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Abstract 

 
White matter hyperintensities (WMHs) in the cerebral white matter and attenuation of alpha 
oscillations (AO; 7–13 Hz) occur with the advancing age. However, a crucial question 
remains, whether changes in AO relate to aging per se or they rather reflect the impact of 
age-related neuropathology like WMHs. In this study, using a large cohort (N=907) of elderly 
participants (60-80 years), we assessed relative alpha power (AP), individual alpha peak 
frequency (IAPF) and long-range temporal correlations (LRTC) from resting-state EEG. We 
further associated these parameters with voxel-wise WMHs from 3T MRI. We found that 
higher prevalence of WMHs in the superior and posterior corona radiata was related to 
elevated relative AP, with strongest correlations in the bilateral occipital cortex, even after 
controlling for potential confounding factors. In contrast, we observed no significant relation 
of probability of WMH occurrence with IAPF and LRTC. We argue that the WMH-
associated increase of AP reflects generalized and likely compensatory changes of AO 
leading to a larger number of synchronously recruited neurons. 
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1. Introduction 1 

White matter lesions (WML) are highly prevalent in the elderly and are of paramount 2 

clinical relevance since they are known to accompany cognitive decline and dementia 3 

(Birdsill et al., 2014; Debette and Markus, 2010; Habes et al., 2016). WML are considered to 4 

reflect mainly small vessel disease (Wardlaw et al., 2015), which typically affects 5 

periventricular regions and deep white matter sparing U-fibers (Habes et al., 2016). Little is 6 

known, however, whether and how WML impact functional measures of brain activity. Due 7 

to their location, white matter hyperintensities (WMHs) may cause disconnection of neuronal 8 

populations (O’Sullivan et al., 2001). Theoretically, such damage of cortico-cortical and 9 

cortico-subcortical pathways is expected to alter synchronized activity of neurons measured 10 

with M/EEG (Hindriks and van Putten, 2013). 11 

One of the most prominent EEG rhythms are alpha oscillations (AO), which have 12 

been shown to originate from thalamo-cortical and cortico-cortical interactions (Bazanova 13 

and Vernon, 2014; Lopes Da Silva et al., 1997). Importantly, measures of AO have been 14 

related to many aspects of sensory and cognitive function (Fox et al., 2016; Klimesch, 1999) 15 

and to endophenotypes of brain aging (Ishii et al., 2018; Knyazeva et al., 2018) either using 16 

power or individual alpha peak frequency (IAPF). Apart from these two measures of AO, 17 

temporal dynamics of the signal can be assessed with long-range temporal correlations 18 

(LRTC; Linkenkaer-Hansen et al., 2001). LRTC indicate the presence of scale-free neuronal 19 

dynamics, when fluctuation patterns of the signal are similar at different time scales. Power-20 

law decay of LRTC is consistent with the idea of neuronal networks operating at a critical 21 

state, — characterized by a balance between inhibition and excitation (Shew and Plenz, 22 

2013), — which may be beneficial for information processing and storage (Mahjoory et al., 23 

2019; Samek et al., 2016; Smit et al., 2011). 24 
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As both static (power, IAPF) and dynamic (LRTC) measures of AO might be affected 25 

by microstructural deteriorations, due to the disconnection among neural cells and damage to 26 

cortico-cortical and cortico-subcortical pathways (Madden et al., 2017), WML-associated 27 

alterations of EEG rhythms are plausible. However, there are only few EEG studies that have 28 

directly investigated the relationship between AO and WML or integrity (Babiloni et al., 29 

2011, 2008a; Valdés-Hernández et al., 2010; van Straaten et al., 2012). Previously, local and 30 

global disturbances of brain anatomy like WM microstructure (Hinault et al., 2020; Hindriks 31 

et al., 2015; Minami et al., 2020; Valdés-Hernández et al., 2010) have been found to be 32 

related to alpha rhythm affecting its peak frequency and power. For instance, a study by 33 

(Valdés-Hernández et al., 2010) provides evidence that peak frequency can be associated 34 

with both decrease and increase (depending on the region) in the microstructure of 35 

thalamocortical or corticothalamic fibers assessed by Fractional Anisotropy (FA) using 36 

diffusion tensor imaging (DTI). Interestingly, so far only a few studies have investigated the 37 

relationship between AO and WML (Babiloni et al., 2009, 2008b, 2008a). However, to our 38 

knowledge, no link between voxel-wise whole-brain WMHs and AO has been investigated. 39 

Moreover, a crucial question still remains unresolved, for example whether changes in AO 40 

relate to aging per se or rather they represent the impact of age-related neuropathology, for 41 

instance, WML. In this study, using a large population-based sample of elderly individuals, 42 

we hypothesized that WMHs affect the parameters (AP, IAPF, LRTC) of AO in a 43 

topographically specific manner. We further postulated that this effect might be independent 44 

of age.  45 
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2. Methods 46 

2.1.Participants 47 

Participants were drawn from the population-based Leipzig Research Center for 48 

Civilization Diseases LIFE-Adult study (Loeffler et al., 2015). All participants provided 49 

written informed consent, and the study was approved by the ethics committee of the medical 50 

faculty at the University of Leipzig, Germany. The study was performed in agreement with 51 

the Declaration of Helsinki. A subset of participants underwent a 3-Tesla MRI head scan and 52 

resting state (rs)EEG recordings on two separate assessment days. We selected participants 53 

above 60 years of age and without additional brain pathology or history of stroke, multiple 54 

sclerosis, epilepsy, Parkinson’s disease, intracranial hemorrhage, or brain tumors. We further 55 

excluded individuals whose rsEEG recordings were not temporally close to the MRI 56 

acquisition time and participants for whom alpha peak could not be identified. This resulted 57 

in a final sample of 907 participants (M=69.49 ± 4.63, 380 female) for the rsEEG sensor 58 

space analysis. After excluding individuals with failed T1-weighted segmentation and head-59 

modeling, the final sample for the rsEEG source analysis was 855 (M=68.89 ± 4.66, 360 60 

female). For a detailed overview of the selection process, see Figure 1.  61 
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Figure 1 – Flow chart visualizing the selection process of the MRI and EEG sample. 62 

 63 

2.2.MRI Acquisition and Processing 64 

All MRI scans were performed at 3 Tesla on a MAGNETOM Verio scanner 65 

(Siemens, Erlangen, Germany). The body coil was used for radiofrequency (RF) transmission 66 

and a 32- channel head coil was used for signal reception. T1-weighted MPRAGE and 67 

FLAIR images were acquired as part of a standardized protocol: MPRAGE (flip angle (FA) = 68 

9°, relaxation time (TR) = 2300 ms, inversion time (TI) = 900 ms, echo time (TE) = 2.98 ms, 69 

1-mm isotropic resolution, acquisition time (AT) = 5.10 min); FLAIR (TR = 5000 ms, TI = 70 

1800 ms, TE = 395 ms, 1x0.49x0.49-mm resolution, AT = 7.02 min). 71 

The automated assessment of WMHs was computed in a previous study(Lampe et al., 72 

2019). All images were checked by a study physician for incidental findings. A computer-73 
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based WMHs segmentation algorithm was then used to automatically determine WMH 74 

volume on T1-weighted MPRAGE and FLAIR images (Shiee et al., 2010) and inspected 75 

visually for segmentation errors. Binary WMH maps of all participants were nonlinearly co-76 

registered to a standardized MNI template (1-mm isometric) with ANTS (Avants et al., 77 

2011). In standard space, binary subject-wise WMH maps were grand-averaged to create a 78 

population WMH frequency map (Jenkinson et al., 2012). As previously implemented 79 

(Lampe et al., 2019), to segregate the periventricular (pv)WMH and deep (d)WMH, a default 80 

distance of 10 mm to the ventricular surface was used (DeCarli et al., 2005). Every voxel of 81 

WMH located within this border was classified as pvWMH; voxels outside the border were 82 

classified as dWMH. Regional WMH volume was calculated separately for the deep and 83 

periventricular WM. We added a constant value 1 to every participant’s regional dWMH 84 

volume because there were participants without lesions in the deep WM (Lampe et al., 2019). 85 

We then calculated the ratio of dWMH and pvWMH (dWMH/pvWMH) as localized WMH 86 

volume. 87 

2.3.EEG Acquisition and Preprocessing 88 

RsEEG activity was recorded in an electrically and acoustically shielded room using 89 

an EEG cap with 34 passive Ag/AgCl electrodes (EasyCap, Brain Products GmbH, 90 

Germany). 31 scalp electrodes were placed according to the extended international 10–20 91 

system. The signal was amplified using a QuickAmp amplifier (Brain Products GmbH, 92 

Germany). Two electrodes recorded vertical and horizontal eye movements while one bipolar 93 

electrode was used for electrocardiography. The rsEEG activity was referenced against 94 

common average and sampled at 1000 Hz with a low-pass filter of 280 Hz. Impedances were 95 

kept below 10 kΩ. RsEEG data were preprocessed using EEGLAB toolbox (version 14.1.1b) 96 

and scripts were custom written in Matlab 9.3 (Mathworks, Natick, MA, USA). We filtered 97 

data between 1 and 45 Hz and applied a notch filter at 50 Hz. We then down-sampled the 98 
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data to 500 Hz and ran a semi-automatic pipeline for artifact rejection: different noise 99 

threshold levels to mark bad time segments were used for the signal filtered in higher 100 

frequency (15–45 Hz) and lower frequency (1–15 Hz) ranges. The noise threshold for higher 101 

frequencies was set to 40 µV since noise at this range (i.e., induced by muscle activity) is 102 

typically lower in amplitude. The noise threshold for the lower frequency range was set to + 103 

3SD over the mean amplitude of a filtered signal between 1 and 15 Hz. To control for the 104 

accuracy of automatically marked bad segments, we compared them to the noisy segments 105 

marked by another research group (Jawinski et al., 2017). Whenever these segments did not 106 

overlap by more than 10 s or they exceeded 60 s of total bad-segment duration, we inspected 107 

those datasets visually (~10% of cases) to confirm whether they indeed were contaminated by 108 

noise. We further visually assessed power spectral densities (PSD) for data quality and used it 109 

to identify broken channels. Next, using independent component analysis (Infomax; Bell and 110 

Sejnowski, 1995), activity associated with the confounding sources—namely eye-111 

movements, eye-blinks, muscle activity, and residual heart-related artifacts—was removed. 112 

2.4.EEG Sensor Space Analysis 113 

2.4.1. Parameters of Alpha Oscillations 114 

For rsEEG analysis, we used the first 10 min of a recording in order to avoid the 115 

potential effect of participants’ drowsiness. We individually adjusted the alpha band 116 

frequency range by locating a major peak between 7 and 13 Hz on Welch’s PSD with 4-s 117 

Hanning windows. Thus, we determined individual alpha peak frequency (IAPF) in every 118 

channel and defined a bandwidth not exceeding 3 Hz around the peak. We then calculated 119 

relative AP for the individually adjusted alpha frequency range dividing it by the broadband 120 

power calculated in the 3–45-Hz frequency range. LRTC were calculated using detrended 121 

fluctuation analysis on the amplitude envelope (calculated with Hilbert transform) of alpha 122 

band oscillations in time windows ranging from 3 to 50 seconds (while respecting the 123 
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boundaries where the bad segments had been cut) based on the previously published 124 

procedure (Hardstone et al., 2012). Here, the scaling exponent (v) is a measure of the LRTC 125 

in the signal. An exponent of 0.5 reflects uncorrelated signals (i.e., resembling white noise), 126 

while an exponent between 0.5<v<1 shows persistent autocorrelation and thus the presence of 127 

LRTC (Hardstone et al., 2012). The presence of LRTC indicates that past neuronal events are 128 

likely to affect neuronal activity in the future even when these events are separated by tens of 129 

seconds. The illustration of parameters of AO are shown in Figure 2.  130 

To reduce data dimensionality of rsEEG sensor space data used for the whole-brain 131 

voxel-wise inference analyses, we further grouped EEG channels into six coarser brain 132 

regions (frontal, central, temporal, parietal, and occipital), as shown in Figure 3A. 133 

Figure 2– Illustration of parameters of alpha oscillations. A) Resting state EEG time 134 
series data (blue) consists of various frequency bands that can be defined by their power and 135 
peak frequency. B) The temporal dynamics of a signal filtered in alpha frequency range (8–136 
12 Hz) is assessed by the properties of its amplitude envelope (red) using long-range 137 
temporal correlations (LRTC). Scaling exponent (ν) quantifies the presence of LRTC. 138 
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 139 

2.5.EEG Source Space Analysis 140 

To reconstruct sources of the rsEEG signal, we calculated leadfield matrices based on 141 

individual brain anatomies and standard electrode positions. The T1-weighted MPRAGE 142 

images were segmented using the Freesurfer v.5.3.0 software (Fischl, 2012). We constructed 143 

a 3-shell boundary element model (BEM) which was subsequently used to compute the 144 

leadfield matrix using OpenMEEG (Gramfort et al., 2010). Approximately 2,000 cortical 145 

dipolar sources were modeled for each individual. Source reconstruction was performed 146 

using exact low resolution brain electromagnetic tomography (eLORETA; Pascual-Marqui, 147 

2007) with a regularization parameter of 0.05. We filtered the signal within the individually 148 

adjusted alpha frequency band range as well as in broadband range (3–45 Hz), squared it, and 149 

summed up across all three dipole directions. Relative AP was then calculated in each voxel 150 
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through the division of AP by the broadband power. The cortex surface mantle was divided 151 

into 68 regions of interest (ROIs) based on the Desikan-Killiany atlas (Desikan et al., 2006). 152 

These were further combined into five coarser ROIs (frontal, parietal, temporal, occipital, and 153 

cingulate) for the right and left hemispheres following a standard parcellation atlas, as shown 154 

in Figure 3B. Relative AP values were averaged across each ROI. 155 

Figure 3 – Illustration of the regions of interest (ROIs) identified for EEG. Schematic 156 
topography for resting state EEG in A) sensor space and B) source space. ROIs that form the 157 
frontal region are in purple, central region and cingulate region (source) in orange, temporal 158 
region in yellow, parietal region in green, and occipital region in blue. 159 

 160 

A. Sensor Space B. Source Space

L

R
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2.6.Statistical Analyses 161 

2.6.1. Correlation of Age with WMH Volume and Alpha Oscillations 162 

Pearson correlations were calculated to examine the relationship between i) age and 163 

total and regional WMH volume (dWMH/pvWMH) and ii) the parameters of AO in six 164 

regions at sensor space. Differences between correlations were assessed with Fisher’s r-to-z 165 

transformation implemented in R version 3.5.2 (http://www.R-project.org/). To correct for 166 

multiple comparisons, p-values were then adjusted using the False Discovery Rate (FDR; 167 

Hochberg, 2016). 168 

2.6.2. Topographical Relevance Analyses of WMHs for Alpha Oscillations at Sensor 169 

Space 170 

To identify regions in which WMHs robustly correlated with AO, we performed 171 

whole-brain voxel-wise regressions. More precisely, we applied general linear models 172 

(GLMs) in which individual values of IAPF, relative AP, and LRTC were used as predictors 173 

for the topographical occurrence of WMHs, adjusting for effects of age, sex, and intracranial 174 

volume (ICV) as covariates of no interest. 3D voxel-wise binary lesion maps were analyzed 175 

using FSL’s randomize (Winkler et al., 2014). For each statistical analysis, positive and 176 

negative contrasts were computed. Significance of results was based on threshold-free cluster 177 

enhancement (TFCE, N=10,000 permutations) with family-wise error (FWE) corrected p-178 

values of p<0.05. We further reported statistical results for the more conservative FWE 179 

threshold of p<0.005. 180 

2.6.3. Topographical Relevance Analyses of WMHs for Alpha Power at Source Space 181 

To assess the association between relative AP and whole-brain WMHs, we 182 

implemented GLMs separately for 10 ROIs with relative AP as covariate of interest, and age, 183 

sex, and ICV as covariates of no interest. Because we found a positive correlation between 184 

the voxel-wise occurrence of WMHs and relative AP at the sensor space, we only computed a 185 
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positive contrast. All statistical analyses were further corrected for multiple comparisons 186 

using TFCE based permutation testing (N=10,000) at FWE level of p<0.05, as well as with a 187 

conservative threshold of p<0.005. 188 

2.7.Sensitivity Analyses 189 

2.7.1. Control for Confounding factors 190 

Given that different cardiovascular risk factors including body mass index (BMI), 191 

systolic blood pressure (SBP), smoking, and diabetes are associated with WMHs (Habes et 192 

al., 2016; Lampe et al., 2019; Ryu et al., 2014), we further considered these factors as 193 

potential confounders (as covariates of no interest) for the voxel-wise associations between 194 

parameters of AP and probability of WMH occurrence in the overall sample (N=907). To 195 

assess a degree of collinearity between the regressors used in GLMs, we additionally 196 

computed variance inflation factor (vif) in R. All predictors had a vif score below 2, 197 

therefore, we concluded that models showed acceptably low multicollinearity. 198 

2.7.2. Medication 199 

We implemented the voxel-wise inference analyses between parameters of AO and 200 

WMHs excluding participants taking medications affecting the central nervous system 201 

(opioids, hypnotics and sedatives, anti-parkinsonian drugs, anxiolytics, anti-psychotics, anti-202 

epileptic drugs). The resulting sample included 801 individuals (M=68.96 ± 4.58, 323 203 

female). 204 

2.7.3. Control Analyses 205 

To assess the robustness of our results, we further applied voxel-wise inference 206 

analyses between the probability of WMH occurrence and absolute AP in the left and right 207 

occipital region at EEG source space, using age, sex, and ICV as covariates of no interest. 208 

Absolute power in both regions was log transformed to normalize the distribution of the data 209 

for statistical analyses. 210 
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2.8. Mediation Analyses 211 

We performed mediation analyses using mediation package (Tingley et al., 2014) in R 212 

to examine whether total or localized WMH (dWMH/pvWMH) volume mediates the 213 

relationship between age as an independent and AO at sensor space as a dependent variable. 214 

We computed 99% confidence intervals (CI) using bootstrapping (5,000) for all inferences. 215 

Indirect effects, and the sum of the indirect effects were considered significant if the CI did 216 

not contain zero. Here, direct and mediation effects are called average direct effect (ADE) 217 

and average causal mediation effect (ACME, also referred to as indirect effect), respectively. 218 

Statistically, total effect is the sum of ACME and ADE. The ACME shows whether age was 219 

associated with parameters of AO through a mediator. 220 

3. Results 221 

3.1.Sample Characteristics 222 

Details about the demographic, anthropometric, cardiovascular measures, as well as 223 

WMH volume, and AO can be found in Table 1. Histograms of total WMH volume, averaged 224 

relative AP, IAPF, and LRTC across channels can be found in Supplementary Figure 1. 225 

Table 1 – Sample Characteristics 226 
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Abbreviations.: Rel. AP = Relative Alpha Power; BMI = body mass index; DBP = diastolic 227 
blood pressure; dWMH/pvWMH = the ratio of deep/periventricular white matter 228 
hyperintensities; SD = standard deviation; ICV = intracranial volume; IAPF = individual 229 
alpha peak frequency; SBP = systolic blood pressure; WMH = white matter hyperintensity 230 
 231 

3.2.Topography and Characteristics of Alpha Oscillations 232 

The relative AP at sensor space showed a maximum over the occipital channels, with 233 

a mean value of 0.66 ± 0.17. Similarly, the relative AP at source space showed a maximum 234 

over the bilateral occipital cortex, including cuneus and lateral occipital regions with a mean 235 

value of 0.59 ± 0.18. The grand-average IAPF was 9.40 ± 0.49 Hz, showing larger values at 236 

occipital regions. The average scaling exponent (v) was 0.72 ± 0.017. Similarly, topographies 237 

of the scaling exponent had higher values at occipital and parietal areas as well as frontal 238 

regions (Supplementary Figure 2). 239 

3.3.Correlations 240 

3.3.1. Association of Age with WMH Volume and Alpha Oscillations 241 

We found a correlation between age and total WMH volume (r=0.374, p<0.001), but 242 

not with the dWMH/pvWMH (p>0.05). Regarding parameters of AO, we found that higher 243 

age was associated with decreased IAPF in all EEG ROIs (r from -0.13 to -0.17, pFDR<0.05), 244 

while no correlations between age and relative AP or LRTC were found (all pFDR>0.05). A 245 

 Mean or n Min.  Max. SD 

Age (in years) 69.49 60.15 80.03 4.63 
Female / Male 380 / 527    

BMI (kg/m2) 27.59 18.68 42.26 3.97 

SBP (mmHg)  133.71 92.00 200.5 16.31 
DBP (in mmHg)  74.54 43.5 120 9.06 
Never / former / active smokers 517 / 319 / 71    
Diabetes (yes / no / unknown) 748 /143 / 16    
WMH volume (mm3)  3935 127 78509 6676.76 
dWMH/pvWMH (%) 0.44 0.01 3.64 0.40 
ICV (mm3) 1729811 1297219 2466529 147492.5 
Mean Rel. AP (%) 0.55 0.21  0.88 0.15 
Mean IAPF (Hz) 9.4 7.34 12.01 0.86 
Mean Scaling Exponent (v) 0.73 0.53 1.14 0.093 
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full report of these correlations for the entire sample and by sex are provided in 246 

Supplementary Figures 3–7. 247 

3.3.2. Topographical Association Between WMHs and Alpha Oscillations at Sensor 248 

Space 249 

The voxel-wise inference analyses revealed that higher relative AP in the frontal 250 

region was correlated with higher WMH probabilities in the right body of corpus callosum 251 

([16, -26, 32], T=3.76, k=653). Higher relative AP in the central region was associated with 252 

higher WMH probabilities in the right anterior thalamic radiation extending to the posterior 253 

corona radiata ([22, -49, 37], T = 4.44, k=2,744), while higher relative AP in the right 254 

temporal region was linked to higher WMHs in the right superior longitudinal fasciculus 255 

([22, -49, 37], T=4.52, k=6,893) extending to the left inferior fronto-occipital fasciculus ([-256 

21, -53, 32], T=4.00, k=4,210). Furthermore, higher relative AP in the parietal region was 257 

associated with higher WMHs in the right superior corona radiata ([18, -19, 37], T=4.05, 258 

k=4,474). Similarly, for relative AP in the occipital region, we observed a higher prevalence 259 

of WMHs in the bilateral superior corona radiata through the body of the corpus callosum to 260 

the anterior corona radiata, including the right anterior thalamic radiation ([18, -19, 37], 261 

T=4.39, k=9,450). Accordingly, higher voxel-wise WMH probabilities were associated with 262 

higher relative AP independent of age, sex, and brain size, as shown in Figure 4. Note that 263 

using a more stringent FWE rate of p < 0.005, correlation between probability of WMH 264 

occurrence and relative AP was only evident for the occipital region ([18, -19, 37], T=4.39, 265 

k=904). Finally, no associations between voxel-wise WMHs and IAPF or LRTC were 266 

observed (p>0.05).  267 
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Figure 4 – Association between regional white matter hyperintensities (WMHs) and 268 
relative alpha power (AP) at EEG sensor space. A) Voxel-wise correlation between 269 
probability of WMH occurrence and relative AP in the EEG frontal region (purple), central 270 
region (orange), right temporal region (yellow), parietal region (green), and occipital region 271 
(blue). The significant clusters based on whole-brain voxel-wise inference analyses (TFCE, 272 
FWE-corrected, p < 0.05). B) Scatter plots show the positive association between relative AP. 273 
The resulting statistical images (P-map) were further thresholded at 0.05 and binarized. 274 
Abbreviations.: A = anterior; L = left; R = right; P = posterior 275 
 276 

 277 

3.3.3. Topographical Association Between WMHs and Alpha Oscillations at Source 278 

Space 279 

We found that higher relative AP in all EEG regions except for the left frontal region 280 

was associated with higher probability of WMH occurrence (Table 2). With the stricter FWE-281 

level of p<0.005, the association between the occurrence of WMHs and relative AP was 282 

evident for left ([18, -19, 37], T=4.29, k=192) and right occipital regions ([18, -19, 37], 283 

T=4.45, k=845). 284 
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Table 2 – Positive correlation between the probability of white matter hyperintensity (WMH) 285 
occurrence and relative alpha power (AP) at EEG source space. Peak voxel MNI coordinates 286 
(x, y, z) and cluster size (k) for the association between WMHs probability and relative AP for 287 
five regions of interest for each hemisphere at source space across 855 elderly participants 288 
(TFCE, p < 0.05, FWE-corrected).  289 
 290 

 291 

EEG Region  MRI Region x y z k  T-value 

Left Frontal  Right Posterior Corona Radiata / 
Right Anterior Thalamic Radiation 

21 -46 36 219 4.38 

Right Cingulate Right Anterior Thalamic Radiation / 
Right Anterior Thalamic Radiation 

22 -49 37 2310 4.33 

Left Superior Corona Radiata -22 6 31 655 4.29 

  Right Superior Corona Radiata 29 -46 26 359 3.65 

Left Cingulate Right Anterior Thalamic Radiation /  
Superior Longitudinal Fasciculus 

22 -49 37 3280 4.44 

Left Superior Corona Radiata -22 6 31 597 4.33 

Right Temporal Right Anterior Thalamic Radiation 20 -50 36 4669 4.57 

Left Anterior Corona Radiata -18 18 27 2044 4.14 

Right Inferior Fronto-occipital Fasciculus 34 -49 0 129 3.68 

Left Temporal Right Anterior Thalamic Radiation 20 -50 36 602 4.63 

Body of Corpus Callosum 16 -5 36 279 3.63 

Right Posterior Corona Radiata 19 -30 35 132 4.13 

Right Parietal Right Anterior Thalamic Radiation 20 -50 36 3983 4.72 

Left Superior Corona Radiata -19 11 28 824 3.98 

Left Superior Longitudinal Fasciculus -24 -12 40 210 4.12 

Left Parietal Right Superior Corona Radiata/Left 
Corticospinal Tract 

19 -25 36 634 3.91 

Right Anterior Thalamic Radiation 20 -50 36 618 4.75 

Right Occipital Right Superior Corona Radiata 18 -19 37 8339 4.45 

Left Superior Corona Radiata -19 9 29 1070 4.41 

Left Posterior Corona Radiata/Anterior 
Thalamic Radiation 

-24 -27 31 100 3.94 

Left Occipital Right Superior Corona Radiata 18 -19 37 7304 4.29 
Left Superior Corona Radiata -19 9 29 450 4.19 

Right Inferior Fronto-occipital Fasciculus 34 -37 -4 175 3.94 

Left Superior Corona Radiata -20 -6 32 133 3.66 
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3.4.Sensitivity Analyses 292 

3.4.1. Control for Confounding Factors 293 

Voxel-wise inference analyses after controlling for age, sex, ICV, BMI, SBP, 294 

diabetes, and smoking status yielded a similar relationship between higher WMH probability 295 

and elevated relative AP in the following regions: central ([22, -49, 37], T=4.46, k=5417), 296 

right temporal ([22, -49, 37], T=4.52, k=5,417), left temporal ([22, -49, 37], T=4.59, 297 

k=4772), parietal ([18, -19, 37], T=3.68, k=231), and occipital ([18, -19, 37], T=4.08, 298 

k=4,018) EEG regions across the overall sample. Note that with TFCE, FWE-corrected, 299 

p<0.005, we did not find any clusters. Lastly, no WMH clusters were related to IAPF or 300 

LRTC (p>0.05). 301 

3.4.2. Medication 302 

Voxel-wise inference analyses excluding individuals taking central nervous system 303 

medication still indicated the association between higher prevalence of WMHs and increased 304 

relative AP at sensor space in the following regions: frontal ([17, 9, 31], T=4.42, k=6,880), 305 

central ([20, -30, 35], T= 4.46, k=9,063), right temporal ([20, -48, 35], T=4.57, k=12,098), 306 

left temporal ([22, -49, 37], T=4.61, k=9,408), parietal ([14, -8, 31], T=4.61, k=9,054), and 307 

occipital ([18, -19, 37], T=4.44, k=12,885) EEG regions. Importantly, with TFCE, FWE-308 

corrected, p<0.005, we identified WMHs clusters (k>2,000) for occipital, left temporal, right 309 

temporal, and a small cluster (k>200) for parietal and central EEG regions. Additional voxel-310 

wise inference analyses revealed that higher WMHs resulted in decreased IAPF in right 311 

temporal ([17, -27, 33], T=4.00, k=138) and left temporal regions ([17, -27, 33], T=4.12, 312 

k=503). Lastly, no WMHs clusters were related to LRTC (p>0.05). 313 

3.4.3. Control Analyses 314 
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Voxel-wise inference analyses with absolute AP similarly indicated that higher 315 

probability of WMH occurrence was associated with elevated absolute AP in right ([-23, 0, 316 

36], T=3.98, k=5,633) and left occipital regions ([-23, 0, 36], T=4.05, k=5,358). 317 

3.5.Mediation Analyses 318 

We examined whether a total or localized (dWMH/pvWMH) WMH volume could 319 

mediate the relationship between age and relative AP, IAPF, and LRTC in all ROIs. 320 

Investigating the relationship between age and relative AP, we observed a significant indirect 321 

effect (i.e., ACME) of total WMH volume, while ADE and total effect were not significant 322 

for most of the regions (99% |CI| > 0, Supplementary Table 1). Only in the right temporal 323 

region at sensor space did the total effect of age on relative AP appear to be significant 324 

(p<0.05), indicating specific pathways between age and relative AP through total WMH 325 

volume. Further, we confirmed the indirect effects of total WMH volume for relative AP at 326 

EEG source space for left parietal (β=0.0012, CI = [0.00006-0.002]), left (β=0.0014, CI = 327 

[0.00013-0.002]) and right occipital (β=0.0014, CI = [0.00015-0.0028]) regions. Finally, our 328 

results further revealed that neither total nor localized WMH volume mediated the association 329 

of age with IAPF and LRTC at sensor space (all p>0.05).  330 
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4. Discussion 331 

The main goal of this study was to investigate whether regional WMHs affect 332 

parameters of alpha oscillations independently from age. We pursued this aim using a large 333 

sample of healthy older individuals from a population-based study (Loeffler et al., 2015). We 334 

showed distinct regional relationships between relative AP and WMHs: our topographical 335 

analysis suggested that higher occurrence of WMHs in superior, posterior to anterior corona 336 

radiata through the body of corpus callosum was related to higher relative AP, with strongest 337 

correlations in the bilateral occipital cortex. Adjusting for potential confounding factors 338 

including age and cardiovascular risk factors did not change these results. 339 

Alpha rhythm is the most salient rsEEG oscillatory phenomenon that originates from 340 

thalamo-cortical and cortico-cortical interactions (Bazanova and Vernon, 2014; Lopes Da 341 

Silva et al., 1997). Alterations in AO have previously been linked to changes in different 342 

anatomical features including properties of WM (e.g., Valdés-Hernández et al., 2010). 343 

Regarding WMHs, for instance, a previous EEG-MRI study showed that higher relative AP 344 

in parietal regions was associated with higher scores of the prevalence of WMLs in 79 345 

individuals with mild cognitive impairment (Babiloni et al., 2008a), consistent with our 346 

findings in this population-based sample. Previous studies with computational models have 347 

given further support for the notion that resonance properties of feedforward, cortico-348 

thalamo-cortical, and intra-cortical circuits largely influence AO (Hindriks and van Putten, 349 

2013). In the present study, we similarly observed that regional WMHs, detected mostly in 350 

superior corona radiata, containing thalamo-cortical fibers, affect inter-individual differences 351 

in relative AP. Since damage to fibers of the superior corona radiata—connecting the basal 352 

ganglia and thalamus to the superior frontal gyrus—is known to be associated with cognitive 353 

dysfunction (Leunissen et al., 2014), it is likely that such an elevated AP may be triggered to 354 

recruit compensatory neuronal resources to maintain cognitive functioning. But, how could 355 
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lesions in the WM possibly affect EEG signal which mainly reflects neural synchrony within 356 

gray matter? While in principle a hyperintensity in T2-weighted MR sequences is a quite 357 

unspecific marker of various pathologies, postmortem histopathological studies of elderly 358 

subjects with WML have mostly reported demyelination, axonal loss, and other consequences 359 

of ischemic small vessel disease (Smith et al., 2000; Wardlaw et al., 2015). Myelin 360 

contributes to the speed of impulse conduction through axons, and the synchrony of impulses 361 

between distant cortical regions (Fields, 2015, 2008). Reductions of conduction velocity due 362 

to demyelination and loss of (communicating) axons are assumed to be responsible for 363 

cognitive dysfunctions which are known to be based on delicately orchestrated propagations 364 

of neuronal signals. Electrophysiologically, interactions and synchrony between neuronal 365 

populations are reflected in rhythmic M/EEG signals, of which AO are the most prominent 366 

ones (Bazanova and Vernon, 2014; Lopes Da Silva et al., 1997). AP is a quantitative marker 367 

of the degree of synchrony in the neuronal activity of the corresponding neuronal populations 368 

(Pfurtscheller and Lopes Da Silva, 1999). While for a long-time AO were regarded as idle 369 

rhythms of non-active brain areas, a plenitude of studies has convincingly demonstrated that 370 

AO play an important role in many cognitive functions (Fox et al., 2016; Klimesch, 1999). 371 

For instance, in motor and sensory domains it has been shown that amplitude decreases of 372 

AO in focal areas (i.e., reflecting cortical activation) is in turn associated with the inhibition 373 

of neighboring cortical areas. This phenomenon is thought to result from a reciprocal 374 

relationship between thalamo-cortical and reticular nucleus cells on which the generation of 375 

AO is based (Suffczynski et al., 2001). Such topographically specific relationships are likely 376 

to be disturbed by alterations in conduction velocity and axonal loss in the thalamo-cortical 377 

circuitry. A consequence is a less precise and more generalized (i.e., compensatory; e.g., 378 

Cabeza et al., 2018) spread of AO across the cortex leading to a larger number of 379 
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synchronously recruited neurons and correspondingly to larger AP. This in turn might explain 380 

a positive association between AP and WMHs. 381 

In our study, we did not find strong evidence for age-related attenuations of relative 382 

AP, in line with other recent studies (Sahoo et al., 2020; Scally et al., 2018). This could be 383 

due to the narrow age range of our participants, as well as the individually adjusted alpha 384 

frequency range based on the IAPF. In fact, preserved peak power at IAPF has recently been 385 

reported in an older sample (Scally et al., 2018), suggesting that any observed age-dependent 386 

power changes might be due to shifts in the frequency range at which alpha peak occurs. 387 

Noteworthy, mediation analysis in the current study indicated that the influence of higher age 388 

to elevated relative AP (in the right temporal region) was mediated by the higher total WMH 389 

volume. 390 

In the literature, other commonly reported age-dependent changes in spectral 391 

parameters of EEG include slowing of the alpha peak (Knyazeva et al., 2018). We replicated 392 

the slowing of the IAPF with increasing age despite the narrow age range. Alpha peak 393 

slowing has previously been suggested to be linked to a less efficient coordination of 394 

neuronal activity in this frequency range (Mierau et al., 2017). We further explored the 395 

relationship between age and LRTC in the amplitude envelope of AO that represents scale-396 

free modulation of resting state oscillations. LRTC have previously been linked to the 397 

presence of a critical state in neural networks, which is characterized by the balance of 398 

excitation and inhibition (Poil et al., 2012). Regarding the association between age and 399 

LRTC, previous studies have shown that the observed age-related changes might be 400 

dependent on age range—it increases from childhood to early adulthood, after which it 401 

stabilizes (Nikulin and Brismar, 2005; Smit et al., 2011). In accordance with these previous 402 

findings, in our sample of elderly subjects we observed no pronounced age-related LRTC 403 
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attenuations, which is consistent with relatively stable dynamic properties of neuronal 404 

oscillations at higher age.  405 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.09.04.283200doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.283200
http://creativecommons.org/licenses/by-nc/4.0/


 

 

25

25 

5. Limitations 406 

While a strength of this study is in the large population-based sample, one of the 407 

limitations is in investigating only cortical oscillations. An interesting direction for future 408 

research would be to study generators of oscillations in deep brain structures (e.g., thalamus) 409 

and how they propagate through WM pathways, especially when these pathways are affected. 410 

Research using other advanced techniques such as quantitative MRI or specific assessment of 411 

tissue properties with ultra-high field MRI combined with intracranial EEG recording could 412 

further provide valuable insights into the nature of the relationship between WM properties 413 

and AO. Lastly, we performed a relatively coarse parcellation of the brain at EEG source 414 

space analysis due to the relatively small number of electrodes (n=31). A denser spatial 415 

sampling of the EEG (not available in the present cohort) would allow investigation of this 416 

relationship with better spatial precision. 417 

6. Conclusion 418 

Using sensitive high-resolution neuroimaging techniques, we showed that elevated 419 

relative AP is related to higher probability of WMHs, supporting the idea that damage to WM 420 

may lead to compensatory enhancement of rhythmic activity in the alpha frequency range. 421 

Importantly, our study provides evidence that the prevalence of regional WMHs, 422 

characterized by higher relative AP, was not associated with age per se, in fact, the latter 423 

seems to be mediated by total WMH volume. Our findings thus suggest that longitudinal 424 

EEG recordings might be sensitive for the detection of alterations in neuronal activities due to 425 

progressive structural changes in WM. 426 
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Supplementary Material 

All variables are presented as mean (M) ± standard deviation (SD). Before the statistical 
analyses, we used the Box-Cox method (λ value) (Sakia, 1992) to determine the type 
transformation on the parameters of alpha oscillations. Since the majority of the variables 
after the necessary transformation did not pass Shapiro-Wilk normality tests at the 0.05 
significance level, we decided to keep the original values. 
 
Supplementary Figure 1. The four histograms show the distribution of A) total white matter 
hyperintensity (WMH), B) averaged individual alpha peak frequency (IAPF), C) relative 
alpha power, and D) long-range temporal correlation (LRTC) across 31 EEG channels. 
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Supplementary Figure 2. Grand-average topographic maps of alpha band measures in 
EEG.  
A) Individual alpha peak frequency; B) Relative alpha power; C) Long-range temporal 
correlations. D) Grand-average of relative alpha power at EEG source space across 68 
regions based on Desikan-Killiany Atlas. 
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Supplementary Figure 3. Association between age (x-axis) and total white matter 
hyperintensity (WMH, y-axis) in LIFE-Adult sample (N=907). There was a significant 
correlation between age and total WMH (overall, r = 0.374, p < 0.001; females, r = 0.376, p < 
0.001; males, r = 0.355, p < 0.001) 
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Supplementary Figure 4. Association between age (x-axis) and regional white matter 
hyperintensity as the ratio of deep WMH and periventricular WMH (y-axis) in LIFE-Adult 
sample (N=907) (overall, r = 0.03; females, r = -0.005; males, r = 0.038, p >0.05) 
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Supplementary Figure 5. Association between age (x-axis) and individual alpha peak 
frequency (IAPF, y-axis) in EEG different regions. The correlations between two measures 
were significant after FDR correction (frontal, r = -0.17, females, r = -0.15, males, r = -0.16; 
central, r = -0.14; females, r = -0.13, males, r = -0.13, left temporal, r = -0.17, females, r = -
0.17, males, r = -0.17; right temporal, r = -0.16, females, r = -0.14; males, r = -0.16; parietal, r 
= -0.15, females, r = -0.15, males, r = -0.13; occipital, r = -0.17, females, r = -0.15, males, r = 
-0.15). None of the pairwise correlations differed from each other. Abbr.: F- female, M-male 
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Supplementary Figure 6. Association between age (x-axis) and relative alpha power (y-
axis) in different EEG regions. The correlations between two measures were not significant 
after FDR correction (frontal, r = 0.010, females, r = -0.008, males, r = 0.008; central, r = 
0.010; females, r = 0.019, males, r = 0.012, left temporal, r = 0.068, females, r = 0.098, 
males, r = 0.027; right temporal, r = 0.071, females, r = 0.090; males, r = 0.040; parietal, r = 
0.03, females, r = 0.03, males, r = 0.02; occipital, r = 0.016, females, r = 0.001, males, r = 
0.016). None of the pairwise correlations differed from each other. Abbr.: F- female, M-male 
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Supplementary Figure 7. Association between age (x-axis) and scaling exponent for long-
range temporal correlations (LRTC, y-axis) in different EEG regions. Association between 
age (x-axis) and relative alpha power (y-axis) in different regions (represented in different 
colors). The correlations between two measures were not significant after FDR correction 
(frontal, r = -0.02, females, r = -0.04, males, r = -0.04; central, r = -0.03; females, r = -0.05, 
males, r = -0.04, left temporal, r = -0.02, females, r = -0.04, males, r = -0.05; right temporal, r 
= -0.04, females, r = -0.06; males, r = -0.07; parietal, r = -0.05, females, r = -0.04, males, r = -
0.06; occipital, r = -0.02, females, r = -0.03, males, r = -0.03). None of the pairwise 
correlations differed from each other. Abbr.: F- female, M-male 
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Supplementary Table 1 – Mediation effect of total WMH volume on the association between age and relative alpha power at EEG sensor  
space. Significant pathways are marked in bold. 
 

 

Abbreviations.: rel AP = Relative Alpha Power; CI = Confidence Interval; WMH = White matter hyperintensity

EEG Region frontal central right temporal left temporal parietal occipital 

  β 
p or 

99.5% CI β 
p or 99.5% 

CI β 
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99.5% CI β 
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99.5% CI β 
p or 

99.5% CI β 
p or 

99.5% CI 
Total effect c  
(Age on rel. AP) 0.0004 0.742 0.0006 0.58 0.002 0.03 0.002 0.0620 0.0017 0.166 0.0006 0.584 
Mediation effect a*b 
(Age on rel. AP via 
total WMH) 0.0009 
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[0.0003, 
0.02] 0.0011 

[0.00002, 
0.002] 0.0015 

[0.0002, 
0.0028] 0.0014 

[0.00012, 
0.0029] 

Direct effect c’  
(Age on rel. AP) -0.0005 0.721  -0.0004 0.73 0.0008 0.44 0.0009 0.3944 0.0002 0.894 -0.0008 0.557 
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