2
ethnicity UNKNOWN/NOT SPECIFIED 0
ethnicity WHITE 1
ethnicity ASIAN 2
ethnicity HISPANIC OR LATINO 3
ethnicity BLACK 4
ethnicity OTHER 5
insurance Government 0
insurance Self Pay 1
insurance Medicaid 2
insurance Medicare 3
insurance Private 4
marital status SINGLE -1
marital status DIVORCED -1
marital status SEPARATED -1
marital status WIDOWED -1
marital status no data 0
marital status UNKNOWN (DEFAULT) 0
marital status MARRIED 1
marital status LIFE PARTNER 1
stroke type ischemic -1
stroke type other stroke 0
stroke type hemorrhagic 1

Table 2: Factorization Table

The factorization has the advantage, that the correlations of most categorical features,
which are discussed in detail in the subsequent Chapter 4.2, can be interpreted more
clearly. For example, this can be seen for the feature “admission type”, which shows up
a positive correlation to death. This indicates, that the mortality rate is higher for more
urgent admission.

In addition to this, the factorization of categorical data is crucial for the performance of
subsequent prediction models, as recall rates were only at approximately 0.10 without
it.

However, there are certain features, for which factorization may not be the most appro-
priate approach. For instance, the marital status is mapped to -1 for single, divorced, or
widowed individuals. Further, the value 0 is assigned for “no data”, and 1 for anyone
in a relationship. Surprisingly, the mentioned correlation analysis indicates that singles
have a higher survival rate. This finding contradicts the research by Goulart et al. [18],
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which suggests that individuals with a lower socioeconomic position, including widowed
and divorced individuals, tend to have lower long-term survival rates after experiencing
a stroke.

One possible explanation for this discrepancy is that the aggregation of original feature
values into the combined group “-1” was not an appropriate approach. Overall, the fac-
torization of “marital status” does not yield the expected correlation results, highlighting
the need for further research in this area.

This raises the general question of whether the factorization based on a supplementary
table is a reliable solution. Therefore, one-hot encoding was also implemented as an
alternative. With this process, each categorical value is transformed into a new, binary
column. It presents a simpler approach, which is also less prone to errors. In hindsight,
encoding of categorical features seems more promising and the factorization process
should be reconsidered.

3.2.4 Feature Selection

The selection of features can be managed by a user either inside the supplementary table
“feature preprocessing table.xlsx” or directly inside the frontend. Based on the results of
the subsequent correlation analysis, the following 17 features are selected as the main
independent features. The use case of this thesis focuses on the prediction of in-hospital
mortality. However, in Table 3, further dependent variables, which are available for
alternative prediction tasks, are listed.

Continuous Categorical Dependent Variables

age admission type death in hosp
Anion Gap electivesurgery death 3 days
Bicarbonate ethnicity death 30 days
Chloride (whole blood) gender death 180 days
Creatinine mechvent death 365 days
gcs stroke type
Heart Rate
O2 saturation pulseoxymetry
oasis
Sodium (whole blood)
White Blood Cells

Table 3: Initial Feature Selection

One feature of note is the Oasis score10 (Oxford Acute Severity of Illness Score), which
can be implemented as a scoring system for patient mortality risk. The calculation of

10https://alistairewj.github.io/project/oasis/
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the score is based on ten other variables, like ventilation or pre-ICU length of stay. This
feature shows up the highest correlation to “death in hospital” and is also very influential
for prediction models. Some researchers reckon that the scoring system could already be
employed as a standalone tool to monitor patients’ health levels independently [19].

The technical process to derive the score from these base features has been implemented
by previous research and was made available via GitHub11. The corresponding SQL
scripts were integrated for the setup process of this analysis.

Furthermore, the features displayed in the subsequent Table 4 are available for future,
alternative implementation. Some of these features have already been examined for
correlation. However, they were not included in the later prediction models, as their
relation to mortality was not clearly established.

Moreover, there are some features, that have not been included in this analysis, as of yet.
They can be selected in the frontend for additional avenues of research.

Lastly, some features can only be included for filtering. It is not recommended to utilize
these features for correlation or the creation of a prediction model, as they are solely
intended for filtering purposes. Either they have no death-related influence, like the
“icustay id”, or their format is not usable for standard predictors, such as “diagnosis text”,
which might be better suited for a Natural Language Processing implementation.

Only for Correlations Unused Features Only for Filtering

dbsource Arterial Blood Pressure subject id
gauges total Glucose (whole blood) hadm id
patientweight insurance icustay id
marital status religion icustays count
sepsis flag diabetes flag infarct type
cancer flag Respiratory Rate diagnosis text
obesity flag dob (date of birth)
drug abuse flag dod (date of death)
hypertension flag intime

outtime
preiculos

Table 4: Further available Features

In general, it is not recommended to incorporate an excessive number of features and it
was later discovered that this initial selection of 17 features proved to be overly abundant.
The implemented frontend makes it possible to conveniently analyze different feature
selections. With this, it became evident that a refined selection consisting of only nine
features yields improved clustering outcomes.

11https://github.com/caisr-hh/Dayly-SAPS-III-and-OASIS-scores-for-MIMIC-III
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3.2.5 Cache Solution

Once the patients were filtered for the intended use case, the data of each single patient
was exported from the PostgreSQL database. Saving the time series data as .csv files
enables the concurrent import into the Python12 environment. While this leads to some
data redundancy, the required memory space is still reasonable.

However, the process of reading single files for each analysis can be time-consuming.
Thus a basic cache system was developed to improve runtime performance. For this,
the “Patients”-Class was constructed, to save the related patient objects as a serialized
“pickle”-object. This cached file can be imported more quickly. It only takes approximately
five seconds to execute the method “load patients from cache” for all 2,655 patients,
while the loading time for the .csv files took approximately one minute.

Currently, the analysis is founded on the previously introduced “average patient cohort”,
which can be saved as a single .csv and thus has minimal loading time. However, for
the creation of this cohort, the reload of all patients is necessary. This is required
when a new feature is added to the pre-selection or a different scaling method is applied.
Moreover, this caching solution supports any potential future analysis based on time-series
data.

3.3 Frontend

As a central part of this thesis, a frontend was developed to enable the visualization of
the complete analysis.

The first approach for this was to integrate the dashboard for Automated Subgroup
Detection and Fairness Analysis, also referred to as“ASDF-Dashboard”13. This tool was
developed by Schäfer and Wiese to enable the automatic detection of subgroup imbalance
within a binary classifier [20]. The dashboard provides an in-depth analysis of fairness
and it is possible to upload the classified MIMIC-III data therein. However, the current
version of the dashboard solely focuses on fairness analysis and offers no general data
analysis or integrated classification methods. Thus, the current “ASDF-Dashboard” was
not implemented for the visualization of this master thesis.

Instead, a lightweight Streamlit14 dashboard was developed to offer a quick and user-
friendly insight. The frontend can be easily opened locally, by running the “main.py”
function of the code, which is distributed through the previously mentioned GitHub
repository.

12https://docs.python.org/3/
13https://github.com/jeschaef/ASDF-Dashboard
14https://docs.streamlit.io/
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Figure 2: Frontend Landing Page

The frontend contains a page for each of the subsequent chapters in this thesis. It
especially enables quick descriptive data analysis and correlations. Furthermore, it
offers multiple clustering algorithms and their visualization. Next, different classification
methods can be used to develop prediction models. Finally, the frontend includes fairness
analysis, either based on manually selected subgroups, or across subgroups derived from
clustering methods.
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4 Dataset Exploration

In this chapter, a descriptive analysis of the stroke use case within the MIMIC-III dataset
is implemented. This is concluded by a correlation analysis of the previously selected
features.

4.1 General Statistics of the Stroke Use Case

The following descriptive perspective shall give a broad insight into the dataset. The
stroke use case contains 2.655 unique ICU stays, which make up about 8.2% of the
available MIMIC-III dataset.

As previously mentioned, the filtering for stroke subtype based on ICD9-codes proved to be
unreliable. Unfortunately, there is no official feature available to clearly differentiate those
two stroke types. Nonetheless, there were 569 ischemic cases found, which is sufficiently
close to the nomogram research by Li and Li [10], who identified 767 ischemic cases.
The divergence might be explained by differing previous filters and the aforementioned
unclear categorization based on the ICD9-codes. It should be highlighted that the
missing disclosure of the ICD9 codes, which were utilized within other studies for filtering
purposes, posed a hindrance to reproducing the work of these researchers.

The subsequent Table 5 offers an overview of influential features within the selected
dataset. There are only minimal disparities in the distribution between genders, with
the majority of cases occurring in individuals aged 66 years and above. However, the
prevalence of hypertension and mechanical ventilation (mechvent) are noteworthy.

Of particular significance is the striking disparity in the distribution of ethnicities within
the dataset. Approximately 70% of patients self-report as “white” ethnicity. This notable
skew in representation must be acknowledged throughout subsequent analyses. Such
unequal representation within the dataset can potentially introduce biases.

Moreover, further investigation revealed that the high number of missing values for
the “O2 saturation pulseoxymetry” feature predominantly occurred in the patients from
the “CareVue” database system. This observation highlights a potential data quality
issue specific to this system. The cause of this data gap warrants further research
and evaluation to determine whether it stems from mapping inconsistencies or other
factors.
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Variables Classification Count Missing Values

total count icustay ids 2655 -

dbsource both 8 0
dbsource carevue 1415 0
dbsource metavision 1232 0

stroke type hemorrhagic 1556 0
stroke type ischemic 569 0
stroke type other stroke 530 0

death in hosp 0 2259 0
death in hosp 1 396 0

age (17.999, 42.33] 211 0
age (42.33, 66.67] 1019 0
age (66.67, 91.0] 1425 0

ethnicity UNKNOWN/NOT SPECIFIED 279 0
ethnicity WHITE 1846 0
ethnicity ASIAN 78 0
ethnicity HISPANIC OR LATINO 112 0
ethnicity BLACK 252 0
ethnicity OTHER 88 0

gender F 1353 0
gender M 1302 0

Heart Rate (48.999, 79.67] 1273 10
Heart Rate (79.67, 110.33] 1331 -
Heart Rate (110.33, 141.0] 40 -

O2 saturation pulseoxymetry (70.999, 82.33] 3 1413
O2 saturation pulseoxymetry (82.33, 93.67] 39 -
O2 saturation pulseoxymetry (93.67, 105.0] 1199 -

oasis (6.999, 24.0] 452 20
oasis (24.0, 41.0] 1785 -
oasis (41.0, 58.0] 397 -

cancer flag 0 2247 0
cancer flag 1 408 0

diabetes flag 0 2023 0
diabetes flag 1 632 0

hypertension flag 0 1138 0
hypertension flag 1 1517 0

mechvent 0 1230 0
mechvent 1 1425 0

Table 5: Feature Distribution for the Stroke Use Case within MIMIC-III

22



Table 6 enables a closer examination of the distribution of mortality within the dataset.
It is noteworthy, that the category “death in hospital” contains mortality cases with
varying time frames, up to half a year.

case total death 3 days death 30 days death 180 days death 365 days

death in hosp 396 203 188 5 0
death not in hosp 580 26 244 212 98
total deaths 976 229 432 217 98
total deaths perc 37% 9% 16% 8% 4%
alive 1679 - - - -
total 2655 - - - -

Table 6: Occurrences of Death in Stroke Dataset

Only minor gender differences can be detected for “death in hospital”-mortality within
the dataset. The mortality rate for female patients is around 15%, with 203 to 1353
cases. Male mortality is around 14.82%, with 193 to 1302 cases. This remains similar for
cumulated annual mortality. Here, female mortality is around 38% and male mortality
around 35%. This data is in line with previous stroke research inside MIMIC-III [10].
However, these overall statistics do not indicate any underlying gender differences for
stroke, which are also discussed within the literature. This may be explained by the
relatively small sample size of only 2,655 instances within the MIMIC-III use case.

4.2 Feature Correlations

The following correlation analysis helps identify the most relevant features for the
mortality of stroke patients within the MIMIC-III dataset.

The statistical significance of each feature was tested and their p-values are symbolized
inside the brackets. The p-value roughly indicates the probability of uncorrelated features
producing a dataset with a correlation at least as extreme as the original datasets. Thus
a high p-value indicates, that the 0-Hypothesis “the features are not correlated” is more
probable. Statistical significance can be assumed if the p-value is below 0.05, which is
represented with a single asterisk (*). Even higher confidence levels are 0.01 (**) and
0.001 (***).

Continuous variables were evaluated using Pearson’s Correlation Coefficient, with the
significance test conducted using Pearson’s R. Binary or flag features also utilized
Pearson’s Correlation Coefficient, with the Chi-Squared test applied for significance
testing. Categorical features with more than two values employed Theil’s U for correlation
calculation, and the Chi-Squared test for significance analysis.

As previously mentioned, the Oasis score exhibits the highest correlation with the
dependent variable, at approximately 0.4. Thus, the Oasis score can serve as a valuable
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benchmark for the subsequent development of predictive models, providing a baseline for
assessing the models’ performance.

Another feature with a comparably high correlation coefficient of 0.36 is “mechvent”,
which represents the need for mechanical ventilation of a patient. This fits the negative
correlation of “O2 saturation pulseoxymetry”, which measures a patient’s 02-saturation.
These features clearly show how crucial a stroke patient’s oxygen supply is.

Furthermore, the “gcs” attribute represents the Glasgow Coma Scale15, which is a widely
used scale to assess patients with acute brain injury. Here a higher value correlates with
better chances for survival.

Figure 3: Correlations of relevant Features for Complete Stroke Use Case

As can be seen in Figure 3, the remaining features have a less strong correlation towards
the dependent variable, mostly below 0.2. Still, they may be used in a combined manner
for the prediction of patient mortality.

However, the analysis of feature correlations also revealed some unexpected findings.
While certain vital signs such as “Heart Rate” and “Bicarbonate” align with existing
research regarding mortality risk, there were other features that yielded surprising
results.

One feature that was anticipated to have a more pronounced influence on patient outcomes
was “gauges total”. The use of gauges is a common method employed to reduce brain
pressure and is crucial for stabilizing patients. It was expected that patients requiring a
more significant reduction in brain pressure would be at higher risk. However, despite
a potential connection to survival, the statistical analysis does not reveal a strong

15https://www.ncbi.nlm.nih.gov/books/NBK513298/
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significance for this feature. This unexpected finding suggests that other factors may
have a more dominant role in determining patient outcomes.

Moreover, the limited influence observed for binary features, that indicate secondary
illnesses, was not anticipated. For instance, cancer is widely recognized to have a
significant correlation with patient mortality. However, the analysis suggests that these
flag features may not have an immediate impact on the outcome variable “death in hosp”.
An explanation for this might be that cancer is not a direct factor for in-hospital survival
but only has an impact on survival rates after the hospital stay.

In line with this assumption, the following Figure 4 demonstrates higher correlations of
comorbidities with “death-within-365-days”. Additionally, a higher correlation with age
is also evident for annual mortality.

Nevertheless, it was initially expected that age and secondary illnesses such as hyperten-
sion or drug abuse would also exert a stronger correlation to in-hospital mortality.

Figure 4: Correlations to Death within 365 Days

One feature, that unexpectedly shows no statistical significance in its correlation to any
of the dependent variables is “patientweight”. A possible explanation for this is, that this
feature may not have reliable values in one of the two database systems, either “CareVue”
or “metavision”.

To investigate further, Figures 5 and 6 were generated to compare the correlations within
each dataset separately. Both analyses confirm the general lack of statistical significance
for the “patientweight” feature. Similarly, another feature that exhibits no statistical
significance within the “CareVue” system is ”O2 saturation pulseoxymetry”. These
findings suggest that there may be missing values or mapping errors associated with
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these features in the “CareVue” system. It is recommended to reevaluate the mapping
process and assess data quality issues that may contribute to these results.

Despite these specific differences, the overall correlations within these two subsets appear
to be similar. This consistency implies that the relationships between the remaining
features and mortality risk are relatively stable across the different database systems.

Figure 5: Subset Carevue Database Figure 6: Subset Metavision Database

In conclusion of the correlation analysis, it became evident that certain variables can be
utilized for the subsequent prediction model. While most vital signs exhibit a relatively
weak correlation individually, the combination of multiple features may support reliable
predictions.

4.3 Data Visualization

When confronted with high-dimensional data, employing dimensionality reduction tech-
niques can be a valuable approach for visualizing the dataset. One reliable method
for this purpose is the PaCMAP algorithm [21]. With this, high-dimensional data is
reduced to three dimensions, revealing discernible clusters. These dimensions do not
represent a real feature, but the resulting shape of data instances can still offer valuable
insights.

This can be seen within the following visualizations. Figure 7 incorporates multiple
categorical features, resulting in the noticeable separation into distinct clusters. Con-
versely, Figure 8 demonstrates the general proximity of most patients when considering
mainly continuous vital signs. Herein, the division into the two groups can be attributed
to the presence of the “gender” variable, which represents the sole categorical feature.
Additionally, the “death” cases have been highlighted in both visualizations as they serve
as the dependent variable.
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Figure 7: PaCMAP multiple Features Figure 8: PaCMAP continuous Features

This method of dataset visualization is also implemented in the following chapter to
display the clustering results.
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5 Clustering Analysis

This chapter compares the clustering results of multiple clustering algorithms for the
stroke use case within the MIMIC-III dataset.

The kMeans16 and kPrototype17 algorithms are widely used clustering methods that
require manual selection of the cluster count. Furthermore, the DBSCAN18 (Density-
Based Spatial Clustering of Applications with Noise) approach is utilized, as it offers an
automated approach for determining the optimal number of clusters. In addition, the
SLINK19 (single-linkage) clustering method is introduced at the end of this chapter as
an alternative approach.

A standard metric for evaluating the quality of clusters is the sum of squared errors (SSE),
which calculates the squared distance between each data point and its corresponding
cluster center. The SSE provides a measure of how compact the clusters are, with lower
values indicating tighter and more well-defined clusters.

Another metric for cluster assessment is the silhouette score, which offers a more compre-
hensive evaluation by considering both the cohesion within clusters and the separation
between clusters. It ranges from -1 to 1, with 1 being the optimal value indicating
well-separated and internally homogeneous clusters. For kMeans and kPrototype the
selection of an appropriate number of clusters can be guided by these key indicators.
However, it is crucial to consider the trade-off between a high silhouette score, or a
low SSE, and the interpretability of the clusters. Therefore, it is advisable to avoid
selecting an excessive number of clusters, as this could reduce the interpretability of the
results.

For the clustering process, the categorical variables were one-hot encoded to make them
compatible with the kMeans and DBSCAN clustering algorithms. By converting the
categorical variables into binary indicators, their values can be effectively utilized. For
the kPrototype clustering algorithm, encoding was not necessary, as it accommodates
both continuous and categorical variables [22].

16https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
17https://github.com/nicodv/kmodes
18https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
19https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
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5.1 Comparison of Clustering Algorithms

The optimization of clustering results, displayed in the three figures below, shows that
kMeans and DBSCAN exhibit slightly higher silhouette scores compared to kPrototype.
In addition, DBSCAN holds the advantage of being an unsupervised clustering method.
However, it tends to generate an excessive number of clusters, which may restrict
interpretability. Therefore, the most compelling choice for clustering based on this
feature selection is kMeans.

Figure 9:
Optimization for kMeans

Figure 10:
Optimization for kPrototype

Figure 11:
Optimization for DBSCAN

On a side note, visualizing the SSE for DBSCAN was not feasible, as of yet. Additionally,
DBSCAN can be further optimized by tuning the epsilon parameter and the “number
of neighbors” parameter. A thorough exploration of these parameters is left for future
research.

Following the analysis of the silhouette scores, the optimal clustering results can be
displayed upon PaCMAP visualizations. It becomes evident that conducting an analysis
with more than 15 clusters, as observed in the case of DBSCAN, does not yield easily
interpretable results. The higher number of clusters makes it challenging to discern
meaningful patterns or distinctions between the clusters.

Figure 12: kPrototype Clustering Figure 13: DBSCAN Clustering
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Figure 14: kMeans Clustering

It is important to note that even the highest obtained clustering result only yielded a
silhouette score of 0.32, which falls below the desired range. A silhouette score of at least
0.5 is commonly considered more favorable for distinct clusters.

With the following Table 7, it is possible to further investigate the composition of the
resulting kMeans clusters. Herein, cluster three is noteworthy as it only contains positive
cases. This cluster is congruent with many mortality cases, which were highlighted
within Figure 7, in the previous chapter. Closer inspection also shows that in this cluster,
there are mostly instances with high Oasis scores, as well as older patients. A similar
comparison of clusters is conducted within the subgroup analysis in Chapter 8.

Variables Classification complete set cluster 0 cluster 1 cluster 2 cluster 3 cluster 4 cluster 5

total count icustay ids 2655 481 657 556 229 529 203

death in hosp 0 2259 476 648 425 0 529 181
death in hosp 1 396 5 9 131 229 0 22

age (-0.001, 0.33] 211 33 60 41 14 36 27
age (0.33, 0.67] 1019 152 265 205 60 213 124
age (0.67, 1.0] 1425 296 332 310 155 280 52

dbsource carevue 1415 0 657 0 229 529 0
dbsource both 8 1 0 4 0 0 3
dbsource metavision 1232 480 0 552 0 0 200

stroke type ischemic 569 109 133 124 34 124 45
stroke type other stroke 530 125 177 82 19 100 27
stroke type hemorrhage 1556 247 347 350 176 305 131

oasis (-0.001, 0.33] 464 146 260 5 0 7 46
oasis (0.33, 0.67] 1799 322 380 400 118 439 140
oasis (0.67, 1.0] 372 7 5 151 111 83 15

Table 7: Cluster Comparison
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5.2 Clustering Results for the Reduced Feature Set

As was previously mentioned, a second selection of fewer features led to improved results.
The remaining nine features are:

• Anion Gap,

• ethnicity,

• gcs,

• gender,

• Heart Rate,

• O2 saturation pulseoxymetry,

• oasis,

• Sodium (whole blood),

• White Blood Cells.

Overall, this narrowed-down feature selection yields clustering outcomes with higher
silhouette scores. Notably, both kMeans and DBSCAN show significant improvements in
their clustering performance. Nevertheless, even the highest achievable silhouette score
for kMeans, which reaches approximately 0.47, cannot be regarded as a groundbreaking
outcome. Moreover, kPrototype still demonstrates lower scores, which indicates that the
approach is less suitable for this use case.

Figure 15: Optimized kMeans Clustering Figure 16: Optimized DBSCAN Clustering

5.3 SLINK Clustering Alternative

In addition to the previous methods, the agglomerative SLINK algorithm was implemented
in the frontend. Research by Schäfer and Wiese concluded that the SLINK clustering
provided the most reliable results for three different use cases [20]. In the context of
stroke mortality, the algorithm produces clustering results that are nearly comparable to
those of kMeans.
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Figure 17: Optimized SLINK Clustering Figure 18: SLINK Clustering

In addition, this approach may offer valuable insights through the analysis of the
corresponding dendrogram displayed below in Figure 19. By leveraging this feature,
it may be possible to further optimize the cluster count and additionally enhance the
interpretability of the results.

Figure 19: SLINK Dendrogram

Moreover, there are multiple separation criteria available, based on which the clustering
can be implemented. However, these alternative selections and a more thorough analysis
of the dendrogram were not included, as kMeans was deemed sufficient for the scope of
this thesis. The optimization of the SLINK algorithm requires further investigation and
thus this alternative was not selected for the following process.

In summary, kMeans continues to be the preferred clustering method, even for this
improved feature selection, due to its robust performance and simple implementation.
As a result, it serves as the foundation for subgroup detection in Chapter 8.
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6 Stroke Mortality Prediction

Following the exploration of the dataset, the performance results of multiple prediction
models are compared for the stroke use case within MIMIC-III in this chapter. In
addition, the models are also implemented on a reduced feature set. Lastly, the feature
relevance within the XGBOOST model is examined more closely.

6.1 Prediction Results Baseline

The features for the classification models were chosen in line with the initial selection of
17 features from the previous correlation analysis. While there are many more features
available in MIMIC-III, using more features does not necessarily improve prediction
quality but increases complexity and makes it harder to interpret results.

The chosen prediction metrics in the classification report are standard guidelines to
evaluate prediction quality. They are calculated based on the true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN) with the following
formulas [23]:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP

2 ∗ TP + FP + FN
(4)

At first, a basic, exemplary Random Forest classifier is constructed based on raw data to
create a baseline for the prediction models. This initial test can indicate if it is at all
possible to reach conclusive results and already delivers some important insights. Figure
20 displays the resulting confusion matrix for this rudimentary model. Based on this
matrix, it is possible to retrace the absolute numbers of true and predicted cases.
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Figure 20: Confusion Matrix for Random Forest, not scaled

On a side note, for a more detailed analysis of the subsequent models, it is also possible
to consult these confusion matrices. However, as the actual model evaluation is based
on the performance metrics from the corresponding classification reports, the confusion
matrices are omitted for most of the following models. They can optionally be visualized
within the supplemented frontend.

Based on the values from the previous confusion matrix and the formulas displayed above,
the following classification report is calculated for this model.

precision recall f1-score support

0 (no death) 0.92 0.99 0.95 459
1 (death) 0.85 0.47 0.61 72

accuracy 0.92 531
macro avg 0.89 0.73 0.78 531

weighted avg 0.91 0.92 0.91 531

Table 8: Classification Report for Random Forest, not scaled

The classification report in Table 8 summarizes the prediction quality for this approach,
which is based on raw data without scaling. This model already enables a seemingly high
accuracy of 0.92 and a recall rate of 0.47. While the prediction quality of such a simple
classifier is not sufficient, it can be seen as a baseline for further models.

However, there are two noteworthy aspects to consider. First, although the accuracy
may appear high at over 90%, this can be attributed to the challenge of dealing with
highly unbalanced data. The model tends to consistently classify patients as “no death”
since there is a significantly higher number of patients, who do not die. As a result, the
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apparent prediction quality appears to be high. Therefore, in the context of this medical
use case, the recall rate for death cases assumes greater importance. In this case, it lays
only at 0.47.

The other aspect is, that the feature “oasis” is used for these predictions. As was shown
in the previous correlation analysis, it has a very high correlation to the dependent
variables. When removing “oasis” from the selected features, recall decreases further to
0.36. However, this score was developed mainly based on the MIMIC-III dataset and
thus its applicability on other, more general datasets, remains a point for future research.
The strong dependence on one feature can also be seen as critical. Hence, the inclusion
of “oasis” for prediction models is an open point for further discussion.

The relatively low recall rate, compared to previous research, is a motivation to im-
prove the prediction model. Consequently, the following pre-processing methods are
implemented to improve this Random Forest classifier.

The scaling of continuous features is a common practice in data preprocessing to ensure
that features with large variances do not dominate the analysis compared to features
with lower variances. By scaling all features to a range between -1 and 1, their influences
are effectively equalized. An alternative to this is to scale feature values between 0 and
1, which is referred to as normalization. The chosen method for this step was min-max
normalization where the scaled values, or z-values, are scaled between 0 and 1, based on
the following formula:

scaled value =
(current value− feature minimum)

(feature maximum− feature minimum)
(5)

In addition, for most classifiers, it is not sensible to use categorical features in one column.
Accordingly, one-hot encoding of these features is used to transform the single columns
into multiple binary columns. These important pre-processing steps lead to the following
classification report.

precision recall f1-score support

0 0.92 0.98 0.95 459
1 0.77 0.47 0.59 72

accuracy 0.91 531
macro avg 0.85 0.73 0.77 531

weighted avg 0.90 0.91 0.90 531

Table 9: Classification Report for Random Forest, scaled and encoded

While these adjustments did not directly improve the classification result, they were
essential for subsequent steps. One explanation for the nonexistent effect is that the most
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important features, the Oasis score and mechanical ventilation, were not affected by this
directly, so this basic Random Forest model did not change its decision process.

6.2 Comparison of Prediction Models

The following sections present the prediction results of four different classifier models
that were developed for the stroke use case. Two versions of Random Forest models, an
XGBOOST model, and a neural network approach are compared.

6.2.1 Random Forest with SMOTE Oversampling

The dataset exhibits a significant class imbalance, with a considerably lower number of
“death” cases compared to “non-death” cases. This class imbalance poses a challenge
for prediction algorithms. By employing appropriate sampling techniques, it becomes
possible to mitigate the impact of class imbalance and enhance the performance of
prediction algorithms.

One potential approach to address the class imbalance is through undersampling tech-
niques, such as NearMiss20, which aims to reduce the over-represented class until both
classes are more balanced in occurrence. However, in this particular case, undersampling
does not yield favorable results, as it leads to a significantly reduced dataset size, which
negatively impacts overall prediction performance.

For this particular case, a more effective sampling method is oversampling, which involves
generating new instances of the less frequent class, which are the “death” cases in this
scenario. These new instances are created by synthesizing values based on the similarity
to existing instances. The SMOTE algorithm is a widely recognized and reliable approach
that utilizes kMeans clustering to facilitate the oversampling process [24]. As the dataset
is composed of categorical and continuous features, the variant SMOTENC (Synthetic
Minority Oversampling Technique for Nominal and Continuous data) algorithm21 is
deemed most useful. This variant is implemented in the code, and for simplicity, it is
referred to as “SMOTE” in the following sections.

The subsequent results demonstrate a substantial improvement in prediction performance,
which is achieved through the balancing strategy. Although there is a slight decrease in
accuracy, there is a notable enhancement in the recall, which is now at 0.67. Therefore,
SMOTE is consistently employed in all subsequent models, unless explicitly stated
otherwise.

20https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.

NearMiss.html
21https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.

SMOTENC.html
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precision recall f1-score support

0 0.94 0.88 0.91 459
1 0.47 0.67 0.55 72

accuracy 0.85 531
macro avg 0.71 0.77 0.73 531

weighted avg 0.88 0.85 0.86 531

Table 10: Classification Report for Random Forest, balanced with SMOTE

In addition to the aforementioned evaluation metrics, the overall model performance
is commonly assessed using the AUC-ROC (Area Under the Curve of the Receiver
Operating Characteristic) and its corresponding AUROC score. This metric illustrates
the trade-off between the true positive rate and the false positive rate. Ideally, a value
close to 1 is desired, indicating a high discriminatory power of the model.

Furthermore, it is beneficial to consider the AUPRC (Area Under the Precision-Recall
Curve) when dealing with unbalanced data, where the emphasis on recall may outweigh
precision [6]. The AUPRC provides insights into the trade-off between recall and
precision, enabling an assessment of whether the model’s accuracy is derived from
correctly identifying positive cases (high recall) or simply predicting negative cases (higher
precision). An optimal AUPRC score of 1 would indicate the accurate classification of
each patient.

For both curves, the model’s classification threshold is varied from 0 to 1, and the
corresponding results are plotted on the graph. Although the specific threshold value
may not always be directly adjustable in the classification model, this approach facilitates
a comprehensive comparison among different classifiers. By observing the performance at
various threshold values, it becomes possible to assess and compare the overall effectiveness
of the classifiers.

For this Random Forest model, the obtained AUROC score of 0.882 indicates a robust
overall prediction quality. However, as was discussed for the accuracy of the previous
prediction model, this seemingly strong prediction performance could be attributed to
the underrepresentation of positive cases and the large number of true negatives. This
assumption is supported by the relatively modest AUPRC value of 0.528, which highlights
the limited precision in identifying positive cases. These metrics collectively emphasize
the importance of considering accuracy, precision, and recall together when evaluating
the model’s predictive capabilities.
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Figure 21:
AUROC of Random Forest with SMOTE

Figure 22:
AUPRC of Random Forest with SMOTE

On a side note, an additional advantage of using a Random Forest model can be the
option to investigate feature relevance by examining the underlying Decision Trees. While
this is not conducted in this particular study, it can be a valuable approach for alternative
investigations into feature importance.

6.2.2 Optimizing Random Forest with GridSearchCV

As a next step, the Random Forest model was further enhanced by employing hyper-
parameter tuning. This approach involved iterating and varying the available parameters
of the Random Forest algorithm. To accomplish this, GridSearchCV22 was utilized.
The algorithm systematically explores different parameter combinations to identify the
optimal Random Forest model configuration that maximizes a selectable performance
metric. For this specific model, the optimization of the recall metric was implemented,
as it presents the most important indicator in this context.

The optimization of recall leads to a significant improvement in the metric, increasing
it to 0.83. However, this improvement comes at the expense of a decrease in precision,
which drops to 0.32. Consequently, there is a notable decline in accuracy, with the value
decreasing to 0.74.

22https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

GridSearchCV.html
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precision recall f1-score support

0 0.97 0.73 0.83 459
1 0.32 0.83 0.47 72

accuracy 0.74 531
macro avg 0.64 0.78 0.65 531

weighted avg 0.88 0.74 0.78 531

Table 11: Classification Report for Random Forest, optimized with GridSearchCV

When additionally examining the confusion matrix for this scenario, it becomes evident
that the classifier predicts a total of 186 death cases, whereas the actual dataset contains
only 72 instances of death. This indicates that the classifier tends to classify cases as
death more frequently than the actual occurrence of death in the dataset. Hence, this
classifier has a higher tendency to generate false positive predictions for death cases.

Figure 23: Confusion Matrix for Random Forest, optimized with GridSearchCV

Similarly, the following visualizations of AUROC and AUPRC show, that the overall
model quality does not increase. The sole optimization of recall with GridSearchCV
results in a lower AUROC score, as well as a lower AUPRC. This outcome highlights
that solely focusing on recall does not yield a desirable model performance, either.
Nevertheless, the GridSearchCV technique offers a powerful tool for further optimization
and fine-tuning of Random Forest implementations.
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Figure 24:
AUROC of Random Forest, optimized
with GridSearchCV

Figure 25:
AUPRC of Random Forest, optimized
with GridSearchCV

6.2.3 XGBOOST Prediction Model

Another model that has shown promising results in various applications is eXtreme
Gradient Boosting, which is also referred to as XGBOOST23. Similar to Random Forest,
XGBOOST utilizes an ensemble of Decision Trees. However, what sets it apart is that
each subsequent tree in the ensemble is built upon the classifications of the previous
trees. Notably, XGBOOST was recommended by Vazquez et al. for predicting in-hospital
mortality of patients with acute coronary syndrome, demonstrating its effectiveness in a
related healthcare use case [7].

While the recall value is not as high as the GridSearchCV Random Forest option, the
accuracy in this model did not sink. Overall, the model performance is similar to the
oversampled Random Forest model, with an additional higher recall rate of 0.69.

precision recall f1-score support

0 0.95 0.86 0.90 459
1 0.44 0.69 0.54 72

accuracy 0.84 531
macro avg 0.69 0.78 0.72 531

weighted avg 0.88 0.84 0.85 531

Table 12: Classification Report for XGBOOST, balanced with SMOTENC

Similarly, the AUROC score for the XGBOOST model is comparable to that of the
regular Random Forest model. However, the AUPRC score for XGBOOST is higher, at
0.59. This indicates a more desirable model performance.

23https://xgboost.readthedocs.io/en/stable/python/python_intro.html
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Figure 26: AUROC of XGBOOST Figure 27: AUPRC of XGBOOST

Overall, the results of the XGBOOST model are promising. Still, there is potential for
further optimizations and fine-tuning. For this use case, the model is chosen as the most
reliable approach, based on machine learning methods.

6.2.4 Neural Network Prediction Model

Some research indicates that a deep learning solution might offer a better model perfor-
mance, compared to common machine learning classifiers. Moreover, such an approach
might be functional with less pre-processing of the data and could be based on time-series
data. One suggested model was built with a network of gated recurrent units (GRUs)
and for a comparable prediction task it resulted in an AUROC score of 0.874 and an
AUPRC score of 0.471 [6]. It must be noted, that the results of neural networks vary
with each execution, so the average over multiple results of the prediction metrics should
be considered when evaluating these models.

To investigate this potential of deep learning models for the stroke use case, a “sequential”-
model from the keras library24 is implemented. The neural network was constructed with
a “binary crossentropy” loss function and trained using the “adam” optimizer to optimize
accuracy. The selected network architecture consisted of a total of six layers. The first
three layers comprised sixteen, twelve, and ten nodes, respectively, while the subsequent
two layers contained eight nodes each. These inner nodes utilized rectified linear units, or
“ReLU”, as activation functions. The last layer consisted of a single node with a “sigmoid”
activation function, producing a final output probability for mortality.

In terms of deep neural networks, the architecture presented here is considered relatively
simple. However, it can be further enhanced through comprehensive network optimization,
such as parameter tuning. Additionally, there are numerous other advanced architectures
available, such as the mentioned gated recurrent units. The further development of more
complex neural networks is omitted within this thesis. For one, these implementations
might demand computation based on graphics cards (GPUs). However, the code of this
thesis is intended to be usable with any hardware. Moreover, the goal of this comparison

24https://www.tensorflow.org/guide/keras/sequential_model
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is primarily to demonstrate the potential of deep learning networks within a medical use
case.

Finally, the training of the model was conducted for 175 epochs and the development
of loss and accuracy is displayed in Figure 28. It can be seen that with each iteration
of the model, the prediction quality inside the training dataset increases continuously.
However, this progress quickly slows down and after approximately 150 epochs accuracy
and loss stabilize. The final accuracy of the model, which results at 0.78, is based on the
predictions of the test dataset.

Figure 28: Neural Network Model Fit History

The following classification report summarizes the results of the neural network model.
It yielded prediction results that are comparable to the previous approach of Random
Forest with GridSearchCV.

precision recall f1-score support

0 0.97 0.77 0.86 459
1 0.37 0.83 0.51 72

accuracy 0.78 531
macro avg 0.67 0.80 0.68 531

weighted avg 0.89 0.78 0.81 531

Table 13: Classification Report for Neural Network, balanced with SMOTE

While the accuracy of the model appears slightly higher compared to the Random Forest
alternative, it is important to again note the significant trade-off between recall and
precision. This indicates, that the model tends to classify cases as “death” too frequently.
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This results in a higher number of false positives, where patient mortality is predicted,
when this may not be the real case. Therefore, achieving a better balance between recall
and precision is crucial to improve the overall performance and reliability of the model.
This should also have a positive effect on the relatively small AUPRC score, which is
only at 0.329, as can be seen below in Figure 30. The following plots also illustrate that
neural networks do not offer flexible threshold alteration. Instead, only a single threshold
setting is available for these models.

Figure 29: AUROC of Neural Network Figure 30: AUPRC of Neural Network

Moreover, it is worth noting that the model does not achieve similarly high scores as
the examples reported in other research papers [6]. As previously mentioned, these
shortcomings could potentially be attributed to the use of average data and the need for
further optimization of the model.

6.2.5 Summary of Prediction Results

The following Table 14 provides a summary of the prediction results for each of the
available model settings. It is important to note again that neural network models yield
varying results with each implementation, which is why the metrics in the table may
not align exactly with the analysis above. Despite not reaching as high scores, neural
networks still show promise as an alternative approach to machine learning models.
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classification method dependent variable auroc score auprc score accuracy recall precision

RandomForest death in hosp 0.882 0.528 0.853 0.667 0.471

RandomForest death 3 days 0.936 0.605 0.917 0.732 0.476
RandomForest death 30 days 0.871 0.629 0.821 0.744 0.572
RandomForest death 180 days 0.839 0.695 0.782 0.755 0.591
RandomForest death 365 days 0.845 0.724 0.778 0.739 0.619

RandomForest gridsearch death in hosp 0.851 0.504 0.74 0.833 0.323
RandomForest gridsearch death 3 days 0.933 0.613 0.887 0.732 0.38
RandomForest gridsearch death 30 days 0.868 0.612 0.808 0.795 0.544
RandomForest gridsearch death 180 days 0.840 0.680 0.766 0.755 0.567
RandomForest gridsearch death 365 days 0.851 0.753 0.778 0.758 0.616

XGBoost death in hosp 0.888 0.597 0.84 0.694 0.442
XGBoost death 3 days 0.921 0.573 0.908 0.756 0.443
XGBoost death 30 days 0.843 0.596 0.815 0.624 0.575
XGBoost death 180 days 0.811 0.639 0.763 0.675 0.57
XGBoost death 365 days 0.82 0.716 0.75 0.685 0.582

deeplearning sequential death in hosp 0.765 0.295 0.791 0.667 0.356
deeplearning sequential death 3 days 0.772 0.264 0.838 0.756 0.29
deeplearning sequential death 30 days 0.711 0.364 0.759 0.786 0.472
deeplearning sequential death 180 days 0.728 0.443 0.763 0.748 0.562
deeplearning sequential death 365 days 0.756 0.51 0.733 0.727 0.553

Table 14: Comparison of Model Results

Among the different dependent variables, the prediction results for “death within three
days” are the most reliable. This finding suggests that the effects of stroke tend to be
most severe within this timeframe. Predicting “death in hospital” may be less reliable as
it also encompasses patients who stayed in the ICU for extended periods before passing
away. It is also reasonable that the prediction for even longer time spans, such as 30
days or one year, becomes less reliable.

In conclusion, XGBOOST was selected as the most applicable model for the subsequent
analysis, as it offers a sensible balance between recall and accuracy. The achieved
results, although not yet optimal, provide valuable insights for further improvement. In
comparison to the nomogram, proposed by Li and Li [10], the model can deliver similar
and in parts better performance. The optimally desired thresholds of accuracy values
above 0.9 and recall above 0.8 were nearly met for the “death 3 days” variable. However,
they were not fully attained for the prediction of in-hospital mortality.

The overall suitability of the classification models presented in this study is subject to
discussion. Despite the relatively high accuracy, it is important to note that recall rates
below 0.8 are not desirable for mortality prediction [23]. Furthermore, the low precision
suggests that the models often classify cases as potential deaths, leading to frequent false
positives.

These shortcomings highlight the need for further improvements in the models’ perfor-
mance. As previously mentioned, it may be beneficial to refine feature selection and
explore alternative pre-processing methods. Additionally, it is highly recommended
to incorporate external validation of the developed model, as emphasized in previous
research [5]. This suggestion has been duly acknowledged and in future studies, it can
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be explored whether the model can be applied to a different external data source for
validation purposes. For example, MIMIC-VI25, which is another dataset provided by
PhysioNet, could be investigated for further validation.

6.2.6 Prediction Results for Reduced Feature Set

The same reduced set of features, as determined in the second, optimized clustering
setup, was also employed for the classification models. In contrast to the clustering, the
classification results did not improve when selecting fewer features. The impact of this
feature reduction on the prediction results for “death in hospital” is summarized in the
following table.

classification method dependent variable auc score auc prc score accuracy recall precision

RandomForest death in hosp 0.872 0.507 0.866 0.667 0.505
RandomForest with gridsearch death in hosp 0.881 0.54 0.827 0.708 0.418
XGBoost death in hosp 0.894 0.612 0.868 0.653 0.511

deeplearning sequential death in hosp 0.833 0.38 0.751 0.847 0.335

Table 15: Alternative Classification Results, Death in hospital

Upon comparing these classification reports, XGBOOST again emerges as the most
promising option. Although the reduction of features did not result in an overall
improvement in prediction quality, the XGBOOST model achieved a slightly more
balanced trade-off between recall and precision compared to the previous model. Again,
it is important to note that the GridSearchCV alternative and the deep learning network
exhibit higher recall rates, albeit at the expense of significantly decreased precision. As
this is not recommended, XGBOOST remains the most reliable choice for the task at
hand.

Similar to the previous analysis, the dependent variable “death 3 days” offers an interest-
ing use case, as it yields better overall results compared to “death in hospital”. In terms
of AUROC score and accuracy, most models exhibit higher values for the “death 3 days”
case, indicating improved performance. However, it is crucial to consider the significant
decrease in precision across all models, which is also reflected in the comparatively low
AUPRC scores. This poses a challenge in selecting the most suitable model for this
particular case, as even XGBOOST demonstrates notably low precision.

classification method dependent variable auc score auc prc score accuracy recall precision

RandomForest death 3 days 0.919 0.507 0.908 0.683 0.438

RandomForest with gridsearch death 3 days 0.93 0.591 0.895 0.756 0.403
XGBoost death 3 days 0.925 0.582 0.896 0.707 0.403
deeplearning sequential death 3 days 0.829 0.252 0.84 0.829 0.304

Table 16: Alternative Classification Results, Death within three Days

25https://physionet.org/content/mimiciv/2.2/
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In summary, the reduction of features does not appear to have a clearly positive impact
on the classification models. For XGBOOST, recall decreased slightly, while accuracy did
rise. However, it is important to remember that the inclusion of too many features can
complicate the interpretability and explainability of the classification results. Striking a
balance between an optimal number of informative features and model interpretability is
crucial. Overall, the XGBOOST model with fewer features appears to be slightly more
balanced, so this setup is kept for the subsequent analysis.

6.3 Feature Relevance within XGBOOST

In this final section, an analysis of the feature relevance within the XGBOOST model is
presented, concluding the chapter on mortality prediction.

When analyzing the results of machine learning models, it is crucial to engage in critical
reflection. Particularly, because these models often function as “black boxes”, making it
challenging to trace the relationship between the input and the output. Understanding
the influence of feature values is an initial and significant step toward comprehending
prediction decisions and enhancing transparency.

Subsequently, the feature relevance within the XGBOOST model is investigated more
closely with explanations based on Shapley values26. The SHAP (SHapley Additive
exPlanations) methodology originally stems from a game theoretic approach and can
be used to explain the output of machine learning models [25]. More precisely, Shapley
values are local explanations of how feature values influenced the prediction decision for
individual instances.

The following waterfall plots show, how the respective values per feature influenced the
XGBOOST models’ decision to classify a single patient.

Figure 31: SHAP Waterfall for Instance OneFigure 32: SHAP Waterfall for Instance Two

For the first instance, depicted in Figure 31, the overall Shapley value is negative,
indicating a prediction of “no death”. Similar to previous cases, categorical features such

26https://shap.readthedocs.io/en/latest/index.html
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as ethnicity are one-hot encoded. It can be observed that ethnicity has minimal influence
in this instance, aligning with its relatively low correlation with death. The continuous
features are scaled within the range of 0 and 1. In this instance, the value of 0.466 for
the scaled “oasis” feature, suggests that the patient has an Oasis score lower than the
average patients. This corresponds to the negative Shapley value for the “oasis” feature
in this particular case.

In contrast, instance number two, presented in Figure 32, exhibits an Oasis score of
0.792, which is significantly higher than the mean. Considering that “oasis” is positively
correlated with death, the substantial positive influence of the Shapley value for this
feature is logical. A positive influence in this context indicates that the patient is more
likely to be predicted as belonging to the positive class. Therefore, the explanation for
this feature is that a higher Oasis score indicates a greater risk of death. The same
reasoning can be applied to the other features, and the sum of their Shapley values
amounts to 5.772. This indicates that for this particular instance, the XGBOOST model
predicts death with a high probability.

It should be noted that the explanation for an individual patient cannot be generalized
to the entire dataset. Nevertheless, these explanations provide insights into the influence
of certain features.

In addition, the subsequent figures can be used to facilitate an analysis of feature
importance within the entire dataset.

Figure 33: SHAP Beeswarm Plot Figure 34: SHAP Barplot

A total of 150 instances were chosen for the beeswarm plot, with each instance represented
by a dot reflecting its respective feature importance value. For example, in the case
of the Oasis score, higher feature values, denoted by red dots, correspond to higher
Shapley values, indicating a greater risk of death. A different pattern can be observed
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for the “gcs” feature, wherein lower feature values, indicated by blue dots, correspond to
higher Shapley values. This suggests that lower Glasgow Coma Scale (GCS) scores are
associated with an increased risk of death.

The accompanying bar chart presents the average feature influence across all selected
instances. It provides an overview of the overall feature importance, with the top-ranked
features being “oasis”, “Sodium (whole blood)”, and “Anion Gap”. These features appear
to have the most significant relevance for the decisions of the XGBOOST classifier.

Lastly, a detailed examination can be performed for each respective feature. To illustrate
this, the partial dependence plot below showcases the direct relationship between the
Shapley values and the corresponding “oasis” values. One can observe a linear correlation
that gradually diminishes at the lower and upper extremes. Once more, this indicates
that higher oasis scores are associated with higher and more influential Shapley values,
further highlighting the importance of the “oasis” feature in predicting mortality.

Figure 35: SHAP Partial Dependence Plot for Oasis

The Oasis score was selected as the main example in this chapter, as the strong correlation
and importance of this feature have already been accounted for. Exploring the influence
of other features on the model can offer additional valuable insights. It is noteworthy
that the SHAP explanations presented here align with the overall correlation findings
discussed in the previous chapter for most of the features. This consistency further
enhances the reliability of the explanations and, consequently, the XGBOOST model
itself. Such findings are helpful to increase trust in the prediction model.

On an additional note, it is advisable to conduct a thorough re-evaluation of any
potential model explanations. This step is crucial as these explanations can sometimes
be misleading. There are certain requirements that need to be met in order for the
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explanations to be considered valid and reliable [26]. For instance, “stability” indicates
that instances with similar predictions should also have similar explanations. “Robustness”
ensures that explanations are generally unaffected by small input perturbations. Another
requirement is “consistency”, which states that local explanations for the same data
points should be consistent across different prediction models. For the scope of this
thesis, such detailed evaluations of explanations are not implemented. However, this
remains an important area for future research.
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7 Fairness Analysis

Based on the presented prediction results of the XGBOOST model, this chapter conducts
a fairness analysis. First, the importance of fairness in prediction models is discussed
and common metrics to evaluate fairness are introduced. Based on this, three different
privileged groups are selected and investigated for diverging model performance.

7.1 Selection of Fairness Metrics

The significance of dependable data analysis in medicine has been increasingly recognized,
particularly in light of the development of novel drugs. In the past, the efficacy tests of
these drugs were often conducted with a disproportionate number of male participants,
resulting in suboptimal medical treatment for female patients. As this issue gained greater
public attention, there has been a growing emphasis on equal gender representation in
clinical trials, and the field of gender medicine has emerged [27]. Analogously, in the
medical domain, the utility of a prediction model would be compromised if it exhibited a
consistent tendency towards inferior predictive accuracy for specific subgroups.

The most relevant risk that is investigated in the following analysis, is founded on the
unequal size of subgroups. This so-called representational harm might be attributed to
the representation bias in the selected dataset [28].

An initial solution for fairness problems within a dataset might be to remove potentially
privileged attributes, like gender, ethnicity, caste, or religion, from the data. These
attributes split a population into subgroups, which have historically faced systematic
discrimination. This procedure is also known as “fairness-through-unawareness”. However,
this approach is not recommended, as these attributes often correlate with other attributes.
For example, ethnicity is often closely correlated to postal code. Thus the bias might
simply be shifted towards a different feature.

A better approach is evaluating a model’s quality by closely analyzing fairness metrics.
This approach is most common for applications with natural language processing [29],
where social biases are easily incorporated into language structures. However, these
metrics can also present a valuable tool for general data analysis, to reflect if certain
subgroups exhibit differentiating prediction quality. This enhances the perspective of data
analytics to not solely focus on predictive performance, but also incorporate social and
ethical aspects of fairness. The focus on equal prediction quality is especially important
when the model is implemented in a social domain, like this medical use case, where
equality is imperative.

A fairness analysis can focus on group fairness, defining that the outcome for each
subgroup of privileged attributes should have parity. The other aspect of fairness is
individual fairness, which states, that similar individuals should have similar prediction
outcomes and treatments [30].

The following fairness metrics can be used to incorporate these perspectives into the
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analysis. With these metrics, the fairness of different models can be compared on a
statistical basis.

7.1.1 Metrics for Group Fairness

Accuracy Parity27 presents a crucial metric to consider when evaluating the prediction
quality for different subgroups. It requires that prediction accuracy remains consistent
between privileged and unprivileged groups. The probability p of predictions Y ∈ {0, 1}
shall remain the same, regardless of the value of the sensitive attribute A. Dependent
on this binary attribute, the unprivileged group is designated by 0, and privileged by
1.

p(Ŷ = Y |A = 0) = p(Ŷ = Y |A = 1) (6)

The actual indicator for such fairness requirements can be calculated in two ways. The
selected option for this thesis is the parity difference of the probabilities, for which the
ideal value is 0.

metric difference = p(Ŷ = Y |A = 0)− p(Ŷ = Y |A = 1), (7)

Alternatively, the impact ratio, which describes the proportion between the probabilities,
should be close to 1.

metric ratio =
p(Ŷ = Y |A = 0)

p(Ŷ = Y |A = 1)
, (8)

It is crucial to acknowledge that Accuracy Parity alone may not capture the complete
picture of fairness in predictive models. In the context of stroke prediction, where
identifying death cases is critical, it is necessary to evaluate the distribution of false
positives and false negatives as well. To address this, metrics such as Recall Parity

and Precision Parity can provide valuable insights. Recall Parity focuses on the true
positive rate across different privileged groups, ensuring that the model’s ability to detect
positive cases, such as deaths, remains consistent irrespective of the privileged attribute.
Precision Parity, which is also known as the predictive value metric, examines the positive
predictive value across privileged groups. It assesses whether the precision of the model
is dependent on the privileged attribute.

Another common criterion for ensuring fairness is the concept of Demographic Parity,
which emphasizes the need for the positive predictions, Ŷ=1, to be independent of the
privileged attribute A [31]. While Demographic Parity offers a more lenient form of
fairness, it holds particular significance in the context of stroke prediction.

On a side note, this metric can also be measured with two different indicators. The
Demographic Parity Difference, also known as Statistical Parity Difference, calculates
the difference in prediction probabilities across subgroups, while the Disparate Impact
Ratio compares the proportions between prediction probabilities.

27https://afraenkel.github.io/fairness-book/content/05-parity-measures.html
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By considering these parity metrics, one can gain an initial understanding of the group
fairness of a predictive model. The metrics provide insights into potential disparities and
help assess if the model is behaving consistently across different subgroups.

However, this strict enforcement of group fairness might be unfair on an individual level.
For example, if the model does not correctly predict a death case for a patient, because
he belongs to a certain ethnicity for which the algorithm has to keep Demographic Parity.
Hence, additional metrics for individual fairness are required.

7.1.2 Metrics for Individual Fairness

Metrics for individual fairness mainly focus on equal prediction rates for known positive
cases. This ensures that individuals, who should be identified as positive cases (Y=1 ), are
correctly predicted as such (Ŷ=1 ), regardless of their subgroup A. The decisive difference
to the previous metrics is that one knows that the patient belongs to the positive cases,
and tests if the correct prediction is made, independent of the subgroups.

The Equalized Odds metric serves as a rigorous metric for individual fairness. It
requires both the true positive rate and the false positive rate to be equal across privileged
attributes. The fulfillment of Equalized Odds indicates a highly fair prediction model,
which is also referred to as high-level fairness [32].

p(Ŷ = 1|A = 0, Y = y) = p(Ŷ = 1|A = 1, Y = y), y ∈ 0, 1 (9)

In addition, the principle of Equal Opportunity represents a less strict version, in a
similar way Demographic Parity simplifies Accuracy Parity. It demands that only the
true positive rate is equal across the privileged attributes. This metric has high relevance
for the stroke use case, where the detection of actual deaths has priority [32].

p(Ŷ = 1|A = 0, Y = 1) = p(Ŷ = 1|A = 1, Y = 1) (10)

7.1.3 Further Fairness Metrics

Generalized Entropy28 presents a comprehensive approach that combines both indi-
vidual and group fairness measures [33].

Initially, the concept of Generalized Entropy was used as an inequality index in an
economic context. Low entropy describes a setting where there is little randomness,
which is considered a more equal distribution. This concept can be adapted as a
fairness metric, where the Generalized Entropy assesses the equal distribution of accurate
predictions within each subgroup. In other words, it can be seen as the entropy, or
randomness, of predictions, which should be minimal. The metric incorporates the
parameter α, which determines the weight assigned to the prediction disparities. When

28https://aif360.readthedocs.io/en/stable/modules/generated/aif360.metrics.

ClassificationMetric.html#aif360.metrics.ClassificationMetric.generalized_entropy_

index
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α is set to 1, the metric is commonly referred to as Theil-Index. The resulting entropy
value ranges from 0 to 0.5, with values closer to 0 indicating a fairer model.

The following base formula calculates the utility or benefit b, for each individual i, as the
difference between the predicted label ŷ and the real occurrence y. It may be noted, that
in the context of stroke, it is not correct to interpret the positive cases, which represent
mortality, as inherently beneficial.

bi = ŷi − yi + 1 (11)

Based on these benefit scores, the Generalized Entropy E of the model can be calculated
according to three different formulas. The selection of the respective formula depends on
the selected α value. In the subsequent analysis, the Theil-Index, where α is set to 1, is
employed for the entropy metric. Furthermore, the parameter µ describes the mean of
the benefit scores b.

E(α) =
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


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µ
ln bi

µ
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− 1
n
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i=1 ln
bi
µ
, α = 0.

(12)

The calculation of the entropy can then be conducted for each group and the difference
is used to compare the between-group fairness.

These introduced fairness metrics can exhibit a trade-off between group fairness and
individual fairness. Striving for higher group fairness could potentially result in lower
individual fairness, and vice versa. Therefore, the choice of a suitable fairness metric is
context-dependent and necessitates a thoughtful examination of the ethical and social
implications specific to the application at hand.
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7.2 Fairness Analysis of the XGBOOST Model

The fairlearn29 library was implemented to calculate fairness metrics for the XGBOOST
model. The library was also helpful to create visualizations of the differences between
the subgroups.

Another widely recognized and comprehensive alternative for fairness analysis is the
AIF36030 library. However, during the evaluation process, it was observed that the
calculations for certain fairness metrics were not consistently reliable. Upon closer
examination, it was found that the division into privileged and unprivileged groups was
prone to errors. Specifically, when multiple attributes were selected as privileged, the
definition of the unprivileged group became overly strict. Only individuals who exactly
matched the opposite of the selected privileged groups were considered as part of the
unprivileged group. For example, if “asian” and “female” were chosen as privileged
attributes, the resulting unprivileged group would consist only of individuals who were
“non-asian” AND “male”. However, the desired definition for the unprivileged group
should include individuals who are either “non-asian” OR “male”. As a quick solution
to this issue was not readily available, the fairlearn package was selected due to its more
user-friendly setup.

The following three examples illustrate the process of conducting a fairness analysis based
on manually selected features. Specifically, the focus is on the features “gender” and
“ethnicity”, which are expected to exhibit varying prediction performances across different
subgroups. These features are known to significantly divide groups and potentially impact
the overall fairness of the model [27]. Moreover, there is compelling evidence suggesting
differences in medical indicators and mortality rates among various gender and ethnic
subgroups for stroke [11] [12]. Similarly, research focusing on heart illnesses detected
differences between gender subgroups [7].

Following such a fairness analysis, it can become necessary to adjust a model to address
fairness concerns. The actual realization of reworking models to enhance fairness is not
included in this thesis. However, it presents a promising, alternative area for further
research.

7.2.1 Sensitive Feature: Ethnicity

The feature that is selected for the first analysis of privileged groups is ethnicity. It
can also be referred to as the “sensitive feature”. Following the one-hot encoding of
categorical features, the dividing feature is binary, with the class “1” representing the
privileged group. Based on the previously introduced unequal distribution of ethnicities,
the occurrence of “white” is considered “privileged” in the following step.

The following Figure 36 shows the distribution and performance metrics for each subgroup.
The barplots enable easy visual comparison of these indicators, while the numerical

29https://fairlearn.org/v0.8/user_guide/
30https://aif360.readthedocs.io/en/stable/index.html
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results are summarized in Table 17 next to it. For each of the subplots, the bar on the
right represents the privileged class “1”, while the left bar displays the respective metric
for all the remaining instances.

Figure 36: Metrics per Subgroup: White Ethnicity

Metrics unprivileged privileged overall

accuracy 0.868 0.876 0.874
recall 0.625 0.768 0.736
precision 0.4 0.566 0.525
auroc score 0.76 0.832 0.816
selection rate 0.175 0.204 0.190
count 159 372 531

Table 17: Metrics per Subgroup:
White Ethnicity

It can be seen, that the divergence in accuracy between the groups is minimal. However,
notable differences can be observed in terms of recall and precision. The recall rate is
significantly higher for the privileged class, “white”, at 0.768. This discrepancy is also
reflected in the AUROC score, which is titled “roc auc”. This indicates that the overall
performance of the model is superior for the privileged class.

The selection rate, signifying the mortality rate, is slightly higher for the privileged class,
at 20.5%. It must be noted, that this mortality rate in the test data is higher than the
mortality rate in the original complete dataset because of the SMOTE oversampling
method.

Finally, the count of the privileged class is noticeably higher, with 372 to 159 cases. This
disparity in representation could potentially explain why the model performs better for
white patients, as it has more data and a better understanding of this particular subgroup.
It appears that other ethnicities are underrepresented in the MIMIC-III dataset when it
comes to the stroke use case.

In addition to the performance metrics above, Table 18 displays the fairness metrics
for the XGBOOST model. Consistent with the previous observations, the four parity
metrics describing group fairness are lower for the unprivileged class.

This disparity is also evident in both fairness metrics for individual fairness. Notably,
the high absolute value of 0.142 for the strict Equalized Odds metric, further strengthens
the assumption of unfairness in the model.
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Metrics Value

Accuracy Parity -0.008
Recall Parity -0.143
Precision Parity -0.166
Demographic Parity -0.047
Equalized Odds -0.142
Equal Opportunity -0.143
Entropy Difference -0.057

Table 18: Fairness Metrics:
White Ethnicity

At last, the entropy difference metric is computed
by subtracting the Generalized Entropy of the priv-
ileged class from that of the unprivileged class. For
the entropy of the predictions, a minimal value is
desirable, so this metric has to be interpreted in-
versely to the previous metrics. Negative values of
the difference metric imply a lower entropy within
the unprivileged class, which would suggest better
model performance for class “0”.

Thus, in this case, the entropy difference is the
only metric that does not indicate unfair model
performance towards the unprivileged class. The
value of -0.057 implies slightly lower entropy within
the unprivileged class. However, the overall impression of this fairness analysis implies
the existence of unfairness towards non-white patients.

The previous analysis primarily concentrated on the “1-vs-all” comparison between
“white” ethnicity and the rest of the dataset. An alternative approach is to conduct
a “1-vs-1” comparison for each specific ethnic subgroup. This involves selecting each
ethnicity as the privileged class and examining the relevant performance metrics across
all ethnic subgroups individually. By employing this, a more granular analysis can be
performed to assess the disparities in predictive performance across all ethnicities. The
results for this approach are displayed in Table 19.

However, an inherent challenge with the chosen stroke use case becomes evident. Within
the test data, the number of instances for most of the ethnicity subgroups is insufficient
to calculate the respective fairness metrics. The majority of these subgroups have a
support size of less than 100. Consequently, a direct comparison of performance across
ethnicities is not feasible. Nonetheless, this limitation strongly supports the assumption
of representational bias within the dataset.

ethnicity accuracy recall precision auroc score size reliable

OVERALL 0.874 0.736 0.525 0.832 531 yes
WHITE 0.876 0.768 0.566 0.832 372 yes
ASIAN 0.882 0.5 0.5 0.717 21 no
HISPANIC OR LATINO 0.842 0 0 0.444 19 no
BLACK 0.904 0 0 0.48 52 no
OTHER 0.96 1 0.667 0.978 25 no
UNKNOWN/NOT SPECIFIED 0.783 0.75 0.429 0.77 46 no

Table 19: Comparison of XGBOOST Performance across Ethnicity
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7.2.2 Sensitive Feature: Gender

Next, the feature “gender” is selected with the attribute “male” as the assumed “privileged”
class. This selection is based on suspected gender inequality within medical research
[12].

Figure 37: Metrics per Subgroup: Male Gender

Metrics unprivileged privileged overall

accuracy 0.891 0.858 0.874
recall 0.793 0.698 0.736
precision 0.511 0.536 0.525
auroc score 0.848 0.793 0.816
selection rate 0.175 0.204 0.190
count 257 274 531

Table 20: Metrics per Subgroup:
Male Gender

Contrary to expected results, accuracy and recall are higher for the unprivileged class.
The same is true for the AUROC score. These metrics do not support the assumption,
that male patients might be privileged and have better prediction results.

Furthermore, based on the selection rate, male patients have a slightly higher occurrence
of death in the test data. At the same time, the prediction quality for these patients
is not as high. This reveals, that the model does not predict male cases as well, even
though it has higher support for these. Once again, it must be noted that the selection
rates displayed above were impacted by the oversampling method and the separation
into training and test data. Thus, they are not representative of the actual mortality
rates, which are displayed in the descriptive data analysis, in Chapter 4. However, a
higher prediction quality for female patients can still be detected when not implementing
the sampling method.

Lastly, the sizes of each class are relatively similar, which suggests a reduced likelihood
of representational bias.
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These indicators can again be supported by the fairness metrics displayed in Table
21.

Metrics Value

Accuracy Parity 0.033
Recall Parity 0.095
Precision Parity -0.025
Demographic Parity -0.029
Equalized Odds 0.079
Equal Opportunity 0.095
Entropy Difference -0.051

Table 21: Fairness Metrics:
Male Gender

As mentioned before, it is surprising to observe a
higher recall rate for female patients, as indicated
by the Recall Parity of 9.5%. Demographic Parity
is slightly lower for female patients but Equalized
Odds and Equal Opportunity are again higher for
the “unprivileged” group. Entropy within the fe-
male class is also lower, which further indicates a
worse prediction quality for male patients.

While the observed discrepancies between the two
groups are not remarkably high, there are indeed
noticeable differences. Conducting a more com-
prehensive analysis of feature relevance for each
subgroup could provide valuable insights into the
underlying factors influencing the model’s decision-
making process for male and female cases.

One plausible explanation can be found in the subsequent chapter on subgroup analysis.
In this chapter, a detailed examination of clustering results reveals a noteworthy subgroup
consisting of exclusively female, white patients. It is observed that all of these patients
originate from the “CareVue” system and lack O2 measurements or Oasis scores. This
pattern of missing crucial features could potentially account for the higher-than-average
detection of mortality cases among this group. The manner in which patients with
missing data are handled can significantly impact the prediction model.

When excluding the “CareVue” patients, a different pattern of unfairness can be observed,
aligning more closely with the anticipated results.

Metrics unprivileged privileged overall

accuracy 0.840 0.792 0.826
recall 0.708 0.375 0.625
precision 0.447 0.231 0.392
auroc score 0.785 0.609 0.740
selection rate 0.217 0.181 0.206
count 175 72 247

Table 22: Metrics per Subgroup:
Female Gender, Metavision

Metrics unprivileged privileged overall

accuracy 0.832 0.816 0.826
recall 0.529 0.733 0.625
precision 0.346 0.440 0.392
auroc score 0.700 0.782 0.740
selection rate 0.174 0.255 0.206
count 149 98 247

Table 23: Metrics per Subgroup:
Male Gender, Metavision

The comparison between subgroups reveals, that within the “metavision” dataset male
patients exhibit significantly higher recall and precision compared to female patients.
In the left table, which focuses on female patients as the privileged class with a count
of 72 cases, their recall is notably low at 0.375. On the other hand, the right table
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displays the male patients as the privileged class, showcasing a much higher recall of
0.733. These findings indicate unfairness regarding female patients in the “metavision”
database system, as was initially suspected.

Understanding the impact of missing values or the varying influence of features between
these two database systems is crucial in order to gain deeper insights into the suitability of
the databases within the MIMIC-III dataset. Thus, these substantial differences warrant
further investigation.

7.2.3 Sensitive Features: Gender and Ethnicity

For this last analysis, the distinguishing features are a combination of gender and
ethnicity. More precisely, class “1” encompasses the intersection of “female” and “white”
patients. Based on the previous results this privileged class is supsected to show up
most pronounced unfairness. Combined privileged classes, that are made up of multiple
features, are also referred to as “patterns”.

Figure 38: Metrics per Subgroup:
Ethnicity and Female Gender

Metrics unprivileged privileged overall

accuracy 0.871 0.879 0.874
recall 0.681 0.840 0.736
precision 0.516 0.538 0.525
auroc score 0.791 0.863 0.816
selection rate 0.178 0.214 0.190
count 349 182 531

Table 24: Metrics per Subgroup:
Ethnicity and Female Gender

The count of this class is much lower, with 182 instances, than for the previous selections.
Still, with 0.879, the accuracy for this privileged class is comparable to the “white”
ethnicity group and only slightly lower than for the sole “female” group which was at
0.891. Furthermore, the metrics recall, precision, and AUROC score are each higher
for this case, clearly supporting suspected differences in the prediction quality between
classes.
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Again, the fairness metrics in Table 25 can be compared between the combined subgroup
“female” and “white” with the rest of the dataset.

Metrics Value

Accuracy Parity -0.008
Recall Parity -0.159
Precision Parity -0.022
Demographic Parity -0.037
Equalized Odds -0.174
Equal Opportunity -0.159
Generalized Entropy -0.003

Table 25: Fairness Metrics:
Ethnicity and Female Gender

Similar to the performance metrics, there is an ev-
ident increase in the disparities of recall, as well
as Equalized Odds and Equal Opportunity. This
highlights a more pronounced unfairness when exam-
ining the variables “gender” and “ethnicity”.

However, Precision Parity and Demographic Parity
exhibit a relatively lesser degree of imbalance, com-
pared to the analysis where only white patients are
considered. As a possible explanation, the smaller
precision value of the privileged class can be at-
tributed to the lower precision rate observed within
the group consisting solely of female patients, which
stands at 0.511. Nevertheless, in the context of this
particular use case, the precision difference is not as
crucial as the increase in the difference of recall. Lastly, it can be seen that the entropy
values are relatively similar between both subgroups.

Overall, the combination of the privileged groups does further increase differences in
recall and general model imbalance.

7.2.4 Fairness Analysis Summary

In summation, this comprehensive fairness analysis of the XGBOOST model did detect
potential instances of unfairness.

The first selection based on ethnicity did indicate representational bias, as the fairness
metrics differed between privileged and unprivileged classes. This problem was anticipated,
as certain subgroups are underrepresented, as was seen in Chapter 4. This does not
imply, that the real treatment and survival chances of patients from these subgroups are
actually unequal. However, it does indicate that the XGBOOST model does not classify
some patients with the same quality. Next, the fairness analysis based on gender led to
unexpected results. Even though gender inequalities are common within medical research
the analysis suggested better results for female patients. While this might be attributed
to the explained missing values within the carevue dataset, a further investigation of
relevant features and the decision process of the model is required. This affirms the
importance of better explainability of prediction models. At last, a combined privileged
class of “female” and “white” patients resulted in the highest unfairness, yet, with a
difference in recall rates of 0.159.

In addition to this analysis, it is possible to compare different prediction models regarding
their fairness in the supplemented frontend.
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On the one hand, the manual selection of privileged classes implemented in this chapter
provided valuable insights. However, it is important to acknowledge that it was not
possible to analyze some potential subgroups, such as black women, due to the limited
size of the dataset. In detail, after splitting the data into training and test sets, there
are only 531 patients available. Among these, there are only 32 black women. Within
this small subset, there were no predicted death cases, which led to no true positives. As
previously mentioned, this renders the calculation of fairness metrics impossible. This
subgroup would have been particularly relevant for research, due to their known high
mortality rate in the context of stroke. For example, some studies state that black women
may have 47% higher risk of stroke than white women [12]. A more focused analysis of
this group, and other disadvantaged groups, can be very insightful.

This limitation poses a significant challenge when investigating specific groups within
the MIMIC-III dataset. One potential solution could be to allocate a relatively larger
portion of the data to the test set when splitting the data into training and test sets.
However, this approach can quickly lead to reduced prediction quality. Another possible
solution is to increase the overall number of patients in the dataset. This may necessitate
a switch to a different use case, such as heart attacks or general mortality, to achieve
a more substantial sample size. In future studies, including such subgroups would be
advantageous to gain a more comprehensive understanding of fairness and performance
across diverse populations.

Another shortcoming of manual detection is that it requires previous context-related
knowledge. One needs to have medical knowledge or is reliant on other research to select
potential subgroups.

Lastly, the inclusion of all available features leads to a very large amount of possible
combinations of privileged classes. Comparing the performance metrics for all of these
classes may not be feasible. Thus, not all potential patterns of privileged groups can be
analyzed manually.

These reasons highlight the necessity for a process, that is less dependent on manual
selection. Therefore, the exploration of an automated process to detect potential sub-
groups presents a promising alternative. This approach is tested and evaluated in the
following chapter.
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8 Subgroup Analysis

This final chapter presents an approach to compare subgroups for diverging prediction
fairness and potential differences of feature relevance.

8.1 Automated Subgroup Detection

For this analysis step, the previously presented topics come together. The main idea is
to use a clustering method to find subgroups inside the dataset, that show up a high
difference from each other. Once a clustering algorithm is selected, the differentiation
of these subgroups can be done automatically based on the concept of feature entropy.
However, these subgroups might not have a clear medical or demographic explanation
and are not always clearly explainable, as their differentiation might be based on multiple
features. Thus the selection of relevant subgroups, especially those with a high mortality
rate, still remains a manual task. The analysis of such subgroups can be insightful
to evaluate the fairness and quality of a prediction model. If potential unfairness
can be detected, previously hidden and unsuspected privileged groups may become
apparent. This increased explainability can further support transparency and trust in
the model.

A promising approach to automatically distinguish clusters is based on feature entropy.
It was used for the development of the FairVis tool, which is intended to visualize the
bias across these clusters [34]. The concept of feature entropy, which is implemented
for this approach, has to be differentiated from the Generalized Entropy metric, from
section 7.1.3.

Cabrera et al. derive the importance of each feature based on the feature entropy. If a
feature in a subgroup is dominated by a certain value, e.g. all cases are “male”, then
the value “male” dominates the feature “gender”. The feature would show up with low
entropy and would thus be a dominant feature with high influence on this cluster [34].
They calculate the feature entropy S for subgroup, or cluster, k, with the features i and
values v as follows:

Sk,i = −
∑

v∈Vi

Nk,v

Nk

log
Nk,v

Nk

(13)

This formula specifies, that for each occurrence of a value, the influence upon the
respective feature is calculated. The sum of these value influences multiplied by their
logarithm makes up the entropy of each feature inside the respective cluster.

This concept was extended by Schäfer and Wiese with a normalization factor [20]. This
is necessary to compensate for features that differ in the number of their available
values.

Hi,j = −
1

log2|Dom(Aj)|
·
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· log2
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(14)
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The naming convention was slightly adjusted to include the clusters in the index. Here i
is the index for the clusters, j is the index for features and v are the available values.
Moreover, the feature entropy is now denoted by H. The variable Dom(Aj) is comparable
to Vi. The crucial part of this second formula is the normalization factor in front of
the summation. With this factor, the entropy range is shifted between 0 and 1 for each
feature, independent of the number of available values. Thus feature entropy can be
compared between all features across all clusters.

One might further decide if a ranking of features is used to find subgroups, or if a certain
entropy threshold has to be crossed, for the feature to be considered dominant. However,
for the stroke use case, the average of all available feature entropies is calculated within
each respective cluster. This metric is also referred to as cluster entropy. Based on this,
the diversity within each cluster can be approximated.

A ranking of the cluster entropy is then used to find clusters that show up with lower
overall entropy. As clusters with lower entropy than the complete dataset indicate a more
homogeneous group of patients, these clusters can be interpreted as actual subgroups,
which are divergent from each other.

In addition, it is important to consider the mortality rate per cluster. If a cluster was
dominated by a certain patient subgroup but had no death cases, the medical relevance
might not be high. Only cases with a mortality rate at least as high as the complete
dataset may be considered relevant.

8.2 Initial Subgroup Analysis Results

The following analysis is conducted based on the previously introduced feature selection
of nine features.

As a preliminary step, for the kMeans clustering the silhouette scores are calculated
and displayed in Figure 39. Ideally, a cluster count that maximizes the silhouette score
should be selected. However, it is also advised not to choose a too-high cluster count, to
ensure interpretability and to prevent excessively small cluster sizes.

Nevertheless, in this exemplary analysis, a relatively high cluster count of thirteen was
chosen. While the silhouette score of 0.46 is not the highest achievable, it surpasses the
scores obtained with a selection of ten or fewer clusters. Moreover, opting for even more
clusters would constrain interpretability without significant improvement in the score.
Additionally, the examination of cluster entropy in Table 26 reveals promising results for
clusters eight and nine, further supporting the choice of thirteen clusters.
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Figure 39: kMeans Silhouette Score

Table 26 presents the average feature entropy of the resulting clusters. Five clusters can
be found, for which the average feature entropy is smaller than that of the complete
dataset.

As previously explained, clusters with a higher mortality rate compared to the overall
dataset, which is at 15%, are considered particularly relevant. In this regard, cluster
number eight stands out, as it exhibits a mortality rate of 100%. This shows that all
patients within cluster eight are actual death cases, making it a highly significant and
distinct subgroup.

Clusters Count death in hosp rate Average Entropy

cluster 0 372 0.00 0.25
cluster 4 433 0.00 0.25
cluster 6 393 0.00 0.26
cluster 8 135 1.00 0.27

cluster 2 389 0.00 0.28
cluster 12 109 0.08 0.30
complete set 2655 0.15 0.30

cluster 1 143 0.09 0.31
cluster 5 88 0.17 0.31
cluster 10 143 0.27 0.32
cluster 7 78 0.23 0.34
cluster 9 124 1.00 0.34
cluster 3 136 0.23 0.35
cluster 11 112 0.12 0.37

Table 26: Cluster Entropy Overview
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The subsequent Table 27 provides a detailed examination of cluster eight. It is evident
that this subgroup consists of 135 female, white patients exclusively. Moreover, all of
these patients originate from the “CareVue” database, which is the reason for the absence
of values for “O2 saturation pulseoxymetry” and “oasis”. This distinctive pattern of
missing values likely contributed to the clustering. These patients may also make up
the subgroup discussed in the fairness analysis regarding gender inequality, in section
7.2.2. On a side note, it can be seen that the oversampling algorithm plays a role in this
analysis, as the original “CareVue” system only contains 88 female, white patients.

Features Values complete set cluster 8 cluster 8

count count entropy

total count icustay ids 2655 135 0
ethnicity UNKNOWN/ 279 0 0

NOT SPECIFIED
ethnicity WHITE 1846 135 0

ethnicity ASIAN 78 0 0
ethnicity HISPANIC OR LATINO 112 0 0
ethnicity BLACK 252 0 0
ethnicity OTHER 88 0 0
gender 0 1353 135 0

gender 1 1302 0 0
dbsource carevue 1415 135 0
dbsource both 8 0 0
dbsource metavision 1232 0 0
O2 saturation pulseoxymetry (-0.001, 0.33] 3 0 0
O2 saturation pulseoxymetry (0.33, 0.67] 55 0 0
O2 saturation pulseoxymetry (0.67, 1.0] 1184 0 0
oasis (-0.001, 0.33] 464 0 0
oasis (0.33, 0.67] 1799 0 0
oasis (0.67, 1.0] 372 0 0
death in hosp 0 2259 0 0
death in hosp 1 396 135 0

White Blood Cells (-0.001, 0.33] 2274 104 0.43
White Blood Cells (0.33, 0.67] 209 19 0.43
White Blood Cells (0.67, 1.0] 11 1 0.43
Sodium (whole blood) (-0.001, 0.33] 331 106 0.49
Sodium (whole blood) (0.33, 0.67] 2203 16 0.49
Sodium (whole blood) (0.67, 1.0] 36 5 0.49
gcs (-0.001, 0.33] 70 111 0.51
gcs (0.33, 0.67] 247 17 0.51
gcs (0.67, 1.0] 2318 6 0.51
Heart Rate (-0.001, 0.33] 1292 83 0.68
Heart Rate (0.33, 0.67] 1322 48 0.68
Heart Rate (0.67, 1.0] 31 3 0.68
Anion Gap (-0.001, 0.33] 1031 79 0.75
Anion Gap (0.33, 0.67] 1431 39 0.75
Anion Gap (0.67, 1.0] 37 8 0.75

Table 27: Feature Relevance within Cluster Eight
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Cluster nine reveals another noticeable subgroup with a mortality rate of 1. However, this
group comprises 124 male patients. Initially, this cluster may not have been considered
relevant due to its higher entropy compared to the original complete dataset. However,
this higher entropy can be attributed to multiple continuous features such as “Heart
Rate” or “Anion Gap”, which do not exhibit clear imbalances in their distributions.

This observation highlights a crucial aspect of this subgroup detection method. While
subgroups with low entropy in their categorical features (e.g. gender, ethnicity, insur-
ance status, marital status) offer more straightforward interpretations, the inclusion of
continuous variables, like vital signs, allows for the discovery of feature patterns across
all available features. In the stroke use case, the detection of such patterns, including
vital signs, has been implemented. However, future researchers may explore the alterna-
tive perspective of considering entropy solely across categorical features to detect more
interpretable subgroups.

As a final step, it was intended to calculate the fairness metrics based on cluster eight
as the privileged group. This approach differs from the fairness metrics derived from
the manual selection of features, as it enables the detection of unfairness patterns,
independent of prior medical knowledge. By considering clusters as the privileged group,
it becomes possible to assess fairness in a more data-driven manner, uncovering potential
biases that may not have been evident through traditional feature-based analysis. This
can be valuable in identifying hidden sources of bias within the model.

Regrettably, the limitations of the dataset for the stroke use case once again hinder
the analysis of such specific groups. The reduced size and specificity of the subgroups
obtained through clustering, in combination with the smaller proportion of test data,
pose significant challenges. In addition with the limited number of positive cases, the
calculation of fairness metrics becomes infeasible. The reliance on fairness metrics on the
existence of true positive cases makes it impossible to conduct a comprehensive fairness
analysis based on clusters in this particular setting.

A similar challenge arises when attempting to explore feature relevance using Shapley
values. The comparison of feature influence across subgroups could potentially offer
valuable insights. However, in the current selection, this investigation is not feasible due
to the limited size of cluster eight.

In detail, cluster eight, initially consisting of 135 instances, was significantly reduced to
only 22 instances after the test data split. With such a small number of instances, the
calculation of feature relevance is not possible, and the resulting Shapley values are null,
as illustrated in the following two figures.
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Figure 40: SHAP Beeswarm Plot,
Cluster Eight

Figure 41: Dependence Plot on Oasis,
Cluster Eight

Even with a higher test data rate of 30%, the cluster only contained 49 instances, which
was still insufficient to conduct a meaningful investigation of fairness or feature relevance.
Furthermore, increasing the test data rate to such high levels can compromise the overall
prediction performance of the model.

Consequently, the intended analysis step based on cluster eight was not possible with
the MIMIC-III dataset for the stroke use case. This again highlights the need to explore
alternative use cases, such as general patient mortality, to determine if they provide a
more suitable context for conducting this approach.

8.2.1 Optimized Subgroup Analysis Results

Various settings were explored in an attempt to achieve better results for this methodology,
but unfortunately, this was not feasible for the selected stroke use case.

Most clusters became too small for a cluster count above eight, as was seen in the previous
analysis. Thus an initial approach was to reduce the number of clusters to achieve larger
clusters. However, this resulted in lower silhouette scores and made it difficult to identify
meaningful subgroups. There exists a trade-off between having larger clusters that lack
relevant subgroups and smaller clusters for which fairness measures and feature relevance
cannot be reliably calculated.

Furthermore, another challenge arose when certain clusters exhibited a mortality rate
of either 0 or 1. This was observed for a selection of six kMeans clusters, which
initially seemed reasonable in terms of cluster count. However, for the relevant clusters,
respectively, only a single class was represented. Although analyzing these clusters would
be intriguing, the absence of multiple classes makes it impossible to calculate fairness
measures or determine feature relevance.

For the use case at hand, this approach regrettably does not deliver insightful subgroups.
Thus, these continued difficulties should be critically reflected. It must be questioned
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if the problem lies just in the limited dataset, or if the method, to manually search for
relevant and analyzable clusters, may itself be misguided. For further improvements of
this method, different steps can be considered.

One option is to filter the resulting clusters in regard to their interpretational value. For
example, a minimum threshold for the cluster size could be implemented to remove too
small cluster options.

Alternatively, it may be a promising step, to consider a further automated solution to
directly find interpretable clusters. For this, the results for multiple cluster counts could
be calculated in an iterative way and only those options that contain potentially useful
clusters get displayed.

Ultimately, the actual applicability of this method needs to be tested on a different use
case to determine whether adjustments are necessary or if the proposed steps can indeed
yield meaningful results. Despite these unresolved questions, the concept of identifying
relevant subgroups in this manner continues to hold promise.

In conclusion, although it was not possible to perform the final step of assessing fairness
and feature importance across clusters in this study, the proposed method may prove to
be useful for researchers aiming to identify relevant subgroups within a larger dataset. It
offers the potential to uncover groups that might have been overlooked solely based on
medical knowledge.
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9 Conclusion

9.1 Summary of Results

The key finding of this thesis is the general applicability of the overall MIMIC-III dataset
as a robust data source for healthcare research. A comprehensive descriptive analysis of
the dataset was conducted and various clustering methods were employed to gain further
insights. Especially, the thesis successfully replicated different prediction models and
achieved results that were comparable to existing research.

Nevertheless, it is important to acknowledge the limitations and shortcomings that were
identified in this thesis. Firstly, it was observed that the methods employed in this
study did not yield improved prediction results compared to previous research findings.
Furthermore, the focus on the stroke use case led to a dataset containing only 2,655
patients. This presented limitations in conducting detailed subgroup analysis. The
small sample size restricted the ability to comprehensively examine and assess specific
subgroups, thereby impeding a more comprehensive fairness analysis.

However, this thesis successfully presented various fairness metrics and revealed instances
of unfairness. It became apparent, that the detection of unfairness alone is not sufficient,
but in-depth investigations are necessary to understand and explain the underlying
factors contributing to these results.

It further introduced manual and automated subgroup detection approaches. The
importance of explanations for differences between subgroups, such as diverging feature
relevance, was emphasized.

Overall, this thesis serves as a significant step in conducting research within the MIMIC-
III database. The code provided alongside this thesis offers a valuable foundation for
future researchers to build upon.

9.2 Limitations of this Thesis

As discussed in the previous chapters, the filtering process of the dataset resulted in a
relatively small subset of stroke patients. To obtain more robust results, it would be
beneficial to explore alternative use cases that can offer a larger and more diverse sample
size.

One suggestion is to consider a use case with a larger dataset, such as 5,000 patients,
where 1,000 patients remain in the 20% test data. By filtering for a subgroup representing
10% of the population, there would still be approximately 100 patients in the final test
data subgroup. With a mortality rate of 10%, or potentially 20% with oversampling,
there should be a sufficient number of true positive cases for further analysis.

Moreover, it is worth noting that the MIMIC-III dataset solely focuses on patients in the
ICU. While the dataset provides valuable insights into diseases and conditions treated
in the ICU, it does not cover the entire spectrum of medical conditions. Still, machine
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learning models can be very impactful for the whole field of medicine and further research
might want to focus on more comprehensive hospital data.

It is also important to keep in mind that the geographical scope of the MIMIC-III dataset
is strictly limited to patients treated in the United States.

9.3 Future Research: Alternative Directions

This section summarizes potential alternative avenues of research. Some of these aspects
have already been mentioned throughout this thesis.

Select a larger Use Case

The impeding factor for this thesis was that the stroke use case with 2,655 patients is
not sufficient for the analysis of specific subgroups. Thus, the step for future research
with the highest priority is to select a suitable use case with a higher number of patients.
One promising option can be general mortality within the complete MIMIC-III dataset,
based on approximately 32,000 cases.

Implement Methods to Reduce Unfairness

The practical implementation of bias-mitigating methods was not within the scope of
this thesis. This represents an important and extensive topic that warrants further
investigation. It is recommended to first rework the feature selection and factorization
process before the following adjustments are implemented.

As of yet, there are no known solutions, with which to automatically improve a model’s
fairness in an unsupervised way. Nevertheless, various approaches can be explored to
manually intervene and construct a fairer model. One starting point is to modify the pre-
processing stage to early-on mitigate model bias. In addition, in-processing methods offer
opportunities to directly adjust the classification step. Lastly, post-processing algorithms
can be employed to afterward refine the model’s fairness [28]. For the stroke use case,
mainly the following pre-processing techniques are considered promising solutions.

One common approach is to adjust attribute weights, to mitigate bias. By assigning
different weights to the features, the influence of features that lead to potential unfairness
can be reduced. At the same time, the features are not completely removed from the
process and no information is lost. This method may be a promising option for future
improvement.

Notably, the automated-subgroup clustering approach, presented in Chapter 8, may be
regarded as a form of pre-processing adjustment. By discovering diverging fairness between
subgroups one can then consider different methods to tackle potential inequality.

If the underlying reason for unfairness is representational bias, an increase in instances
of the unprivileged subgroup is a common solution. However, it is not recommended
to decrease the instances of the privileged groups, as this can reduce overall model
performance.
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Furthermore, conducting a thorough analysis of the underlying feature relevance is
sensible to uncover the root causes of the disparate prediction quality. For example, it
is essential to investigate if certain subgroups exhibit missing feature values or similar
patterns, which may necessitate the refinement of data collection methods.

Finally, a more radical approach is to replace the existing model with an alternative
model that is inherently less prone to bias.

In addition to the proposed methods, existing open-source tools are available that can
assist in the analysis and improvement of model fairness. For example, the Responsible
AI Toolbox31, developed by Microsoft, reflects the growing recognition of the importance
of fairness in AI applications. This toolbox offers a comprehensive and powerful solution
for in-depth dataset analysis. Notably, the included “Fairness Dashboard” can aid in the
fairness analysis and with the identification of potential steps for bias mitigation.

Investigate Explanations

A more detailed evaluation of explanations has not been implemented within this thesis.
The comparison of feature importance across subgroups is only useful if these explanations
are reliable. This remains an important area for future research.

Improve Prediction Quality

As of yet, the prediction results are not as good as comparable research, thus an increase in
recall and accuracy are important points for improvement. Moreover, external validation
on an alternative dataset is recommended.

Include alternative Features

There are several additional features in the MIMIC-III dataset that have not been
incorporated into the analysis thus far. These features, such as transfers, services,
microbiology events, and prescriptions, might provide valuable insights into the treatment
process and the patient’s conditions.

For instance, the number of transfers between different units could potentially serve
as an indicator of the severity of the patient’s condition or their need for specialized
care. An alternative hypothesis is, that specific types of prescriptions might be indicators
for relapse rates or treatment effectiveness. Moreover, the “note-events” table, which
contains textual data such as clinical notes and reports, holds great potential for Natural
Language Processing analysis. Integrating NLP techniques can offer new opportunities
for predicting patient outcomes. However, these features mainly describe the treatment
and behavior of the medical staff. As they are not directly related to the illness itself,
they were not included in the analysis for now.

To facilitate the inclusion of these sources, it is possible to modify the SQL function
“get all events view”. In general, more informed medical knowledge can further support
feature engineering and lead to improved model performance.

31https://github.com/microsoft/responsible-ai-toolbox
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Validate the Transferability of the Oasis Score

It is recommended to examine the Oasis score and its construction. The Oasis score,
which exhibits the highest correlation with deaths, appears to be a valuable option for
potential real-world integration in hospitals. However, it is important to validate its
effectiveness and generalizability by testing it on external datasets beyond the MIMIC-III
dataset from which it was developed. Conducting such external validation studies would
provide valuable insights into the reliability and applicability of the Oasis score in diverse
healthcare settings.

Investigate specific Patient Groups

Another interesting research approach worth considering is the analysis of patients who
experience a stroke while they are already admitted to the ICU. This specific subgroup of
patients could provide valuable insights into the changes in vital signs and other relevant
factors leading up to a stroke. However, the MIMIC-III dataset may not have a sufficient
number of such patients for a robust analysis of this particular scenario.

9.4 Future Research: Technical Adjustments

This section introduces different technical aspects that have the potential for further
development. As mentioned before, the code developed for this thesis may offer a helpful
foundation for research on the MIMIC-III dataset. There are several areas marked
directly within the code as “todo future research”, which may be improved and expanded
upon.

Setup

Some initial parts of the setup process should be reassessed. For instance, the mapping
between the “CareVue” and “metavision” features does not seem ideal yet, as was seen
with the missing values for the feature “O2 saturation pulseoxymetry”. As was assumed
within the fairness analysis, this pattern of missing values might have affected prediction
quality for the female subgroup from the “CareVue” data system. Thus, an improvement
in data quality is of great importance for prediction performance. Moreover, the feature
selection is currently hardcoded. As this is not flexible, a table similar to the factorization
table, which is described in the chapter regarding the use case setup, might offer a better
solution. Finally, the distribution of hemorrhagic and ischemic stroke types raised some
questions, and filtering based on ICD-9 codes need to be reconsidered.

Pre-Processing

Regarding the pre-processing step, a couple of steps can be refined. Firstly, the factor-
ization of categorical features might benefit from an alternative approach, as relying on
an external factorization table may be suboptimal when compared to one-hot encoding.
Secondly, the outlier removal process can be reassessed to ensure its effectiveness. Thirdly,
enhancing the overall analysis by incorporating time series data, rather than solely relying
on average data per patient, could provide better prediction performance. This may
require additional pre-processing, such as interpolation and imputation. Furthermore,
optimization of the scaling method can support the prediction performance. Introduc-
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ing the scaling method as a user-selectable parameter in the frontend would allow for
customization based on specific requirements.

Correlations

The correlation analysis provided valuable insights, although certain features, like age,
exhibited unexpectedly low p-values. It may be necessary to reevaluate the implemented
correlation methods to obtain more reliable results.

Clustering

The clustering methods DBSCAN and SLINK are promising alternatives to the kMeans
clustering approach. A deeper investigation into these methods and optimization of the
respective parameters may lead to better results.

Classification

Similarly, for the classification models, further improvement of the XGBOOST classifier
and the neural network model can be achieved by parameter optimization. Additionally,
it may be worth considering the interpretation of the positive and negative classes in
this analysis. While the current approach considers “death” as the positive case, it could
be argued, that using “survival” as the positive class aligns more closely with common
standards. However, it is important to acknowledge that there is a significant body of
research where “death” also represents the positive class in mortality prediction studies.
This matter remains open for discussion and warrants consideration based on the specific
context.

Fairness Analysis

Next, expanding the fairness analysis with additional metrics or integrating existing,
more comprehensive fairness dashboards can enhance the evaluation. Such tools might
additionally offer methods to directly reduce unfairness inside the dataset. The introduced
Responsible AI Toolbox or the integration of the “ASDF”-Dashboard may represent
useful options for further development in this direction. Furthermore, incorporating
Shapley values more extensively into the fairness analysis, as demonstrated in this official
SHAP example32, can be a valuable addition. By considering the Shapley values in
the context of fairness metrics a more nuanced assessment of model fairness may be
achieved.

Subgroup Analysis

For future research, it is recommended to prioritize the subgroup analysis within a larger
use case setting. This approach has the potential to provide more comprehensive insights
into the unfairness present in the dataset. Additionally, exploring different clustering
algorithms to identify subgroups can be a promising improvement. As discussed in the
respective chapter, it may be beneficial to calculate the feature entropy specifically for
categorical features, as this can enhance the interpretation and distinction of clusters.
At last, the overall approach might be reflected upon. A more automated solution to
detect clusters, that are relevant and analyzable, could prove to be necessary.

32https://shap.readthedocs.io/en/latest/example notebooks/overviews/

Explaining%20quantitative%20measures%20of%20fairness.html
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Frontend

Finally, the frontend of this thesis provides a comprehensive dashboard that encompasses
various topics and perspectives on the entire dataset. However, it can be beneficial to
narrow down the focus to a specific topic, such as subgroup detection, and dedicate
more in-depth analysis to that particular aspect. By scaling down the dashboard and
placing emphasis on one main topic, the analysis can be further developed and explored
in greater detail. This targeted approach would allow for a deeper understanding and
more extensive exploration of the selected research area.

9.5 Final Conclusion

The primary objective of this thesis was to assess the effectiveness of predictive tools
in the medical domain, recognizing the immense potential for the development of new
digital tools in this field.

Indeed, despite working with a relatively limited dataset for the stroke use case, it was
possible to develop predictive models. Although the current prediction results may not
meet the requirements for real-world implementation, these methods demonstrate the
potential for reliable predictions in the future. Thus, this work can serve as a foundation
for development within the MIMIC-III dataset. The thesis further highlighted potential
continuing avenues of research, that may be pursued by future data scientists.

However, it is crucial to remain mindful of the concerns expressed by organizations such
as the European Union and the World Health Organization, as highlighted at the outset
of this thesis. In line with these considerations, this thesis emphasizes the importance
of explainability and fairness in predictive models. Once again, it must be highlighted
that the implementation of unfair prediction models may turn out harmful and diminish
trust.

Nevertheless, the benefits offered by these predictive tools are undeniable and their
significant potential in the medical field is cause for optimism. Further research in the
field of data science within healthcare holds the promise of making a positive impact and,
ultimately, saving lives.

In the end, the findings presented in this thesis shall encourage future developers to
critically reflect on their work and approach it with a heightened sense of responsibil-
ity.
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epidemiology: a systematic review. Stroke, 40(4):1082–1090, 2009.

[12] Kathryn M. Rexrode, Tracy E. Madsen, Amy Y. X. Yu, Cheryl Carcel, Judith H.
Lichtman, and Eliza C. Miller. The impact of sex and gender on stroke. Circulation
research, 130(4):512–528, 2022.

[13] Alistair Johnson, Tom Pollard, and Roger Mark. Mimic-iii clinical database, 2020.

77



[14] Alistair E W Johnson, David J Stone, Leo A Celi, and Tom J Pollard. The mimic
code repository: enabling reproducibility in critical care research. Journal of the
American Medical Informatics Association, 25(1):32–39, 2018.

[15] Michael Moor, Max Horn, Bastian Rieck, Damian Roqueiro, and Karsten Borgwardt.
Early recognition of sepsis with gaussian process temporal convolutional networks
and dynamic time warping, 2019.

[16] Alistair E. W. Johnson, Jerome Aboab, Jesse D. Raffa, Tom J. Pollard, Rodrigo O.
Deliberato, Leo A. Celi, and David J. Stone. A comparative analysis of sepsis
identification methods in an electronic database. Critical care medicine, 46(4):494–
499, 2018.

[17] Rebecca Woodfield, Ian Grant, and Cathie L. M. Sudlow. Accuracy of electronic
health record data for identifying stroke cases in large-scale epidemiological stud-
ies: A systematic review from the uk biobank stroke outcomes group. PloS one,
10(10):e0140533, 2015.

[18] Alessandra C. Goulart, Tiotrefis G. Fernandes, Itamar S. Santos, Airlane P. Alencar,
Isabela M. Bensenor, and Paulo A. Lotufo. Predictors of long-term survival among
first-ever ischemic and hemorrhagic stroke in a brazilian stroke cohort. BMC
neurology, 13:51, 2013.

[19] Alistair E. W. Johnson, Andrew A. Kramer, and Gari D. Clifford. A new severity
of illness scale using a subset of acute physiology and chronic health evaluation data
elements shows comparable predictive accuracy. Critical care medicine, 41(7):1711–
1718, 2013.
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[34] Ángel Alexander Cabrera, Will Epperson, Fred Hohman, Minsuk Kahng, Jamie
Morgenstern, and Duen Horng Chau. Fairvis: Visual analytics for discovering
intersectional bias in machine learning. CoRR, abs/1904.05419, 2019.

79



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Publiziert unter der Creative Commons-Lizenz Namensnennung (CC BY) 4.0 International. 

Published under a Creative Commons Attribution (CC BY) 4.0 International License. 

https://creativecommons.org/licenses/by/4.0/ 


	Introduction
	The Potential of Prediction Models in Medicine
	Research Question
	Thesis Outline

	Related Work
	Influential Research
	Expected Results

	Use Case Setup
	The MIMIC-III Dataset
	Filtering and Pre-Processing
	Patient Selection
	Use Case Selection
	Feature Pre-Processing
	Feature Selection
	Cache Solution

	Frontend

	Dataset Exploration
	General Statistics of the Stroke Use Case
	Feature Correlations
	Data Visualization

	Clustering Analysis
	Comparison of Clustering Algorithms
	Clustering Results for the Reduced Feature Set
	SLINK Clustering Alternative

	Stroke Mortality Prediction
	Prediction Results Baseline
	Comparison of Prediction Models
	Random Forest with SMOTE Oversampling
	Optimizing Random Forest with GridSearchCV
	XGBOOST Prediction Model
	Neural Network Prediction Model
	Summary of Prediction Results
	Prediction Results for Reduced Feature Set

	Feature Relevance within XGBOOST

	Fairness Analysis
	Selection of Fairness Metrics
	Metrics for Group Fairness
	Metrics for Individual Fairness
	Further Fairness Metrics

	Fairness Analysis of the XGBOOST Model
	Sensitive Feature: Ethnicity
	Sensitive Feature: Gender
	Sensitive Features: Gender and Ethnicity
	Fairness Analysis Summary


	Subgroup Analysis
	Automated Subgroup Detection
	Initial Subgroup Analysis Results
	Optimized Subgroup Analysis Results


	Conclusion
	Summary of Results
	Limitations of this Thesis
	Future Research: Alternative Directions
	Future Research: Technical Adjustments
	Final Conclusion

	List of Figures
	List of Tables
	Bibliography

