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Introduction

1. R-linear submanifolds

Looking at a rectangular billiard table and starting a ball in one of the corners, you
might wonder “will the ball hit a corner ever again?”. For the moment let us assume that
your billiard table has integer side lengths. Tracing the trajectory of the ball along all
the reflections in the rectangle becomes tedious very soon. Instead of reflecting the ball
when it hits the side of the table it is much more convenient to reflect the table instead
as in Figure 1. Now the copies of the corners of the table span a lattice in the Euclidean
plane. In this setting the question “will the ball hit a corner ever again?” translates to the
question “will the ball hit a lattice point ever again?”. The latter question can be answered
immediately: The ball will hit a lattice point if and only if the angle between the trajectory
and one side of the polygon is a rational multiple of π.

(a) We can reflect the ball. . . (b) . . . or the table.

Figure 1. A rectangular billiard table

But what will happen if the ball does not hit a corner? In this case the trajectory
will obviously be infinite. We can actually say more: The trajectory will be dense in the
table as a consequence of the Dirichlet approximation theorem. This motives the following
definition.

Definition 1.1. A billiard table where each trajectory is either closed or dense is said
to have optimal dynamics.

As we have seen, rectangular billiards with integer (and more generally rational) side
lengths have optimal dynamics. For more complicated billiard tables our approach with
lattices will not work any more. Instead, we can use the following observation. Flipping
the table once produces a table with a different orientation opposed to the original table.
Flipping the new table again in the same direction produces a table with the same ori-
entation as the original table. So instead of producing a new table (as we have done to
obtain the lattice) we can glue the second table to the first table to produce a manifold.
If we think of the original surface as being embedded in the Gaussian plane, the manifold
obtained in this way will naturally have the structure of a Riemann surface X. By pulling
back the differential form dz from the plane to the surface we obtain a differential form ω
on X. This process of obtaining (X,ω) for a polygon is called unfolding. We will see this
again is Chapter III. The pair (X,ω) is called a flat surface, as ω induces a flat metric on
X.

v
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Conversely, each flat surface (X,ω) can be represented by polygons: if γ1, . . . , γn is a
basis of the relative homology H1(X,Z(ω)), then the sides of the polygons are given by

(1)
∫

γi

ω.

Let us return to our billiard table. The trajectories of the ball correspond to geodesics
in X with respect to the metric given by ω. So the notion of having optimal dynamics
may be rephrased in terms of geodesics on (X,ω). The Hodge bundle ΩMg → Mg

over the moduli space of compact Riemann surfaces of genus g is a moduli space for flat
surfaces. The group GL2(R)+ acts on this moduli space via the action on the polygon
representation of the surfaces. Veech [Vee89] [Vee91] observed that a flat surface (X,ω)
has optimal dynamics if and only if its GL2(R)+-orbit is closed.

Definition 1.2. If (X,ω) ∈ ΩMg has closed GL2(R)+-orbit then (X,ω) is called
Veech surface. The image of GL2(R)+ · (X,ω) in Mg is called Teichmüller curve.

We have seen the simplest example of a Veech surface above: The unfolding of our
rectangular billiard table (X,ω). Since Veech’s observation a lot of effort has gone into
the classification of Teichmüller curves. As one can easily obtain new Veech surfaces from
known ones via covering constructions, one is mainly interested in classifying those that do
not arise via covering constructions, so called primitive Teichmüller curves. In genus 2, 3,
and 4 we know infinitely many primitive Teichmüller curves, discovered by Veech [Vee89],
Ward [War98], Bouw-Möller [BM10], McMullen [McM03] [McM06], Calta [Cal04], Voro-
bets [HS01] and Kenyon-Smillie [KS00]. In each genus greater than four we know only
of finitely many primitive Teichmüller curves which all belong to the series discovered by
Bouw-Möller, and it is an open question to decide if there exist infinitely many primitive
Teichmüller curves in every genus.

Let us fix a genus g and let µ = (m1, . . . ,mn) be an integer partition of 2g−2. If (X,ω)
is a flat surface of genus g we say that ω has type µ if ω has precisely n zeros of orders
m1, . . . ,mn. The moduli space of flat surfaces ΩMg, also known as the moduli space of
abelian differentials, comes with natural stratification by the types of the differentials, and
we denote by ΩMg,n(µ) the stratum of differentials of type µ. The integrals in (1) provide
local coordinates for the stratum, called period coordinates.

Definition 1.3. A subspace ΩH ⊆ ΩMg,n(µ) is called K-linear submanifold if it is
cut out by linear equations in period coordinates with coefficients in the field K.

As the action of GL2(R)+ preserves equations with coefficients in R, any R-linear
submanifolds is the closure of an union of GL2(R)+-orbits. By the ground braking result
of Eskin-Mirzakhani-Mohammadi the converse is also true.

Theorem 1.4 ([EMM15]). Every GL2(R)+-orbit closure is an R-linear submanifold.

An important invariance of a linear submanifold ΩH is its rank which can be defined
as follows. Over ΩH we consider the bundle H1 whose fiber over (X,ω) is H1(X,C) and
the bundle H1

rel whose fiber over (X,ω) is H1(X,Z(ω),C). Let p : H1
rel → H1 be the

natural map. By work of Avila-Eskin-Möller [AEM17] the space p(T (ΩH)) is symplectic,
in particular of even dimension, and we define the rank of ΩH as 1

2 dim p(T (ΩH)).
Teichmüller curves (or more precisely the orbit closures of the corresponding Veech

surfaces) are R-linear submanifolds of rank 1. It came as a surprise when McMullen-
Mukamel-Wright [MMW17] discovered the first primitive R-linear submanifold of rank 2,
the so-called gothic locus. By now only 6 additional primitive R-linear submanifolds of
rank 2 have been discovered by Eskin-McMullen-Mukamel-Wright [EMMW20]. There is
computational evidence for the existence of at least one more such submanifold [DR23].
The existence of a R-linear submanifold of rank at least 3 is a completely open question.

2. Chern classes of linear submanifolds

To classify mathematical objects (as for example R-linear submanifolds, which are in
fact complex orbifolds) it is often a good idea to compute their invariants. For complex
orbifolds an important invariant are the Chern classes. There is a slight problem here: On a
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linear submanifold ΩH the group C× acts by scaling the differential, so ΩH is a trivial C×-
bundle and hence all Chern classes are 0. So if we want to expect a useful answer, we should
not consider ΩH but instead its projectivization H := ΩH/C×. In Chapter II, which is
joint work with Matteo Costantini and Martin Möller, we prove a formula for the full Chern
character of the logarithmic cotangent bundle of a linear submanifold in Theorem II.1.2.
This allows in particular to derive a closed formula for the Euler characteristic of a linear
submanifold. For a linear submanifold H, we denote by ξH = c1(O(−1)) the fist Chern
class of the tautological bundle.

Theorem 2.1 (Theorem II.1.3). Let H → PΩMg,n(µ) be a projectivized linear sub-
manifold. The orbifold Euler characteristic of H is given by

χ(H) = (−1)d
d∑

L=0

∑

Γ∈LGL(H)

KH
Γ ·N⊤

Γ

|AutH(Γ)|
·
−L∏

i=0

∫

H[i]
Γ

ξ
d
[i]
Γ

H[i]
Γ

,

where the integrals are over the normalization of the closure H → PΞMg,n(µ) inside the
moduli space of multi-scale differentials and similar integrals over boundary strata, where

• H[i]
Γ are the linear submanifolds at level i of Γ as defined in Section II.3.5,

• d
[i]
Γ := dim(H[i]

Γ ) is the projectivized dimension,
• KH

Γ is the product of the number of prong-matchings on each edge of Γ that are
actually contained in the linear submanifold H,

• AutH(Γ) is the set of automorphism of the graph Γ whose induced action on a
neighborhood of DH

Γ preserves H,
• d := dim(H) is the projectivized dimension.

For most of the notions used in this theorem we refer the reader to Chapter II. The
one thing we want to highlight is the fact that the theorem makes use of the mod-
uli space of multi-scale differentials PΞMg,n(µ). This compactification of the projec-
tivized stratum PΩMg,n(µ) was constructed by Bainbridge-Chen-Gendron-Grushevsky-
Möller [BCGGM18] [BCGGM19b]. The objects in the boundary roughly consist of nodal
curves together with a differential on each irreducible component and a level structure
on the irreducible components. For more details see Section I.3. The boundary of this
compactification again admits a stratification where the strata are indexed by so-called en-
hanced level graphs: those are the dual graphs of the underlying nodal curves together with
some decoration that records information about the differentials and the level structure.
This compactification and enhanced level graphs will appear multiple times hereinafter.

3. The gothic locus

The gothic locus ΩG ⊆ ΩM4,6(0
3, 23) is the orbit closure of the unfoldings of all

quadrilaterals with angles (16π,
1
6π,

1
6π,

3
2π). Its name stems from the fact that it contains

the surfaces depicted in Figure 2 which resembles the layout of a gothic cathedral. As
mentioned above, the gothic locus ΩG was the first known primitive R-linear subvariety of
rank 2. This locus has additional quite surprising properties: It contains a dense subset of
primitive Teichmüller curves, and it comes with a natural map to M1,3, and the image of
ΩG under this map, the so-called flex locus, is a totally geodesic surface with respect to
the Teichmüller metric.

A Teichmüller curve in a stratum of meromorphic differentials is called obvious if it
arises as the intersection of a covering construction and a condition on the residues. In
Chapter III we will analyze the boundary of the closure PΞG := PΩG ⊆ PΞM4,6(0

3, 23).
While this analysis is still work in progress, we will present some partial results. As part
of this boundary we find an example for a non-obvious Teichmüller curve.

Theorem 3.1 (Theorem III.1.3). Let (X,ω) ⊆ ΩM1,6(−32, 23) be the canonical cover
of the 6-differential of type (−10,−5, 3). The differential (X,ω) generates a non-obvious
Teichmüller curve. In the chart in Figure 3 this Teichmüller curve is given by the equations

wi = −wi+3 for i = 1, 2, 3 and w1 + w3 + w5 = 0.
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Figure 2. The gothic cathedral (opposite sides are identified unless indi-
cated otherwise)
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Figure 3. A surface of infinite area generating a non-obvious Teichmüller
curve in the stratum ΩM1,6(−32, 23)

By now we have not succeeded in determining precisely which boundary strata are
intersected by the gothic locus, but we have some partial information. For the horizontal
boundary strata we prove:

Proposition 3.2 (Proposition III.1.4). The gothic locus PΞG only intersects the hor-
izontal strata listed in Figure 4.

Recall that the gothic locus itself contains an infinite number of primitive Teichmüller
curves. Those curves are not compact. Thus the closure of each of this Teichmüller curves
will intersect the boundary of PΞG in a number of points, called cusps. Such cusps can
only be contained in purely horizontal boundary strata. For the strata corresponding to
the enhanced level graphs depicted in Figure 4 we will prove:

Proposition 3.3 (Proposition III.1.6). The interior of each of the four horizontal
strata DG

Γ1
, DG

Γ2
, DG

Γ3
and DG

Γ20
contains cusps of a primitive Teichmüller curve contained

in the gothic locus ΩG. The interior of the stratum DG
Γ19

contains cusps of a non-primitive
Teichmüller curve.

One might hope to apply Theorem 2.1 to compute the Euler characteristic of the gothic
locus PΩG. This theorem can be rephrased in such a way that it is sufficient to know the
fundamental class of the image of the gothic locus in M4,6. We will outline an approach
to the computation of this fundamental class in Chapter III. We are currently short on the
necessary computational tools to actually carry out this computation.

4. Strata of k-differentials

Let us consider a generalization of the above setting: Instead of strata of abelian differ-
entials we may also consider strata of k-differentials ΩkMg,n(µ) parametrizing pairs (X, η),
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Figure 4. The purely horizontal boundary strata in the gothic locus

where η is a section of Ω⊗k(X). Here µ is an integer partition of k(2g − 2). As in the
abelian case those strata admit a compactification called strata of multi-scale k-differentials
PΞkMg,n(µ). Work in this direction was done by Bainbridge-Chen-Gendron-Grushevsky-
Möller [BCGGM19a] and Costantini-Möller-Zachhuber [CMZ19]. In Chapter II we estab-
lish the precise orbifold structure of those spaces. Via a covering construction those spaces
are related to linear submanifolds (not necessarily R-linear), and we give a closed formula
for their Euler characteristic in Corollary II.1.5.

We implemented this formula in a Sage package called diffstrata which is part of
the package admcycles [DSZ21]. Diffstrata was originally created by Costantini-Möller-
Zachhuber [CMZ23] to allow the evaluation of their formula for the Chern classes of strata
of abelian differentials [CMZ22]. We extended diffstrata to work with all strata of k-
differentials. As an example, the Euler characteristic and the Masur-Veech volume of the
stratum PΩ2M2,2(−1, 5) can be computed with the following commands.

sage : from admcycles . d i f f s t r a t a import Stratum
sage : X = Stratum (( −1 ,5) , k=2)
sage : X. e u l e r_ ch a r a c t e r i s t i c ( )
−7/15
sage : X. masur_veech_volume ( )
28/135∗ p i^4

The Euler characteristics of the minimal strata in genus 2 are listed for small k in
Table 1. As the above example already shows, the package diffstrata can actually do
more than only compute the Euler characteristic. For example it can

• list all non-horizontal boundary strata of a stratum of k-differentials,
• compute arbitrary intersection products in the vertical tautological ring (i.e. the

ring generated by all non-horizontal strata, ψ- and κ-classes),
• compute the push-forward of classes from the stratum to the moduli space of

marked stable curves.

The main limitation diffstrata currently has is the fact that it can not work with hori-
zontal strata. This would allow for much more general computations, including pull-backs
of arbitrary tautological classes from the moduli space of stable curves to a stratum of
k-differentials.

As an application of our computation of the Chern classes we prove that for specific
types µ the space ΩkMg,n(µ) is birational equivalent to a quotient of the complex unit
ball.
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k 1 3 4 5 6 7 8 9

χ(PΩkM2,1(2k)) − 1
40

1
3

3
2

21
5 9 18 30 51

Table 1. Euler characteristics of some minimal strata of k-differentials
computed with diffstrata

Theorem 4.1 (Theorem II.1.7). Suppose that µ = (−a1, . . . ,−a5) is a tuple with ai ≥ 0
and with the condition

(
1− ai

k
− aj
k

)−1
∈ Z if ai + ak < k

for all i ̸= j. Then there exists a birational contraction morphism PΞkM0,5(µ) → B onto
a smooth proper DM-stack B for some ball quotient B.

These ball quotients have previously been constructed by Deligne-Mostow [DM86] and
Thurston [Thu98] by different methods.

5. The tropical k-Hodge bundle

Similar to the abelian case, the boundary of PΞkMg,n(µ) is indexed by enhanced k-
level graphs. One might hope to understand the structure of the boundary by study-
ing the graphs themselves as abstract objects. To be able to talk about continuous
(un)degeneration of graphs, we might assign to each edge a real length. This leads to
the definition of a tropical curve.

Definition 5.1. A tropical curve is a connected graph with real edge lengths and
weights g : V → N assigned to each vertex.

The level structure of the enhanced level graph can be recorded by assigning integer
slopes to the edges, and the zeros of the differential can be recorded by adding legs to the
graph. In Chapter I, which is joint work with Felix Röhrle, we define a tropical k-Hodge
bundle PΩkM trop

g as, roughly speaking, the space of all tropical curves with legs and integer
slopes at the edges that fulfill certain compatibility conditions made to mimic the behaviour
of k-differentials. This space is a generalized cone complex, but not equidimensional, see
Theorem I.1.1.

The gap between the classical world, that is PΩkMg, and the tropical world, that is
PΩkM trop

g , is bridged by a process called tropicalization: There is a continuous tropical-
ization map tropΩk : PΩkMan

g → PΩkM trop
g . However, this map is not surjective. The

image of tropΩk is the realizability locus. In Theorem I.1.4 we give a combinatorial criterion
to determine for a given element of PΩkM trop

g if it is contained in the realizability locus.
This allows us to prove that the realizability locus is much nicer behaved than the tropical
k-Hodge bundle itself.

Theorem 5.2 (Theorem I.1.5). For k ≥ 2, the realizability locus admits the structure of
a generalized cone complex, all of whose maximal cones have dimension (2+2k)(g−1)−1.
The fiber in the realizability locus over a maximal-dimensional cone in M trop

g is a generalized
cone complex, all whose maximal cones have relative dimension (2k − 1)(g − 1).

6. Pillowcase covers and visible Lagrangians

Given a covering of Riemann surfaces f : X → P1 that is ramified above at most four
points, there is an unique (up to scale) quadratic differential η of type (−14) on P1 such
that the simple poles are supported at the four branch points. We might pull back this
differential to X to obtain a quadratic differential q = f∗η. A quadratic differential (X, q)
that arises in this way is called a pillowcase cover. In Chapter IV, which is joint work with
Johannes Horn, we study Riemann surfaces X that admit multiple quadratic differentials
q1, . . . , qn such that

• the vanishing loci of q1, . . . , qn are pairwise different,
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• the pairs (X, qi) are pillowcase covers.
We call such a Riemann surface X a multifold pillowcase cover. We say that the pillowcase
cover f : X → P1 is uniform if every fiber consists of ramification points of the same
ramification index.

Theorem 6.1 (Theorem IV.5.2). For infinitely many genera g there exist multifold
uniform pillowcase covers with simple zeros only.

An example of a multifold pillowcase cover is the Klein quartic. Note that our definition
of a multifold pillowcase cover does not require the qi to be non-isomorphic. Nevertheless,
we also provide an example of a multifold pillowcase cover where the quadratic differentials
are not all isomorphic.

This has a nice application in the theory of Higgs bundles as follows. For a complex
reductive group G consider the moduli space of G-Higgs bundles MG with the Hitchin
map Hit : MG → BG. A complex Lagrangian L ⊆ MG is called visible if the restriction
of the Hitchin map factors through a proper subvariety B′ = Hit(L) ⊊ B. For the special
case G = SL(2,C) we will prove:

Theorem 6.2 (Theorem IV.1.2). Let q ∈ H0(X,K2
X) be a quadratic differential with

simple zeros only. Then there exists a visible Lagrangian

L → B′ = {tq | t ∈ C} ⊂ BSL(2,C)(X)

if and only if (X, q) is a pillowcase cover.

Hence our examples of multifold pillowcase covers give examples of Riemann surfaces
for which there exist several lines in the SL(2,C)-Hitchin base BSL(2,C) associated to visible
Lagrangians.

Notes on collaborations

Chapter I was created in joint work with Felix Röhrle and appeared as a preprint [RS21].
Chapter II was created in joint work with Matteo Costantini and Martin Möller and ap-
peared as a preprint [CMS23]. Sections III.2 and III.3 of Chapter III build on parts of my
master’s thesis. Chapter IV was created in joint work with Johannes Horn and appeared
as a preprint [HS23].

Acknowledgements

I’m grateful to my advisor Martin Möller for introducing me to the fascinating world
of flat geometry, his interest in my work, uncountable hours of discussions, his constant
support and guidance, and not least his patience in hunting down contradictions (of which
I produced a sufficient amount for the next decades to come).

I’m also grateful to my coauthors Matteo Costantini, Johannes Horn, Martin Möller
and Felix Röhrle. Being able to do math with so many nice people made the process of
writing this thesis even more enjoyable.

I thank Martin Ulirsch for his help in his role as Felix’s advisor while we worked
on Chapter I. I thank Quentin Gendron for helpful conversations on his joint work with
Guillaume Tahar and in particular for sharing the content of the (at the time) forthcoming
[GT21b]. I thank Vincent Delecroix and Johannes Schmitt for helpful comments and
suggestions while working on the Sage package diffstrata, and Johannes Schmitt for his
comments on an earlier draft of Chapter II.

Last but not least, I’m grateful to my family, in particular my parents Heike Steidl and
Andreas Schwab and my wife Johanna Winkler for all their support and encouragement,
without which I wouldn’t have been able to study math, let alone work on this thesis.

My research was support by the LOEWE-Schwerpunkt “Uniformisierte Strukturen in
Arithmetik und Geometrie”, by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) - project number 456557832 and the Collaborative Research Centre
TRR 326 Geometry and Arithmetic of Uniformized Structures, project number 444845124.





CHAPTER I

Realizability of tropical pluri-canonical divisors

1. Introduction

The close analogy between Riemann surfaces and graphs was first described in [Mik05].
Since then many definitions in tropical geometry have been modeled with the aim that trop-
icalization of algebro-geometric objects produces the corresponding tropical objects. The
realizability problem then asks whether a given instance of the tropical notion does indeed
arise in this way. For example consider this question for curves with effective divisors.
Given an abstract tropical curve Γ (i.e. a vertex weighted metric graph) with an effective
divisor D, the realizability problem asks if there exists a smooth proper algebraic curve
X with effective divisor D̃ of the same degree and rank as D such that the tropicalization
of (X, D̃) is (Γ, D) (see Section 2.5 below for details on the tropicalization of curves with
divisor). This question is very difficult in general. In fact, [Car15] shows that it satisfies
a version of Murphy’s law that makes a general solution seem unlikely. In this article we
restrict our attention to the special case of effective pluri-canonical divisors and give a
complete characterization of those tropical objects that are realizable over an algebraically
closed base field of characteristic 0.

Let g ≥ 2 and k ≥ 1 be integers. In algebraic geometry the k-Hodge bundle ΩkMg is a
moduli space parametrizing pairs (X, η) consisting of a smooth curve X of genus g and a
k-differential η, i.e. a global section of the k-th tensor power of the canonical bundle on X.
We start our exposition in Section 2 with a review of basic definitions for tropical curves,
divisors, and linear equivalence. In Section 2.4 we then construct a tropical counterpart of
the projectivized moduli space PΩkMg. More precisely, we prove:

Theorem 1.1. There exists a generalized cone complex in the sense of [ACP15, Section
2.6] which parametrizes pairs ([Γ], D) of isomorphism classes of abstract tropical curves Γ
of genus g and effective divisor D ∈ Div(Γ) linearly equivalent to k times the canonical
divisor KΓ. We denote this space by PΩkM trop

g and call it the tropical k-Hodge bundle. It
is not equidimensional. The dimension of a maximal cone is (3 + 2k)(g − 1).

Tropicalization of curves with divisor has been described e.g. in [BJ16, Section 6.3]
in the following way. Let X be a smooth curve over a non-Archimedean field and let D
be an effective divisor on X. Let X be the stable model of X. Define Γ to be the dual
graph of the nodal special fiber endowed with edge lengths obtained from the deformation
parameters of the nodes. Furthermore, via the specialization map in the sense of Baker
[Bak08, Section 2C] the divisor D gives rise to a divisor on Γ. In [MUW21] the authors
gave a description of this procedure as a continuous map between moduli spaces. By
restricting this general construction to effective pluri-canonical divisors we obtain a con-
tinuous tropicalization map tropΩk : PΩkMan

g → PΩkM trop
g in Section 2.5. Throughout,

()an denotes analytification in the sense of [Ber90]. The dimension of PΩkMg is at most
(2 + 2k)(g − 1) − 1 by [BCGGM19a, Theorem 1.1]. Comparing this to the dimension of
PΩkM trop

g obtained in Theorem 1.1 we see that tropΩk cannot be surjective. The realiz-
ability problem amounts to describe the image of tropΩk , the realizability locus, as a subset
of PΩkM trop

g .
As it turns out, the question can be reduced to the realizability problem for so-called

normalized covers. Recall that the authors of [BCGGM19a] canonically associate to any
smooth curve with k-differential an admissible, normalized, cyclic, potentially ramified and
disconnected cover π : X̂ → X with abelian differential ω on X̂ and a deck transformation
τ : X̂ → X̂ such that ωk = π∗η and τ∗ω = ζω for a primitive k-th root of unity ζ.
Recall that the k-Hodge bundle admits a natural stratification by so-called types µ =

1
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(m1, . . . ,mn) ∈ Zn such that the sum of the mi is k(2g − 2). The moduli space of multi-
scale k-differentials PΞkMg,n(µ) was introduced in [CMZ19]. It is a compactification of
the projectivized strata PΩkMg(µ) of the k-Hodge bundle and parametrizes normalized
covers in its interior. Accordingly, we define a tropical normalized cover in Definition 4.9
to be a tropical Hurwitz cover Γ̂ → Γ in the sense of [CMR16] such that the legs of Γ̂ and
Γ encode a (pluri-)canonical divisor and additionally we require a deck transformation on
Γ̂ as well as compatibility conditions mimicking the above. Again we introduce a tropical
moduli space in analogy to the algebro-geometric setting.

Theorem 1.2. There is a moduli space of tropical normalized covers, denoted PΞkM trop
g .

It carries the structure of a generalized cone complex. The dimension of a maximal cone
is (3 + 2k)(g − 1). Furthermore, there is a well-defined, continuous, closed, and proper
tropicalization map tropΞk : PΩkMg(1, . . . , 1)

an → PΞkM trop
g .

The following corollary will be an easy consequence of the properties of tropΞk . It is the
key to reduce our original realizability problem to the realizability of tropical normalized
covers (see Corollary 4.13 for the precise statement).

Corollary 1.3. A tropical curve Γ with effective pluri-canonical divisor D = kKΓ +

(f) is realizable if and only if there exists a realizable tropical normalized cover π : Γ̂ → Γ
such that the legs of Γ encode D.

In Section 5 we solve the realizability problem for tropical normalized covers using
similar ideas as in [MUW21]. This means that we proceed in two steps.

(1) For every vertex v in Γ we realize π|π−1({v}) with a normalized cover of smooth
curves with meromorphic differentials.

(2) We glue these parts into a normalized cover of nodal curves which lies in the
boundary of PΞkMg,n(1, . . . , 1) and smoothen these curves.

Observe at this point that for a tropical curve with pluri-canonical divisor D = kKΓ + (f)
the zero and pole orders of any of the realizations in step (1) are already determined. More
precisely, the rational function f gives rise to a canonical enhanced level graph structure on
Γ (see Definition 3.13 and Lemma 4.1 for details). Consequently, we only need to specify
(k-)residues to proceed. Both steps from above impose restrictions on the possible choices.
For step (1) these are given by [GT21a], [GT21b] and [GT22a] and lead us to the notions of
illegal vertex (such a vertex is never realizable) and inconvenient vertex (here special care in
choosing residues has to be taken). Step (2) is only feasible if the global residue condition
(see Definition 3.12) as well as the above mentioned compatibilities with π and τ are
respected. We will ensure this by assigning residues along τ -orbits of simple closed cycles
in Γ̂. In contrast to the case k = 1 that was treated in [MUW21] not any cycle is sufficient
for this purpose. Rather we have to ask for each inconvenient vertex for a corresponding
admissible cycle (Definition 5.7) or an independent pair of cycles (Definition 5.9). Having
introduced the necessary notation we state our main result in Theorem 5.11 which roughly
says the following.

Theorem 1.4. Fix an algebraically closed base field of characteristic 0. Let g ≥ 2 and
fix an integer k ≥ 1. Let π : Γ̂ → Γ be a tropical normalized cover and D = kKΓ + (f) be
an effective pluri-canonical divisor on Γ. The pair is realizable if and only if the following
conditions hold.

(i) There is no illegal vertex in π.
(ii) For every edge ê in Γ̂ for which f ◦π is constant there is an effective cycle in Γ̂ through

ê.
(iii) For every inconvenient vertex v in Γ there is an admissible cycle in Γ̂ through one of

the preimages v̂ or there is an independent pair of cycles.

Corollary 1.3 together with Theorem 1.4 provide a complete description of the locus of
realizable curves in PΩkM trop

g . We conclude Section 5 with a result in analogy to [MUW21,
Theorem 6.6].

Theorem 1.5. For k ≥ 2, the realizability locus admits the structure of a generalized
cone complex, all of whose maximal cones have dimension (2 + 2k)(g − 1) − 1. The fiber
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in the realizability locus over a maximal-dimensional cone in M trop
g is a generalized cone

complex, all whose maximal cones have relative dimension (2k − 1)(g − 1).

In Section 6 we illustrate the language that we developed throughout Section 5 by ap-
plying our theory to give a complete description of the realizability locus over the dumbbell
graph for k = 2.

Remark 1.6. (i) For the general study of realizability of curves with divisors as in
[Car15] it is crucial to ask for realizations by divisors of the same rank, i.e. Baker’s
specialization inequality [Bak08, Corollary 2.11] should be an equality. Without this
condition every effective divisor on a tropical curve of genus ≥ 2 would be real-
izable, simply because tropicalization of curves with divisors is surjective onto the
tropical moduli space by [MUW21, Theorem 3.2]. For pluri-canonical divisors, this
rank condition is always implicitly included, simply because the (tropical) rank of a
(tropical) pluri-canonical divisor is always equal to (2k − 1)(g − 1) by the (tropical)
Riemann-Roch theorem (see [GK08] for the tropical Riemann-Roch theorem).

(ii) For k = 1 our Theorem 1.1 contains [LU17, Theorem 4.3 (i) and (ii)] as special case.
Furthermore, every tropical normalized cover with k = 1 is necessarily the identity
and the conditions from Theorem 1.4 reduce to the conditions of [MUW21, Theorem
6.3] (see Remark 5.12 for details). Hence we recover the results of [MUW21].

(iii) Our construction of PΩkM trop
g is a straight-forward generalization of the tropical

Hodge bundle introduced in [LU17]. In fact, Theorem 1.1 could have been proved
with the same ideas as in [LU17].

(iv) The techniques involved in the proof of Theorem 1.4 give a very similar criterion
to decide which boundary strata of the moduli space of multi-scale k-differentials
PΞkMg,n(µ) are nonempty, see Appendix 7.

(v) In Theorem 1.4 we are concerned with finding realizations in the principal stratum
µ = (1, . . . , 1). A slight modification of the ideas from the proof can be used to give
a criterion for realizability in any other stratum as well, see Remark 4.2.

(vi) The reason for reducing the realizability problem to the seemingly more complicated
question for normalized covers is subtle. On the classical side, a k-differential is called
primitive if it is not a power of some k′ differential with k′ < k and k′ dividing k.
This property is entirely invisible on the tropical side, i.e. when realizing a tropical
curve consisting of a single vertex we may choose to realize it with a primitive or non-
primitive differential. This choice has to be fixed in order to proceed and corresponds
precisely to choosing a normalized cover.

Very little is known about the topology of the projectivized strata PΩkMg(µ) of the
k-Hodge bundle. We believe that our criterion will be useful for further research in this
direction.

In the recent and much-celebrated work [CGP21] the authors computed the top weight
cohomology of Mg from the reduced rational cohomology of the link of M trop

g . The same
technique was shortly after applied to compute the top weight cohomology for some in-
stances of the moduli space of abelian varieties Ag in [BBCMMW21]. In both cases it is
vital to identify the tropical moduli space with the boundary complex of the classical mod-
uli space (see e.g. [ACP15] for the case of curves). With our description of the realizability
locus in PΩkM trop

g we take the first step towards a similar computation of the top weight
cohomology of strata of k-differentials.

We want to highlight some work related to this article. Amini-Baker-Brugallé-Rabinoff
study in [ABBR15a] and [ABBR15b] the realizability problem for finite harmonic mor-
phisms of tropical curves. Without the extra data of a pluri-canonical divisor, the global
obstruction to realizability induced by the global k-residue condition from [BCGGM19a]
does not occur. Indeed [ABBR15a, Corollary 1.6] shows that the only obstructions occur
locally at the vertices. Furthermore, adding the data of an effective divisor to the problem
the condition on the rank of the realization being equal to the rank of the tropical divisor
is a non-trivial condition, see [ABBR15b, Section 5].

By [CJP15, Theorem 1.1] every effective divisor class on a chain of loops is realizable
by an effective divisor of the same rank. This is not a contradiction to our findings in
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Section 6.2 because in this article we consider the much harder problem of realizability of
divisors rather than divisor classes.

In some sense Baker-Nicaise use in [BN16] a different framework to discuss tropical-
izations of k-differentials. More precisely, they associate to any pluri-canonical form on a
curve X a so-called weight function on the Berkovich analytification Xan. This is related
to our divisor-based point of view since the induced divisor of a weight function is again a
pluri-canonical divisor by [BN16, Corollary 3.2.5].

2. Tropical k-Hodge Bundle

Fix integers g ≥ 2 and k ≥ 1. In this section we will describe a tropical version
PΩkM trop

g of PΩkMg together with a tropicalization map

tropΩk : PΩkMan
g −→ PΩkM trop

g .

The underlying set of the tropical k-Hodge bundle PΩkM trop
g parametrizes pairs ([Γ], D) of

isomorphism classes of stable tropical curves Γ of genus g and effective divisors D linearly
equivalent to kKΓ. In the special case of k = 1 we recover the description of the tropical
Hodge bundle from [LU17, Definition 4.1]. In Section 2.4 we prove Theorem 1.1. To this
end we use the moduli space Divtropg,d of tropical curves with effective divisor of fixed degree
d = k(2g− 2) which was constructed in [MUW21, Definition 2.1] and exhibit PΩkM trop

g as
a locus in Divtropg,d . The tropicalization map tropΩk is defined in Section 2.5 by restricting
the more general tropicalization map from [MUW21, Section 3.1].

We conclude this section by defining the realizability locus as the image of tropΩk and
formally state the realizability problem in Section 2.6.

2.1. Tropical curves.

Definition 2.1. A graph is a tuple G = (V,H,L, ι, a) where
(i) the finite sets V , H, and L are the vertices, half-edges and legs of the graph respec-

tively,
(ii) the map ι : H → H is a fixpoint-free involution on the half-edges H that determines

the edges of the graph, and
(iii) the map a : H ∪ L→ V assigns to every half-edge and leg the incident vertex.
For a graph G let E :=

{
{h, h′} ∈ H2 | ι(h) = h′

}
be the set of unoriented edges. In

the following we will often denote a graph simply as 3-tuple (V,E,L) of vertices, edges
and legs with the rest of the underlying data remaining implicit. If there are no legs, we
abbreviate further and simply write (V,E).

The valence of a vertex v ∈ V is defined as val(v) := |a−1(v)|.
A (vertex) weighted graph is a graph G together with a map g : V → N. The weighted

graph is called stable if for each vertex v ∈ V the stability condition

2g(v)− 2 + val(v) > 0

holds. The genus of a weighted graph is defined to be

g(G) := b1(G) +
∑

v∈V
g(v),

where b1(G) is the first Betti number of G.

A tropical curve is a connected weighted metric graph Γ given by the data of a graph
G, vertex weights g : V → N and edge lengths l : E → R>0. We call g(v) the genus of
the vertex v. The topological realization of Γ is the metric space obtained by gluing real
intervals [0, l(e)] for every edge and [0,∞) for every leg according to adjacency in G. Any
weighted graph (G′, g′) giving rise to the same topological realization is referred to as a
model for Γ. Note that every stable tropical curve has a unique minimal model in the
sense of minimal number of edges and vertices. We will usually not distinguish between
topological realization and minimal model.

The genus of Γ is defined to be

g(Γ) := b1(G) +
∑

v∈V
g(v),



2. TROPICAL K-HODGE BUNDLE 5

The tropical curve Γ is called stable if its minimal model is stable.

2.2. Moduli of tropical curves. The following description of the moduli space
M trop
g,n of stable tropical curves of genus g with n legs can be found e.g. in [ACP15, Section

4]. Note that in the description of M trop
g,n the legs are usually assumed to be labeled. Let

G be a weighted graph and let e be an edge in G. We denote by G/{e} the graph that
arises from G by contracting e into a single vertex v of weight

g(v) =

{
g(v1) + g(v2) if e was connecting v1 and v2
g(v1) + 1 if e was a self-loop at vertex v1.

Define the category Gg,n with objects being stable weighted graphs of genus g with n legs
and morphism are generated by weighted edge contractions G → G/{e} as well as graph
automorphisms respecting the labeling of the legs.

Given G ∈ Gg,n we associate to it the rational polyhedral cone σG := RE(G)
≥0 . In fact,

this defines a contravariant functor from Gg,n to the category of rational polyhedral cones,
where edge contractions are taken to isomorphisms onto faces. The moduli space is now
defined as

M trop
g,n := lim−→

Gg,n

σG.

Note that the points of M trop
g,n are in one-to-one correspondence with isomorphism classes

of tropical curves of genus g with n legs. A topological space arising as colimit over a finite
diagram of rational polyhedral cones where all morphisms are isomorphisms onto faces is
called generalized cone complex in [ACP15, Section 2.6].

2.3. Divisors on tropical curves. Let Γ be a tropical curve without legs. A divisor
D on Γ is an element of the free abelian group generated by the points in the topological
realization of Γ. We denote the abelian group of divisors on Γ by Div(Γ). A divisor
D =

∑
app is called effective if ap ≥ 0 for every p. In this case we write D ≥ 0. The degree

of D is defined as deg(D) :=
∑
ap. The support of D is supp(D) := {p ∈ Γ | ap ̸= 0}. By

definition, the support is a finite subset of Γ. One often imagines an effective divisor D as
a pile of D(p) = ap “chips” at every point p ∈ supp(D) overing The data of an effective
divisor D on a tropical curve Γ without legs is equivalent to a tropical curve Γ̃ arising from
Γ by attaching D(p) many legs at every p ∈ supp(D). From now on all tropical curves are
a priori without legs, but given a divisor we will pass to the equivalent representation Γ̃
whenever convenient.

A rational function on Γ is a continuous function f : Γ → R whose restriction to any
edge is piece-wise linear with integer slopes. We denote the set of rational functions on Γ
by Rat(Γ). Every f ∈ Rat(Γ) gives rise to an induced divisor

(f) :=
∑

p∈Γ

(
sum of outgoing slopes of f at p

)
· p ∈ Div(Γ) .

Note that (f) is indeed a finite sum. Two divisors D,D′ ∈ Div(Γ) are linearly equivalent if
there exists f ∈ Rat(Γ) such that D = D′+(f). In this case we write D ∼ D′. Analogously
to [LU17, Definition 3.1] we define:

Definition 2.2. Let D ∈ Div(Γ) be a divisor. We define the linear system of D to be

|D| := {D′ ∈ Div(Γ) | D′ ≥ 0 and D ∼ D′}.
The canonical divisor of a tropical curve Γ without legs is defined as

KΓ :=
∑

v∈V

(
2g(v)− 2 + val(v)

)
v.

If Γ has legs, then we define KΓ to be the canonical divisor of the tropical curve arising from
Γ by removing the legs. Note that contrary to the classical situation there is a canonical
element in the canonical linear system. Furthermore, note that degKΓ = 2g(Γ)− 2. The
elements of |kKΓ| are called pluri-canonical.
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2.4. Tropical k-Hodge bundle. We are now ready to define the central object of
this section:

Definition 2.3. Let integers g ≥ 2 and k ≥ 1 be given. Define

PΩkM trop
g :=

{
([Γ], D) | [Γ] ∈M trop

g and D ∈ |kKΓ|
}
.

This space is called tropical k-Hodge bundle.

Recall [MUW21, Proposition 2.2], where the authors construct a moduli space Divtropg,d

parametrizing pairs ([Γ], D) of isomorphism classes of stable tropical curves of genus g
and effective divisors of degree D ∈ Div(Γ). The construction works completely analogous
to the one of M trop

g,n given in Section 2.2 above with the only modification being that
legs (corresponding to support points of divisors) are now unlabeled. Hence, the colimit
involves more automorphisms.

Proof of Theorem 1.1. We identify PΩkM trop
g as a subcomplex of (a subdivision

of) Divtropg,d for d = k(2g − 2) as follows. Let ([Γ], D) ∈ Divtropg,d and let G be the minimal
model for (Γ, D) such that D is supported on the vertices of G. By construction ([Γ], D)

is contained in (a quotient of) the cone σG = RE(G)
≥0 . We will now describe finitely many

rational polyhedral cones in σG that contribute to PΩkM trop
g .

By Definition 2.3 the pair ([Γ], D) is contained in PΩkM trop
g if and only if there exists

a rational function f on Γ such that

(2) D = kKΓ + (f).

Fix an orientation for the edges of G. To specify a rational function f (up to a global
additive constant in R) that satisfies (2) we first need to choose an initial slope me ∈ Z
at the beginning of every edge e ∈ E(G) subject to the condition that at every vertex
v ∈ V (G)

(3) D(v) = k
(
2g(v)− 2 + val(v)

)
+

∑

outward edges at v

me −
∑

inward edges of v

me

holds. By [GK08, Lemma 1.8] there are only finitely many {me}e∈E(G) subject to (3).
For each such choice a linear subspace of σG is cut out by the continuity of f . The cones
determined this way constitute the entire generalized cone complex structure of PΩkM trop

g .
For the statement on the dimension recall from [MUW21, Porposition 2.2] that

dimDivtropg,k(2g−2) = 3g − 3 + k(2g − 2) .

This provides an upper bound. This bound is attained by the cone described in Exam-
ple 2.4. □

Example 2.4. Consider the graph G depicted in Figure 1. It consists of g vertices
each of which has one self-loop as well as an incident separating edge joining it to a central
chain of g−2 vertices. All vertices have weight 0. This graph is trivalent and hence stable.
If G is endowed with edge-lengths, we obtain a tropical curve Γ. The canonical divisor of
Γ is the sum over all trivalent vertices, hence kKΓ has k chips on each vertex. All of these
chips can be moved independently onto the bridge edges joining the vertices with self-loops
to the rest of the graph. Call the resulting divisor D (see Figure 1 for a picture of D with
k = 3). The pair (Γ, D) has precisely (3+2k)(g−1) degrees of freedom: g for the length of
the self-loops, 2g−3 for the lengths of the remaining edges, and k(2g−2) for the positions
of the support points of D along the edges they lie on. Hence, the cone of tropical curves
with underlying graph G and divisor D is of maximal dimension in PΩkM trop

g .

2.5. Tropicalization. Let g ≥ 2 be an integer and let X be a smooth, proper alge-
braic curve of genus g over a non-Archimedean field K. Possibly after passing to a finite
non-Archimedean field extension K ⊆ K ′, there is a stable model X of X over the valu-
ation ring R of K ′. The central fiber X0 is a nodal curve. Denote the set of irreducible
components of X0 by {Cv}v∈V . Let G denote the dual graph of X0, i.e. the set of vertices
of G is precisely V and for every node in X0 there is one edge in G. Here, the edge corre-
sponding to a node q joins two distinct vertices v and w if q ∈ Cv ∩Cw and it is a self-loop
at vertex v if q is a node of Cv. This graph is vertex weighted by g(v) equal to the genus of
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Figure 1. Graph G with divisor D defining a maximal cone in
PΩ3M trop

g .

the normalization Cνv of Cv. We endow the edge e corresponding to some node q ∈ X0 with
an edge length in the following way. Write X locally around q as xy = f for f ∈ R and
let valR denote the valuation of R. The length of e is defined to be valR(f). The resulting
metric graph Γ is the tropicalization of X in the sense of curves. The tropicalization map

trop : Man
g,n −→M trop

g,n

X 7−→ Γ

is well-defined (see [Viv13, Lemma-Definition 2.2.7] for independence of the choice of K ′),
continuous, and surjective by [ACP15, Theorem 1.2.1]. Here ()an denotes analytification
in the sense of [Ber90] as before.

If X was endowed with a divisor D then we obtain a divisor on trop(X) by special-
ization. [MUW21] presents this extended construction as a map between moduli spaces
again. More precisely, for any degree d ≥ 0 the authors of [MUW21] construct mod-
uli spaces Divg,d and Divtropg,d of pairs of smooth algebraic (resp. stable tropical) curves
of genus g together with an effective divisor of degree d and give a tropicalization map
tropg,d : Divang,d → Divtropg,d in the following way. The curve X can be extended to a semi-
stable model X such thatD extends to a divisor D on X that does not meet any of the nodes
of the special fiber. As before, this might require a base change to a non-Archimedean field
extension. The specialization of D to Γ is defined to be the multidegree of D0 := X0 ∩ D,
i.e.

mdeg(D0) =
∑

v∈V
deg(D0|Cν

v
) · [v].

For the purposes of this article we simply define

tropΩk : PΩkMan
g −→ PΩkM trop

g

to be the restriction of tropg,k(2g−2).

Lemma 2.5. The map tropΩk is well-defined, continuous, proper, and closed.

Proof. By [Bak08, Lemma 4.20], the specialization of a canonical divisor on a curve
X is the canonical divisor on trop(X). Furthermore, the specialization map is linear and
linearly equivalent divisors tropicalize to (tropically) linearly equivalent divisors (see e.g.
[BU19, Theorem 4.2]). In particular, tropΩk is well-defined. The map is also continu-
ous because tropg,d is continuous by [MUW21, Theorem 3.2]. Finally, properness and
closedness follow from the same properties for tropg,d (see [MUW21, Section 3.2]) and
PΩkM trop

g ⊆ Divtropg,d being closed. □

Note that PΩkMg as well as PΩkM trop
g admit natural forgetful map to Mg and M trop

g ,
respectively. These are compatible with tropicalization maps in the following sense.

Proposition 2.6. The diagram

PΩkMan
g PΩkM trop

g

Man
g M trop

g

trop
Ωk

trop
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commutes, where the vertical arrows are natural forgetful morphisms.

Proof. This is essentially a modified version of the first part of [ACP15, Theorem
1.2.2] using unlabeled points. Alternatively, one can see this with the explicit descriptions
of the two tropicalization maps that were given above. □

2.6. The realizability problem. We conclude this section with the following obser-
vation: by Theorem 1.1, the dimension (of a maximal cone) of PΩkM trop

g is (3+2k)(g−1).
On the other hand, dimPΩkMg ≤ (2 + 2k)(g− 1)− 1 by [BCGGM19a, Theorem 1.1]. By
the following argument, this implies that tropΩk cannot be surjective.

First note that PΩkMg is a closed substack of Divg,d. The compactification Divg,d ⊆
Divg,d was identified in [MUW21, Theorem 1.2] as a toroidal embedding of Deligne-
Mumford stacks in the sense of [ACP15, Definition 6.1.1]. This means that locally around
any geometric point of Divg,d there exists a so-called small toric chart V [ACP15, Defini-
tion 6.2.4], i.e. a scheme V and an étale morphism V → Divg,d such that the pull-back V ◦

of Divg,d to V is a toroidal embedding V ◦ ⊆ V in the sense of [KKMS73]. In particular,
the boundary is without self-intersection. Now consider the pull-back U of PΩkMg to V .
The tropicalization tropV (U) in the sense of [Uli17] is then a finite rational polyhedral
cone complex of dimension ≤ dimU ≤ dimPΩkMg by [Uli15, Theorem 1.1]. Taking the
supremum over all small toric charts V we get

dim tropDivg,d(PΩ
kMg) = sup dim tropV (U) ≤ dimPΩkMg.

It remains to argue that this coincides with the dimension of Im tropΩk . To this end note
that by [Uli17, Theorem 1.2] the tropicalization tropDivg,d coincides with the retraction
map ρ : Divang,d → S(Divg,d) in the sense of [Thu07]. However, the same holds for tropΩk

by [MUW21, Theorem 3.2], so the claim follows. Putting everything together we conclude

dim tropΩk(PΩkMg) ≤ (2 + 2k)(g − 1)− 1 < (3 + 2k)(g − 1) = dimPΩkM trop
g .

Thus, tropΩk cannot be surjective. This motivates the following definition.

Definition 2.7. The image of tropΩk is called realizability locus. A tropical curve Γ
with effective pluri-canonical divisor D ∈ |kKΓ| is called realizable if the pair ([Γ], D) ∈
PΩkM trop

g is contained in the realizability locus.

The realizability problem asks for a criterion to determine if ([Γ], D) is in the realiz-
ability locus. Corollary 4.13 together with Theorem 5.11 provide its answer.

3. Moduli space of multi-scale k-differentials

Fix integers g ≥ 2 and k ≥ 1. Throughout this section we work over the field C of
complex numbers. A tuple µ = (m1, . . . ,mn) ∈ Zn such that

∑
mi = k(2g − 2) is call a

type. The stratum of k-differentials of type µ is the subspace ΩkMg(µ) of the k-Hodge
bundle ΩkMg parametrizing k-differentials where the zero and pole orders are as prescribed
by µ.

For an integer d | k, taking a global d-th power of a k/d-differential on a curve X gives
rise to a k-differential on X. We will often be interested in those k-differentials that are
not global powers of k/d-differentials.

Definition 3.1. A k-differential is called primitive if it is not a global d-th power
of a k/d-differential for some d > 1. We denote the union of connected components of
ΩkMg(µ) parametrizing primitive k-differentials by ΩkMg(µ)

prim.

For strata of abelian differentials ΩMg(µ), the authors of [BCGGM19b] constructed
a closure ΞMg,n(µ), the moduli space of multi-scale differentials.1 Recall that C× acts on
ΩMg(µ) by multiplication on the differential. This action extends to ΞMg,n(µ) and the
projectivization PΞMg,n(µ) with respect to this action is a well-behaved compactification

1 In [BCGGM19b], the marked points of the stratum are labeled. We consider the marked points to
be unlabeled, i.e. we consider the quotient of the space in [BCGGM19b] by Sym(µ) = {ϕ ∈ Sn | mϕ(i) =

mi for i = 1, . . . , n}.
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of PΩMg(µ). The construction of ΞMg,n(µ) was generalized to strata of primitive k-
differentials ΩkMg(µ)

prim in [CMZ19].
Let (X, η) be a primitive k-differential in ΩkMg(µ)

prim. In Section 3.2 we recall that
(X, η) admits a canonical cover

π : (X̂, ω) −→ (X, η),

where (X̂, ω) is an abelian differential of some type µ̂. The canonical cover is unique up
to multiplication of ω by a k-th root of unity. Hence, after projectivizing, there is a well-
defined map PΩkMg(µ)

prim → PΩMĝ(µ̂) for ĝ, µ̂ as described in Section 3.2 below. In
other words, we can think of PΩkMg(µ)

prim not only as a space parametrizing primitive
k-differentials of type µ, but equivalently as a space parametrizing canonical covers.

The boundary of the compactification constructed in [CMZ19] parametrizes so-called
multi-scale k-differentials. These are twisted k-differentials with the additional data of an
(enhanced) level graph together with some compatibility conditions. Details are outlined
in Sections 3.1 and 3.3. The compactification has the following properties.

Theorem 3.2 ([CMZ19]). There exists a complex orbifold PΞkMg,n(µ), the moduli
space of multi-scale k-differentials, with the following properties.2

(i) The space PΞkMg,n(µ) is a compactification of PΩkMg(µ)
prim.

(ii) Via the canonical cover construction, the space PΞkMg,n(µ) is embedded as a suborb-
ifold in the corresponding stratum PΞMĝ,n̂(µ̂) of abelian multi-scale differentials.

We conclude this section with some more properties of PΞkMg,n(µ) In Sections 3.5 and
3.6 which will turn out to introduce major difficulties in solving the realizability problem
in Section 5.

3.1. Twisted k-differentials. The underlying curves of the boundary points of the
moduli space of multi-scale k-differentials PΞkMg,n(µ) will be nodal curves. The k-
differentials will degenerate into so-called twisted k-differentials with some additional data
and compatibility conditions that we will describe in the following.

For an abelian differential, the residue at a pole is defined as the coefficient in front of
z−1 in the Laurent expansion around that pole. To define a useful notion of residues for
k-differentials, recall from [BCGGM19a, Proposition 3.1] that a k-differential η of order
m = ord0 η may locally be written as

(4)





zm(dz)k if m > −k or k ∤ m,
(r
z

)k
(dz)k if m = −k,

(
zm/k +

t

z

)k
(dz)k if m < −k and k | m

for some r ∈ C× and t ∈ C.

Definition 3.3. For a k-differential η written as in (4), the k-residue of η is defined
as

(5) Resk0 η :=





0 if m > −k or k ∤ m,

rk if m = −k,
tk if m < −k and k | m

for r and t as above.

Definition 3.4. Let X be a nodal curve and let µ = (m1, . . . ,mn) be a type. A
twisted k-differential of type µ on a stable n-pointed curve (X, s) is a collection of (possibly
meromorphic) k-differentials η = {ηv}v on the irreducible components Xv of X such that
no ηv is identically zero with the following properties.

(i) (Vanishing as prescribed) Each k-differential ηv is holomorphic and nonzero out-
side the nodes and marked points of Xv. Moreover, if a marked point si lies on Xv,
then ordsi ηv = mi.

2Here again, we consider the quotient of the space in [CMZ19] by Sym(µ).
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(ii) (Matching orders) For any node of X that identifies q1 ∈ Xv1 and q2 ∈ Xv2 , the
vanishing orders satisfy ordq1 ηv1 + ordq2 ηv2 = −2k.

(iii) (Matching k-residues condition, MRC) If at a node of X that identifies q1 ∈ Xv1

with q2 ∈ Xv2 the condition ordq1 ηv1 = ordq2 ηv2 = −k holds, then Reskq1 ηv1 =

(−1)k Reskq2 ηv2 .

3.2. Normalized covers. Consider first a smooth curve with k-differential (X, η). It
admits a canonical cover π : (X̂, ω) → (X, η) that is unique up to multiplying ω with a
k-th root of unity. In particular, the class of (X̂, ω) in PΩMĝ(µ̂) is unique. The cover X̂
is connected if and only if η is a primitive k-differential. If η is a d-th power of a primitive
k/d-differential, then X̂ has k/d isomorphic connected components.

For a twisted k-differential a similar cover can be constructed, but no longer uniquely.
Assume that the twisted k-differential η is of type µ = (m1, . . . ,mn), let m̂i := (k +
mi)/ gcd(k,mi)− 1 and let

µ̂ := (m̂1, . . . , m̂1︸ ︷︷ ︸
gcd(k,m1)

, m̂2, . . . , m̂2︸ ︷︷ ︸
gcd(k,m2)

, . . . , m̂n, . . . , m̂n︸ ︷︷ ︸
gcd(k,mn)

).

Moreover, let n̂ := |µ̂| and ĝ := 1
2

∑
m̂i∈µ̂ m̂i + 1.

Theorem 3.5 ([BCGGM19a]). For a pointed nodal curve (X, s) with a twisted k-
differential η of type µ, there exists a pointed nodal curve (X̂, ŝ) with a twisted abelian
differential ω of type µ̂ such that

(i) π : X̂ → X is a cyclic cover of degree k with deck transformation τ ,
(ii) π∗η = ωk,
(iii) τ∗ω = ζω for a primitive k-th root of unity ζ,
(iv) marked points are mapped to marked points, i.e. π(ŝ) = s,
(v) π is unramified outside of the nodes and marked points of X̂,
(vi) every node or marked point q ∈ Xv has precisely gcd(k, ordq ηv) preimages.

Definition 3.6. We refer to a tuple (π : X̂ → X, s, ω) as above as a normalized cover
of (X, s, η). A normalized cover is called primitive if X̂ is connected.

Remark 3.7. (1) Condition (vi) in the above theorem is well-defined at nodes
because the twisted k-differential η is subject to the matching orders condition of
Definition 3.4.

(2) If ηv is a d-th power of a primitive k/d-differential, then the irreducible component
Xv has precisely d isomorphic preimages.

(3) In general, the normalized cover is not unique: While the fibers π|π−1(v) :
∐
v̂Xv̂ →

Xv are uniquely determined by the k-differential ηv, there may be a choice how
to glue the different fibers along the nodes.

To determine the relation between the residues of the cover and the k-residues of the
base curve, let us again consider a normalized cover of smooth curves with differentials
π : (X̂, ω) → (X, η). Let us fix a pole p ∈ X of η and let q ∈ π−1(p) be some preimage.
If π is ramified at p, we claim that both the k-residue Reskp(η) and the residue Resq(ω)
vanish. For the k-residue, this is immediate by Definition 3.3, and for the residue this is a
consequence of the compatibility with the τ -action as follows. If π is ramified at q, then
there is an integer 1 < d | k such that q is fixed by τd, τ2d, . . . , τk. Because of τ∗ω = ζω,
this implies that

k

d
· Resq(ω) =

k/d∑

i=1

ζidResq(η) = 0,

as the k
d -th roots of unity sum to zero. If the cover is unramified at p, then the k-residues

of the twisted k-differential and the residues of the normalized cover are related as follows.

Lemma 3.8. If π is unramified at p, then

Reskp(η) =
(
Resq(ω)

)k
.
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Proof. Let m := ordp η and note that k divides m. Recall from (4) that the k-form
η may locally be written as





(r
z

)k
(dz)k if m = −k,

(
zm/k +

t

z

)k
(dz)k if m < −k.

In these cases, the k-residues are by definition rk and tk, respectively. As π is locally given
by π : z 7→ z, we get

ωk = π∗η =





(r
z
dz
)k

if m = −k
((

zm/k +
t

z

)
dz

)k
if m < −k.

Thus the residues of ω at q are r and t, respectively. □

Remark 3.9. In general, the k-residue does not coincide with the coefficient in front
of z−k in the Laurent expansion around the given pole. Moreover, there is nothing similar
to the residue theorem for k-residues.

3.3. Enhanced level graphs. The boundary points of the moduli space of multi-
scale differentials PΞkMg,n(µ) are normalized covers subject to some conditions on the
underlying dual graph of the stable curves. We will recall here the necessary terminology
to give the characterization of the boundary points in Section 3.4 below.

Let G be a stable graph. A full order on G is an order ≽ on the vertices V of G that is
reflexive, transitive, and such that for any v1, v2 ∈ V at least one of the statements v1 ≽ v2
or v2 ≽ v1 holds. If v1 ≽ v2 and v2 ≽ v1, we write v2 ≍ v1. We call a function ℓ : V → Z≤0

such that ℓ−1(0) ̸= ∅ a level function. Note that a level function induces a full order on G
by setting v ≽ w whenever ℓ(v) ≥ ℓ(w). A level graph (G, ℓ) is a graph G together with
a choice of a level function ℓ. When the level function is clear from context, we abuse
notation and denote the level graph (G, ℓ) by G as well.

For a given level L we call the subgraph of G that consists of all vertices v with ℓ(v) > L
along with the edges between them the graph above level L of G, and denote it by G>L.
We similarly define the graph G≥L above or at level L, and the graph G=L at level L. An
edge e ∈ E is called horizontal if it connects two vertices of the same level, and it is called
vertical otherwise. Given a vertical edge e, we denote by v+(e) and v−(e) the vertex that
is its endpoint of higher and lower level, respectively.

Let π : Ĝ → G be a morphism of graphs. By this we mean that π maps vertices
to vertices, edges to edges, and legs to legs while respecting edge–vertex and leg–vertex
incidences. Assume further that π is surjective on vertices and let ≽G denote a full order
on G. We get an induced full order on Ĝ by setting v1 ≽Ĝ v2 if and only if π(v1) ≽G π(v2).
If ≽G was induced by a level function ℓ, then ≽

Ĝ
is induced by the lifted level function

ℓ̂ := ℓ ◦ π.
In the following, given a twisted k-differential (X, s, η) and a level graph (G, ℓ), we will

always assume that G is the dual graph of X. We denote by X>L (resp. X≥L resp. X=L)
the subcurve whose dual graph is G>L (resp. G≥L resp. G=L).

Definition 3.10. Let π : Ĝ→ G be a morphism of graphs. It is called cover of graphs
if π is surjective on vertices, edges, and legs. Furthermore, it is called k-cyclic cover of
graphs if there is the additional data of an automorphism τ of Ĝ such that τk = id and π
is the quotient map Ĝ→ Ĝ/τ .

Remark 3.11. We would like to stress that morphisms (and covers) of graphs do not
contract edges. Also note that in a k-cyclic cover of graphs the order of τ may in fact be
k′ < k with k′ dividing k. We think of a k-cyclic cover of graphs as the dual graphs of a
k-cyclic cover of curves. Hence the name k-cyclic.

The following definition is taken from [BCGGM19a].
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Definition 3.12. Let π : (Ĝ, ℓ̂) → (G, ℓ) be a k-cyclic cover of level graphs. We say
that a normalized cover of twisted k-differential (π : X̂ → X, s, ω) is compatible with π if
it satisfies the following two conditions.
(iv) (Partial order) If a node of X̂ identifies q1 ∈ X̂v1 with q2 ∈ X̂v2 , then v1 ≽ v2 if

and only if ordq1 ωv1 ≥ −1. In particular, v1 ≍ v2 if and only if ordq1 ωv1 = −1.
(v) (Global residue condition, GRC) For every level L and every connected com-

ponent Ŷ of X̂>L that does not contain a marked point with a prescribed pole the
following condition holds: Let q1, . . . , qb denote the set of all nodes where Ŷ intersects
X̂=L. Then

b∑

j=1

Resq−j
ωv−(qj) = 0.

where q−j ∈ X̂=L is the point on the irreducible component corresponding to v−(qj) ∈
Ĝ=L that is part of the node qj .

Note that condition (iv) is equivalent to the analogous condition on the induced twisted
k-differential η on X: If a node of X identifies q1 ∈ Xv1 with q2 ∈ Xv2 , then v1 ≽ v2 if and
only if ordq1 ηv1 ≥ −k, and v1 ≍ v2 if and only if ordq1 ηv1 = −k.

Though not strictly necessary at the moment, it will be more convenient later on to
consider enhanced level graphs instead of level graphs. Enhanced level graphs additionally
carry the data of an integer valued function o which should be thought of as an order at
every node and marked point.

Definition 3.13. Let k ∈ N≥1. A k-enhanced level graph G+ = (V, H, L, ι, a, ℓ, o)
is a tuple where (V, H, L, ι, a) is a stable graph, the map ℓ : V → Z≤0 is the level
function and the so-called enhancement o : H ∪ L→ Z such that the following hold.

(i) The genus is well-defined, i.e. for all v ∈ V there is a non-negative integer g(v) such
that

k
(
2g(v)− 2

)
=

∑

h∈a−1(v)

o(h).

We call µ(v) := (o(h))h∈a−1(v) the type of v.
(ii) The orders at edges match, i.e. for all h ∈ H we have o(h) + o(ι(h)) = −2k.
(iii) The orders at the half-edges are compatible with the level function, that is: for all

h ∈ H we have o(h) ≥ o(ι(h)) if and only if ℓ
(
a(h)

)
≥ ℓ
(
a(ι(h))

)
.

Note that (ii) and (iii) imply that the levels at both ends of an edge are equal if and only if
the orders at both ends are −k. We call such an edge horizontal. Any other edge is called
vertical.

Definition 3.14. Let G+ = (V, H, L, ι, a, ℓ, o) be a k-enhanced level graph. A
normalized cover of G+ is a triple (Ĝ+, π, τ), where

(i) Ĝ+ = (V̂ , Ĥ, L̂, ι̂, â, ℓ̂, ô) is an 1-enhanced level graph,
(ii) π : Ĝ+ → G+ is a cover of graphs such that

(a) π preserves the levels, i.e. ℓ = ℓ̂ ◦ π,
(b) the order at the preimages is the expected one, i.e. for all half-edges and legs

h ∈ H ∪ L and all ĥ ∈ π−1(h) it is

ô(ĥ) + 1 =
o(h) + k

gcd
(
o(h), k

)

(c) the number of preimages is the expected one, i.e. for all half-edges and legs
h ∈ H ∪ L we have

∣∣π−1(h)
∣∣ = gcd

(
o(h), k

)
,

(iii) τ : Ĝ→ Ĝ is a graph automorphism that exhibits π as a k-cyclic cover of graphs.

Note that the genus of each vertex v̂ ∈ V̂ is an integer by definition of an 1-enhanced
level graph.
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Definition 3.15. Let π : Ĝ+ → G+ be a k-cyclic cover of enhanced level graphs. We
say that a normalized cover of a twisted k-differential (π : X̂ → X, s, ω) is compatible with
π if it is compatible with the underlying cover of level graphs π : (Ĝ, ℓ̂) → (G, ℓ) and the
orders of the differentials coincide with the enhancements.

3.4. Multi-scale k-differentials and the characterization of limit points. The
points in the boundary of PΞkMg,n(µ) may be described as follows.

Definition 3.16. A multi-scale k-differential of type µ on a pointed stable curve (X, s)
consists of the following data.

(i) A primitive normalized cover of a twisted k-differential (π : X̂ → X, s, ω) of type µ.
(ii) A compatible k-cyclic cover of enhanced level graphs π : Ĝ+ → G+.
(iii) A prong-matching for each node of X joining components on non-equal levels.

A prong-matching roughly represents a choice of gluing the differentials at the nodes
of the curve. While it is needed to get a well-behaved compactification, it will be of no
importance to us and we will suppress it in the following.

Theorem 3.17 ([CMZ19]). The points in the moduli space of multi-scale k-differentials
PΞkMg,n(µ) are precisely the C×-equivalence classes of multi-scale k-differentials (π : X̂ →
X, s, ω, π : Ĝ+ → G+) of type µ.

Note that the tuple (π : X̂ → X, s, ω, π : Ĝ+ → G+) is equivalent to the tuple
(τ ↷ X̂, ŝ, ω, τ ↷ G+), where ŝ is the lift of s to X̂. We give another version of the
same theorem that highlights the possible scaling parameters of one-parameter families
approaching the boundary.

Suppose that S is the spectrum of a discrete valuation ring R with residue field C,
whose maximal ideal is generated by t. Let X̂/S be a family of semi-stable curves with
smooth generic fiber X̂ and special fiber X̂0 and such that there is an automorphism τ of
degree k on the family X̂/S. Let ω be a section of the ζk-eigenspace (with respect to τ )
of ωX/S of type µ̂ = (m̂1, . . . , m̂n̂) whose divisor is given by the sections ŝ = (ŝ1, . . . , ŝn)

with multiplicity m̂i. If moreover (X̂/S, ŝ) is stable, then the tuple (X̂/S, τ , ŝ,ω) is called
a pointed family of stable k-differentials. (Note that (X := X̂/τ, η := (ω|

X̂
)/τ) is in fact

a k-differential, where ω|
X̂

is the restriction of ω to the generic fiber X̂.) We define the
scaling factor ℓ̂(v̂) of a vertex v̂ of the dual graph Ĝ of X̂0 as the non-positive integer such
that the restriction of the meromorphic differential t−ℓ̂(v̂) ·ω to the component X̂0,v̂ of the
special fiber corresponding to v̂ is a well-defined and generically nonzero differential ωv̂ on
X̂0,v̂. The ωv̂ are called the scaling limits of ω.

Theorem 3.18 ([CMZ19]). If (X̂/S, τ , ŝ,ω) is as above, then the function ℓ̂(v̂) defines
a full order on the dual graph Ĝ of the special fiber X̂0 and the collection ωv̂ is a twisted
k-differential of type µ̂ compatible with the level function ℓ̂.

Conversely, suppose that X̂0 is a stable n̂-pointed curve with dual graph Ĝ and a degree k
automorphism τ . Moreover, suppose that ω = {ωv̂}v̂∈V̂ is a twisted k-differential of type µ
in the ζk-eigenspace and compatible with a full order on Ĝ. Then for every level function
ℓ̂ : Ĝ→ Z defining the full order on Ĝ and for every τ -invariant assignment of integers nê
to horizontal edges there is a stable family X̂/S over S = SpecC[[t]] with smooth generic
fiber and special fiber X̂0 that satisfies the following properties.

(i) The action of τ extends to a degree k automorphism on X̂/S.
(ii) There exists a global section ω of the relative dualizing sheaf ωX/S whose horizontal

divisor divhor(ω) =
∑n̂

i=1 m̂iΣi is of type µ̂ and whose scaling limits are the collection
{ωv̂}v̂∈V̂ . Moreover, the restriction of ω to each fiber is contained in the ζk-eigenspace
of τ .

(iii) The intersections Σi ∩ X̂0 = {ŝi} are smooth points of the special fiber and ω has a
zero of order m̂i in ŝi.
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(iv) There exists a positive integer N such that near every node ê a local equation for X
is given by

xy =




tNnê if ê is a horizontal edge,

tN
(
ℓ(v+(ê))−ℓ(v−(ê))

)
if ê is a vertical edge.

Proof. The first statement is proved in [CMZ19]. Note that the arguments given
there hold over any discrete valuation ring with residue field C.

For the second statement we recall from the proof of [MUW21, Theorem 5.2] that
there are no constraints for the plumbing fixtures to be used for plumbing horizontal
nodes, whereas for a vertical node corresponding to an edge ê the level function ℓ̂0 on the
cover used for plumbing has to satisfy the condition

(6) (ordv+(ê) ω̂ + 1) |
(
ℓ̂0(v

+(ê))− ℓ̂0(v
−(ê))

)
.

Multiplying the prescribed function ℓ̂ by a sufficiently divisible N , the resulting level func-
tion ℓ̂0 = N · ℓ̂ satisfies the divisibility property. □

3.5. Empty primitive strata. The primitive strata of k-differentials ΩkMg(µ)
prim

are empty for some types µ. To keep the notation concise, we will denote a type µ =
(m1, . . . ,mn) where multiple mi agree with exponential notation, e.g. we will denote the
type (0, . . . , 0) by (0n).

Theorem 3.19 ([GT21a], [GT21b], [GT22a]). The primitive stratum ΩkMg(µ)
prim

(and hence the stratum of mutli-scale k-differentials PΞkMg,n(µ)) is empty if and only if
(i) k = 1 and µ = (−1,m2, . . . ,mn) with m2, . . . ,mn ≥ 0,
(ii) g = 0 and µ = (m1, . . . ,mn) with gcd(m1, . . . ,mn, k) ̸= 1,
(iii) g = 1 and µ = (0n−2,−1, 1),
(iv) g = 1, k ≥ 2 and µ = (0n),
(v) g = 2, k = 2 and µ = (0n−1, 4) or µ = (0n−2, 1, 3).

Remark 3.20. A stratum ΩkMg(µ) may be nonempty even if its primitive part
ΩkMg(µ)

prim is empty: For each d | k, the stratum ΩkMg(µ) may have nonempty con-
nected components that parametrize d-th powers of primitive k/d-differentials.

3.6. The image of the residue map. In Section 5 when we prove Theorem 1.4, we
will first translate a given tropical normalized cover into a normalized cover of enhanced
level graphs π : Ĝ+ → G+ and then try to construct a normalized cover of a twisted
k-differential (X, η) that is compatible with π. If this is possible, then the irreducible
component (Xv, ηv) is a (possibly meromorphic) k-differential for each v ∈ V (G+), whose
type µ(v) is prescribed by the enhancements of G+. To construct the twisted k-differential,
we will need to fix the k-residues at the poles of ηv. The question which k-residues are valid
choices was answered by Gendron-Tahar. We will summarize their results in this section.

Definition 3.21. For a type µ = (m1, . . . ,mn), we defined the reduced type µred as
the sub-tuple of µ consisting of all nonzero entries. Following [GT22a], we denote this
tuple by

µred = (a1, . . . , at;−b1, . . . ,−bp;−c1, . . . ,−cr;−ks)
where the ai > −k are the zeros, the bi ∈ kN>1 are the poles where the order is greater
then k and divisible by k, and the ci ∈ N>k \ (kN) are the poles with order not divisible
by k. As above, the power −ks indicates that there are s poles of order k.

Recall that the k-residues at the poles with orders −ci are zero, while the k-residues
at the poles with orders −k cannot be zero. We let

Reskg(µred) : Ω
kMg(µred)

prim −→ Cp × (C×)s

denote the residue map. For almost all reduced types µred, the residue map is surjective. In
the rest of this section, we will discuss all the cases where the residue map is not surjective.
The following proposition lists all those cases where exactly the origin is missing in the
image of the residue map.
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Proposition 3.22 ([GT21a], [GT21b], [GT22a]). In the following cases, precisely the
origin is missing from the image of the residue map, i.e. the image of the residue map is

Im
(
Reskg(µred)

)
= (C×)p.

(i) If k = 1, g = 0, s = 0 and there exists an index i such that the inequality

ai >

p∑

j=1

bj − (p+ 1)

holds. (Note that k = 1 implies r = 0.)
(ii) If k = 2, g = 1 and µred = (4p; (−4p)) or µred = (2p− 1, 2p+ 1; (−4p)) for p ∈ N×.
(iii) If k ≥ 2, g = 0, µred = (a1, . . . , at;−b1, . . . ,−bp;−c1) and there is at most one ai not

divisible by k and
∑

k | ai ai < kp.
(iv) If k ≥ 2, g = 0, µred = (a1, . . . , at;−b1, . . . ,−bp), p ̸= 0 and none of the following

holds:
(a) p = 1 and t ≥ 3,
(b) p ≥ 2, t ≥ 3 and there exist at least three ai not divisible by k,
(c) p ≥ 2, t ≥ 3 and there exist precisely two ai not divisible by k and

∑
k | ai ai ≥ kp,

(d) k = 2 and µred = ((2p+ b− 5)2;−b,−b− 2, (−4p−2)) or µred = (2p+ b− 7, 2p+
b− 5; (−b2), (−4p−2)) for p ≥ 2 and even b ≥ 4.

In the cases of the following two propositions not only the origin, but a finite number
of C-lines is missing from the image of the residue map.

Proposition 3.23 ([GT21b], [GT22a]). For the reduced types µred in Figure 2, pre-
cisely the C-lines spanned by the vectors wi are missing from the image of the residue map,
i.e.

Im
(
Reskg(µred)

)
=
(
Cp × (C×)s

)
\
⋃

i

⟨wi⟩C.

(Note that if there are multiple poles with the same order in µred, then the order of the
entries of the vectors wi may not be uniquely determined. In those cases all possible per-
mutations need to be taken into account.)

Proposition 3.24 ([GT21a]). For k = 1, g = 0 and µred = (a1, . . . , at; (−1s)) with
s ≥ 2, precisely those C-lines

〈
(x1, . . . , xs1 ,−y1, . . . ,−ys2)

〉
C are missing from the image

of the residue map for which the xi, yj ∈ N are pairwise relatively prime and
s1∑

i=1

xi =

s2∑

j=1

yj ≤ max(a1, . . . , at).

Finally, there are some cases where a finite number of at most 2-dimensional sub-
varieties is missing from the image of the residue map. For k = 2, following [GT21b,
Définition 1.8] we call three numbers R1, R2, R3 ∈ C× triangular, if there exist square
roots r1, r2, r3 of R1, R2, R3 such that r1 + r2 + r3 = 0.

Proposition 3.25 ([GT21b]). For k = 2, g = 0 and µred = (a1, . . . , at; (−2s)), pre-
cisely the following C-lines are not in the image of the residue map.

(i) For µred = (2s′−1, 2s′+1; (−22s
′+2)) with s′ ∈ N the lines spanned by (1, . . . , 1, R,R)

for R ∈ C× are missing.
(ii) For µred = ((2s′−1)2; (−22s

′+1)) with s′ ∈ N× the lines spanned by (R1, R2, R3, . . . , R3)
for triangular Ri ∈ C× are missing.

(iii) If precisely two ai are odd (say a1 and a2), the lines spanned by (r21, . . . , r
2
s) for

relatively prime ri ∈ N and such that for S :=
∑

i ri either
(a) S is odd and S < max(a1, a2) + 2 or
(b) S is even and S < a1 + a2 + 4
are missing.

Theorem 3.26 ([GT21a], [GT21b], [GT22a]). For k ≥ 1, the residue map is surjective
in all cases not covered by Propositions 3.22, 3.23, 3.24 and 3.25.
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µred wi

k
=

2

g
=

1 (2s; (−2s)) for s ∈ 2N× (1, . . . , 1)

(s− 1, s+ 1; (−2s)) for s ∈ 2N× (1, . . . , 1)

g
=

0

(s− 1, s+ 1;−4; (−2s)) for s ∈ 2N× (0; 1, . . . , 1)

(2p− 1, 2p+ 1; (−4p); (−22)) for p ≥ 0 (0, . . . , 0; 1, 1)

(s2;−4; (−2s)) for s ∈ (N× \ 2N) (1; 1, . . . , 1)

((2p− 1)2; (−4p);−2) for p ≥ 1 (1, 0, . . . , 0; 1)

((2p+ b− 5)2;−b,−b− 2, (−4p−2))

for p ≥ 2 and even b ≥ 4
(1, 1, 0, . . . , 0)

(2p+ b− 7, 2p+ b− 5; (−b2), (−4p−2))

for p ≥ 2 and even b ≥ 4
(1, 1, 0, . . . , 0)

k
=

3

g
=

0

(−1, 4; (−33)) (13)

(1, 2; (−33)) (13)

(2, 4; (−34)) (12,−12)

(2, 7; (−35)) (14,−1)

(2, 10; (−36)) (16)

(5, 7; (−36)) (16)

k
=

4

g
=

0

(−1, 5; (−43)) (12,−4)

(3, 5; (−44)) (14)

(−1, 9; (−44)) (14)

(3, 13; (−46)) (16)

k
=

6

g
=

0 (−1, 7; (−63)) (13)

(−1, 13; (−64)) (14)

k
≥

2

g
=

0

(−1, 1; (−k2)) (1, (−1)k)

Figure 2. Reduced types µred and generators wi of the C-lines
missing in the image of the residue map.

4. Reduction to realizability of normalized covers

The goal of this section is to reduce the realizability problem for curves with pluri-
canonical divisor to the realizability problem for normalized covers, i.e. we want to formally
state and prove Corollary 1.3. To do so, we define a notion of tropical normalized cover in
Definition 4.9 which should be thought of as a tropical version of Definition 3.6. Essentially,
we require a tropical normalized cover to be a cyclic degree k tropical Hurwitz cover Γ̂ → Γ
in the sense of [CMR16, Definition 16] with the additional property that the underlying
cover of graphs admits the structure of a normalized cover of enhanced level graphs in the
sense of Definition 3.14. Of course, the enhancement should be compatible with the divisor
marked by the legs of Γ. More precisely, in Lemma 4.1 we give a canonical construction
to endow a tropical curve with an effective pluri-canonical divisor with the structure of an
enhanced level graph. In the definition of a tropical normalized cover we will then require
the structure of normalized cover of enhanced level graphs to coincide on Γ with the output
of Lemma 4.1. Once the notion of tropical normalized cover is introduced, we can construct
the moduli space of tropical normalized covers PΞkM trop

g and the tropicalization map

tropΞk : PΩkMan
g,n −→ PΞkM trop

g .

Finally, we prove Theorem 1.2 and perform the reduction step.

4.1. From rational functions to k-enhanced level graphs. So far we have con-
sidered on one hand tropical curves Γ together with an effective pluri-canonical divisor
D ∈ |kKΓ| and on the other hand k-enhanced level graphs G+. These notions are related
by
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Lemma 4.1. Let Γ be a tropical curve and D = kKΓ + (f) ∈ |kKΓ| an effective pluri-
canonical divisor. Let G be the minimal graph model of Γ where D is represented with legs.
We can associate a natural k-enhanced level graph structure G+ = G+(f) on G.

Proof. Let G be the minimal model of Γ including D(p) legs for every point p ∈
suppD. First we endow G with the total order given by f , i.e. for vertices v and w we
set v ≼ w if and only if f(v) ≤ f(w). Next we define a k-enhancement o : H ∪ L → Z
compatible with the total order by the following rule

(7) o(h) :=

{
1 if h is a leg
−s(h)− k if h is part of an edge,

where s(h) is the outgoing slope of f on the half-edge h. It is easy to check Definition 3.13.
□

Remark 4.2. Our choice to represent the effective divisor D by attaching D(p) legs
at each point p ∈ Γ and endowing these with o-value 1 amounts to seeking realizations
in the principal stratum PΩkMg(1, . . . , 1) in the end. Of course one could also ask for
realizability in other strata – the definition in (7) would then have to be adapted.

4.2. Tropical k-cyclic Hurwitz covers. A tropical Hurwitz cover is a harmonic
morphism of tropical curves satisfying the local Riemann-Hurwitz conditions. The moduli
space of such maps of fixed degree d and ramification profile ξ was introduced in [CMR16].
For our purposes we need the slightly modified notion of tropical k-cyclic Hurwitz covers,
which we will introduce now.

Definition 4.3. Let Γ′ and Γ be tropical curves. A morphism of metric graphs φ :
Γ′ → Γ is called morphism of tropical curves if it maps edges of Γ′ linearly to edges of Γ
such that the ratio of edge lengths de′ :=

l(φ(e′))
l(e′) is an integer for every edge e′ of Γ′. In

this case the numbers de′ are called expansion factors.

Definition 4.4. Let φ : Γ′ → Γ be a morphism of tropical curves, p′ ∈ Γ′ and
p = φ(p′). Then φ is called harmonic at p′ if for every tangent direction ϵ ∈ Tp(Γ) to p in
Γ the value of the local degree

dp′ :=
∑

ϵ′∈Tp′ (Γ′)

ϵ′ 7→ϵ

dϵ′

does not depend on ϵ. Here the sum is running over all tangent directions to p′ that map
to ϵ. A morphism is harmonic if it is surjective and harmonic at every p′ ∈ Γ′. In this case
the number d =

∑
p′∈f−1(p) dp′ is independent of p and is called degree of φ.

Definition 4.5. A harmonic morphism φ : Γ′ → Γ is called tropical Hurwitz cover if
for every p′ ∈ Γ′ the local Riemann-Hurwitz condition holds, i.e.

2− 2g(p′) = dp′
(
2− 2g(φ(p′))

)
−

∑

h′ half-edge
incident to p′

(dh′ − 1) .

We remark that tropical Hurwitz covers are not covers in the sense of topology, i.e.
they are not local isomorphisms in general.

Definition 4.6. Let π : Γ′ → Γ be a tropical Hurwitz cover and let k ≥ 1 be an integer.
We call an automorphism of metric graphs τ : Γ′ → Γ′ a (tropical) deck transformation
if it is an isometry and π is τ -invariant. The data of π together with τ is called tropical
k-cyclic Hurwitz cover if

(i) π is of degree k,
(ii) the morphism of graphs underlying π is a k-cyclic cover of graphs in the sense of

Definition 3.10 (with deck transformation given by the morphism of graphs underlying
τ), and

(iii) Γ = Γ′/τ .

Remark 4.7. In a tropical k-cyclic Hurwitz cover the deck transformation τ satisfies
necessarily τk = id. This however does not mean that τ is of degree k. Rather we only
have that the degree of τ divides k.
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We will now construct the moduli space of tropical k-cyclic Hurwitz covers in analogy to
the moduli space of tropical Hurwitz covers (see [CMR16, Section 3.2]). The construction
follows the same pattern as the construction of M trop

g,n in Section 2.2. Fix a degree k, genera
g′ and g, and a tuple of ramification profiles ξ = (ξ1, . . . , ξn), i.e. each ξi is a partition of d.
Consider a tropical k-cyclic Hurwitz cover (π : Γ′ → Γ, τ) with the specified parameters.
In particular, Γ has to have precisely n legs l1, . . . , ln such that the leg li has |ξi| preimages
with expansion factors given by the entries of ξi. Then the combinatorial type of π is the
underlying k-cover of weighted graphs (π : G′ → G, τ) together with the data of all the
expansion factors. Here we denote by G′ and G the minimal graph models for Γ′ and
Γ respectively. We describe a category Jg′→g,k(ξ) as follows. Objects are combinatorial
types. Morphism are commutative diagrams of the form

G′
1 G′

2

G′
1 G′

2

G1 G2

f ′

π1

τ1

π2

τ2

π1

f ′

π2
f

where the maps f ′ and f are either graph automorphism respecting expansion factors or f
is an edge contraction. Note that in case f is an edge contraction, f ′ is already determined
by [CMR16, Proposition 19]. Now associate to each combinatorial type p the rational
polyhedral cone σp := RE(G)

≥0 . This cone parametrizes the set of tropical k-cyclic Hurwitz
covers with underlying combinatorial type p (note that edge lengths on G determine edge
lengths on G′). Finally the moduli space is defined as

Htrop
g′→g,k(ξ) := lim−→

Jg′→g,k(ξ)

σp.

In [CMR16, Definition 25] the authors define a tropicalization which maps the analyti-
fication of Hurwitz space to the tropical Hurwitz space. Given a Hurwitz cover X ′ → X
defined over a non-Archimedean field, its tropicalization is a tropical Hurwitz cover Γ′ → Γ
where Γ′ is the tropicalization of X ′ in the sense of curves and Γ the tropicalization of X.
More precisely, the Hurwitz space Hg′→g,k(ξ) comes with two natural forgetful maps,

tgt :Hg′→g,k(ξ) −→ Mg,n, (X ′ → X) 7−→ X

src :Hg′→g,k(ξ) −→ Mg′,n′ , (X ′ → X) 7−→ X ′

called target and source map respectively. We abuse notation and denote the corresponding
maps on Htrop

g′→g,k(ξ) with the same symbols. By [CMR16, Theorem 4] tropicalization (in
the sense of [CMR16, Definition 25]) and source (resp. target) map commute. We now
define the tropicalization map for the moduli space of k-cyclic Hurwitz covers

tropH : Hg′→g,k(ξ)
an −→ Htrop

g′→g,k(ξ)

simply by tropicalizing any X ′ → X and adding the induced tropical deck transformation
τ to the data. With this definition, compatibility with source and target map remains
true.

Proposition 4.8. Set n′ :=
∑ |ξi|. Then the following diagram commutes.

Hg′→g,k(ξ)
an Man

g,n

Htrop
g′→g,k(ξ) M trop

g,n

Man
g′,n′ M trop

g′,n′ .

srcan

tropH

tgtan

trop

src

tgt

trop
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Proof. By definition tropH commutes with forgetting the deck transformation. The
claim then follows from [CMR16, Theorem 4]. □

4.3. Tropical normalized covers. From now on fix the tuple of ramification profiles
to be ξ = ((k), . . . , (k)) with n = k(2g − 2) entries.

Definition 4.9. Let (π : Γ̂ → Γ, τ) be a tropical k-cyclic Hurwitz cover with ramifica-
tion profiles ξ = ((k), . . . , (k)). Assume that the effective divisor D ∈ Div(Γ) given by the
legs of Γ is pluri-canonical, i.e. D = kKΓ +(f). Let Γ+ denote the k-enhanced level graph
structure on Γ induced by Lemma 4.1. We say that π is a tropical normalized cover if Γ̂
admits a structure Γ̂+ of an 1-enhanced level graph such that Γ̂+ → Γ+ is a normalized
cover of enhanced level graphs in the sense of Definition 3.14.

Define PΞkM trop
g as the locus of tropical normalized covers in Htrop

g′→g,k((k), . . . , (k))/Sn
with n = k(2g − 2).

The following lemma motivates that our notion of tropical normalized cover is indeed a
tropical analog of Definition 3.6 in the sense that the legs of Γ̂ encode a canonical divisor.
Note however that all legs of Γ̂ necessarily have to carry o-value k by Definition 3.14.
Hence, the structure Γ̂+ is not exactly the one constructed in Lemma 4.1 but rather “k
times” the output of Lemma 4.1.

Lemma 4.10. Let π : Γ̂ → Γ be a tropical normalized cover with divisor D = kKΓ+(f)

on the base. Then the legs of Γ̂ (neglecting the dilation factor k) mark the canonical divisor

F = K
Γ̂
+

(
f ◦ π
k

)
.

Furthermore, the 1-enhancement of any half-edge which is part of an edge in Γ̂+ coincides
with the one constructed in Lemma 4.1 based on F . In particular, the 1-enhanced level
graph structure on Γ̂ is uniquely determined and thus we may speak of the normalized
cover of enhanced level graphs associated to π.

Proof. Let p ∈ Γ̂. To show the first claim we need to check that the number of legs at
p is given by F (p). The claim is clear if p does not carry a leg. Denote the k-enhancement
on Γ by o and note that any leg in Γ carries o-value 1. Thus, by definition of normalized
cover of enhanced level graphs any leg will have a single preimage in Γ̂ and furthermore
any point in Γ with at least one leg will have a single preimage under π. In particular, p
is the sole preimage of π(p) and the local degree at p is k. In the following computation
we use the notation s(h) to denote the outgoing slope of f on a half-edge h of Γ and ŝ(ĥ)
for the outgoing slope of f◦π

k on the half-edge ĥ of Γ̂. With this notation we see

#{legs at p} = #{legs at π(p)}
= D(π(p))

= k
(
2g(π(p))− 2 + val(π(p))

)
+
∑

h

s(h) .

On the other side, we have by definition F (p) = 2g(p) − 2 + val(p) +
∑

ĥ
ŝ(ĥ). Since the

tropical normalized cover satisfies the local Riemann-Hurwitz condition, we obtain:

(8)

F (p) = k
(
2g(π(p))− 2

)
+
∑

ĥ

(d
ĥ
− 1) + val(p) +

∑

ĥ

ŝ(ĥ)

= k
(
2g(π(p))− 2

)
+
∑

h

( ∑

ĥ∈π−1(h)

d
ĥ

)

︸ ︷︷ ︸
=k

+
∑

ĥ

ŝ(ĥ)

= k
(
2g(π(p))− 2 + val(π(p))

)
+
∑

ĥ

ŝ(ĥ) .
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The last step of Equation (8) used that π is harmonic. If ĥ maps to h with dilation factor
d
ĥ

then

(9) ŝ(ĥ) =
s(h)d

ĥ

k
.

Hence, using the harmonic property once more, we see
∑

ĥ

ŝ(ĥ) =
∑

h

s(h)

k

( ∑

ĥ∈π−1(h)

d
ĥ

)

︸ ︷︷ ︸
=k

=
∑

h

s(h) .

Pluging this into Equation (8) yields the first claim.
For the second claim we need to verify that the 1-enhancement ô on Γ̂ which was induced

by o does satisfy ô(ĥ) + 1 = −ŝ(ĥ) for every internal half-edge ĥ of Γ̂. By definition of
normalized cover of enhanced level graphs we have

ô(ĥ) + 1 =
o(h) + k

gcd
(
o(h), k

) = − s(h)

|π−1(h)| .

On the other hand we need to determine d
ĥ
. Once again we use that π is harmonic of

degree k, i.e. ∑

ĥ∈π−1(h)

d
ĥ
= k

while at the same time τ is an isometry acting transitively on π−1(h). Consequently,
d
ĥ
= k/|π−1(h)|. Combing this result with Equation (9) we obtain

−ŝ(ĥ) = −s(h)dĥ
k

= − s(h)

|π−1(h)| .

This completes the proof. □
Note that for ξ = ((k), . . . , (k)) the tropicalization tropH from Section 4.2 is Sn-

equivariant. We define tropicalization of normalized covers

tropΞk : PΩkMg,n(1, . . . , 1)
an −→ PΞkM trop

g

by restricting tropH/Sn.

Lemma 4.11. The map tropΞk is well-defined, continuous, proper, and closed. Further-
more, the following diagram commutes.

(10)

PΩkMg,n(1, . . . , 1)
an

PΞkM trop
g PΩkM trop

g

PΩMĝ(1, . . . , 1)
an PΩM trop

ĝ .

src

trop
Ξk

trop
Ωk

src

tgt

tropΩ

Proof. To show that tropΞk is well-defined, let (X̂ → X, s, ω) be a normalized cover
of smooth curves defined over a non-Archimedean field. Its tropicalization is in particular a
tropical k-cyclic Hurwitz cover Γ̂ → Γ. By Proposition 4.8 we know that Γ̂ = tropΩ(X

′, ω)
and Γ = tropΩk(X, η), where η is the k-differential on X. By well-definedness of tropΩ and
tropΩk the legs on Γ̂ and Γ do indeed represent canonical and pluri-canonical divisors F and
D respectively. Finally we need to check that Γ̂ → Γ can be endowed with the structure
of a normalized cover of enhanced level graphs Γ̂+ → Γ+ such that Γ+ is induced by D

via Lemma 4.1. First of all, there is indeed such a structure Ĝ+ → G+ on the underlying
k-cover of graphs Ĝ → G simply because the graphs are dual to the special fiber of the
degeneration of X̂ → X. We check that the enhancements induced by the divisors are the
same as Ĝ+ and G+. On the cover this was part of the argument of [MUW21, Theorem 1]
and hence the claim.
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Finally we check that tropΞk is continuous, proper, and closed. The proof of [CMR16,
Theorem 1] shows that the retraction map from the analytification of Hurwitz space to its
Berkovich skeleton can be extended to a compactification of both of these spaces. Hence the
retraction map is continuous, proper, and closed. By [CMR16, Theorem 1] tropicalization
of Hurwitz covers behaves on each cone of the tropical moduli space like the retraction map.
Thus the properties still hold for tropicalization of Hurwitz covers. It is now easy to check
that they remain to hold after taking the Sn-quotient, i.e. for tropH and continue to hold
after restricting to the closed subset PΞkM trop

g ⊆ Htrop
ĝ→g,k((k), . . . , (k)). This completes the

proof. □

Proof of Theorem 1.2. The claim on tropΞk was proved in Lemma 4.11. We de-
scribe the generalized cone complex structure on PΞkM trop

g . Consider a combinatorial
type of a tropical k-cyclic Hurwitz cover, i.e. a normalized cover of enhanced level graphs
p : Ĝ+ → G+ with dilation factors on every edge of Ĝ and with a deck transformation
τ : Ĝ → Ĝ. In the proof of Theorem 1.1 we showed that the range of possible choices
for edge lengths on G such that it becomes a tropical curve with pluri-canonical divisor
is a finite union of rational polyhedral cones. Now note that each such choice determines
a unique tropical Hurwitz cover by [CMR16, Lemma 17]. All of these choices give indeed
tropical normalized covers, because this property does only depend on the combinatorial
type. Hence we obtain a stratification of PΞkM trop

g in rational polyhedral cones.
For the statement about the dimension consider again Example 2.4. The graph depicted

in Figure 1 can be endowed with a tropical normalized cover by covering every vertex
with a single preimage and every edge with as many preimages are necessary to satisfy
the definition of a normalized cover of enhanced level graphs. This describes a cone in
PΞkM trop

g that maps under tgt isomorphically onto the cone from Example 2.4. □

Definition 4.12. The image of tropΞk in PΞkM trop
g is called locus of realizable covers.

Note that the locus of realizable covers is of positive codimension in PΞkM trop
g by the

exact same argument as for the realizability locus in PΩkM trop
g . Hence, realizability of

normalized covers is a nontrivial problem as well. The following is a more precise version
of Corollary 1.3 and reduces our original realizability problem to the one for covers.

Corollary 4.13. Let ([Γ], D) be a pair consisting of an isomorphism class of a tropical
curve Γ with an effective pluri-canonical divisor D = kKΓ + (f). The pair is realizable if
any only if there exists a realizable tropical normalized cover Γ̂ → Γ with tgt([Γ̂ → Γ]) =
([Γ], D).

Proof. This is simply the triangle in Diagram (10) commuting. □

Remark 4.14. Note that contrary to the situation of twisted differentials, a tropical
curve with pluri-canonical divisor does not admit a unique normalized cover. Indeed, when
asking for realizability of a tropical normalized cover where a vertex v is covered with dv
preimages we are asking for a realization by a twisted differential where ηv is precisely a
dv-th power of a primitive k/dv-differential.

5. The realizability locus

We now turn to the remaining problem of realizability of tropical normalized cov-
ers. Let π : Γ̂+ → Γ+ be a tropical normalized cover with associated enhancements (see
Lemma 4.10). This data contains already most of the information of a boundary point
of PΞkMg,n(1, . . . , 1). In fact, only the (k-)residues of the twisted differentials are not
yet determined. Realizing the tropical datum amounts to choosing a “valid” combination
of (k-)residues. Obstructions arise by the k-residue map being non-surjective for some
types (this leads to the notion of inconvenient vertex, see Definition 5.1) and by global
compatibility conditions (we tackle this by assigning residues along certain cycles in Γ̂+,
see Definitions 5.7 and 5.9). Once notation is established, we state and proof our main
theorem (Theorem 5.11).
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5.1. Special vertices. As we have seen in Section 3.6, the k-residue map

Reskg(µred) : Ω
kMg(µred)

prim −→ Cp × (C×)s

is not surjective in general. Vertices with a reduced type for which the residue map is not
surjective are a major obstruction to realizability. In the abelian case treated in [MUW21],
those vertices were called inconvenient. We will extend the notion of inconvenience to
k-differentials and additionally introduce a short list of illegal vertices – a concept which
did not appear in the abelian case.

Let us fix some k ≥ 1. We will formulate the definitions in the language of normalized
covers of enhanced level graphs π : Ĝ+ → G+. Let v ∈ V (G+) be a vertex, let dv :=
|π−1(v)| be the number of preimages and let kv := k/dv. Recall the notation introduced
in Definition 3.21 where we denoted the reduced type of v by

µred(v) = (a1, . . . , at;−b1, . . . ,−bp;−c1, . . . ,−cr;−ks).
We want to realize π−1(v) → v as a normalized cover. In particular v has to be realized
as a dv-th power of a primitive kv-differential of type

µ′red(v) :=
1

dv
· µred(v) = (a′1, . . . , a

′
t;−b′1, . . . ,−b′p;−c′1, . . . ,−c′r;−ksv).

For kv = 1 we have r = 0, as in this case the ci would be divisible by dv = k, but the
ci are not divisible by k by definition. Following [MUW21] we call a vertex v inconvenient
if the kv-residue map Reskvg(v)(µ

′
red) : PΩkvMg(v)(µ

′
red)

prim → Cp × (C×)s is not surjective.
More precisely:

Definition 5.1. A vertex v is called inconvenient of type I if µ′red is one of the types
in Proposition 3.22 with kv substituted for k. It is called inconvenient of type II if µ′red is
one of the types in Propositions 3.23, 3.24 or 3.25 again with kv instead of k. Summarizing,
we call v inconvenient if it is inconvenient of type I or II.

Type I inconvenience means that only the origin is missing from the image of the kv-
residue map, whereas type II means that a finite number of lines or at most 2-dimensional
subvarieties is missing.

Recall from Theorem 3.19 that for some strata the primitive part ΩkMg(µ)
prim is

empty. Consequently, vertices that ask to be realized by an element of such an empty
primitive part of a stratum are not realizable at all.

Definition 5.2. The vertex v is called illegal in the following cases.
(i) If µ′red = (−1, 1).
(ii) If kv = 2 and µ′red = (1, 3).
(iii) If g(v) = 0 and gcd(µ′red, kv) ̸= 1.
(iv) If kv ≥ 2 and µ′red = ∅.
(v) If kv = 2 and µ′red = (4).

Remark 5.3. Being illegal is not an intrinsic property of a vertex. Rather it depends
on the context of the given normalized cover. For example a vertex of type µred = ∅ is not
illegal if it is covered by precisely k preimages, i.e. it may be realizable as a k-th power of
an abelian differential.

5.2. Special cycles. When assigning (k-)residues to our given enhanced combinato-
rial data π : Ĝ+ → G+ we have to ensure some global compatibility conditions. These
conditions are compatibility with the deck transformation τ as well as the matching residue
condition, global residue conditions, and the residue theorem on Ĝ+. Compatibility with
τ means in particular, that the choice of residues on Ĝ+ determines k-residues on G+.
Hence we will focus on Ĝ+.

Let γ be a simple oriented cycle in Ĝ+ and let Lγ denote the lowest level γ passes
through. We want to use such a cycle to modify the residues of Γ̂ similar to the course of
action in the proof of [MUW21, Theorem 6.3]. There the authors chose a complex number
r ∈ C× and added to each half-edge h of Ĝ+ on level Lγ the value r (resp. −r) to the
residue at the half-edge h if γ leaves (resp. enters) the vertex incident to h along this half-
edge. This operation maintains the residue theorem at each vertex, the matching residue
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condition, and the global residue condition, i.e. if each of those conditions was true before
modifying the residues of Ĝ+, the conditions still hold for the modified residues.

Recall that compatibility with the deck transformation τ : Ĝ+ → Ĝ+ means that the
assigned residue at a half-edge τ(h) has to be ζ times the residue at h. After adding
the residues along the cycle γ as described above, this is no longer the case in general.
We address this problem by not only considering the cycle γ, but the entire τ -orbit of γ
consisting of

γi := τ i∗(γ) for i = 0, . . . , k − 1.

We provide each of the cycles γi with the induced orientation and add ±ζir to the residues
as described above. We will refer to this operation as assigning the residue r along the
orbit of γ. The total change to the residues under this operation can be easily expressed
with the following shorthand notation.

Definition 5.4. Let γ be a simple closed cycle in Ĝ+ with fixed orientation. Given
a vertex v̂ in Ĝ+, let H ′(v̂) denote the set of half-edges incident to v̂ with o-value ≤ −1.
Then we define a vector Rγ(v̂) = (Rγ(v̂)h)h∈H′ ∈ C|H′| as follows. Set it to be 0 if v̂ does
not lie on the lowest level that γ passes though and otherwise

(11) Rγ(v̂)h :=

k−1∑

i=0

ϵiζ
i, where ϵi :=





1 if τ i∗γ enters v̂ through h
−1 if τ i∗γ leaves v̂ through h
0 if τ i∗γ does not pass though h.

Now let v be the image of v̂ under π : Ĝ+ → G+ and denote µred the reduced type of v
as in Definition 3.21. We define a vector Rkγ(v) ∈ Cp+s to be 0 if Rγ(v̂) is 0 and otherwise
Rkγ(v)h := (Rγ(v̂)ĥ)

k for ĥ ∈ π−1(h) arbitrary.

When assigning the residue r along the orbit of γ the residues at a vertex v̂ change
precisely by adding r times Rγ(v̂) to the vector of residues. The residues obtained in
this way obviously still preserve the residue theorem, the matching residue condition, and
the global residue condition. Additionally, we have maintained compatibility with the
deck-transformation. This means that the residues we assigned on Ĝ+ induce well-defined
k-residues on G+. By Lemma 3.8 the change to the k-residues at a vertex v of G is precisely
rk times Rkγ(v). Observe that a given simple closed cycle γ can only be used to change the
k-residues at a vertex v by a C-multiple of Rkγ(v). This means that some cycles will be
more useful for our purpose then others. We illustrate two notable phenomena in Examples
5.6 and 5.8.

Remark 5.5. The choice of an orientation in Definition 5.4 merely fixes the sign of
Rγ(v̂). For the rest of this article only the C-span of Rkγ(v) will be of relevance (see
Definitions 5.7 and 5.9 below), hence this choice never really matters.

τ

τ

τ

2 2

Ĝ+

4

G+

Figure 3. A cover of graphs with the action of the deck-transformation τ .

Example 5.6. Consider the cover of enhanced level graphs Ĝ+ → G+ for k = 2

depicted in Figure 3. Let γ1 be the simple cycle in Ĝ+ that uses the two topmost edges,
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considered with the orientation indicated in the picture. When we compute Rγ1(v̂) for
either of the vertices in Ĝ+ we see that the vector is zero. To see this, consider the top left
half-edge. Along γ1, we add 1. The oriented cycle τ∗γ1 agrees with γ1, and thus we add
at the same half-edge the value ζ = −1 when distributing the residues for τ∗γ1. In total
we have added 1− 1 = 0 to the residue. This means that γ1 cannot be used to assign any
nonzero residues at all.

Let γ2 be the simple cycle in Ĝ+ that uses the two outermost edges, again considered
with the orientation indicated in the picture. Computing Rγ2(v̂) for either of the vertices
in Ĝ+ we see that the vector now is (−1,−1, 1, 1). But this vector is not in the image of the
1-residue map for a vertex of type (−14, 2) by Proposition 3.24. These two observations
motivate the following definition.

Definition 5.7. Let γ be a simple closed cycle in Ĝ+ and let v be a vertex in G+.
Choose and fix an orientation of γ. We say that γ is effective for a half-edge h incident to
v if Rkγ(v)h is nonzero. If v is inconvenient of type I, we say that γ is admissible for v if γ
is effective for at least one vertical half-edge h incident to v. If v is inconvenient of type
II, we say that γ is admissible for v if Rkvγ (v) lies in the image of Reskvg (µ′red(v)).

11 1 1

86

Ĝ+

1 1

75

G+

Figure 4. An inconvenient vertex which cannot be redeemed with a single
cycle.

Example 5.8. Contrary to the abelian case in [MUW21] there are situations, where
using only one cycle will not be sufficient to achieve valid residues. To see this, consider the
graph in Figure 4. The vertex on lowest level is inconvenient of type II. More specifically,
the image of the residue map is missing any tuples where two entries agree while the
other two are zero. The depicted cover Ĝ+ is the only valid choice – covering a genus 1
vertex of type (0, 0) with only one preimage would be illegal. Notice that each of the four
simple cycles in Ĝ+ is effective but induces a tuple of k-residues on the base which is not
contained in the image of the residue map. Hence none of the available cycles is sufficient
to redeem the inconvenient vertex, however using two cycles will work. A converse to this
phenomenon is illustrated in Example 5.21: there we have an inconvenient vertex which
can only be redeemed with an admissible cycle but no pair of cycles.

Definition 5.9. Let v be a vertex in Ĝ+ and let γ and γ′ be oriented cycles which are
effective for v. We call (γ, γ′) an independent pair for v if the induced vectors Rkvγ (v) and
Rkvγ′ (v) are not contained in the same linear subspace of the complement of Reskvg (µ′red(v)).

Remark 5.10. The upshot behind Definition 5.9 is that linear combinations of the
vectors Rkvγ (v) and Rkvγ′ (v) will generically lie in the image of the kv-residue map. This
is trivially true for inconvenient vertices of type I as the cycles of an independent pair
are necessarily admissible, i.e. effective. In fact, the notion of independent pair is not
interesting for type I vertices. For inconvenient vertices of type II this is easily seen to
be true for all cases where the complement of Reskvg (µ′red(v)) consists of a finite union of
lines or planes, i.e. for all cases except those considered in Proposition 3.25 Part (ii). This
is the only case where a finite union of 2 dimensional cones – none of which contains a 2
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dimensional plane – is missing. Here a pair of cycles may still be independent even if both
Rkv -vectors lie in the same irreducible component of the complement of ImReskvg (µ′red(v)).

5.3. Realizability of covers.

Theorem 5.11. Fix an algebraically closed base field of characteristic 0. Let g ≥ 2 and
fix an integer k ≥ 1. Let π : Γ̂+ → Γ+ be a tropical normalized cover with enhancements
associated by Lemma 4.10. Denote the effective pluri-canonical divisor marked by the legs
of Γ by D = kKΓ + (f). Then (π : Γ̂ → Γ, D) is realizable if and only if the following
conditions hold.

(i) There is no illegal vertex in π.
(ii) For every horizontal edge ê in Γ̂+ there is an effective cycle in Γ̂+ through ê.
(iii) For every inconvenient vertex v in Γ+ there is an admissible cycle in Γ̂+ through one

of the preimages v̂ or there is an independent pair of cycles.

Remark 5.12. Let us explain, how to recover [MUW21, Theorem 6.3] from Theo-
rem 5.11 for k = 1. Recall that [MUW21, Theorem 6.3] states the following: the pair
(Γ, D) for D as above is realizable if and only if

(i’) For every inconvenient vertex (in the sense of [MUW21, Definition 6.2]) v in Γ
there is a simple cycle in Γ through v that does not pass through any node on a
level below v.

(ii’) For every horizontal edge e in Γ there is a simple cycle passing through e which
does not pass through any node on a level below e.

To see that these conditions are equivalent to ours, note that for k = 1 the identity on Γ
is the only tropical normalized cover. Now assume (id : Γ → Γ, D) satisfies the conditions
(i), (ii), and (iii) of Theorem 5.11. Every inconvenient vertex in the sense of [MUW21] is
inconvenient in our sense as well. Furthermore, every effective or admissible cycle does not
pass through any lower level. Hence (Γ, D) satisfies (i’) and (ii’) as well.

Conversely, suppose (i’) and (ii’) hold. First note that the only type of illegal vertex
for k = 1 is (−1, 1) and such a vertex does not admit a simple cycle “at or above level”
through the incident horizontal edge. Thus (ii’) ensures that there are no illegal vertices.
The next observation is that for k = 1 a cycle γ is effective for every half-edge at lowest
level that γ passes though. In particular, (ii) holds. Furthermore, there are only two kinds
of inconvenient vertices: the ones in Proposition 3.22 (i) and the ones in Proposition 3.24.
The former is inconvenient in the sense of [MUW21] as well. Hence, (i’) provides the
necessary effective cycles. The other kind of inconvenient vertex is not an issue for k = 1:
all simple cycles use precisely two half-edges incident to each vertex they pass through, and
thus the residues at ≥ 3 horizontal half-edges may always be chosen sufficiently generic.
In other words, the cycles provided by (ii’) contain an independent pair.

We split the proof of Theorem 5.11 in three parts. First we prove that the condi-
tions in the theorem are sufficient (resp. necessary) for realizability over the base field C.
Afterwards we generalize the result to arbitrary algebraically closed base fields of charac-
teristic 0.

Proposition 5.13. The conditions in Theorem 5.11 are sufficient for realizability over
the base field C.

Proof. First, we reduce to tropical curves with integer edge lengths. Indeed, the set of
tropical curves with rational edge lengths and pluri-canonical divisor is dense in PΞkM trop

g .
Furthermore, the locus in PΞkM trop

g described by the conditions in Theorem 5.11 is closed.
By Lemma 4.11 tropΞk is continuous and closed. Hence it suffices to consider tropical
curves with rational edge lengths. But then again if π is realizable then so is the cover
obtained by rescaling the edge lengths with a global constant.

Now assume that the conditions of Theorem 5.11 hold. Ultimately we want to realize
π by a normalized cover π : X̂ → X of smooth curves over a non-Archimedean field with
residue field C, such that the k-differential on the base is of type (1, . . . , 1). To do so, we
want to choose for every half-edge in Γ̂+ with o-value ≤ −1 and every half-edge in Γ+ with
o-value ≤ −k a (k-)residue (i.e. a complex number) such that all of the following hold.
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For every vertex v ∈ Γ+ there exists a smooth curveXv with meromorphic k-differential
ηv realizing v. More precisely, Xv is supposed to be of genus g(v) with distinguished points
zh ∈ Xv for every half edge h incident to v such that ordzh ηv = o(h) and Reskzh ηv is
the value chosen in the beginning and ηv is holomorphic and nonzero outside of {zh}h.
Furthermore, ηv is supposed to be the dv-th power of a primitive kv-differential of type
µ′red(v). Yet again further, we require each of the connected components X̂v̂ of the (uniquely
determined) normalized cover of Xv to realize one of the vertices v̂ ∈ π−1(v), again such
that orders of the meromorphic abelian differentials ωv̂ match the o-values on Γ̂+ and
the residues coincide with the chosen values from the beginning. Finally, we need to do
all of this such that the normalized covers

∐
X̂v̂ → Xv glue into a normalized cover of

nodal curves X̂ → X with dual graphs given precisely by Γ̂ and Γ. Once this is achieved,
we obtain the desired normalized cover of smooth curves with deformation parameters
corresponding to the edge-lengths of Γ̂ and Γ by means of Theorem 3.18.

We note some dependencies among these requirements. Specifying residues on Γ̂+

that satisfy the condition imposed by the residue theorem and that are compatible with
the deck transformation τ already determines the k-residues on Γ+. This ensures the
realizability of v in the above sense if the induced kv-residues are contained in the image
of the kv-residue map Reskvg(v)(µ

′
red(v)). In this case realizability of all of the v̂ ∈ π−1(v) is

immediate. When it comes to global compatibility note first that compatibility with the
level structure is already built into the definition of enhanced level graphs. Beyond that,
we only need to ensure MRC and GRC for the cover π : Γ̂+ → Γ+. To summarize, our
goal is to choose residues on Γ̂+ such that:

• For each v̂ ∈ Γ̂+ the condition imposed by the residue theorem is satisfied. More-
over, MRC and GRC are satisfied.

• Residues on Γ̂+ are compatible with τ , i.e. the residue of τ(h) is precisely ζ times
the residue at h.

• The k-residues which are given on π(h) as the k-th power of the residue at h make
every vertex of Γ realizable.

Let us now argue that a suitable choice of such residues exists. We start by initializing
all residues with 0. Let γ1, . . . , γλ be all the simple cycles in Γ̂+ that exist by assumption,
i.e. the cycles containing the horizontal edges and all kinds of inconvenient vertices. For
each γi we choose and fix an orientation. Note that at this point the first two items of
our list of requirements are already satisfied. By construction of the process of “assigning
a residue ri along the τ -orbit of γi”, these conditions continue to hold after doing so.

Let us now pick numbers r1, . . . , rλ ∈ C to be assigned along the orbits of the γi
such that the third and final condition is met. This amounts to choosing the ri sufficiently
generic such that no undesirable cancellation happens. More precisely, after all the residues
have been assigned, the resulting kv-residues at a vertex v ∈ Γ+ are

λ∑

i=1

rkvi R
kv
γi (v)

and this has to lie in the image of the kv-residue map. At every vertex this amounts to
avoiding a locus of positive codimension in Cp+s. At the same time, the values that can
be achieved using the given γi form a vector space Vv. By assumption we have for every
deficit in surjectivity of the residue map an admissible cycle or an independent pair of
cycles, i.e. Vv is not fully contained in the complement of the image of the residue map.
Hence a suitable choice for each ri is possible and we are done. □

Let X̂ be a smooth complex curve, and denote by PD : H1
dR(X̂;R) → H1(X̂;R) the

map given by Poincaré duality. By abuse of notation, we denote the induced map

PD : Ω1(X̂) −→ H1(X̂;C)
ω 7−→ PD

(
Re(ω)

)
⊕ i · PD

(
Im(ω)

)
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by the same symbol. By naturality of PD there is a commutative diagram

(12)
Ω1(X̂) H1(X̂;C)

Ω1(X̂) H1(X̂;C).

τ∗

PD

PD

τ∗

Proposition 5.14. The conditions in Theorem 5.11 are necessary for realizability over
the base field C.

Proof. Let [Γ̂ → Γ] = tropΞk(π : X̂ → X, s, ω) be given. We want to show that
the tropical normalized cover satisfies the conditions of Theorem 5.11. By continuity of
tropΞk (Lemma 4.11) it suffices to show this for any tropΞk(π : X̂ → X) for π taken from a
dense subset of PΩkMg,n(1, . . . , 1)

an. In particular, we may assume that π is defined over
a finite extension of C(t). This allows us to take the equivalent C-analytic point of view
and consider this data as a family of normalized covers (πt : X̂t → Xt)t over the punctured
unit disc ∆∗. In particular, each X̂t and Xt is a smooth curve over C.

Let X̂0 → X0 denote the admissible cover obtained as the limit of the family within
PΞkMg,n(1, . . . , 1) for t → 0. By assumption, the dual graphs of X̂0 and X0 are the
underlying unmetrized graphs of Γ̂ and Γ respectively. Furthermore, the enhanced level
graph structures induced by X̂0 and X0 are precisely Γ̂+ and Γ+ respectively (see the
argument in the proof of Lemma 4.11). We check that the conditions of Theorem 5.11
hold for these.

There cannot be any illegal vertex v in Γ. Otherwise the restriction
∐
v̂∈π−1(v) X̂0,v̂ →

X0,v of the central fiber would provide an element in a stratum that is empty by Theo-
rem 3.19, a clear contradiction.

Next, we show the existence of effective cycles for horizontal edges and admissible
cycles or independent pairs of cycles for all inconvenient vertices. Fix such an edge or
vertex and let L denote its level in Γ+. Recall that we are only interested in cycles
at or above level L. To ensure that any cycle we find during this proof satisfies this
condition, we use the following trick. Take the truncated cover X̂0,≥L → X0,≥L at or
above level L. After restricting to the connected component that contains the edge or
vertex under consideration, we obtain a twisted differential from some holomorphic stratum
PΞkMg′,n′(µ′). It can be written as limit of a family (π′t : X̂

′
t → X ′

t)t of smooth normalized
covers. Moreover, any cycle in the dual graph of X̂0,≥L is also a cycle in the dual graph
of X̂0 at or above level L that inherits the property of being effective (resp. admissible).
Thus it suffices to find suitable cycles in X̂0,≥L. Hence we will implicitly work with the
family π′t and assume all our cycles to be at or above level L.

Let ωt be the abelian differential on X̂t and let γt := PD(ωt). By the commutativity
of Diagram (12) we have

γt = PD(ωt) = τ∗PD(τ∗ωt) = τ∗PD(ζωt) = ζτ∗γt.

Repeating the argument with τ being replaced by a power τ i for i = 0, . . . , k − 1 and
summing the resulting equations we obtain

(13) kγt =

k−1∑

i=0

ζiτ i∗γt.

Now consider a vertex v ∈ Γ+ and let h1, . . . , hp+s be the half-edges incident to v with
o-value ≤ −k and divisible by k. Let v̂ be a preimage of v and let ĥ1, . . . , ĥp+s be half-edges
incident to v̂ such that ĥι is a preimage of hι. Let α(1)

t , . . . , α
(p+s)
t be families of simple

closed cycles in X̂t which get pinched into the corresponding nodes q̂1, . . . , q̂p+s. Observe
that

∫
α
(ι)
t
ωt converges for t→ 0 to the residue rq̂ι of the limiting twisted differential at q̂ι.

By Poincaré duality and equation (13) this implies

(14) lim
t→0

k−1∑

i=0

ζiτ i∗γt ∩ α(ι)
t = lim

t→0
kγt ∩ α(ι)

t = krq̂ι for ι = 1, . . . , p+ s .
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Next we want to make a consistent choice of a basis of H1(X̂t;C). In general, such a
choice is not possible across the entire family. Hence we restrict our family to a real ray in
∆∗, i.e. from now on only consider t ∈ (0, 1). Recall that there is a surjective map

Φ : H1(X̂0;Z) −→ H1(Ĝ;Z)

into the homology of the dual graph Ĝ of the special fiber X̂0. Let (βtropj )
j∈{1,...,b1(Ĝ)} be

a basis of H1(Ĝ;Z) consisting of simple cycles and let β′j ∈ H1(X̂0;Z) be preimages of the
βtropj . Let J := {1, . . . , 2g(X̂)}. We can complete the (β′j)j∈{1,...,b1(Ĝ)} to a basis (β′j)j∈J of

H1(X̂0;Z) in such a way that β′j ∈ kerΦ for i ∈ {b1(Ĝ) + 1, . . . , 2g(X̂0)}. In other words,
the new β′j have a representative with support in a single irreducible component X̂0,v of
X̂0. Chose cycles βj on a nearby surface X̂t along the real ray such that βj converges to
β′j for t→ 0. The (βj)j∈J form a basis of H1(X̂t;Z) and H1(X̂t;C) for all t in the real ray.

With our chosen basis we may write γt =
∑

j∈J c
(j)
t βj for uniquely determined complex

coefficients c(j)t varying continuously for t ∈ (0, 1). Equation (14) implies

(15) lim
t→0

k−1∑

i=0

∑

j∈J
c
(j)
t ζiτ i∗βj ∩ α(ι)

t = krq̂ι for ι = 1, . . . , p+ s.

We claim that for all ι = 1, . . . , p+ s we have

lim
t→0

k−1∑

i=0

ζiτ i∗βj ∩ α(ι)
t =

{
Rβtrop

j
(v̂)

ĥι
for j = 1, . . . , b1(Ĝ)

0 otherwise

for Rβtrop
j

(v̂)
ĥι

as in (11). For the first claim observe that for j ∈ {1, . . . , b1(Ĝ)} the limit

limt→0 βj∩α(ι)
t agrees with the coefficient of βtropj in front of the edge ê ∈ Ĝ corresponding to

the node q̂ι ∈ X̂0. Thus the claim follows by comparing equation (13) with equation (11).
Here the sign appearing in (11) is encoded in the intersection product of the implicitly
oriented cycles βj and α(ι)

t . For the second claim observe that for j ∈ {b1(Ĝ)+1, . . . , 2g(X̂)}
the cycle βj is chosen such that is does not intersect α(ι)

t . Thus we may rewrite equation (15)
as

(16)
b1(Ĝ)∑

j=1

c(j)Rβtrop
j

(v̂)
ĥι

= krq̂ι for ι = 1, . . . , p+ s,

where c(j) := limt→0 c
(j)
t .

Now assume that hι0 belongs to a horizontal edge. In this case, rq̂ι0 is nonzero. Hence
by equation (16), there is a j0 ∈ J such that Rβtrop

j0

(v̂)
ĥι0

̸= 0. In particular βtropj0
is effective

for hι0 .
Now assume that v is inconvenient of type I. In this case, the origin is not in the image

of the residue map. Thus there is an ι0 such that rq̂ι0 is nonzero. By the same argument
as above, there is an j0 such that Rβtrop

j0

(v̂)
ĥι0

̸= 0 by equation (16) and thus βtropj0
is

admissible for v.
Now assume that v is inconvenient of type II. In this case, the powers (rkvq̂ι )ι are

contained in the image of the residue map. Recall that the complement of the image of
the residue map is an union of at most 2-dimensional subvarieties

⋃
σ′ W ′

σ′ ∈ Cp+s. Thus
the residues (rq̂ι)ι may not be contained in an union of at most 2-dimensional subvarieties⋃
σWσ ∈ Cp+s, too: Each subvariety W ′ in the image of the residue map gives rise to

multiple subvarieties W corresponding to choices of the k-th root. If there is an admissible
cycle βtropj we are done. So assume that there is none. Moreover, assume for a contradiction
that all vectors (Rβtrop

j
(v̂)

ĥι
)ι are contained in a single linear subspace V of a subvariety

Wσ0 . Then by equation (16), the vector (rq̂ι)ι is contained in the same linear subspace
V . But then the vector (rq̂ι)ι is not contained in the image of the residue map, which is a
contradiction. Thus there is an independent pair of cycles (βtropj1

, βtropj2
). □
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So far we have shown the claim to hold over C. We now generalize to any algebraically
closed base field of characteristic 0.

Proposition 5.15. If Theorem 5.11 is true over the base field C, it is true over any
algebraically closed base field of characteristic 0.

Proof. IfK ⊆ L is a valued field extension of such fields, then there is a surjective map(
PΩkMg(1, . . . , 1)L

)an →
(
PΩkMg(1, . . . , 1)K

)an and the following diagram commutes by
[Gub13, Proposition 3.7]

(
PΩkMg(1, . . . , 1)L

)an

(
PΩkMg(1, . . . , 1)K

)an PΞkM trop
g .

trop
Ξk

trop
Ξk

Hence, the image of tropΞk does not depend on the base field (whether larger or smaller
than C). □

5.4. Dimensions. In the abelian case [MUW21, Theorem 6.6] shows that the re-
alizability locus is a pure dimensional generalized cone complex of dimension equal to
4g − 4 = dimPΩMg(1, . . . , 1). From [Uli15, Theorem 1.1] we know that the realizability
locus for k ≥ 2 must be a generalized cone complex of dimension ≤ dimPΩkMg(1, . . . , 1) =
(2+2k)(g− 1)− 1 (see the discussion in Section 2.6). Let us now prove Theorem 1.5 from
the introduction and show that this bound is in fact attained and all maximal cones have
the same dimension. To do so we need two preparational statements. The proof for the
following lemma is the same as [MUW21, Lemma 6.8].

Lemma 5.16. For every realizable tropical normalized cover π : Γ̂+ → Γ+ let Γ+
0 be

the level graph obtained by successively contracting edges in Γ+ that have an (n+1)-valent
genus zero node with n ≥ 1 marked points at one of its ends. The dimension of the cone in
the realizability locus with associated normalized cover π is 1 less than the number of levels
plus the number of horizontal edges of Γ+

0 .

Proposition 5.17. Let k ≥ 2 and let π : Γ̂+ → Γ+ be a realizable tropical normalized
cover. Then π is contained in a cone of dimension (2 + 2k)(g − 1)− 1.

Proof. Let c(π) denote the number of levels minus 1 plus the number of horizontal
edges of Γ+. As π is realizable, the underlying cover of enhanced level graphs cuts out a
boundary stratum Dπ ⊆ PΞkMg,n(1, . . . , 1) of codimension c(π), i.e. for all multi-scale k-
differentials (X̂ → X, s, ω, Ĝ+ → G+) ∈ Dπ the underlying cover of enhanced level graphs
Ĝ+ → G+ agrees with π, see [CMZ19, Proposition 1.3]. We will prove that the closure
Dπ intersects a boundary stratum of maximal codimension, i.e. that there is a multi-scale
k-differential (π′ : X̂ ′ → X ′) ∈ Dπ with c(π′) = (2 + 2k)(g − 1)− 1.

Assume that we have found such a π′. We want to use Lemma 5.16 to see that the
tropicalization of π′ gives rise to a degeneration of π that spans a cone of the claimed
dimension. To apply Lemma 5.16, we need to rearrange any occurring trees of marked
points in π′ as depicted in Figure 5, where the level structure on the graph on the right
may be different depending on the order on the half-edges qi. This is always possible: First
note that all irreducible components of X ′ need to have genus zero. Second note that the
“contracted” vertex in the middle of Figure 5 must be realized by a primitive k-differential.
But for a stratum of primitive k-differentials of genus zero, the forgetful map to M0,n is
surjective. Thus the degeneration is contained in the closure.

We will prove the existence of the degeneration π′ by induction on c(π). Assume that
c(π) is not maximal, i.e. that c(π) < (2 + 2k)(g − 1)− 1. Let us prove that Dπ intersects
a boundary stratum of higher codimension. To this end, let for a level L of Γ+

σL : Dπ −→
(∐

v∈L
ΩkMg(v)(µ(v))

)/
C×

be the map that cuts out level L. (Note that projectivization of strata of multi-scale
differentials is done with respect to the diagonal C×-action, and not with respect to the
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Figure 5. Rearranging a rational tail

C× action on each irreducible component.) Since c(π) was assumed to not be maximal,
there exists a level L such that dimσL(Dπ) ≥ 1. We need to argue that such a level L can
always be degenerated.

If σL(Dπ) consists of multiple connected components that may be rescaled indepen-
dently, then we obtain an additional level by taking the limit of this rescaling, i.e. by
distributing the vertices of level L to two levels according to the rescaling. If σL(Dπ) does
not consist of multiple connected components (or those cannot be rescaled independently),
then there must be an irreducible component of positive (projective) dimension in σL(Dπ).
For ease of notation we assume that σL(Dπ) consists of only one such component, i.e.

(17) σL(Dπ) ⊆ PΩkMg(v′)(µ(v
′)).

The map σL can be extended to the closure Dπ using an appropriate moduli space of
multi-scale k-differentials as codomain for the extended map. If σL(Dπ) contains a point
from the boundary of PΩkMg(v′)(µ(v

′)), then this point gives rise to a degeneration of
the level L. Such a point always exists: The image σL(Dπ) is a complete variety and the
stratum PΩkMg(v′)(µ(v

′)) on the right hand side of (17) does not contain any complete
variety by [Gen20, Théorème 1 and Corollaire 2]. This concludes the proof. □

Proof of Theorem 1.5. The dimension of the realizability locus is bounded from
above by the dimension of the domain of the tropicalization map, i.e. by dimPΞkMg,n(1, . . . , 1) =
(2+ 2k)(g− 1)− 1. That this bound is actually obtained and all maximal cones are of the
expected dimension follows from the previous proposition. □

Remark 5.18. We emphasize that for k = 1 the above formula does not give the
correct dimension for the maximal cones. This is due to the formula for the dimension of
the principal stratum being different in the abelian case.

5.5. Obstructions to realizability. The following are two simple criteria which can
be used to recognize non-realizable tropical normalized covers. An application is illustrated
in Section 6 below.

Corollary 5.19. Let π : Γ̂+ → Γ+ be a tropical normalized cover with enhancements
associated by Lemma 4.10. Let e be a horizontal edge in Γ+ and denote by π/{e} the
tropical normalized cover obtain from π by contracting e in the base and every ê ∈ π−1(e).
If π is realizable, then so is π/{e}.

Proof. Let X̂ → X be a realization of π. Smoothing of a horizontal edge of X̂ → X
is always possible, see [CMZ19, Section 3.1], and produces a realization of π/{e}. □

With the same proof, we get

Corollary 5.20. In the situation of Corollary 5.19 let E′ be the set of all edges in
Γ+ connecting two neighboring levels. If π is realizable, then so is π/E′.

Example 5.21. We emphasize that in the situation of Corollary 5.20 only complete
level passages may be smoothed. We give an example for this in terms of enhanced level
graphs that can easily be imagined as the top most levels of enhanced level graphs as-
sociated to a tropical normalized cover by Lemma 4.10. Consider the cover of graphs
Ĝ+

1 → G+
1 on the left of Figure 6. We assume that the o-value at the top end of all edges

is 0. Both vertices on bottom level of G+
1 are inconvenient. In Ĝ+

1 , there is precisely
one effective cycle (up to the τ -action) and this cycle is admissible for both inconvenient
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Figure 6. A realizable graph and a non-realizable undegeneration

vertices. Therefore, this cover is realizable by Theorem 5.11. After smoothing only some
of the edges between top and bottom level, we obtain the cover Ĝ+

2 → G+
2 on the right.

This is no longer realizable: There is no effective cycle (and hence no admissible cycle or
independent pair of cycles) for the inconvenient vertex on bottom level. And besides that,
the vertex of genus 2 is illegal.

This example also highlights another aspect. As we have seen in Example 5.8 there
are inconvenient vertices of type II for which there is no admissible cycle, but a pair of
independent cycles. The inconvenient vertex of genus zero on the left of G+

1 is inconvenient
of type II, but in this case there exists only an admissible cycle and no independent pair
of cycles. Thus in fact both situations may occur.

6. Examples

6.1. kKΓ is always realizable. Consider a stable tropical curve Γ with divisor kKΓ

for some k ≥ 2. We show that the pair (Γ, kKΓ) is realizable3. Note that stability implies
that every vertex is in the support of the divisor. Hence the construction from Lemma 4.1
produces for every vertex at least one incident leg with enhancement value 1. Thus when
constructing a tropical normalized cover Γ̂ → Γ, every vertex of Γ has necessarily only
a single preimage. Furthermore, all edges in Γ+ are horizontal. Hence the only possible
choice for Γ̂ is to replace each edge of Γ with k parallel edges. But now the conditions of
Theorem 5.11 are easy to check: the necessary cycles are provided by the parallel edges.

6.2. Dumbbell graph. Let k = 2 and consider the dumbbell graph Γ consisting of
two vertices of genus 0, connected with a bridge edge and having a self-loop at each vertex,
see Figure 7. We claim that Figure 9 shows all maximal cones in the realizability locus
over the dumbbell graph. Note that each of them is of dimension 5 as was expected by
Theorem 1.5.

Figure 7. Dumbbell graph.

To verify our claim let us start with the divisor 2KΓ. We focus on one of the trivalent
vertices v: notice that the divisor produces two legs at v. How can we move these to arrive
at a combinatorial type with more degrees of freedom? The first option is to move both legs
onto the incident self-loop. Necessarily they will be symmetric on the loop. Performing
this move on both sides of the graph produces the configuration from Figure 9a. This is
realizable by the same argument as in the previous Section 6.1: we may simply cover every

3The authors are very grateful to D. Maclagan who raised this question during a discussion at the
2021 edition of the conference “Effective Methods in Algebraic Geometry”.
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vertex by a unique preimage, producing cycles above every horizontal edge. In this case
there are no inconvenient vertices.

The second option would be to move a single leg onto the bridge and leave the other
one at v. Assume the resulting situation was realizable. Contract the self-loop at v and
obtain a vertex of genus 1 and type (−1, 1). This is an illegal vertex and by Corollary 5.19
we obtain a contradiction. Hence, we cannot leave a single leg behind.

So the third an final option is to move both legs onto the bridge. This will leave a
part of the graph that is depicted in Figure 8 behind. Note that any cover of this part of
the graph must be disconnected. This can been seen directly with Corollary 5.19 again.
Alternatively, observe that the vertex has to have two preimages (otherwise it would be
illegal). Connecting these two copies with two parallel horizontal edges fails to provide an
effective cycle above the (horizontal) self-loop on the base (see Example 5.6). Hence, each
of the two instances of the vertex must have a self-loop attached.

−2

−2
0

Figure 8. Part of an enhanced dumbbell graph. This is only realizable
when provided with a disconnected cover.

With this observation in mind, we may choose to keep the pair of legs that we just
moved onto the bridge together or separate them. In the former case, we arrive at situations
from Figure 9b or 9c. In each case there is a unique tropical normalized cover Γ̂+ and it can
be checked to satisfy the conditions from Theorem 5.11. Hence, both of these configurations
are realizable. The other option does however produce an inconvenient vertex of type
(1,−1;−4). This vertex does not have any simple closed cycle above it, which violates the
conditions of Theorem 5.11.

Finally, we may push three or four of the legs onto the same self-loop. The first option
does not produce a realizable configuration: Similar to the cases discussed above, the leg
left behind always produces an inconvenient vertex that is not redeemed by an appropriate
cycle. So let us consider the case that all four legs have been pushed to the same self-
loop. This gives a realizable configuration if and only if the vertices are pairwise at the
same level, as depicted in Figure 9d. We check this by providing a realizable cover Γ̂+ in
Figure 10. In fact, taking into consideration what we discussed about Figure 8 this is the
only possible normalized cover without illegal vertices. Notice that there are again two
inconvenient vertices of type (−1, 1;−4) on the base. But the cover does admit a simple
closed cycle above them which can be checked to be effective. We emphasize that this
cycle passes through both vertices of type (−1, 1;−4). Thus if those vertices were not on
the same level, then there would not exist a simple cycle “at or above level” for the higher
of the two. By Theorem 5.11 this would contradict realizability.

7. Appendix: Nonemptiness of boundary strata

While the boundary strata of the moduli space PΞkMg,n(µ) of multi-scale k-differentials
of type µ are indexed by normalized covers of enhanced level graphs π : Ĝ+ → G+, not
every such cover in fact corresponds to a nonempty boundary stratum Dπ. Theorem 5.11
implicitly solves the problem to determine if a boundary stratum Dπ is in fact nonempty
for the moduli space PΞkMg,n(1, . . . , 1), that is: Given a cover of enhanced level graphs
π : Ĝ+ → G+ where all legs of G+ have o-value 1, is there a corresponding normalized
cover of twisted k-differentials X̂ → X in PΞkMg,n(1, . . . , 1)? In fact our methods can
be applied to all strata of k-differentials. We will make this explicit in the slightly more
general setting of so-called generalized strata.

To motivate the definition of generalized strata, fix a type µ and consider a boundary
stratum Dπ of PΞkMg,n(µ) given by a cover of enhanced level graphs π : Ĝ+ → G+.
Now consider the space B given by the family corresponding to the projection of Dπ to
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Figure 9. Realizability locus over the dumbbell graph. Vertices of Γ+

connected by dashed lines lie on the same level.

Γ̂+

Γ+

Figure 10. A realizable cover for the configuration in Figure 9d.

some level L of G+. In general B fails to be a honest stratum for two reasons: The level
G+

=L may have several connected components, and the k-residues at the poles connecting
G+

=L to higher levels may be restricted by the GRC. In other words, B is a subspace of
a product of strata. The definition of a generalized stratum models this kind of spaces.
Our definition is a generalization to the setting of k-differentials of the definition given in
[CMZ22] for the abelian case.

Let ΩkdMg,n(µ) denote the connected components of ΩkMg,n(µ) which parametrize
d-th powers of primitive k/d-differentials. Let

ΩkdMg,n(µ) =

κ∏

i=1

ΩkdiMgi,ni(µi)

be a disconnected stratum and let

ΩMĝ,n̂(µ̂) =

κ̂∏

j=1

ΩMĝj ,n̂j
(µ̂j)

be the product of the strata that contain the canonical covers. Here the bold letters on the
left denote the tuples of the corresponding letters on the right, i.e. d = (d1, . . . , dκ). Let
µ̂j = (m̂j,1, . . . , m̂j,n̂j

) and let Hp := {(j, l) | m̂j,l < −1} be the set of marked non-simple
poles in the cover. Let λ be a partition of Hp with parts denoted by λ(a) and let λR be a
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subset of the parts of λ such that λR is τ -invariant as a set. Let

R :=



r = (rj,l)(j,l)∈Hp

∈ C|Hp|

∣∣∣∣∣∣
∑

(j,l)∈λ(a)
rj,l = 0 for all λ(a) ∈ λR



 .

Denote by ΩMR
ĝ,n̂(µ̂) the subspace with residues in R and denote by ΩkdMR

g,n(µ) the
corresponding subspace of k-differentials. Note that this is well-defined, as we have chosen
λR to be τ -invariant.

Definition 7.1. We call a stratum of the form ΩkdMR
g,n(µ) a generalized stratum and

denote by PΞkdM
R
g,n(µ) the corresponding projectivized generalized stratum of multi-scale

k-differentials.

Let Ĝ+ → G+ be a cover of enhanced level graphs. Here and in the following we allow
for G+ to be disconnected. Picking up an idea from [CMZ23], we construct the cover
of auxiliary enhanced level graphs Ĝ+

∞ → G+
∞ in the following way. For each λ(a) ∈ λR,

we add a vertex v̂(a) to Ĝ+ and think of these new vertices as being at level ∞, i.e. all
new vertices are on a new level above all other levels. As the legs of Ĝ+ correspond to
the marked points of the stratum with orders m̂j,l, we may think of the legs of Ĝ+ as
beeing indexed by the tuples (j, l). In particular the leg (j, l) has o-value m̂j,l. For each
(j, l) ∈ λ(a), we add an edge to Ĝ+ connecting the leg (j, l) to the new vertex v̂(a) and we
take the o-value at the upper half-edge of the new edge to be −m̂j,l − 2k. If the sum of
the o-values of the legs incident to v̂(a) is odd we add an additional leg with o-value 1 to
v̂(a). Then the genus of v̂(a) is determined by the o-values of the incident legs. Finally, the
action of τ on the new edges, vertices and legs is determined by the action of τ on the legs
(j, l). We call this new graph Ĝ+

∞ and we add edges, vertices and legs to G+ to complete
G+ to the quotient G+

∞ := Ĝ+
∞/τ . We emphasis that the new vertices added to G+

∞ are
never inconvenient, as they do not contain any poles.

We call the marked poles of ΩMĝ,n̂(µ̂) that are not contained in λR the free poles.
When we assign residues to the graph Ĝ+ as in the proof of our main theorem, we may
alter the residues at free poles at will (while maintaining the residue theorem at each
component), as the GRC does not restrict the residues at components containing a free
pole in any way, see Definition 3.12. We reflect this in the following definition.

Definition 7.2. A free pole path is a simple path in Ĝ+ starting and ending in a
(different) free pole. A generalized cycle is a free pole path or a simple cycle.

The definitions of an effective (resp. admissible) cycle and of an independent pair of
cycles can by adapted for generalized cycles in the obvious way. By applying the methods
of our proof to the enveloping stratum of the cover of auxiliary enhanced level graphs
Ĝ+

∞ → G+
∞, it is not hard to check that the proof of Theorem 1.4 in fact proves

Theorem 7.3. A normalized cover of enhanced level graphs π : Ĝ+ → G+ corresponds
to a nonempty boundary stratum of a generalized stratum PΞkdM

R
g,n(µ) if and only if the

following conditions hold.
(i) There is no illegal vertex in π.
(ii) For every horizontal edge ê in Ĝ+ there is an effective generalized cycle in Ĝ+

∞ through
ê.

(iii) For every inconvenient vertex v in G+ there is an admissible generalized cycle in Ĝ+
∞

through one of the preimages v̂ or there is an independent pair of generalized cycles.

Remark 7.4. For k = 1, Theorem 7.3 recovers [CMZ23, Proposition 3.2] in the same
way as Theorem 1.4 recovered [MUW21, Theorem 6.3], see Remark 5.12.



CHAPTER II

Chern classes of linear submanifolds with applications to
spaces of k-differentials and ball quotients

1. Introduction

Linear submanifolds are the most interesting and well-studied subvarieties of moduli
spaces of abelian differentials ΩMg,n(µ) and their classification seems far from complete at
present. They are defined as the normalization of algebraic substacks of ΩMg,n(µ) that are
locally a union of linear subspaces in period coordinates. In the holomorphic case, linear
submanifolds defined by real linear equations are precisely the closures of GL+

2 (R)-orbits by
the fundamental theorems of Eskin-Mirzakhani-Mohammadi ([EM18], [EMM15]). These
orbit closures are automatically algebraic subvarieties by Filip’s theorem ([Fil16]). Our
results require algebraicity, but they work as well for meromorphic differentials and for
subvarieties whose equations are only C-linear.

Linear submanifolds include

• spaces of quadratic differentials,
• Teichmüller curves,
• eigenform loci and Prym loci,
• the recent sporadic examples from [MMW17] and [EMMW20], but also
• spaces defined by covering constructions, and
• in the meromorphic case, spaces defined by residue conditions.

These examples are R-linear. Spaces of k-differentials for k ≥ 2 and in particular the ball
quotients in Section 8 are prominent examples that are only C-linear.

Our primary goal is a formula for the Chern classes of the cotangent bundle of any
linear submanifold or rather of its compactification. The Euler characteristic is an intrinsic
compactification-independent application. Knowing the Chern classes is a prerequisite for
understanding the birational geometry of linear submanifolds, such as computations of the
Kodaira dimension, see [CCM22].

This goal was achieved in [CMZ22] for the full projectivized strata of Abelian differen-
tials PΩMg,n(µ) themselves, taking the modular smooth normal crossing compactification
PΞMg,n(µ) of multi-scale differentials from [BCGGM19b] as point of departure. In the
inextricable zoo of linear manifolds we are not aware of any intrinsic way to construct a
smooth compactification with modular properties. Working with the normalization of the
closure in some ambient compactification is usually unsuitable for intersection theory com-
putations. Here, however, thanks to the work of Benirschke-Dozier-Grushevsky ([BDG22])
and some minor upgrades we are able to work with this closure.

We now introduce more notation to state the general results and then apply them to
specific linear submanifolds. Let ΩH → ΩMg,n(µ) be a linear submanifold. Let moreover
H → PΩMg,n(µ) be its projectivization and let H → PΞMg,n(µ) denote the normaliza-
tion of its closure into the space of multi-scale differentials. The boundary strata DΓ of
PΞMg,n(µ) are indexed by level graphs Γ as we recall in Section 3.2. By [BDG22, The-
orem 1.5] the boundary of H is divisorial and consists two types of divisors: First there
are the divisors DH

h of curves whose level graphs have only horizontal edges (i.e. join-
ing vertices of the same level). Second there are the divisors DH

Γ parameterized by level
graphs Γ ∈ LG1(H) that have one level below the zero level and no horizontal edges and
such that the intersection of H with the interior of the boundary divisor DΓ is non-empty.
Those boundary divisors DH

Γ come with the integer ℓΓ, the least common multiple of the
prongs κe along the edges. We let ξ = c1(O(−1)) be the first Chern class of the tautological
bundle on H.

35
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Theorem 1.1. The first Chern class of the logarithmic cotangent bundle of a projec-
tivized compactified linear submanifold H is

(18) c1(Ω
1
H(log ∂H)) = N · ξ +

∑

Γ∈LG1(H)

(N −N⊤
Γ )ℓΓ[D

H
Γ ] ∈ CH1(H) ,

where N := dim(ΩH) and where N⊤
Γ := dim(DH,⊤

Γ ) + 1 is the dimension of the unprojec-
tivized top level stratum in DH

Γ .

To state a formula for the full Chern character we need to recall a procedure that
also determines adjacency of boundary strata. It is given by undegeneration maps δi that
contract all the edges except those that cross from level −i+1 to level −i, see Section 3.2.
This construction can obviously be generalized so that a larger subset of levels remains.
For example the undegeneration map δ∁i contracts only the edges crossing from level −i+1
to level −i. We can now define for any graph Γ ∈ LGL(H) with L levels below zero and
without horizontal edges the boundary component DH

Γ of codimension L and the quantity
ℓΓ =

∏L
i=1 ℓδi(Γ).

Theorem 1.2. The Chern character of the logarithmic cotangent bundle is

ch(Ω1
H(log ∂H)) = eξ ·

N−1∑

L=0

∑

Γ∈LGL(H)

ℓΓ

(
N −N⊤

δL(Γ)

)
iΓ∗

( L∏

i=1

td

(
N⊗−ℓδi(Γ)

Γ/δ∁i (Γ)

)−1)
,

where NΓ/δ∁i (Γ)
denotes the normal bundle of DH

Γ in DH
δ∁i (Γ)

, where td is the Todd class and

iΓ : DH
Γ ↪→ H is the inclusion map.

So far the results have been stated to parallel exactly those in [CMZ22]. We start
explaining the difference in evaluating this along with the next result, a closed formula for
the Euler characteristic.

Theorem 1.3. Let H → PΩMg,n(µ) be a projectivized linear submanifold. The orbifold
Euler characteristic of H is given by

χ(H) = (−1)d
d∑

L=0

∑

Γ∈LGL(H)

KH
Γ ·N⊤

Γ

|AutH(Γ)|
·
−L∏

i=0

∫

H[i]
Γ

ξ
d
[i]
Γ

H[i]
Γ

,

where the integrals are over the normalization of the closure H → PΞMg,n(µ) inside the
moduli space of multi-scale differentials and similar integrals over boundary strata, where

• H[i]
Γ are the linear submanifolds at level i of Γ as defined in Section 3.5,

• d
[i]
Γ := dim(H[i]

Γ ) is the projectivized dimension,
• KH

Γ is the product of the number of prong-matchings on each edge of Γ that are
actually contained in the linear submanifold H,

• AutH(Γ) is the set of automorphism of the graph Γ whose induced action on a
neighborhood of DH

Γ preserves H,
• d := dim(H) is the projectivized dimension.

The number of reachable prong matchings KH
Γ and the number |AutH(Γ)| as defined

in the theorem are in general non-trivial to determine. Also the description of H[i]
Γ requires

specific investigation. For example, for strata of k-differentials, these H[i]
Γ are again some

strata of k-differentials, but the markings of the edges have to be counted correctly.
The most important obstacle to evaluate this formula however is to compute the fun-

damental classes of linear submanifolds, or to use tricks to avoid this. For strata of abelian
differentials, this step was provided by the recent advances in relating fundamental classes
to Pixton’s formula ([HS21], [BHPSS20]). Whenever we have the fundamental classes at
our disposal, we can evaluate expressions in the tautological ring, as we briefly summarize
in Section 4.
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Applications: Teichmüller curves in genus two. As an example where fundamen-
tal class considerations can be avoided, we give an alternative quick proof of one of the first
computations of Euler characteristics of Teichmüller curves, initially proven in [Bai07], see
also [MZ16] for a proof via theta derivatives. We assume familiarity with the notation for
linear submanifolds in genus two strata, as recalled in Section 6.

Theorem 1.4 (Bainbridge). The Euler characteristic of the Teichmüller curve WD in
the eigenform locus for real multiplication by a non-square discriminant D is χ(WD) =
−9ζ(−1) where ζ = ζQ(

√
D) is the Dedekind zeta function.

Proof. The Hilbert modular surface XD is the disjoint union of the symmetrization
of the eigenform locus ED ⊂ ΩM2,1(1, 1), the product locus PD of reducible Jacobians
and the Teichmüller curve WD. This gives

χ(PD) + χ(WD) +
1

2
χ(ED) = χ(XD) .

Now we apply Theorem 1.3 to ED. The top-ξ-integral in the L = 0-term of vanishes by
Corollary 4.3, since ED is a linear submanifold with REL non-zero. The codimension-one
boundary strata are PD and WD. They don’t intersect, so there are no codimension-two
boundary strata without horizontal nodes and we get

(19) χ(ED) = −χ(PD)− 3χ(WD)

where the factor 3 stems from the number of prong-matchings. Since Siegel computed
χ(XD) = 2ζ(−1) and viewing PD as the vanishing locus of the product of odd theta
functions gives χ(PD) = −5ζ(−1), the theorem follows from the two equations. □

Strata of k-differentials. The space of quadratic differentials is the cotangent space
to moduli space of curves and thus fundamental in Teichmüller dynamics. We give formulas
for Chern classes, Euler characteristics and for the intersection theory in these spaces. In
fact, our formulas work uniformly for spaces of k-differentials for all k ≥ 1. Having the qua-
dratic case in mind, we write Q = PΞkMg,n(µ) for the space of multi-scale k-differentials
defined in [CMZ19], which coincides (up to explicit isotropy groups, see Lemma 7.2) with
the compactification as above of the associated linear submanifold obtained via the canon-
ical covering construction.

The formulas in Theorem 1.2 apply to Q viewed as a linear submanifold in some
higher genus stratum Mĝ,n̂(µ̂). However the fundamental class of these submanifolds is
not known, conceivably it is not even a tautological class. The main challenge here is to
convert these formulas into formulas that can be evaluated on Q viewed as a submanifold
in Mg,n where the fundamental class is given by Pixton’s formula.

While the boundary strata of the moduli space PΞMg,n(µ) are indexed by level graphs,
the boundary strata of the moduli space of multi-scale k-differentials Q are indexed by
coverings of k-level graphs π : Γ̂mp → Γ, where the legs of Γ̂mp are marked only partially,
see Section 7 or also [CMZ19, Section 2] for the definitions of these objects and the labeling
conventions of those covers. Each edge e ∈ Γ has an associated k-enhancement κe given
by | orde ω+ k|, where ω is the k-differential on a generic point of the associated boundary
stratum Dπ. We let ζ = c1(O(−1)) be the first Chern class of the tautological bundle on
Q. Via the canonical cover construction, Theorem 1.3 implies the following formula for
the Euler characteristic of strata of k-differentials.

Corollary 1.5. The orbifold Euler characteristic of a projectivized stratum of k-
differentials PΩkMg,n(µ) is given by

χ(PΩkMg,n(µ)) =
(−1

k

)d d∑

L=0

∑

(π:Γ̂mp→Γ)∈LGL(Q)

S(π) ·
N⊤
π ·∏e∈E(Γ) κe,

|Aut(Γ)| ·
−L∏

i=0

∫

Q[i]
π

ζd
[i]
π

Q[i]
π

,

where S(π) is the normalized size of a stabilizer of a totally labeled version of the graph
Γ̂mp and Q[i]

π are the strata of k-differentials of Dπ at level i.
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The full definition of S(π) is presented in (65). It equals one for many π, e.g. if all
vertices in Γ have only one preimage in Γ̂mp. See Remark 7.6 for values of this combinatorial
constant.

k 1 3 4 5 6 7 8 9

χ(PΩkM2,1(2k)) − 1
40

1
3

3
2

21
5 9 18 30 51

Table 1. Euler characteristics of some minimal strata of k-differentials

Table 1 gives the Euler characteristics of some strata of quadratic differentials, for more
examples and cross-checks see Section 7.5.

All the formulas for evaluations in the tautological ring of strata of k-differentials have
been coded in an extension of the sage program diffstrata (an extension of admcycles
by [DSZ21]) that initially had this functionality for abelian differentials only (see [CMZ22],
[CMZ23]). See Section 4 for generalities on tautological ring computations and in particular
Section 7 for the application to k-differentials. The program diffstrata has been used
to verify the Hodge-DR-conjecture from [CGHMS22] in low genus. Moreover, diffstrata
confirms that the values of the tables in [Gou16] can be obtained via intersection theory
computations:

Proposition 1.6. The Conjecture 1.1 in [CMS19] expressing Masur-Veech volumes for
strata of quadratic differentials as intersection numbers holds true for strata of projectivized
dimension up to six, e.g. Q(12) = 5614/6075 · π6.

Ball quotients. Deligne-Mostow ([DM86]) and Thurston [Thu98] constructed com-
pactifications of strata of k-differentials on M0,n for very specific choices of µ and showed
that these compactified strata are quotients of the complex (n − 3)-ball. These results
were celebrated as they give a list of non-arithmetic ball quotients, of which there today
are still only finitely many sporadic examples, see [DPP16] and [Der20] for recent progress.
The compactifications are given as GIT quotients (in ([DM86]) or in the language of cone
manifolds (in [Thu98]) and the proof of the discreteness of the monodromy representation
requires delicate arguments for extension of the period at the boundary, resp. surgeries for
the cone manifold completion.

As application of our Chern class formulas we give a purely algebraic proof that
these compactifications are ball quotients, based on the fact that the equality case in the
Bogomolov-Miyaoka-Yau inequality implies a ball quotient structure, see Proposition 8.1.
Since this is a proof of concept, we restrict to the case n = 5, i.e. to quotients of the complex
two-ball, and to the condition INT in (20), leaving the analog for Mostow’s generalized
ΣINT-condition [Mos86] for the reader.

The computation of the hyperbolic volume of these ball quotients had been open for a
long time. A solution has been given by McMullen [McM17] and Koziarz-Nguyen [KN18],
see also [KM16]. Since computing the hyperbolic volume is equivalent to computing the
Euler characteristic by Gauss-Bonnet, our results provide alternative approach to this
question, too.

There are only four kinds of boundary divisors of Q:
• The divisors Γij where two points with ai + aj < k collide.
• The divisors Lij where two points with ai + aj > k collide.
• The ’horizontal’ boundary divisor Dhor consisting of all components where two

points with ai + aj = k collide.
• The ’cherry’ boundary divisors ijΛkl.

Theorem 1.7. Suppose that µ = (−a1, . . . ,−a5) is a tuple with ai ≥ 0 and with the
condition

(20)
(
1− ai

k
− aj
k

)−1
∈ Z if ai + ak < k (INT)
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for all i ̸= j. Then there exists a birational contraction morphism Q → B onto a smooth
proper DM-stack B that contracts precisely all the divisors Lij and ijΛkl. The target B
satisfies the Bogomolov-Miyaoka-Yau equality for Ω1

B
(logDhor).

As a consequence B = B \Dhor is a ball quotient.

The signature of the intersection form on the eigenspace that k-differentials are modeled
on has been computed by Veech [Vee93]. The only other case where the signature is (1, 2)
are strata in M1,3. As observed by Ghazouani-Pirio in [GP17], (see also [GP20]) there are
only few cases where the metric completion of the strata can be a ball quotient. However
they also find additional cases where the monodromy of the stratum is discrete. This
implies that the period map descends to a map from the compactified stratum to a ball
quotient. It would be interesting to investigate if there are more such cases, possibly with
non-arithmetic monodromy.

2. Logarithmic differential forms and toric varieties

This section connects the Euler characteristic to integrals of characteristic classes of
the sheaf of logarithmic differential forms. We work on a possibly singular but normal and
irreducible variety H of dimension d, whose singularities are toric and contained in some
boundary divisor ∂H. We are interested in the Euler characteristic of a (Zariski) open
subvariety H with divisorial complement, such that that the inclusion H ↪→ H is a toroidal
embedding. In particular the boundary divisor ∂H = H \H is locally on open subsets Uα
a torus-invariant divisor.

In this situation we define locally Ω1
Uα

(log) to be the sheaf of (C∗)d-invariant mero-
morphic differential forms. These glue to sheaf Ω1

H(log ∂H), that is called logarithmic
differential sheaf. This terminology is justified by the following idea from [Mum77, Sec-
tion 4], the details and definitions being given in [KKMS73]. For any ’allowable’ smooth
modification p :W → H that maps a normal crossing boundary divisor ∂W ⊂W onto ∂H
we have p∗Ω1

H(log ∂H) = Ω1
W
(log ∂W ) for the usual definition of the logarithmic sheaf on

W . Moreover, such an ’allowable’ smooth modification always exists.

Proposition 2.1. For H ↪→ H as above the Euler characteristic of H can be computed
as integral

(21) χ(H) = (−1)d
∫

H
cd(Ω

1
H(log ∂H))

over the top Chern class of the logarithmic cotangent bundle.

Proof. If H is smooth, this is well known, a self-contained proof was given in [CMZ22,
Proposition 2.1]. In general we use an allowable modification. By definition this restricts
to an isomorphism W → H, hence does not change the left hand side. The right hand
side also stays the same by push-pull and the pullback formula along an allowable smooth
modification. □

In all our applications, H will be a proper Deligne-Mumford stack with toroidal sin-
gularities. We work throughout with orbifold Euler characteristics, and since then both
sides of (21) are multiplicative in the degree of a covering, we can apply Proposition 2.1
verbatim.

3. The closure of linear submanifolds

The compactification of a linear submanifold we work with has (currently) no intrinsic
definition. Rather we consider the normalization of the closure of a linear submanifold
inside the moduli space of multi-scale differentials ΞMg,n(µ). We recall from [BDG22] the
basic properties of such closures. The goal of this section is to make precise and to explain
the following two slogans:

• Near boundary points without horizontal edges, the closure is determined as for
the ambient abelian stratum by the combinatorics of the level graph and it is
smooth. The ghost automorphisms, the stack structure at the boundary that
stems from twist groups, agrees with the ghost automorphisms of the ambient
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stratum and the intersection pattern is essentially determined by the profiles of
the level graph, a subset of the profiles of the ambient stratum.

• In the presence of horizontal edges there are toric singularities. Working with the
appropriate definition of the logarithmic cotangent sheaf these singularities don’t
matter. This sheaf decomposes into summands from horizontal nodes, from the
level structure, and the deformation of the differentials at the various levels, just
as in the ambient stratum.

3.1. Linear submanifolds in generalized strata. Let ΩMg,n(µ) denote the mod-
uli space of Abelian differential of possibly meromorphic signature µ. Despite calling them
’moduli space’ or ’strata’ we always think of them as quotient stacks or orbifolds and in-
tersection numbers etc. are always understood in that sense. These strata come with a
linear structure given by period coordinates (e.g. [Zor06] for an introduction). A linear
submanifold ΩH of ΩMg,n(µ) is an algebraic stack with a map ΩH → ΩMg,n(µ) which is
the normalization of its image and whose image is locally given as a finite union of linear
subspaces in period coordinate charts. See [Fil20, Example 4.1.10] for an example that
illustrates why we need to pass to the normalization for ΩH to be a smooth stack. In the
context of holomorphic signatures and GL2(R)-orbit closures, the linear manifolds obtained
in this way can locally be defined by equations with R-coefficients ([EM18], [EMM15]). We
refer to them as R-linear submanifolds. In this context, the algebraicity follows from being
closed by the result of Filip ([Fil16]), but in general algebraicity is an extra hypothesis.

To set up for clutching morphisms and a recursive description of the boundary of
compactified linear submanifolds, we now define generalized strata, compare [CMZ22, Sec-
tion 4]. For a tuple g = (g1, . . . , gk) of genera and a tuple n = (n1, . . . , nk) together with a
collection of types µ = (µ1, . . . , µk) with |µi| = ni we first define the disconnected stratum
ΩMg,n(µ) =

∏k
i=1ΩMgi,ni(µi) . Then, for a linear subspace R inside the space of the

residues at all poles of µ we define the generalized stratum ΩMR
g,n(µ) to be the subvariety

with residues lying in R. Generalized strata obviously come with period coordinates and
we thus define a generalized linear submanifold ΩH to be an algebraic stack together with
a map to ΩMR

g,n(µ) whose image is locally linear in period coordinates and where ΩH is
the normalization of its image.

Rescaling the differential gives an action of C∗ on strata an the quotient are projec-
tivized strata PΩMg,n(µ). The image of a linear submanifold in PΩMg,n(µ) is called
projectivized linear manifold H, but we usually omit the ’projectivized’.

We refer with an index B to quantities of the ambient projectivized stratum, such as its
dimension dB and the unprojectivized dimension NB = dB + 1. The same letters without
additional index are used for the linear submanifold, e.g. N = d+ 1, and we write dH and
NH only if ambiguities may arise.

3.2. Multi-scale differentials: boundary combinatorics. We will work inside
the moduli stack of multi-scale differentials, that is the compactification B := PΞMg,n(µ)
of a stratum B := PΩMg,n(µ) defined in [BCGGM19b] and recall some of its properties,
see also [CMZ22, Section 3]. Everything carries over with obvious modifications to the
compactification PΞMR

g,n(µ) of generalized strata, see [CMZ22, Proposition 4.1].
Each boundary stratum of PΞMg,n(µ) has its associated level graph Γ, a stable graph of

the underlying pointed stable curve together with a weak total order on the vertices, usually
given by a a level function normalized to have top level zero, and an enhancement κe ≥ 0
associated to the edges. Edges are called horizontal, if they start and end at the same
level, and vertical otherwise. Moreover κe = 0 if and only if the edge is horizontal. We
denote the closure of the boundary stratum of points with level graph Γ by DB

Γ and denote
in general the complement of more degenerate boundary strata by an extra ◦, i.e., here by
DB,◦

Γ . These DB
Γ are in general not connected, and might be empty (e.g. for unsuitably

large κe).
We let LGL(B) be the set of all enhanced (L+1)-level graphs without horizontal edges.

The structure of the normal crossing boundary of PΞMg,n(µ) is encoded by undegenera-
tions. For any subset I = {i1, . . . , in} ⊆ {1, . . . , L} there are undegeneration map

δi1,...,in : LGL(B) → LGn(B) ,
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that preserves the level passage given as a horizontal line just above level −i and contracts
the remaining level passages. We define δ∁I = δI∁ .

The boundary strata DB
Γ for Γ ∈ LGL(B) are commensurable to a product of general-

ized strata B[i]
Γ = PΞMRi

gi,ni
(µi) defined via the following diagram.

(22)

c−1
Γ (UΓ) DB,s

Γ

U s∆

∏0
i=−LB

[i]
Γ =: BΓ BΓ,∆ UΓ DB

Γ

q∆

⊂

pΓ cΓ

p∆Γ c∆Γ
⊃ ⊂

Here gi,ni and µi are the tuples of the genera, marked points and signatures of the
components at level i of the level graph and Ri is the global residue condition induced
by the levels above. The covering space DB,s

Γ and the moduli stack U s∆ of simple multi-
scale differentials compatible with an undegeneration of ∆ were constructed in [CMZ22,
Section 4.2].

3.3. Multi-scale differentials: Prong-matchings and stack structure. The no-
tion of a multi-scale differential is based on the following construction. Given a pointed
stable curve (X, z), a twisted differential is a collection of differentials ηv on each com-
ponent Xv of X, that is compatible with a level structure on the dual graph Γ of X, i.e.
vanishes as prescribed by µ at the marked points z, satisfies the matching order condition
at vertical nodes, the matching residue condition at horizontal nodes and global residue
condition of [BCGGM18]. A multi-scale differential of type µ on a stable curve (X, z)
consists of an enhanced level structure (Γ, ℓ, {κe}) on the dual graph Γ of X, a twisted dif-
ferential ω of type µ compatible with the enhanced level structure, and a prong-matching
for each node of X joining components of non-equal level. Here a prong-matching σ is an
identification of the (outgoing resp. incoming) real tangent vectors at a zero resp. a pole
corresponding to each vertical edge of Γ. Multi-scale differentials are equivalences classes
of (X, z,Γ,σ) up to the action of the level rotation torus that rescales differentials on lower
levels and rotates prong-matchings at the same time.

To an enhanced two-level graph we associate the quantity

(23) ℓΓ = lcm(κe : e ∈ E(Γ)) .

which appears in several important place of the construction of PΞMg,n(µ):
i) It is the size of the orbit of prong-matchings when rotating the lower level differ-

ential. Closely related:
ii) The local equations of a node are xy = t

ℓΓ/κe
1 , where t1 is a local parameter (a level

parameter) transverse to the boundary. As a consequence a family of differential
forms that tends to a generator on top level scales with tℓΓ1 on the bottom level
of Γ.

For graphs with L level passages we define ℓi = ℓΓ,i = ℓδi(Γ) to be the lcm of the edges
crossing the i-th level passage and ℓΓ =

∏L
i=1 ℓΓ,i.

There are two sources of automorphisms of multi-scale differentials: on the one hand,
there are automorphism of pointed stable curves that respect the additional structure (dif-
ferential, prong-matching). On the other hand, there are ghost automorphisms, whose
group we denote by GhΓ = TwΓ/Tw

s
Γ, that stem from the toric geometry of the compact-

ification. We emphasize that the twist group TwΓ and the simple twist TwsΓ, hence also
the ghost group GhΓ, depend only on the data of the enhanced level graph and will be
inherited by linear submanifolds below. The local isotropy group of ΞMg,n(µ) sits in a
exact sequence

0 → GhΓ → Iso(X,ω) → Aut(X,ω) → 0

and locally near (X, z,Γ,σ) the stack of multi-scale differentials is the quotient stack
[U/Iso(X,ω)] for some open U ⊂ CNB . The same holds for PΞMg,n(µ) where the auto-
morphism group is potentially larger since ω is only required to be fixed projectively.
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3.4. Decomposition of the logarithmic tangent bundle. We now define a Γ-
adapted basis, combining [BDG22] and [CMZ22] with the goal of giving a decomposition of
the logarithmic tangent bundle that is inherited by a linear submanifold, if the Γ-adapted
basis is suitably chosen.

We work on a neighborhood U of a point p = (X, [ω], z) ∈ DB
Γ , where Γ is an arbitrary

level graph with L levels below zero. We let α[i]
j for i = 0, . . . ,−L be the vanishing cycles

around the horizontal nodes at level i. Let β[i]j be a dual horizontal-crossing cycle, i.e. i is

the top level (in the sense of [BDG22]) of this cycle, ⟨α[i]
j , β

[i]
j ⟩ = 1 and β[i]j does not cross

any other horizontal node at level i. Let h(i) be the number of those horizontal nodes at
level i.

We complement the cycles β[i]j by a collection of relative cycles γ[i]j such that for any
fixed level i their top level restrictions form a basis of the cohomology at level i relative
to the poles and zeros of ω and holes at horizontal nodes quotiented by the subspace of
global residue conditions. In particular the span of the γ[i]j contains the α[i]

j , and moreover
the union

0⋃

j=−L

{
β
[j]
1 , . . . , β

[j]
h(j), γ

[j]
1 , . . . , γ

[j]
s(j)

}
is a basis of H1(X \ P,Z,C).

Next, we define the ω-periods of these cycles and exponentiate to kill the monodromy
around the vanishing cycles. The functions

a
[i]
j =

∫

α
[i]
j

ω , b
[i]
j =

∫

β
[i]
j

ω , q
[i]
j = exp(2πIb

[i]
j /a

[i]
j ) , c

[i]
j =

∫

γ
[i]
j

ω .

are however still not defined on U (only on sectors of the boundary complement) due to
monodromy around the vertical nodes.

Coordinates on U are given by perturbed period coordinates ([BCGGM19b]), which are
related to the periods above as follows. For each level passage there is a level parameter ti
that stem from the construction of the moduli space via plumbing. On the bottom level
passage L we may take tL = c

[−L]
1 as a period. For the higher level passage, the ti are

closely related to the periods of a cycle with top level −i, but the latter are in general not
monodromy invariant. It will be convenient to write

(24) t⌈i⌉ =

i∏

j=1

t
ℓj
j , i ∈ N.

There are perturbed periods c̃[−i]j obtained by integrating ω/t⌈i⌉ against a cycle with top
level −i over the part of level −i to points nearby the nodes, cutting off the lower level
part. By construction, on each sector of the boundary complement we have

(25) c̃
[−i]
j − c

[−i]
j /t⌈i⌉ =

∑

s>i

t⌈s⌉

t⌈i⌉
E

[−s]
j,i

for some linear (’error’) forms E[−s]
j,i depending on the variables c[−s]j on the lower level −s.

Similarly, we can exponentiate the ratio over a[−i]j of the similarly perturbed b̃
[−i]
j and

obtain perturbed exponentiated periods q̃[−i]j , such that on each sector

(26) log q̃
[−i]
j − log q

[−i]
j =

∑

s>i

t⌈s⌉

t⌈i⌉
E

′[−s]
j,i

for some linear forms E′[−s]
j,i . In these coordinates the boundary is given by q̃[−i]j = 0 and

ti = 0. If we let

Ωhor
i,B(log) = ⟨dq̃[i]1 /q̃

[i]
1 , . . . , dq̃

[i]
h(i)/q̃

[i]
h(i)⟩, Ωlev

i,B(log) = ⟨dt−i/t−i⟩

Ωrel
i,B = ⟨dc̃[i]2 /c̃

[i]
2 , . . . , dc̃

[i]
N(i)−h(i)/c̃

[i]
N(i)−h(i)⟩,
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with Ωlev
0,B(log) = 0 by convention, we thus obtain a decomposition

(27) Ω1
B
(log ∂B)|U =

0⊕

i=−L

(
Ωhor
i,B(log)⊕ Ωlev

i,B(log)⊕ Ωrel
i,B

)
.

3.5. The closure of linear submanifolds. For a linear submanifold H we denote
by H the normalization of the closure of the image of H as a substack of ΞMg,n(µ). We
denote by DΓ = DH

Γ the preimage of the boundary divisor DB
Γ in H. Again, a ◦ denotes

the complement of more degenerate boundary strata, i.e., D◦
Γ is the preimage of DB,◦

Γ in
H.

We will now give several propositions that explain that H is a compactification of H
almost as nice as the compactification PΞMg,n(µ) of strata. The first statement explains
the ’almost’.

Proposition 3.1. Let Γ be a level graph with only horizontal nodes, i.e., with one
level only. Each point in DB,◦

Γ has a neighborhood where the image of H has at worst toric
singularities.

More precisely, the linear submanifold is cut out by linear and binomial equations,
see (30) below.

Second, the intersection with non-horizontal boundary components is transversal in
the strong sense that each level actually causes dimension drop.

Proposition 3.2. Let Γ ∈ LGL(B) be a level graph without horizontal nodes. Each
point in DB,◦

Γ has a neighborhood where each branch of H mapping to that neighborhood is
smooth and the boundary ∂H = H \ H is a normal crossing divisor, the intersection of L
different divisors DH

δi(Γ)
.

In particular the image of DH
Γ has codimension L in DB

Γ .

The previous proposition allows to show, via the same argument as the proof of
[CMZ22, Proposition 5.1], the key result in order to argue inductively.

Corollary 3.3. If ∩Lj=1D
H
Γij

is not empty, there is a unique ordering σ ∈ SymL on
the set I = {i1, . . . , iL} of indices such that

Dσ(I) =

L⋂

j=1

DH
Γij

.

Moreover if ik = ik′ for a pair of indices k ̸= k′, then Di1,...,iL = ∅.
The next statement is crucial to inductively apply the formulas in this paper. Recall

that pΓ and cΓ are the projection and clutching morphisms of the diagram (22).

Proposition 3.4. There are generalized linear submanifolds ΩH[i]
Γ → ΩMRi

gi,ni
(µi) of

dimension di with projectivization H[i],◦
Γ , such that
0∑

i=−L
di = dH − L

and such that the normalizations H[i]
Γ → B

[i]
Γ of closures of H[i],◦

Γ together give a product
decomposition HΓ =

∏0
i=−LH

[i]
Γ of the normalization of the pΓ-image of the cΓ-preimage

of Im(DH
Γ ) ⊂ PΞMg,n(µ).

We will call H[i]
Γ → B

[i]
Γ the i-th level linear manifold. Our ultimate goal here is to

show the following decomposition. The terminology is explained along with the definition
of coordinates.

Proposition 3.5. Let Γ be an arbitrary level graph with L levels below zero. In a small
neighborhood U of a point in DH

Γ there is a direct sum decomposition

(28) Ω1
H(log ∂H)|U =

0⊕

i=−L

(
Ωhor
i (log)⊕ Ωlev

i (log)⊕ Ωrel
i

)
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for certain subsheaves such that the natural restriction map induces surjections

Ωhor
i,B(log)|H ↠ Ωhor

i (log), Ωlev
i,B(log)|H ≃ Ωlev

i (log) and Ωrel
i,B|H ↠ Ωrel

i .

Moreover the statements in items i) and ii) of Section 3.3 hold verbatim for the linear
submanifold with the same ℓΓ.

As a consequence we may use the symbols ℓΓ and ℓΓi ambiguously for strata and their
linear submanifolds.

We summarize the relevant parts of [BDG22]. Equations of H are interpreted as ho-
mology classes and we say that a horizontal node is crossed by an equation, if the corre-
sponding vanishing cycles has non-trivial intersection with the equation. The horizontal
nodes are partitioned into H-cross-equivalence classes by simultaneous appearance in equa-
tions for H. A main observation is that ω-periods of the vanishing cycles in an H-cross-
equivalence class are proportional. Similarly, for each equation and for any level passage
the intersection numbers of the equation with the nodes crossing that level add up to zero
when weighted appropriately with the residue times ℓΓ/κe ([BDG22, Proposition 3.11]).

Next, in [BDG22] they sort the equations by level and then write them in reduced
row echelon from. One may order the periods so that the distinguished c[i]1 (whose period
is close to the level parameter t−i) is among the pivots of the echelon form for each i.
The second main observation is that each defining equation of H can be split into a sum
of defining equations, denoted by F

[i]
k , with the following properties. The upper index i

indicate the highest level, whose periods are involved in the equation. Moreover, either F [i]
k

has non-trivial intersection with some (vanishing cycles of a) horizontal node at level i and
then no intersection with a horizontal node at lower level, or else no intersection with a
horizontal node at all.

As a result H is cut out by two sets of equations, see [BDG22, Equations (4.2), (4.3),
(4.4)]. First, there are the equations G[i]

k that are t⌈−i⌉-rescalings of linear functions

(29) G
[i]
k = L

[i]
k

(
c̃
2−δ[i]i,0

, . . . , c̃
[i]
N(i)−h(i)

)

in the periods at level i. (To get this form from the version in [BDG22] absorb the terms
from lower level periods into the function c[i]j where j = j(k, i) is the pivot of the equation

F
[i]
k . This does not effect the truth of (25)).

Second, there are multiplicative monomial equations among the exponentiated periods,
that can be written as bi-monomial equations with positive exponents

(30) H
[i]
k = (q̃[i])J1,k − (q̃[i])J2,k

where q̃[i] is the tuple of the variables q̃[i]j and J1,k, J2,k are tuples of non-negative integers.
(In the multiplicative part [BDG22] already incorporated the lower level blurring into the
pivot variable.)

Proof of Proposition 3.1. This follows directly from the form of the binomial
equations (30), see [BDG22, Theorem 1.6]. □

Proof of Proposition 3.2. Smoothness and normal crossing is contained in [BDG22,
Corollary 1.8]. The transversality claimed there contains the dimension drop claimed in
the proposition. The more precise statement in [BDG22, Theorem 1.5] says that after each
intersection of H with a vertical boundary divisor the result is empty or contained in the
open boundary divisor DB,◦

Γ . □

Proof of Proposition 3.4. This is the main result of [Ben20] or the restatement in
[BDG22, Proposition 3.3] and this together with the Proposition 3.2 implies the dimension
statement. □

Proof of Proposition 3.5. Immediate from (29) and (30), which are equations
among the respective set of generators of the decomposition in (27). The additional claim
item ii) follows from the isomorphism of level parameters and transversality. Item i) is a
consequence of this. □
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3.6. Push-pull comparison for linear submanifolds. For recursive computations,
we will transfer classes from H[i]

Γ , which were defined via Proposition 3.4, to DH
Γ essen-

tially via pΓ-pullback and cΓ-pushforward. More precisely, taking the normalizations into
account, we have to use the maps cΓ,H and pΓ,H defined on the normalization Hs

Γ of the
cΓ-preimage of the image of DH

Γ in DB
Γ . To compute degrees we use the analog of the inner

triangle in (22) and give a concrete description of Hs
Γ.

Recall from the introduction that KH
Γ is the number of prong-matchings of Γ that are

reachable from within H.

(31)

(ΩH◦
Γ)

pm Hs,◦
Γ

U sΓ

ΩH◦
Γ H◦

Γ BΓ,Γ UΓ DH,◦
Γ

pΓ,H cΓ,H

pΓΓ cΓΓ

Consider ΩH◦
Γ :=

∏
ΩH[i]

Γ as a moduli space of differentials subject to some (lin-
ear) conditions imposed on its periods. Consider now the moduli space (ΩH◦

Γ)
pm :=

(
∏

ΩH[i]
Γ )pm where we add the additional datum of one of the KH

Γ prong-matchings reach-
able from the interior. The torus (C∗)L+1 acts on ΩH◦

Γ with quotient H◦
Γ =

∏H[i],◦
Γ .

On the other hand, if we take the quotient of (ΩH◦
Γ)

pm by (C∗)L+1 = (C∗) × (CL/TwsΛ)
we obtain a space Hs,◦

Γ which is naturally the normalization of a subspace of U sΓ, since it
covers DH,◦

Γ with marked (legs and) edges and whose generic isotropy group does not stem
from GhΓ (it might be non-trivial, e.g. if a level of Γ consists of a hyperelliptic stratum),
while the generic isotropy group of DH,◦

Γ is an extension of GhΓ by possibly some group of
graph automorphisms and possibly isotropy groups of the level strata.

Lemma 3.6. The ratio of the degrees the maps in 31 on Hs
Γ is

deg(pΓ,H)

deg(cΓ,H)
=

KH
Γ

|AutH(Γ)|ℓΓ
,

where AutH(Γ) is the subgroup of Aut(Γ) whose induced action on a neighborhood of DH
Γ

preserves H.

Proof. We claim that the degree of pΓ,H is the number of prong-matchings equivalence
classes, i.e., deg(pΓ,H) = KH

Γ /[RΓ : TwΓ] where RΓ
∼= ZL ⊂ CL is the level rotation group.

In fact this follows since TwsΓ ⊆ TwΓ and Hs,◦
Γ is given by taking the quotient by the action

of the level rotation group, which has TwΓ as its stabilizer subgroup.
On the other side cΓ,H factors through the quotient by GhΓ = [TwΓ : TwsΓ] acting by

fixing every point. In the remaining quotient map cΓΓ of the ambient stratum two points
have the same image only if they differ by an automorphism of Γ. However only the
subgroup AutH(Γ) ⊂ Aut(Γ) acts on Im(Hs

Γ) and its normalization and contributes to
the local isotropy group of the normalization. Thus only this subgroup contributes to the
degree of cΓ,H. The claimed equality now follows because [RΓ : TwsΓ] = ℓΓ. □

Consider a graph ∆ ∈ LG1(H[i]
Γ ) defining a divisor in H[i]

Γ . We aim to compute its
pullback to Ds

Γ and the push forward to DΓ and to H. For this purpose we need extend
the commensurability diagram (31) to include degenerations of the boundary strata. This
works by copying verbatim the construction that lead in [CMZ22] to the commensurability
diagram (22). We will indicate with subscripts H to the morphisms that we work in this
adapted setting. Recall from this construction that in DB,s

Γ (and hence in Ds
Γ) the edges

of Γ have been labeled once and for all (we write Γ† for this labeled graph) and that the
level strata H[i]

Γ inherit these labels. Consequently, there is unique graph ∆̃† which is a
degeneration of Γ† and such that extracting the levels i and i − 1 of ∆̃† equals ∆. The
resulting unlabeled graph will simply be denoted by ∆̃. For a fixed labeled graph Γ† we
denote by J(Γ†, ∆̃) the set of ∆ ∈ LG1(H[i]

Γ ) such that ∆̃ is the result of that procedure.
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Obviously the graphs in J(Γ†, ∆̃) differ only by the labeling of their half-edges and the
following lemma computes its cardinality.

Lemma 3.7. The cardinality of J(Γ†, ∆̃) is determined by

|J(Γ†, ∆̃)| · |AutH(∆̃)| = |AutH[i]
Γ

(∆)| · |AutH(Γ)| .

Proof. The proof is analogous to the one of [CMZ22, Lemma 4.6], where one considers
the kernel and cokernel of the map φ : AutH(∆̃) → AutH(Γ) given by undegeneration. □

We now determine the multiplicities of the push-pull procedure. Recall from Section 3.3
the definition of ℓΓ,j = ℓδj(Γ) for j ∈ Z≥1.

Proposition 3.8. For a fixed ∆ ∈ LG1(H[i]
Γ ), the divisor classes of DH

∆̃
and the clutch-

ing of DH
∆ are related by

(32)
|AutH(∆̃)|

|AutH[i]
Γ

(∆)||AutH(Γ)|
· c∗Γ,H[DH

∆̃
] =

ℓ∆
ℓ
∆̃,−i+1

· p[i],∗Γ,H[D
H
∆ ] .

in CH1(Ds
Γ) and consequently by

(33)
|AutH(∆̃)|
|AutH(Γ)|

· ℓ
∆̃,−i+1

· [DH
∆̃
] =

|AutH[i]
Γ

(∆)|
deg(cΓ,H)

· ℓ∆ · cΓ,H,∗
(
p
[i],∗
Γ,H[D

H
∆ ]
)

in CH1(DΓ).

Here (32) is used later for the proofs of the main theorems while (33) is implemented in
diffstrata for the special case of k-differentials to compute the pull-back of tautological
classes from DH

∆ to DH
∆̃

, see also Section 7.

Proof. The proof is similar to the one of [CMZ22, Proposition 4.7] and works by
comparing the ramification orders of the maps c∆̃Γ,H and p∆̃Γ,H. The main difference to the
original proof is only that the automorphism factors appearing in the clutching morphisms
are the ones fixing H. □

The final part of this section is to compare various natural vector bundles under pull-
back along the maps cΓ,H and pΓ,H. The first of this is E⊤

Γ , a vector bundle of rank N⊤
Γ −1

on DH
Γ that should be thought of as the top level version of the logarithmic cotangent

bundle. Formally, let U ⊂ DH
Γ be an open set centered at a degeneration of the top level

of Γ into k level passages. Then we define

(34) E⊤
Γ |U =

0⊕

i=−k
Ωlev
i (log)|U ⊕ Ωhor

i (log)|U ⊕ Ωrel
i |U .

Let moreover ξ[i]Γ,H be the first Chern class of the line bundle on DH
Γ generated by the

multi-scale component at level i and and L[i]
Γ be the line bundle whose divisor is given by

the degenerations of the i-th level of Γ, as defined more formally in (44) below.
We have the following compatibilities.

Lemma 3.9. The first Chern classes of the tautological bundles on the levels of a bound-
ary divisor are related by

(35) c∗Γ,H ξ
[i]
Γ,H = p

[i],∗
Γ,HξH[i]

Γ

in CH1(Ds
Γ) .

It is also true that

(36) p
[i]∗
Γ,HLH[i]

Γ

= c∗Γ,HL[i]
Γ where LH[i]

Γ

= OH[i]
Γ

( ∑

∆∈LG1(H[i]
Γ )

ℓ∆D∆

)
.

Similarly for the logarithmic cotangent bundles we have

(37) p
[0],∗
Γ,H Ω1

H[0]
Γ

(logDH[0]
Γ

) = c∗Γ,H E⊤
Γ,H .
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Proof. The first claim is just the global compatibility of the definitions of the bundles
O(−1) on various spaces, compare [CMZ22, Proposition 4.9].

The second claim is a formal consequence of Lemma 3.7 and Proposition 3.8, just as
in [CMZ22, Lemma 7.4].

The last claim follows as in [CMZ22, Lemma 9.6] by considering local generators, which
are given in (34) and have for linear submanifolds the same shape as for strata. □

In the final formulas we will use these compatibilities together with the following re-
statement of Lemma 3.6.

Lemma 3.10. Suppose that αΓ ∈ CH0(D
H
Γ ) is a top degree class and that c∗Γ,HαΓ =

∏−L(Γ)
i=0 p

[i],∗
Γ,Hαi for some αi. Then

∫

DH
Γ

αΓ =
KH

Γ

|AutH(Γ)|ℓΓ

−L(Γ)∏

i=0

∫

H[i]
Γ

αi .

4. Evaluation of tautological classes

This section serves two purposes. First, we briefly sketch a definition of the tautological
ring of linear submanifolds and how the results of the previous section can be used to
evaluate expressions in the tautological ring, provided the classes of the linear manifold
are known. Second, we provide formulas to compute the first Chern class of the normal
bundle NH

Γ = NDH
Γ

to a boundary divisor DH
Γ of a projectivized linear submanifold H.

This is needed both for the evaluation algorithm and as an ingredient to prove our main
theorems.

4.1. Vertical tautological ring. We denote by ψi ∈ CH1(H) the pull-backs of the
classes ψi ∈ CH1(Mg,n) to a linear submanifold H. The clutching maps are defined as
clΓ,H = iΓ,H ◦cΓ,H, where iΓ,H : DH

Γ → H is the inclusion map of the boundary divisor. We
define the (vertical) tautological ring R•

v(H) of H to be the ring with additive generators

(38) clΓ,H,∗

( −L∏

i=0

p
[i],∗
Γ,Hαi

)

where Γ runs over all level graphs without horizontal edges for all boundary strata of H,
including the trivial graph, and where αi is a monomial in the ψ-classes supported on
level i of the graph Γ. That this is indeed a ring follows from the excess intersection
formula [CMZ22, Proposition 8.1] that works exactly the same for linear submanifolds,
and the normal bundle formula Proposition 4.4 which allows together with Proposition 4.1
to rewrite products in terms of our standard generators. We do not claim that pushfoward
R•
v(H) → CH•(Mg,n) maps to the tautological ring R•(Mg,n), since the fundamental

classes of linear submanifolds, e.g. loci of double covers of elliptic curves, may be non-
tautological in Mg,n (see e.g. [GP03]).

To evaluate a top-degree class of the form α := ψp11 · · ·ψpnn · [DH
Γ ] ∈ CH0(H) there are

(at least) two possible ways to proceed: If one knows the class [H] ∈ CHdim(H)(PΞMg,n(µ))
and this class happens to be tautological, one may evaluate

∫

H
α =

∫

PΞMg,n(µ)
ψp11 · · ·ψpnn · [DΓ] · [H]

using the methods described in [CMZ22]. Alternatively one may apply Lemma 3.6 to
obtain

(39)
∫

H
α =

KH
Γ

|AutH(Γ)|ℓΓ

−L∏

i=0

∫

H[i]
Γ

∏

j∈l(i)

ψpii ,

where l(i) denotes the set of legs on level i of Γ. To evaluate this expression, one needs
to determine the fundamental classes of the level linear submanifolds H[i]

Γ in their corre-
sponding generalized strata, which is in general a non-trivial task.
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4.2. Evaluation of ξH. If we want to evaluate a top-degree class in CH0(H) that is
not just a product of ψ-classes and a boundary stratum, but also involves the ξH-class, we
can reduce to the previous case by applying the following proposition.

Proposition 4.1. The class ξH on the closure of a projectivized linear submanifold H
can be expressed as

(40) ξH = (mi + 1)ψi −
∑

Γ∈ LGi 1(H)

ℓΓ[D
H
Γ ]

where LGi 1(H) are two-level graphs with the leg i on lower level.

Proof. The formula is obtained by pulling-back the formula in [CMZ22, Proposi-
tion 8.1] to H and thereby using the transversality statement from Proposition 3.2. □

We remark here that in some cases it is possible to directly evaluate the top ξH-powers
by using that we can represent the powers of the ξH-class via an explicit closed current.

Let PΩMg,n(µ) be a holomorphic stratum, i.e. a stratum of flat surfaces of finite area
or equivalently all the entries of µ are non-negative. Then there is a canonical hermitian
metric on the tautological bundle OPΩMg,n(µ)(−1) given by the flat area form

(41) h(X,ω, z) = areaX(ω) =
i

2

∫

X
ω ∧ ω

which extends to an hermitian metric of the tautological bundle on PΞMg,n(µ). If H →
PΞMg,n(µ) is the compactification of a linear submanifold of such a holomorphic stratum,
then the area metric induces an hermitian metric, which we denote again by h, on the
pull-back OH(−1) of the tautological bundle to H. Recall from Proposition 3.1 (combined
with the level-wise decomposition in Proposition 3.4) that the singularities of H are toric.
Let Htor → H be a resolution of singularities which is locally toric.

Proposition 4.2. Let Htor → PΞMg,n(µ) be a resolution of a compactified linear sub-
manifold of a holomorphic stratum. The curvature form i

2π [Fh] of the pull metric h to Htor

is a closed current that represents the first Chern class c1(OHtor(−1)). More generally, the
d-th wedge power of the curvature form represents c1(OHtor(−1))d for any d ≥ 1.

Proof. In [CMZ19, Proposition 4.3] it was shown that on the neighborhood U of a
boundary point of PΞMg,n(µ) in the interior of the stratum DΓ the metric h has the form

(42) h(X, q) =
L∑

i=0

|t⌈i⌉|2
(
htck
(−i) + hver

(−i) + hhor
(−i)

)

where htck
(−i) (coming from the ’thick’ part) are smooth positive functions bounded away

from zero and

hver
(−i) := −

i∑

p=1

Rver
(−i),p log |tp| , hhor

(−i) := −
Eh

(−i)∑

j=1

Rhor
(−i),j log |q

[i]
j | ,(43)

where Rver
(−i),p is a smooth non-negative function and Rhor

(−i),j is a smooth positive function
bounded away from zero, both involving only perturbed period coordinates on levels −i
and below.

The statement of the proposition in loc. cit. follows by formal computations from the
shape of (42) and the properties of its coefficients, see [CMZ19, Proposition 4.4 and 4.5].
We thus only need to show that in local coordinates of a point in Htor (mapping to the
given stratum DΓ) the metric has the same shape (42). For this purpose, recall that by
Proposition 3.4, the level parameters ti are among the coordinates. On the other hand,
a toric resolution of the toric singularities arising from (30) is given by fan subdivision
and thus by a collection of variables y[i]j for each level i, each of which is a product of

integral powers of the q[i]j at that level i. Conversely the map Htor → PΞMg,n(µ) is given

locally by q[i]j =
∏
k(y

[i]
k )bi,j,k for some bi,j,k ∈ Z≥0, not all of the bi,j,k = 0 for fixed (i, j).

Plugging this into (42) and (43) gives an expression of the same shape and with coefficients
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satisfying the same smoothness and positivity properties. Mimicking the proof in loc. cit.
thus implies the claim. □

For a linear submanifold H consider the vector space given in local period coordinates
by the intersection of the tangent space of the unprojectivized linear submanifold with the
span of relative periods. We call this space the REL space of H and we denote by RH its
dimension.

Using Proposition 4.2 we can now generalize the result about vanishing of top ξ-
powers on non-minimal strata of differentials to linear submanifolds with non-zero REL
(see [Sau18, Proposition 3.3] for the holomorphic abelian strata case).

Corollary 4.3. Let H → PΞMg,n(µ) be a linear submanifold of a holomorphic stra-
tum. Then ∫

H
ξiHα = 0 for i ≥ dH −RH + 1,

where dH is the dimension of H and RH is the dimension of the REL space and where α
is any class of dimension dH − i.

Proof. Since the area is given by an expression in absolute periods, the pullback of ξ
to Htor is represented by Proposition 4.2 by a (1, 1)-form involving only absolute periods
(see [Sau18, Lemma 2.1] for the explicit expression in the case of strata). Taking a wedge
power that exceeds the dimension of the space of absolute periods gives zero. □

4.3. Normal bundles. Finally we state the normal bundle formula, which is neces-
sary to evaluate self-intersections, which is for example needed to evaluate powers of ξH.
More generally, we provide formulas for the normal bundle of an inclusion jΓ,Π : DH

Γ ↪→ DH
Π

between non-horizontal boundary strata of relative codimension one, say defined by the
L-level graph Π and one of its (L + 1)-level graph degenerations Γ. This generalization
is needed for recursive evaluations. Such an inclusion is obtained by splitting one of the
levels of Π, say the level i ∈ {0,−1, . . . ,−L}. We define

(44) L[i]
Γ = ODH

Γ

(∑

Γ
[i]⇝∆̃

ℓ
∆̃,−i+1

DH
∆̃

)
for any i ∈ {0,−1, . . . ,−L} ,

where the sum is over all graphs ∆̃ ∈ LGL+2(H) that yield divisors in DH
Γ by splitting the

i-th level, which in terms of undegenerations means δ∁−i+1(∆̃) = Γ. The following result
contains the formula for the normal bundle as the special case where Π is the trivial graph.

Proposition 4.4. For Π
[i]⇝ Γ (or equivalently for δ∁−i+1(Γ) = Π) the Chern class of

the normal bundle NH
Γ,Π := NDH

Γ /D
H
Π

is given by

(45) c1(NH
Γ,Π) =

1

ℓΓ,(−i+1)

(
−ξ[i]Γ,H − c1(L[i]

Γ,H) + ξ
[i−1]
Γ,H

)
in CH1(DH

Γ ) .

Proof. We use the transversality statement Proposition 3.2 of H with a boundary
stratum DB

Γ in order to have that the transversal parameter is given by ti. Then the proof
is as the same as the one in the case of abelian strata, see [CMZ22, Proposition 7.5]. □

Since in Section 8 we will need to compute the normal bundle to horizontal divisors
for strata of k-differentials, we provide here the general formula for the case of smooth
horizontal degenerations of linear submanifolds.

Proposition 4.5. Let DH
h ⊂ DH be a divisor in a boundary component DH obtained

by horizontal degeneration. Suppose that the linear submanifold is smooth along DH
h and

let e be one of the new horizontal edges in the level graph of DH
h . Then the first Chern

class of the normal bundle NH
Dh

is given by

c1(NH
Dh

) = −ψe+ − ψe− ∈ CH1(DH)

where e+ and e− are the half-edges associated to the two ends of e.
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Proof. Similarly to the proof of [CMZ22, Proposition 7.2], consider the divisor De in
Mg,n corresponding to the single edge e and denote by Ne its normal bundle. The forgetful
map f : Dh → De induces an isomorphism NH

Dh
→ f∗NDe (compare local generators!) and

the formula follows from the well-known expression of NDe in terms of ψ-classes. □

We will need the following result about pullbacks of normal bundles to apply the same
arguments as in [CMZ22] recursively over inclusions of boundary divisors. The proof is
the same as in [CMZ22, Corollary 7.7], since it follows from Proposition 4.4 that we can
j-pullback properties of ξ and L[i]

Γ that hold on the whole stratum and hence on linear
submanifolds.

Lemma 4.6. Let Γ ∈ LGL(H) and let ∆̃ be a codimension one degeneration of the
(−i+ 1)-th level of Γ, i.e., such that Γ = δ∁i (∆̃), for some i ∈ {1, . . . , L+ 1}. Then

j∗
∆̃,Γ

(
ℓΓ,j c1

(
NH

Γ/δ∁j (Γ)

))
=





ℓ
∆̃,j

c1

(
NH

∆̃/δ∁j (∆̃)

)
, for j < i

ℓ
∆̃,j+1

c1

(
NH

∆̃/δ∁
(j+1)

(∆̃)

)
otherwise.

5. Chern classes of the cotangent bundle via the Euler sequence

The core of the computation of the Chern classes is given by two exact sequences that
are the direct counterparts of the corresponding theorems for abelian strata. The proof
should be read in parallel with [CMZ22, Section 6 and 9] and we mainly highlight the
differences and where the structure theorems of the compactification from Section 3.5 are
needed.

Theorem 5.1. There is a vector bundle K on H that fits into an exact sequence

(46) 0 −→ K ψ−→ (H1
rel)

∨ ⊗OH(−1)
ev−→ OH −→ 0 ,

where H1
rel is the Deligne extension of the local subsystem that defines the tangent space

to ΩH inside the relative cohomology H1
rel,B|H, such that the restriction of K to the inte-

rior H is the cotangent bundle Ω1
H and for U as in Proposition 3.5 we have

K|U =
0⊕

i=−L
t⌈−i⌉ ·

(
Ωhor
i (log)⊕ Ωlev

i (log)⊕ Ωrel
i

)
.

The definition of the evaluation map and the notion of Deligne extension on a stack
with toric singularities requires justification given in the proof. For the next result we
define the abbreviations

(47) EH = Ω1
H(log ∂H) and LH = OH

( ∑

Γ∈LG1(B)

ℓΓD
H
Γ

)

that are consistent with the level-wise definitions in (34) and (44).

Theorem 5.2. There is a short exact sequence of quasi-coherent OH-modules

(48) 0 −→ EH ⊗ L−1
H → K → C −→ 0

where C =
⊕

Γ∈LG1(H) CΓ is a coherent sheaf supported on the non-horizontal boundary
divisors, whose precise form is given in Proposition 5.4 below.

Proof of Theorem 5.1. We start with the definition of the maps in the Euler se-
quence for the ambient stratum, see the middle row in the commutative diagram below.
It uses the evaluation map

(49) evB : (H1
rel,B)

∨ ⊗OB(−1) → OB, γ ⊗ ω 7→
∫

γ
ω ,

restricted to H. The first map in the sequence is

(50) dci 7→
(
γi −

ci
ck
αk

)
⊗ ω, i = 1, . . . , k̂, . . . , N ,
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as usual in the Euler sequence, on a chart of H where ck is non-zero. The exactness of the
middle row is the content of [CMZ22, Theorem 6.1].

We next define the sheaf Eq. In the interior, Eq is the local system of equations cutting
out ΩH, and thus the quotient (H1

rel)
∨ = (H1

rel,B)
∨/Eq is the relative homology local

system, by definition of a linear manifold. The proof in [CMZ22, Section 6.1] concerning
the restriction of the sequence to the interior H uses that H has a linear structure with
tangent space modeled on the local system H1

rel. In particular it gives the claim about K|H.
As an interlude, we introduce notation for the Deligne extension of (H1

rel,B)
∨. For each

γ
[i]
j we let γ̂[i]j be it extension, the sum of the original cycles and vanishing cycles times

logarithms of the coordinates of the boundary divisors to kill monodromies. The functions

ĉ
[i]
j =

1

t⌈−i⌉

∫

γ̂
[i]
j

ω

are called log periods in [BDG22].
We now define Eq at the boundary, say locally near a point p ∈ DΓ, to be the subsheaf of

(H1
rel,B)

∨ generated by the defining equations F [i]
k constructed in Section 3.5, but with each

variable replaced by its Deligne extension. It requires justification that this definition near
the boundary agrees with the previous definition in the interior. We can verify this for the
distinguished basis consisting of the F [i]

k . Equations that do not intersect horizontal nodes
agree with their Deligne extension. This cancellation of the compensation terms is [BDG22,
Proposition 3.11] ( see also the expression for F [i]

k after [BDG22, Proposition 4.1]) which
displays the ω-integrals of the terms to be compared. For equations F [i]

k that do intersect
horizontal nodes (thus only at level i by construction) the difference F [i]

k (c
[s]
j , all (j, s)) −

F
[i]
k (ĉ

[s]
j , all (j, s)) vanishes thanks to the proportionality of the periods of horizontal nodes

in an H-equivalence class and since on H the equation H [i]
k holds.

By the very definition of defining equation its periods evaluate to zero, explaining the
right arrow in the top row of the following diagram and showing that ev is well-defined on
the quotient.

0 KEq Eq⊗OH(−1) 0

0
L⊕
i=0

t⌈−i⌉ · Ω[i]
B |H (H1

rel,B)
∨ ⊗OH(−1) OH 0

0
L⊕
i=0

t⌈−i⌉ · Ω[i] (H1
rel)

∨ ⊗OH(−1) OH 0 .

ψ

qΩ

evB

ev

Here we used the abbreviations

Ω
[i]
B = Ωhor

i,B(log)⊕ Ωlev
i,B(log)⊕ Ωrel

i,B, Ω[i] = Ωhor
i (log)⊕ Ωlev

i (log)⊕ Ωrel
i .

The surjectivity of qΩ follows from the definition of the summands in (28). It requires
justification that the image is not larger, since the derivatives of the local equations of H
do not respect the direct sum decomposition 27. More precisely we claim that KEq is
generated by two kinds of equations. Before analyzing them, note that the log periods
satisfy by construction an estimate of the form

(51) c̃
[−i]
j − ĉ

[−i]
j =

∑

s>i

t⌈s⌉

t⌈i⌉
Ê

[−s]
j,i

with some error term Ê
[−k]
j,i depending on the variables c[−s]j on the lower level −s as in (25).

For each of the equations (29) the corresponding linear function L[i]
k in the variables c[i]j

is an element in Eq. We use the comparisons (51) and (25) to compute its ψ-preimage
in KEq via (50). It is t⌈−i⌉ times the corresponding expression in the ĉ[i]j plus a linear
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combination of the terms t⌈−s⌉Ê
[s]
j,i . The quotient by such a relation does not yield any

quotient class beyond those in ⊕i
i=0t⌈−i⌉ · Ω[i].

We write the other equations (30) as (q[i])J1,k−J2,k = 1 since we are interested in torus-
invariant differential forms and can compute on the boundary complement. Consider d log
of this equation. Under the first map ψ of the Euler sequence

(52) dq
[i]
j /q

[i]
j = d log(q

[i]
j ) = d

(
2πI

b
[i]
j

a
[i]
j

)
7→ 2πI

a
[i]
j

(
β
[i]
j −

b
[i]
j

a
[i]
j

α
[i]
j

)
⊗ ω

Recall from summary of [BDG22] in Section 3.5 that the functions a[i]j for all j where
(v1, . . . , vN(i)−h(i)) := J1,k − J2,k is non-zero are rational multiples of each other. Note

moreover that β[i]j − b
[i]
j

a
[i]
j

α
[i]
j = β

[i]
j − 1

2πI log(q
[i]
j )α

[i]
j is the Deligne extension of β[i]j across

all the boundary divisors that stem from horizontal nodes at level i. For the full Deligne
extension β̂

[i]
j the correction terms for the lower level nodes have to be added. Together

with (26) we deduce that the ψ-image of
h(i)∑

m=1

vma
[i]
m

dq̃
[i]
m

q̃
[i]
m

=

h(i)∑

m=1

vjc
[i]
j(m)

dq̃
[i]
m

q̃
[i]
m

differs from the element in Eq responsible for the equation H
[i]
k only by terms from lower

level s, which come with a factor t⌈−s⌉. In this equation used that a[i]m = c
[i]
j(m) for an

appropriate j(m). Since c[i]j(m) is close to t⌈−i⌉c̃
[i]
j(m), compare with (25) this element indeed

belongs to the kernel of ψ as claimed in the commutative diagram. The quotient by such
a relation does not yield any quotient class beyond those above either. Since the (30)
and (29) correspond to a basis (in fact: in reduced row echelon form) of Eq, this completes
the proof. □

Proof of Theorem 5.2. Uses that the summands of K|U are, up to t-powers, the
decomposition of the logarithmic tangent sheaf by Proposition 3.5.

□

Corollary 5.3. The Chern character and the Chern polynomial of the kernel K of
the Euler sequence are given by

ch(K) = NeξH − 1 and c(K) =
N−1∑

i=0

(
N

i

)
ξiH .

Proof. As a Deligne extension of a local system, (H1
rel,B)

∨|H has trivial Chern classes
except for c0. By construction, the pullback of the sheaf Eq to an allowable modification
(toric resolution with normal crossing boundary, see the proof of Proposition 2.1) is the
Deligne extension of a local system. It follows that all Chern classes but c0 of this pullback
vanish and by push-full this holds for Eq, too. The Chern class vanishing for (H1

rel)
∨ and

the corollary follows. □

To start with the computation of C, we will also need an infinitesimal thickening the
of the boundary divisor DH

Γ , namely we define DH
Γ,• to be its ℓΓ-th thickening, the non-

reduced substack of H defined by the ideal IℓΓ
DH

Γ

. We will factor the above inclusion using
the notation

iΓ = iΓ,• ◦ jΓ,• : DH
Γ

jΓ,•
↪→ DH

Γ,•
iΓ,•
↪→ H .

We will denote by L⊤
Γ,• = (jΓ,•)∗(L⊤

Γ ) and E⊤
Γ,• = (jΓ,•)∗(E⊤

Γ ) the push-forward to the
thickening of the vector bundles defined in (44) and (34).

Proposition 5.4. The cokernel of (48) is given by

(53) C =
⊕

Γ∈LG1(B)

CΓ where CΓ = (iΓ,•)∗(E⊤
Γ,• ⊗ (L⊤

Γ,•)
−1) .
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Moreover, there is an equality of Chern characters

ch
(
(iΓ,•)∗(E⊤

Γ,• ⊗ (L⊤
Γ,•)

−1)
)

= ch
(
(iΓ)∗

(ℓΓ−1⊕

j=0

N⊗−j
Γ ⊗ E⊤

Γ ⊗ (L⊤
Γ )

−1
))
.

Proof. The second part of the statement is justified by the original argument in
[CMZ19, Lemma 9.3].

The first part of the statement follows since, from Theorem 5.1 we know that

K|U =

0⊕

i=−L

−i∏

j=1

t
ℓj
j ·
(
Ωhor
i (log)⊕ Ωlev

i (log)⊕ Ωrel
i

)

and from Proposition 3.5 we also know that

(54) (EH ⊗ L−1
H )|U =

0⊕

i=−L

L∏

j=1

t
ℓj
j ·
(
Ωhor
i (log)⊕ Ωlev

i (log)⊕ Ωrel
i

)

where Γ is an arbitrary level graph with L levels below zero and U is a small neighborhood
of a point in DH,◦

Γ . □

We can finally compute

Proposition 5.5. The Chern character of the twisted logarithmic cotangent bun-
dle EH ⊗ L−1

H can be expressed in terms of the twisted logarithmic cotangent bundles of
the top levels of non-horizontal divisors as

ch(EH ⊗ L−1
H ) = Neξ − 1 −

∑

Γ∈LG1(B)

iΓ∗

(
ch(E⊤

Γ ) · ch(L⊤
Γ )

−1 · (1− e−ℓΓ c1(NΓ))

c1(NΓ)

)
.

Proof. The proof [CMZ19, Prop. 9.5] works in the same way, since the only tool that
was used is the Grothendieck-Riemann-Roch Theorem applied to the map f = iΓ, which
is still a regular embedding. □

Proof of Theorem 1.1 and Theorem 1.2. The final formulas of the full twisted
Chern character, Chern polynomials and Euler characteristic follow from the arguments
used for Abelian strata in [CMZ19, Section 9], since they were purely formal starting from
the previous proposition. The relevant inputs needed are the compatibility statement of
Lemma 3.9, the formula for pulling back normal bundles given in Lemma 4.6 and Corol-
lary 3.3. □

Proof of Theorem 1.3. A formal consequence of Theorem 1.2 and the rewriting
in [CMZ22, Theorem 9.10] (with the reference to [CMZ22, Proposition 4.9] replaced by
Lemma 3.9) is

(55) χ(H) = (−1)d
d∑

L=0

∑

Γ∈LGL(H)

N⊤
Γ · ℓΓ ·

∫

DH
Γ

0∏

i=−L
(ξ

[i]
Γ,H)

d
[i]
Γ ,

We now use Lemma 3.10 to convert integrals on a boundary component into the product
of integrals of its the level strata. □

6. Example: Euler characteristic of the eigenform locus

For a non-square D ∈ N with D ≡ 0 or 1 (mod 4) let

ΩED(1, 1) ⊆ ΩM2,2(1, 1) and ΩWD ⊆ ΩM2,1(2)

be the eigenform loci for real multiplication by OD in the given stratum, see [McM03],
[Cal04], [McM07a] for the first proofs that these loci are linear submanifolds and some
background. We define ED := PΩED(1, 1) as the projectivized eigenform locus. Associ-
ating with the curve its Jacobian, the projectivized eigenform locus maps to the Hilbert
modular surface

XD = H×H/SL(OD ⊕O∨
D) .



54 II. CHERN CLASSES OF LINEAR SUBMANIFOLDS

Inside XD let PD ⊆ XD denote the product locus, i.e. the curve consisting of those surfaces
which are polarized products of elliptic curves. The Weierstrass curve WD is defined to be
the image of ΩWD. It is contained in the complement XD \ PD.

The goal of this section is to provide references and details for the proof of Theorem 1.4
and in particular (19). The numerical input is

χ(XD) = 2ζ(−1) and χ(PD) = −5

2
χ(XD) = −5ζ(−1),

where ζ = ζQ(
√
D) is the Dedekind zeta function. The first formula is due to Siegel [Sie36],

see also [Gee88, Theorem IV.1.1], the second is given in [Bai07, Theorem 2.22]

1 1

−2

0

−2

0

11

2

−4

2

11

ΓP ΓW

Figure 1. The boundary divisors of the eigenform locus E.

To apply Theorem 1.3 to the linear manifold ED we need to list the boundary strata
without horizontal curves. This list consists of two divisorial strata only, given in Figure 1,
namely the product locus and the Weierstrass locus. To justify the coefficients in (19) we
need:

Lemma 6.1. The top-powers of ξ on the respective level strata evaluate to∫

E
ξ2 = 0,

∫

D⊥
ΓP

1 = 1, and
∫

D⊥
ΓW

1 = 1 .

Proof. The first integral is an application of Corollary 4.3. For the second note that
there is unique differential up to scale of type (1, 1,−2,−2) on a P1 with vanishing residues,
the third is obvious. □

The proof is completed by noticing that that automorphism groups in Theorem 1.3 are
trivial and that all three prong-matchings for ΓW are reachable since they belong to one
orbit of the prong rotation group.

7. Strata of k-differentials

Our goal here is to prove Corollary 1.5 that gives a formula for the Euler characteristic
of strata PΩkMg,n(µ) of k-differentials. Those strata can be viewed as linear submanifolds
of strata of Abelian differentials PΩMĝ,n̂(µ̂) via the canonical covering construction and
thus Theorem 1.3 applies. This is however of little practical use as we do not know the
classes of k-differential strata in PΩMĝ,n̂(µ̂). However, we do know their classes in Mg,n

via Pixton’s formulas for the DR-cycle ([HS21], [BHPSS20]). As a consequence the formula
in Corollary 1.5 can be implemented, and the diffstrata package does provide such an
implementation. In this section we thus recall the basic definitions of the compactification
and collect all the statements to perform evaluation of expressions in the tautological rings
on strata of k-differentials.

7.1. Compactification of strata of k-differentials. We want to work on the multi-
scale compactification Q := Qk := PΞkMg,n(µ) of the space of k-differentials. As topologi-
cal space this compactification was given in [CMZ19], reviewing the plumbing construction
from [BCGGM19b], but without giving the stack structure. Here we consider a priori the
compactification of Section 3. We give some details, describing auxiliary stacks usually by
giving C-valued points and morphisms, from which the reader can easily deduce the no-
tion of families following the procedure in [BCGGM19b]. From this description it should
become clear that the two compactifications, the one of Section 3 and [CMZ19], agree
up to explicit isotropy groups (see Lemma 7.2). In particular the compactification Qk is
smooth. This follows also directly from the definition of Section 3, since the only potential
singularities are at the horizontal nodes. There however the local equations (30) simply
compare monomials (with exponent one), the various q-parameters of the k preimages of
a horizontal node.
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We start by recalling notation for the canonical k-cover in the primitive case. Let X
be a Riemann surface of genus g and let q be a primitive meromorphic k-differential of
type µ = (m1, . . . ,mn), i.e. not the d-th power of a k/d-differential for any d > 1. This
datum defines (see e.g. [BCGGM19a, Section 2.1]) a connected k-fold cover π : X̂ → X
such that π∗q = ωk is the k-power of an abelian differential. This differential ω is of type

µ̂ :=
(
m̂1, . . . , m̂1︸ ︷︷ ︸
g1:=gcd(k,m1)

, m̂2, . . . , m̂2︸ ︷︷ ︸
g2:=gcd(k,m2)

, . . . , m̂n, . . . , m̂n︸ ︷︷ ︸
gn:=gcd(k,mn)

)
,

where m̂i :=
k+mi

gcd(k,mi)
− 1. (Here and throughout marked points of order zero may occur.)

We let ĝ = g(X̂) and n̂ =
∑

i gcd(k,mi). The type of the covering determines a natural
subgroup Sµ̂ ⊂ Sn̂ of the symmetric group that allows only the permutations of each the
gcd(k,mi) points corresponding to a preimage of the i-th point. In the group Sµ̂ we fix
the element

(56) τ0 =
(
12 · · · g1

)(
g1 + 1 g1 + 2 · · · g1 + g2

)
· · ·
(
1 +

n−1∑

i=1

gi · · ·
n∑

i=1

gn

)
,

i.e. the product of cycles shifting the gi points in the π-preimage of each point in z. We
fix a primitive k-th root of unity ζk throughout.

We consider the stack ΩHk := ΩHk(µ̂) whose points are

(57) {(X̂, ẑ, ω, τ) : τ ∈ Aut(X̂), ord(τ) = k, τ∗ω = ζkω, τ |ẑ = τ0} .
Families are defined in the obvious way. Morphisms are morphisms of the underlying
pointed curves that commute with τ . Since the marked points determine the differential
up to scale, the differentials are identified by the pullback of morphisms up to scale. Com-
muting with τ guarantees that morphisms descend to the quotient curves by ⟨τ⟩ (for a
morphism f to descend, a priori fτf−1 = τa for some a would be sufficient, but the action
on ω implies that in fact a = 1). It will be convenient to label the tuple of points ẑ by
tuples (i, j) with i = 1, . . . , n and j = 1, . . . , gcd(k,mi). There is a natural forgetful map
ΩHk → ΩMĝ,n̂ and period coordinates (say, after providing both sides locally with a Te-
ichmüller marking) show that this map is the normalization of its image and the image is
cut out by linear equations, i.e. that ΩHk is a linear submanifold as defined in Section 3.1.

The subgroup

(58) G =
〈(

12 · · · g1
)
,
(
g1 + 1 g1 + 2 · · · g1 + g2

)
, · · · ,

(
1 +

n−1∑

i=1

gi · · ·
n∑

i=1

gn

)〉
⊂ Sµ̂

generated by the cycles that τ0 is made from acts on ΩHk and on the projectivization
Hk. We denote the quotient of the latter by Hmp

k := Hk/G, where the upper index is an
abbreviation of marked (only) partially.

Since τ has ω as eigendifferential, its k-th power naturally descends to (projectivized)
k-differential [q] on the quotient X = X̂/⟨τ⟩, which is decorated by the marked points z,
the images of ẑ.

We denote by Q the stack with the same underlying set as Hmp
k , but where morphisms

are given by the morphisms of (X/⟨τ⟩, z, [q]) in PΩkMg,n(µ). Written out on curves, a
morphism in Q is a map f : X̂/⟨τ⟩ → X̂ ′/⟨τ ′⟩, such that there exists a commutative
diagram

(59)
X̂ X̂ ′

X = X̂/⟨τ⟩ X ′ = X̂ ′/⟨τ ′⟩ .

g

f

If two such maps g exist, they differ by pre- or postcomposition with an automorphism of X̂
resp. X̂ ′. Via the canonical cover construction, the stack Q is isomorphic to PΩkMg,n(µ).
The non-uniqueness of g exhibits Hmp

k = Q/⟨τ⟩ as the quotient stack by a group of order k,
acting trivially.
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As in Section 3, we denote by ΩHk := ΩHk(µ) the normalization of the closure of ΩHk

in ΞMĝ,n̂(µ) an let Hk := Hk(µ) be the corresponding projectivizations. We next describe
the boundary strata of Hk. These are indexed by enhanced level graphs Γ̂ together with an
⟨τ⟩-action on them. We will leave the group action implicit in our notation. The following
lemma describes the objects parametrized by the boundary components DHk

Γ̂
(using the

notation from Section 3) of the compactification Hk.

Lemma 7.1. A point in the interior of the boundary stratum DHk

Γ̂
is given by a tuple

{(X̂, Γ̂, ẑ, [ω],σ, τ) : τ ∈ Aut(X̂), ord(τ) = k, τ∗ω = ζkω, τ |ẑ = τ0}

where (X̂, Γ̂, ẑ, [ω],σ) ∈ PΞMĝ,n̂(µ̂) is a multi-scale differential and where moreover the
prong-matching σ is equivariant with respect to the action of ⟨τ⟩.

The equivariance of prong-matching requires an explanation: Suppose xi and yi are
standard coordinates near the node corresponding to an edge e of Γ, so that the prong-
matching at e is given by σe = ∂

∂xi
⊗ − ∂

∂yi
(compare [BCGGM19b, Section 5] for the

relevant definitions). Then τ∗xi and τ∗yi are standard coordinates near τ(e). We say that
a global prong-matching σ = {σe}e∈E(Γ̂)

is equivariant if στ(e) = ∂
∂τ∗xi

⊗ − ∂
∂τ∗yi

for each
edge e.

Proof. The necessity of the conditions on the boundary points is obvious from the
definition in (57), except for the prong-matching equivariance. This follows from the
construction of the induced prong-matching in a degenerating family in [BCGGM19b,
Proposition 8.4] and applying τ to it.

Conversely, given (X̂, Γ̂, ẑ, [ω],σ, ⟨τ⟩) as above with equivariant prong-matchings, we
need to show that it is in the boundary of Hk. This is achieved precisely by the equivariant
plumbing construction given in [BCGGM19a]. □

The group G still acts on the compactification ΩHk and on its projectivization Hk.
As above we denote the quotient by Hmp

k = Hk/G to indicate that the points ẑ are now
marked only partially. By Lemma 7.1 we may construct Q just as in the uncompactified
case.

The map Hmp
k → Q is in general non-representable due to the existence of additional

automorphisms of objects in Hmp
k . This resembles the situation common for Hurwitz

spaces, where the target map is in general non-representable, too. We denote by d : Hk →
Hmp
k → Q the composition of the maps.

7.2. Generalized strata of k-differentials. Our notion of generalized strata is de-
signed for recursion purposes so that the extraction of levels of a boundary stratum of
Q is an instance of a generalized stratum (of k-differentials). This involves incorporating
disconnected strata, differentials that are non-primitive on some components, and residue
conditions. Moreover, we aim for a definition of a space of k-fold covers on which the
group G acts, to match with the previous setup. The key is to record which of the marked
points is adjacent to which component, an information that is obviously trivial in the case
of primitive k-differentials.

A map A : ẑ → π0(X̂) that records which marked point is adjacent to which com-
ponent of X̂ is called an adjacency datum. (Such an adjacency datum is equivalent to
specifying a one-level graph of a generalized stratum, which is indeed the information we
get when we extract level strata.) The subgroup G from (58) acts on the triples (X̂, ẑ,A)
of pointed stable curves with adjacency map by acting simultaneously on ẑ and on A by
precomposition. For a fixed adjacency datum A we consider the stack ΩH̃k(µ̂,A) whose
points are

{(X̂, ẑ, ω, τ) : (X̂, ẑ) have adjacency A, τ ∈ Aut(X̂),

ord(τ) = k, τ∗ω = ζkω, τ |ẑ = τ0, } .

We denote by ΩHk(µ̂, [A]) := G · ΩH̃k(µ̂,A) the G-orbit of this space.
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A residue condition is given by a τ -invariant partition λR of a subset of the set Hp ⊆
{1, . . . , n̂} of marked points such that m̂i < −1. We often also call the associated linear
subspace

R :=

{
(ri)i∈Hp ∈ CHp :

∑

i∈λ
ri = 0 for all λ ∈ λR

}
.

the residue condition. This space will typically not beG-invariant. We denote by ΩHR
k (µ̂,A) ⊆

ΩHk(µ̂,A) the subset where for each R ∈ R the residues of ω̂ at all the points zi ∈ R add
up to zero. If (X̂, ẑ, ω, τ) is contained in ΩHR

k (µ̂,A), then g · (X̂, ẑ, ω, τ) is contained in
ΩHg·R

k (µ̂, g · A) for any g ∈ G. That is, the G-action simultaneously changes the residue
condition and the adjacency datum. We denote by [R,A] the G-orbit of this pair and use
the abbreviation

(60) ΩH[R,A]
k := G · ΩHR

k (µ̂,A)

for the G-orbit of the spaces, µ̂ being tacitly fixed throughout.
As above, we denote by H[R,A]

k the projectivization of ΩH[R,A]
k and by HR,mp

k :=

H[R,A]
k /G the G-quotient, dropping the information about adjacency and the connected

components to ease notation. Finally, we denote by QR the stack with the same underly-
ing set as HR,mp

k and with morphisms defined in the same way as above for Q. Recall that
the curves in QR may be disconnected. We call such a stratum with possibly disconnected
curves and residue conditions a generalized stratum of k-differentials. Since H[R,A]

k is a
linear submanifold, we can still compactify them as before and a version of Lemma 7.1
with adjacency data still holds.

We will now compute the degree of the map d from the linear submanifolds to the
strata of k-differential. Our definition of generalized strata of k-differentials makes the
degree of this map the same in the usual and in the generalized case.

Lemma 7.2. The map d : H[R,A]
k → QR is proper, quasi-finite, unramified and of degree

deg(d) =
1

k

∏

mi∈µ
gcd(mi, k) .

Proof. The degree is a consequence of being composed of a quotient by a group of
order |G| = ∏mi∈µ gcd(mi, k) and the non-representable inverse of a quotient by a group
of order k.

The map is unramified as both quotient maps are unramified. □

7.3. Decomposing boundary strata. Having constructed strata of k-differentials,
we now want to decompose their boundary strata again as a product of generalized strata
of k-differentials and argue recursively. In fact, the initial stratum should be a generalized
stratum QR, thus coming with its own residue condition, but we suppress this in our
notation, focusing on the new residue condition that arise when decomposing boundary
strata. Here ’decomposition’ of the boundary strata should be read as a construction of a
space finitely covering both of them, as given by the following diagram,

(61)

D◦,Hk,s
π

Hk(π) :=
∏−L
i=0Hk(π[i]) Im(pπ) D◦,Hk

π

Q(π) :=
∏−L
i=0Q(π[i]) D◦,Q

π ,

pπ cπ

dπ

⊇

dπ

whose notation we now start to explain. Note that the diagram is for the open bound-
ary strata throughout, since we mainly need the degree all these maps as in Lemma 3.6
(the existence of a similar diagram over the completions follows as at the beginning of
Section 3.2).
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We denote by Γ̂ the level graphs indexing the boundary strata of PΞMĝ,n̂(µ̂) and thus
of Hk. Following our general convention for strata their legs are labeled, but not the edges.
In Hmp

k the leg-marking is only well-defined up to the action of G. A graph with such a
marking is said to be marked (only) partially and denoted by Γ̂mp. Even though curves
in Hk are marked (and not only marked up to the action of G), the boundary strata of
Hk are naturally indexed by partially marked graphs as well: If Γ̂ is the dual graph of
one stable curve in the boundary of Hk, then for all g ∈ G the graph g · Γ̂ is the dual
graph of another stable curve in the boundary of Hk. The existence of τ implies that level
graphs Γ̂ at the boundary of Hk come with the quotient map by this action. To each
boundary stratum of Q we may thus associate a k-cyclic covering of graphs π : Γ̂mp → Γ
(see [CMZ19, Section 2] for the definitions of such covers). We denote the corresponding
(open) boundary strata by D◦,Q

π ⊂ Q and the (open) boundary strata corresponding to
such a G-orbit of graphs by D◦,Hk

π ⊂ Hk. The map dπ : D◦,Hk
π → D◦,Q

π is the restriction of
the map d : Hk → Q.

Next we construct the commensurability roof just as in (31), though for each Γ̂ in the
G-orbit separately, so that D◦,Hk,s

π is the disjoint union of a G-orbit of the roofs in (31).
Next we define the spaces Hk(π[i]). Consider the linear submanifolds of generalized

strata of k-differentials with signature and adjacency datum given by the i-th level of
one marked representative Γ̂ of Γ̂mp (the resulting strata are independent of the choice
of a representative). Their product defines the image Im(pπ). For every level i, consider
the orbit under G(Hk(π[i])), where G(Hk(π[i])) is the group as in (58) for the i-th level,
of the linear submanifolds we extracted from the levels. We define Hk(π[i]) to be these
orbits, which in particular are then linear submanifolds associated to generalized strata
of k-differentials as we defined them above. We can hence consider, for every level, the
morphism given by the quotient by G(Hk(π[i])) composed with the non-representable map
that kills the ⟨τ⟩-isotropy groups at each level and denote by Q(π[i]) its image, which is
called the generalized stratum of k-differentials at level i. The map dπ in diagram 61 is
just a product of maps like the map d above, thus Lemma 7.2 immediately implies:

Lemma 7.3. The degree of the map dπ in the above diagram (61) is

deg(dπ) =
1

kL+1

n∏

i=1

gcd(mi, k)
∏

e∈E(Γ)

gcd(κe, k)
2

where κe is the k-enhancement of the edge e.

We recall Lemma 3.6 and compute explicitly the coefficients appearing in our setting
here. Note that the factor |AutH(Γ)| there should be called |AutHk

(Γ̂)| in the notation
used in this section.

Lemma 7.4. The ratio of the degrees of the topmost maps in (61) is

deg(pπ)

deg(cπ)
=

KHk

Γ̂

|AutHk
(Γ̂)| · ℓ

Γ̂

where the number of reachable prong-matchings is given by

KHk

Γ̂
=

∏

e∈E(Γ)

κe
gcd(κe, k)

and AutHk
(Γ̂) is the subgroup of automorphisms of Γ̂ commuting with τ .

We remark that the quantity ℓ
Γ̂

is intrinsic to Γ, for a two-level graph it is given by
ℓ
Γ̂
= lcm

(
κe

gcd(κe,k)
for e ∈ E(Γ)

)
.

Proof. The first statement is exactly the one of Lemma 3.6 since the topmost maps
in (61) are given by a disjoint union of the topmost maps in (31).

For the second statement, consider an edge e ∈ E(Γ). The edge e has gcd(κe, k) preim-
ages, each with an enhancement κe

gcd(κe,k)
. The prong-matching at one of the preimages

determines the prong-matching at the other preimages by Lemma 7.1, as they are related
by the action of the automorphism.



7. STRATA OF k-DIFFERENTIALS 59

For the third statement, we need to prove that the subgroup of Aut(Γ̂) fixing setwise
the linear subvariety Hk is precisely the subgroup commuting with τ . If ρ ∈ Aut(Γ̂) com-
mutes with τ , then it descends to a graph automorphism of Γ and gives an automorphism
of families of admissible covers of stable curves, thus preserving Hk. Conversely, if ρ
fixes Hk, it induces an automorphism of families of admissible covers of stable curves,
thus of coverings of graphs. A priori this implies only that ρ normalizes the subgroup
generated by τ . Note however that on Hk the automorphism τ acts by a fixed root of
unity ζk. If ρτρ−1 is a non-trivial power of τ , this leads to another (though isomorphic)
linear subvariety. We conclude that ρ indeed commutes with τ . □

The aim of the following paragraphs is to rewrite the evaluation Lemma 3.10 in our
context in order to find the shape of the formula in Corollary 1.5. We elaborate on basic
definitions to distinguish notions of isomorphisms and automorphisms. The underlying
graph of an enhanced (k-)level graph can be written as a tuple Γ = (V,H,L, a : H ∪ L→
V, i : H → H), where V , H and L are the sets of vertices, half-edges and legs, a is
the attachment map and i is the fixpoint free involution that specifies the edges. An
isomorphism of graphs σ : Γ → Γ′ is a pair of bijections σ = (σV : V → V ′, σH : H → H ′)
that preserve the attachment of the half-edges and legs and the the identification of the
half-edges to edges, i.e. the diagrams

(62)
H ∪ L V H H

H ′ ∪ L V ′ H ′ H ′

a

σH∪idL σV

i

σH σH

a′ i′

commute. If the graph is an enhanced level graph, we additionally ask that σ preserves the
enhancements and level structure. In the presence of a deck transformation τ , we moreover
ask that σ commutes with τ .

In the sequel we will encounter isomorphisms of graphs with the same underlying
sets of vertices and half-edges. We emphasize that in this case an isomorphism σ is an
automorphism if and only if it preserves the maps a and i, i.e. if

(63) σ−1
V ◦ a ◦ (σH ∪ idL) = a and σ−1

H ◦ i ◦ σH = i.

We now define the group of level-wise half-edge permutations compatible with the
cycles of τ , i.e., we let

G := Gπ =

−L∏

i=0

G(Hk(π[i])),

where G(Hk(π[i])) is the group G from (58) applied to the i-th level stratum. An element
of the group G is a permutation g : H ∪ L → H ∪ L and acts on a graph Γ̂ via g · Γ̂ =
(V,H,L, a ◦ g, i).

There is a natural action of the group G on the set of all (possibly disconnected) graphs
with the same set of underlying vertices as Γ̂mp. We denote by

(64) StabG(Γ̂) := {g ∈ G : gΓ̂ ∼= Γ̂}
the stabilizer. Note that this is in general not a group, as it is not the stabilizer of an
element but of an isomorphism class. We also denote by StabG(H(π)) the set of elements
of G which fix the adjacency data (or equivalently the 1-level graphs) of the level-wise
linear manifolds H(π[i]), i.e., elements which permute vertices with the same signature and
permute legs of the same order on the same vertex.

Lemma 7.5. We have

|AutHk
(Γ̂)| · | StabG(Γ̂)| = |Aut(Γ)|

∏

e∈E(Γ)

gcd(κe, k) · | StabG(H(π))|

Proof. Fix a cover Γ̂ → Γ. We may assume that the vertices of Γ are {1, . . . , vΓ}, the
legs are {1, . . . , n} and the half-edges are {1±, . . . , h±Γ } with the convention that i(h±) =
h∓. For Γ̂, we may assume that the preimages of vertex v are (v, 1), . . . , (v, pv) such that
τ((v, q)) = (v, q + 1), where equality in the second entry is to be read mod pv. Similarly,
we index the legs of Γ̂ by tuples (m, 1), . . . , (m, pm) for m = 1, . . . , n, and the half-edges by
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tuples (h±, 1), . . . , (h±, ph±) for h± = 1, . . . , h±Γ , again such that (h+, q) and (h−, q) form
an edge.

We consider the group P of pairs of permutations σ = (σV , σH) of the vertices and
half-edges of Γ̂ that are of the following form: There exists a γ = (γV , γH) ∈ Aut(Γ),
integers λv ∈ Z/pvZ for any v ∈ V (Γ) and integers µh± ∈ Z/ph±Z for any h± ∈ E(Γ) such
that

σV = {(v, q) 7→ (γV (v), q + λv)} and σH = {(h±, q) 7→ (γH(h
±), q + µh±)}.

We let this group act on Γ̂ via σ · Γ̂ = (V,H,L, σ−1
V ◦ a ◦ (σH ∪ idL), i). An element σ ∈ P

acts always as an isomorphism since the diagrams (62) commute. If we denote by e the
edge given by h±, we have ph± = gcd(κe, k). Hence the group P has cardinality

|P| = |Aut(Γ)| ·
∏

e∈E(Γ)

gcd(κe, k) ·
∏

v∈V (Γ)

pv.

Recall that the group G is a product cyclic groups and thus abelian. The stabilizer
StabG(Hk(π)) has a subgroup Stabf where only half-edges and legs attached to the same
vertex are permuted (the superscript f is for fixed), i.e. the elements g ∈ Stabf are exactly
those for which a ◦ g = a. The quotient Stabp := StabG(Hk(π))/ Stab

f can be identified
with those elements of G that permute legs and half-edges in such a way that whenever a
leg or half-edge attached to a vertex v1 is moved to another vertex v2, then all the legs and
half-edges attached to v1 are moved to v2. So we may alternatively identify Stabp with
τ -invariant permutations of the vertices of Γ̂ (hence the superscript p for permutation).
This yields |Stabp | =∏v∈V (Γ) pv.

The group P comes with a commutative triangle

AutH(Γ̂) P

Aut(Γ)

where the vertical map is the forgetful map, the diagonal map is the quotient by G-map and
the horizontal map is natural injection. Since we computed above |P|, we know that the
kernel of the surjective map P → Aut(Γ) has cardinality

∏
e∈E(Γ) gcd(κe, k) ·

∏
v∈V (Γ) pv.

Note now that the group Stabf acts on the set StabG(Γ̂) and we denote by StabG(Γ̂)/ Stabf

the space of orbits. We are done if we can identify elements of StabG(Γ̂)/ Stabf with ele-
ments of the cosets in P/AutH(Γ̂).

For this identification, first consider g ∈ StabG(Γ̂). By definition, there exists an
isomorphism σ(g) : g ·Γ̂ → Γ̂ such that g ·Γ̂ = σ(g)(Γ̂). This induces a map σ : StabG(Γ̂) →
P. Note that Stabf is a subgroup of AutH(Γ̂). If we had chosen a different representative
g′ in the orbit g · Stabf , the resulting element σ(g′) ∈ P would differ by an element of
AutH(Γ̂). Hence σ induces a well-defined map StabG(Γ̂)/ Stabf → P/AutH(Γ̂). We now
construct an inverse map for σ. For any ρ ∈ P, we need to find an element g ∈ G such
that σ(g) = ρ, i.e. such that g · Γ̂ = ρ(Γ̂). This implies that g must satisfy the equation

a ◦ g = ρ−1
V ◦ a ◦ (ρH ∪ idL),

which determines the element g up to the action of Stabf . The resulting g does not depend
on the choice of a representative of the coset ρ/AutH(Γ̂) because of (63). □

We let now

(65) S(π) =
|G|
|G| ·

| StabG(Γ̂)|
| StabG(Γ̂)|

=
| StabG/G(Γ̂)|∏
e gcd(κe, k)

2

where the stabilizers are defined in a way analogous to (64).

Remark 7.6. The ratio S(π) = 1 for many coverings of graphs π : Γ̂ → Γ, e.g. when
all vertices of Γ have exactly one preimage in Γ̂. In this case G/G only permutes half-
edges adjacent to one vertex, and this always stabilizes the graph. Thus S(π) = 1, as
|G/G| = ∏e gcd(κe, k)

2. More generally S(π) = 1 if each edge of Γ is adjacent to at least
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Figure 2. A covering of graphs π : Γ̂ → Γ in Ξ2M3,1(8) with non-
trivial S(π).

one vertex which has exactly one preimage in Γ̂. In this case it is straightforward to verify
that the obvious generators of G/G are stabilizing the graph.

If there are vertices of Γ with more than one pre-image in Γ̂, then S(π) is in general
non-trivial. Consider for example the covering of graphs π depicted in Figure 2, for which
S(π) = 1

2 .

As a consequence of the degree computation in Lemma 7.4 and Lemma 7.5, we can write
an evaluation lemma for k-differentials analogous to Lemma 3.10. We give two versions,
for Hk and Q respectively.

Lemma 7.7. Let (π : Γ̂mp → Γ) ∈ LGL(Hmp
k ) and Γ̂ a marked version of Γ̂mp. Suppose

that απ ∈ CH0(D
Hk
π ) and βπ ∈ CH0(D

Q
π ) are top degree classes and that

c∗παπ = p∗π

−L∏

i=0

αi and c∗πd
∗
πβπ = p∗πd

∗
π

−L∏

i=0

βi

for some αi and βi. Then
∫

D
Hk
π

απ = S(π) ·
∏
e∈E(Γ) κe

|Aut(Γ)| ·∏e∈E(Γ) gcd(κe, k)
2 · ℓ

Γ̂

·
−L∏

i=0

∫

Hk(π[i])
αi

and
∫

DQ
π

βπ = S(π) ·
∏
e∈E(Γ) κe

kL · |Aut(Γ)| · ℓ
Γ̂

·
−L∏

i=0

∫

Q(π[i])
βi.

Proof. In order to show the first statement, we first apply Lemma 7.4 and note that
the map pπ is not surjective in general. It is now enough to check that the number of of
adjacency data appearing in Hk(π) is |G|/| StabG

(
Hk(π)

)
|, while the one appearing in

the image of pπ is |G|/| StabG Γ̂|. We finally use Lemma 7.5 to rewrite the prefactor. For
the second statement, we additionally apply Lemma 7.2 and Lemma 7.3. □

We are finally ready to prove Corollary 1.5.

Proof of Corollary 1.5. The orbifold Euler characteristics of Q = PΩkMg,n(µ)
and Hk are related by

χ(PΩkMg,n(µ)) =
1

deg(d)
· χ(Hk).

We apply the general Euler characteristic formula in the form (55) to Hk and group the
level graphs Γ̂ ∈ LGL(Hk) by those with the same graph Γ̂mp that is marked partially.
Since the integrals do not depend on the marking, we obtain

χ(Q) =
k

|G|(−1)d
d∑

L=0

∑

(π:Γ̂mp→Γ)∈LGL(Hmp
k )

N⊤
π · ℓ

Γ̂
·
∫

D
Hk
π

0∏

i=−L
(ξ

[i]

Γ̂,Hk
)d

[i]
Γ

where we used the notation that Γ̂ is a fully marked representative of Γ̂mp. Thanks to
Lemma 3.9 we can apply Lemma 7.7 and convert the integral over DHk

π into a ξ-integral
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over the product of Hk(π[i]). We hence obtain

χ(PΩkMg,n(µ))

=
k

|G| · (−1)d
d∑

L=0

∑

(π:Γ̂mp→Γ)∈LGL(Hmp
k )

S(π)

∏
e∈E(Γ) κe ·N⊤

π

|Aut(Γ)| ·∏e gcd(κe, k)
2
·
−L∏

i=0

∫

Hk(π[i])
ξd

[i]
π

=

(−1

k

)d d∑

L=0

∑

(π:Γ̂mp→Γ)∈LGL(Q)

S(π) ·
∏
e∈E(Γ) κe ·N⊤

π

|Aut(Γ)| ·
−L∏

i=0

∫

Q(π[i])
ζd

[i]
π .

For the second equality, we used that

(66) d∗ζ = kξ , and hence d∗ξ =
deg(d)

k
ζ

for any level stratum, together with the dimension statement of Proposition 3.4. The final
result is what we claimed in Corollary 1.5. □

7.4. Evaluating tautological classes. In this section we explain how to evaluate
any top degree class of the form

(67) β := ζp0ψp11 · · ·ψpnn · · · [DQ
π1 ] · · · [DQ

πw ] ∈ CH0(Q)

for any generalized stratum Q of k-differentials. First, we show how to transform the
previous class into the form

β =
∑

i

ψ
qi,1
1 · · ·ψqi,n1 [DQ

σi ].

Then by Lemma 7.7, we can write every summand of β as a product of ψ-classes evaluated
on generalized strata of k-differentials. We finally will explain how to evaluate such classes.

Let us start with the first task. The relations in the Chow ring of a general linear
submanifold we obtained in Section 4 immediately apply to the covering Hk and we want
to restate them in the Chow ring of the generalized stratum Q of k-differentials. Let i be
the index of a marked point in Q and (i, j) be the index of a preimage of this point in
Hk. Moreover, let mi denote the order of the k-differential at the i-th marked point, and
let m̂i,j denote the order of the abelian covering at the (i, j)-th marked point. Then the
relation

(68) ψi,j =
gcd(mi, k)

k
· d∗ψi

holds, see for example [SZ20, Lemma 3.9]. Using the relation

m̂i,j + 1 = (mi + k)/ gcd(mi, k)

and applying push-pull we obtain

(69) (m̂i,j + 1)d∗ψi,j =
deg(d)

k
(mi + k)ψi.

We can now write the analogue of Proposition 4.1 for the first Chern class ζ ∈ CH1(Q)
of the tautological line bundle on the stratum of k-differentials.

Corollary 7.8. The class ζ can be expressed as

ζ = (mi + k)ψi −
∑

(π:Γ̂mp→Γ)∈iLG1(Q)

kℓ
Γ̂mp

[DQ
π ]

= (mi + k)ψi −
∑

(π:Γ̂mp→Γ)∈iLG1(Q)

S(π)

∏
e∈E(Γ) κe

|Aut(Γ)| clπ,∗ p
∗
πd

∗
π[Q(π)]

where iLG1(Q) are covers of two-level graphs with the leg i on lower level and clπ =
iπ ◦ dπ ◦ cπ is the clutching morphism analogous to (38).

Proof. The first equation is obtained by pushing forward the equation in Proposi-
tion 4.1 along d and using the relations (66) and (69). The second equation is obtained
from the first by Lemma 7.7. □



7. STRATA OF k-DIFFERENTIALS 63

Remark 7.9. The expression given by the second line of Corollary 7.8 reproves the
formula of [Sau21, Theorem 3.12] and computes explicitly the coefficients appearing in
loc.cit., which were computed only for special two-level graphs.

To state the formula for the normal bundle, let

L⊤
π = ODQ

π

( ∑

(σ:∆̂mp→∆)∈LG2(Q)
δ2(σ)=π

ℓ
∆̂,1
DH
σ

)

denote the top level correction bundle.

Corollary 7.10. Suppose that Dπ is a divisor in Q corresponding to a covering of
graphs (π : Γ̂mp → Γ) ∈ LG1(Q). Then the first Chern class of the normal bundle is given
by

c1(Nπ) =
1

ℓ
Γ̂

(
− 1

k
ζ⊤π − c1(L⊤

π ) +
1

k
ζ⊥π

)
∈ CH1(DQ

π ),

where ζ⊤π , resp. ζ⊥π , is the first Chern class of the line bundle generated by the top, resp.
bottom, level multi-scale component.

Proof. We can pull-back the right and left hand sides of the relation via d. Using the
expression (66), we see that the pulled-back relation holds since it agrees with the one of
Proposition 4.4. Since d is a quasi-finite proper unramified map, we are done. The same
argument, together with Proposition 4.5, works for the second statement about horizontal
divisors. □

Using the same arguments as [CMZ22, Proposition 8.1], it is possible to show an excess
intersection formula in this context of k-differentials. We will not explicitly do this here
since the methods and the result are exactly parallel to the original ones for Abelian
differentials. Using the previous ingredients we can then reduce the computation of the
class β in (67) to the computation of a top-degree product of ψ-classes

α := ψp11 · · ·ψpnn ∈ CH0(Q)

on a generalized stratum. If we can describe the class of a generalized stratum in its
corresponding moduli space of pointed curves, then we are done since it is possible to
compute top-degree tautological classes on the moduli space of curves, e.g. with the sage
package admcycles, see [DSZ21].

One of the advantages in comparison to the situation with general linear submani-
folds (as explained in Section 4) is that the fundamental classes of strata of primitive
k-differentials PΞkMg,n(µ) are known in Mg,n, see [BHPSS20].

More generally, if Q parameterizes k-differentials, on a curve with connected τ -quotient,
which are d-th powers of primitive k′ := k/d-differentials, we can compare ψ-classes on Q
to ψ-classes on the stratum of primitive k′ differentials PΞk′Mg,n(µ/d) via the diagram

Hmp
k (µ) Hmp

k′ (µ/d)

Q PΞk′Mg,n(µ/d)

ϕ

d1 d2

where the map ϕ sends the disconnected curve (
⋃d
i=1 X̂i,

⋃d
i=1 ẑi,

⋃d
i=1 ωi, τ) to (X̂1, z1, ω1, τ

d|
X̂1

).
The map ϕ has degree deg(ϕ) = dn−1, since up to the action of τ there are such many ways
to distribute the marked points ẑ onto the connected components of X̂. Using deg(d1) =

1
k

and deg(d2) =
1
k′ we can evaluate α as

∫

Q
α = dn

∫

PΞk′Mg,n(µ/d)
ψp11 · · ·ψpnn .

If Q parameterizes primitive differentials on disconnected curves, then
∫
Q α = 0 since

we go down in dimension by looking at the image of the projection to the moduli spaces
of curves.
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It remains to explain how to evaluate intersection numbers in the presence of residue
conditions. In addition to the space R defined starting from a τ -invariant partition λR we
consider the linear subspace

R :=

{
(ri)i∈Hp ∈ CHp :

∑
i∈A−1(X̂′) ri = 0 for all X̂ ′ ∈ π0(X̂)

ri = ζ−1
k rτ(i) for all i ∈ Hp

}

cut out by the residue theorem on each component and the deck transformation. Recall
that λR is τ -invariant. Let λR0 denote a subset of λR obtained by removing one element,
and let R0 denote the new set of residue conditions. For ease of notation let for now
HR
k := PΩH[R,A]

k and HR0
k := PΩH[R0,A]

k . If R ∩R = R ∩R0 then HR
k = HR0

k . So assume
that R∩R ̸= R∩R0, in which case HR

k ⊊ HR0
k is a divisor since removing one element from

λR forces to remove its τ -orbit. For a divisor DHR
k

π ⊆ HR
k , we denote by R⊤ the residue

conditions induced by R on the top-level stratum Hk(π[0]). It can be simply computed by

discarding from the parts of λR all indices of legs that go to lower level in DHR
k

π . Moreover,
we denote be R⊤ the linear subspace belonging to the top-level stratum of π that is cut
out by the residue theorem and the deck transformation.

Proposition 7.11. The class of HR
k compares inside the Chow ring of HR0

k to the
class ξ by the formula

[HR
k ] = −ξ −

∑

(π:Γ̂mp→Γ)∈LGR
1 (HR0

k )

ℓ
Γ̂
[D

HR0
k

π ]−
∑

(π:Γ̂mp→Γ)∈LG1,R(HR0
k )

ℓ
Γ̂
[D

HR0
k

π ],

where LGR
1 (H

R0

k ) are the two-level graphs with R⊤∩R⊤ = R⊤∩R⊤
0 , i.e., where the GRC on

top level induced by R does no longer introduce an extra condition, and where LG1,R(HR0

k )
are the two-level graphs where all the legs involved in the condition forming R \R0 go to
lower level.

Proof. The formula is obtained by intersecting the formula in [CMZ22, Proposi-
tion 8.3] with HR0

k and thereby using the transversality statement from Proposition 3.2. □
By pushing down this relation along d and applying relation (66) we obtain a similar

relation for a generalized stratum of k-differentials QR with residue conditions R.

Corollary 7.12. The class of QR compares inside the Chow ring of QR0 to the class
ζ by the formula

[QR
] = −1

k
ζ −

∑

(π:Γ̂mp→Γ)∈LGR
1 (QR0 )

ℓ
Γ̂
[DQR0

π ]−
∑

(π:Γ̂mp→Γ)∈LG1,R(QR0 )

ℓ
Γ̂
[DQR0

π ],

where LGR
1 (Q

R0) are the two-level graphs with R⊤∩R⊤ = R⊤∩R⊤
0 , i.e. where the GRC on

top level induced by R does no longer introduce an extra condition and where LG1,R(QR0)
are the two-level graphs where all the legs involved in the condition forming R \R0 go to
lower level.

The last expression allows us, in the presence of residue conditions, to reduce to the
previous situations without residue conditions when we want to evaluate α.

7.5. Values and cross-checks. In this section we provide in Table 2 and Table 3
some Euler characteristics for strata of k-differentials. We abbreviate χk(µ) := χ(PΩkMg,n(µ)).
Moreover we provide several cross-checks for our values.

The second power of the projectivized Hodge bundle over M2 is the union of the
strata of quadratic differentials of type (4), (2, 2), (2, 12) and (14), if all of them are taken
with unmarked zeros. (Note that there are no quadratic differentials of type (3, 1).) All
quadratic differentials of type (4) are second powers of abelian differentials of type (2).
The stratum (2, 2) contains both primitive quadratic differentials and second powers of
abelian differentials of type (1, 1). From Table 2 and [CMZ22, Table 1] we read off that

χ1(2) +
1

2
χ2(2, 2) +

1

2
χ1(1, 1) +

1

2
χ2(2, 1

2) +
1

4!
χ2(1

4) = − 1

80
= χ(P2)χ(M2).
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µ (2, 2) (2, 12) (14) (5,−1) (4, 1,−1)

χ2(µ) −1
8

1
5 −1 − 7

15
6
5

µ (3, 2,−1) (3, 12,−1) (22, 1,−1) (2, 13,−1) (15,−1)

χ2(µ)
5
3 −5 −6 26 −147

Table 2. Euler characteristics of the strata of quadratic differentials in
genus 2 with at most one simple pole

Similarly, one checks for the third power of the projectivized Hodge bundle over M2 that
the numbers in provided in Table 3 add up to − 1

48 = χ(P4)χ(M2).

µ (6) (5, 1) (4, 2) (3, 3) (4, 12) (3, 2, 1)

χ3(µ)
1
3 −4

5 −9
8 −4

3
16
5 4

µ (23) (3, 13) (22, 12) (2, 14) (16)

χ3(µ)
41
10 −16 −52

3 90 −567

Table 3. Euler characteristics of the strata of holomorphic 3-differentials
in genus 2

Now consider the second power of the projectivized Hodge bundle twisted by the uni-
versal section over M2,1. It decomposes into the unordered strata (4), (5,−1), (4, 1,−1),
(3, 2,−1), (2, 12), (3, 12,−1), (22, 1,−1), (2, 13,−1), (15,−1), (4, 0), (22, 0), (2, 12, 0), (14, 0),
the ordered stratum (22), (2, 12) (since the zero at the unique marked point is distinguished)
and the partially ordered stratum (14). The stratum (2, 12) appears two times in the list:
the first time the unique marked point is the zero of order 2, the second time it is one of
the simple zeros. On the stratum (14) one of the simple zeros is distinguished, while the
others may be interchanged. Note that χk(m1, . . . ,mn, 0) = (2− 2g − n)χk(m1, . . . ,mn).
The contributions in Table 2 and [CMZ22, Table 1] add up to 1

30 = χ(P3)χ(M2,1).

8. Ball quotients

The goal of this section is to prove Theorem 1.7, which gives an independent proof of
the Deligne-Mostow-Thurston construction ([DM86], [Thu98]) of ball quotients via cyclic
coverings. For this proof of concept we consider the special case of surfaces, i.e. lattices in
PU(1, 2).

We first prove a criterion for showing that a two dimensional smooth Deligne-Mumford
stack is a ball quotient via the Bogomolov-Miyaoka-Yau equality. Even though such a
criterion exists in many contexts, typically pairs of a variety and a Q-divisor with various
hypothesis on the singularities a priori allowed, see for example [GKPT19]; [GT22b], we
found no criterion for stacks in the literature. Only the inequality was proven in [CT20]
and only in the compact case.

We then investigate the special two dimensional strata of k-differentials of genus zero
considered in Deligne-Mostow-Thurston, compute all the relevant intersection numbers and
construct, via a contraction of some specific divisor, the smooth surface stack which we
finally show to be a ball quotient.

8.1. Ball quotient criterion. We provide a version of the Bogomolov-Miyaoka-Yau
inequality for stacks in the surface case, based on [KNS89]. Singularity terminology and
basics about the minimal model program can be found e.g. in [KM98].
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Proposition 8.1. Suppose that B is a smooth Deligne-Mumford stack of dimension
2 with trivial isotropy group at the generic point and let D1 be a normal crossing divisor.
Moreover, suppose that KB(logD1)

2 > 0 and that KB(logD1) intersects positively any
curve not contained in D1. Then the Miyaoka-Yau inequality

(70) c21(KB(logD1)) ≤ 3c2(KB(logD1))

holds, with equality if and only if B = B \ D1 is a ball quotient, i.e. there is a cofinite
lattice Γ ∈ PU(1, n) such that B = [B2/Γ] as quotient stack, where B2 = {(z1, z2) ∈ C2 :
|z1|2 + |z2|2 < 1} is the 2-ball.

Proof. Let D be the divisor defined as D1 together with the sum D2 of the divisors
Di

2 with non-trivial isotropy groups of order bi. Let π : B → B be the map to the coarse
space and let D1 = π(D1), D2 =

∑
(1− 1/bi)π(Di

2) and D = D1 +D2.
We start by assuming that the pair (B,D) is log-canonical and the pair (B,D2) is

log-terminal. We will show that this assumptions holds in our situation at the end of the
proof.

Let B′ be a log-minimal model given by contracting all the log-exceptional curves
in D1, i.e., contracting all irreducible curves C ⊆ D1 with the properties C2 < 0 and
(c1(KB) + [D1] + [D2]) · C ≤ 0, and let D′

i be the image of Di, for i = 1, 2. Then

KB(logD1) +D2 = π∗(K
B

′(logD′
1) +D′

2).

Moreover the log-canonical bundle satisfies

(71) KB(logD1) = π∗(KB(logD1) +D2) .

The fact that the support of the log-exceptional curves is in D1, together with (71), implies
that K

B
′ +D′

1 +D′
2 is numerically ample. By the assumption above on the singularities

we know that (B,D) is log-canonical. Hence we are in the situation of applying [KNS89,
Theorem 12].

As a consequence of (71) we know that c21(KB(logD1)) coincides with the left hand
side of the Miyaoka-Yau inequality of [KNS89, Theorem 12] applied to B′ with boundary
divisor D′

1 +D′
2.

Moreover, by the Gauss-Bonnet theorem for DM-stacks (see e.g. [CMZ22, Proposi-
tion 2.1]) we can also identify c2(KB(logD1)) with the right hand side of the inequality of
[KNS89, Theorem 12] applied to B′ with boundary divisor D′

1+D
′
2, up to non-log-terminal

singularities (similarly as it was done in [CT20, Section 3.2]). By the assumption above,
the pair (B,D2) is log-terminal and so the previous identification of the right hand side of
[KNS89, Theorem 12] with c2(KB(logD)) is true without corrections.

This shows inequality (70) and that in the case of equality B′ \D′
1
∼= B \D1 is a ball

quotient, i.e. B \D1
∼= B2/Γ. Moreover, in this case, the divisors Di

2 are the branch loci
of π with branch indices bi.

Since B\D1 is the coarse space associated both to B\D1 and to [B2/Γ], this implies that
these two DM stacks have to differ by a composition of root constructions along divisors
(see e.g. [CT20, Section 3.1]). But since the branch indices of Di

2 can be identified with the
isotropy groups of the corresponding divisors in [B2/Γ], and since they coincide with the
isotropy groups of the corresponding divisor B \D1, we can identify B \D1 with [B2/Γ],
as non-trivial root constructions would have changed the size of such isotropy groups.

We are finally left to show the assumption on the singularities. First, there exists a
resolution B̃ of B where the proper transform D̃ of D is a normal crossing divisor and the
exceptional divisors Ei are log-exceptional, i.e. E2

i < 0 and (c1(KB̃
)+ [D̃1]) · Ei ≤ 0. Indeed

such a resolution can be obtained by blowing-up smooth points of the DM stack, where
the numerical conditions can be checked on an étale chart just as for the usual blow-up of
a smooth point of a variety.

In this situation the corresponding exceptional divisors Ei for the coarse space resolu-
tion B̃ of B are also log-exceptional, i.e., (c1(KB̃

)+[D̃1]+ [D̃2]) ·Ei ≤ 0 and E2
i ≤ 0. Since

contracting log-exceptional divisors does not change the singularity type, this implies that
to show that (B,D1 + D2) is log-canonical and (B,D2) is log-terminal, it is enough to
show that (B̃, D̃1 + D̃2) is log-canonical and (B̃, D̃2) is log-terminal.
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DΓ45 =




−a1
−a3

−a2

−a5−a4



DL12 =




−a1 −a2

−a5−a4

−a3



D12Λ45 =




−a3

−a2−a1 −a5−a4



,

Figure 3. Level graphs of boundary divisors for strata ΩM0,5(a1, . . . , a5)

In order to do this, we observe that in general since (B̃, D̃) is a smooth DM stack
with normal crossing divisor, then (B̃, D̃1 +

∑
i D̃

i
2) is log-canonical. Details are given in

[CCM22, Theorem 5.1], using [HH09, Proposition A.13] . Then we can use that B̃ has
at worst klt singularities (since it is a surface with quotient singularities and by [KM98,
Prop. 4.18]). It is easy to show that this implies that (B̃, D̃1 +

∑
i tiD̃

i
2) has log-canonical

singularities and (B̃,
∑

i tiD̃
i
2) has log-terminal singularities, for any 0 ≤ ti < 1. The

desired statement follows then by setting ti = 1− 1/bi. □
8.2. Strata of genus zero satisfying (INT). Let (a1, . . . , a5) be positive integers

such that gcd(a1, . . . , a5, k) = 1 with
5∑

i=1

ai = 2k, and for all i ̸= j
(
1− ai

k
− aj
k

)−1
∈ Z if ai + aj < k.

The first condition states that µ = (−a1, . . . ,−a5) is a type of a stratum of k-differentials
on 5-pointed rational lines and that the intersection form on eigenspace giving period co-
ordinates has the desired signature (1, 2). Imposing the gcd-condition lets us work without
loss of generality with primitive k-differentials. The last condition is the condition (INT)
of [DM86]. For Deligne-Mostow this condition is key to ensure that the period map ex-
tends as an étale map over all boundary divisors. Thurston [Thu98] uses this condition
to show that his cone manifolds are indeed orbifolds. Mostow completed in [Mos88] the
g = 0 picture by showing that up to the variant ΣINT from [Mos86] these are the only ball
quotient surfaces uniformized by the VHS of a cyclic cover of 5-punctured projective line.
We recall from [DM86, Section 14] that there are exactly 27 five-tuples satisfying INT, and
all of them satisfy in fact the integrality condition INT for all i ̸= j with ai + ak ̸= k.

For us the condition INT has the most important consequence that the enhancements
κ̂e of the abelian covers of the level graphs are all one. This implies that ghost groups of
all strata in this section are trivial. However the condition INT also enters at other places
of the following computations of automorphism groups and intersection numbers.

In the sequel we will use the notation Q = ΩkM0,5(a1, . . . , a5). We now list the
boundary divisors without horizontal edges. A short case inspection shows that the only
possibilities are the level graphs Γ = Γij , see Figure 3 left, and L = Lij , see Figure 3 middle,
that yield the ’dumbbell’ divisors with two or three legs on bottom level under the condition
that that the ai’s on lower level add up to less than k, and the level graphs Λ = i,jΛp,q that
yield ’cherry’ divisors, see Figure 3 right (V -shaped graphs are ruled out by

∑
ai = 2k).

We define κi,j := k − (ai + aj), which is both the k-enhancement of the single edge of Γi,j
and the negative of the k-enhancement of the single edge of Li,j .

Lemma 8.2. Each of the graphs Γi,j, Li,j and i,jΛp,q is the codomain of an unique
covering of graphs π ∈ LG1(Q) and for each such covering S(π) = 1.

Proof. We will give the argument for Γ1,2, the argument for the other graphs is
similar. The number of preimages of the vertices of Γ1,2 is gcd(k, a1, a2) for the bottom
level and gcd(k, a3, a4, a5) for the top level, while the edge has κ1,2 preimages.

We claim that for any cover of graphs π : Γ̂mp → Γ1,2 the domain is connected. In fact,
suppose there are k′ components. This subdivides the top level and the bottom level into
subset of equal size. This implies k′ | gcd(k, a1, a2) and k′ | gcd(k, a3, a4, a5), and hence
k′ = 1 because of gcd(k, a1, . . . , a5) = 1.

To construct such a cover of graphs it suffices to prescribe one edge of Γ̂mp, the other
edges are then forced, since τ -acts transitively on edges. Since the vertices on top and
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bottom level are indistinguishable (forming each one orbit τ -orbit) the resulting graph is
independent of the choice of the first edge. In particular Γ̂mp is unique and S(π) = 1. □

Next we compute (self)-intersection numbers of boundary divisors.

Lemma 8.3. The self-intersection numbers of the boundary divisors of Q are

[DQ
Γ ]

2 = −
κ2i,j
k2

−
∑

p<q, ap+aq<k
p,q /∈{i,j}

κi,jκp,q
k2

,

[DQ
L ]

2 = −
κ2i,j
k2

and [DQ
Λ ]

2 = −κi,jκp,q
k2

.

The mutual intersection numbers are

[DQ
Γ ] · [DQ

L ] =





|κi,jκp,q|
k2

if Γ ∩ L ̸= ∅
0 otherwise

[DQ
Γ ] · [DQ

Λ ] =

{κi,jκp,q
k2

if Γ ∩ Λ ̸= ∅
0 otherwise.

Proof. For the self-intersection numbers consider the formula in Corollary 7.10. As
remarked above, the condition (INT) implies that all enhancements of the abelian coverings
are 1 and hence the same is true for the ℓ̂-factor in the corollary. Let ∆p,q

i,j denote the
slanted cherry with points i, j on bottom level and points p, q on middle level. Together
with Corollary 7.8 and Corollary 7.10 we obtain

[DQ
Γi,j

]2 =
−1

k
ζ⊤ − c1(L⊤) = −

κ2i,j
k2

∫

M0,4

ψ1 −
∑

p<q, ap+aq<k
p,q /∈{i,j}

[DQ
∆p,q

i,j
].

The degree of the slanted cherry is

(72)
∫

Q
[DQ

∆p,q
i,j
] =

κi,jκp,q
k2

by applying the second formula in Lemma 7.7 and Lemma 8.2. The other numbers are
obtained similarly. □

8.3. The contracted spaces. We want to construct the compactified ball quotient
candidate B from Q by contracting the all the divisorsDQ

L andDQ
Λ . This is in fact possible:

Lemma 8.4. The divisors DQ
L and DQ

Λ of Q are contractible. The DM-stack B obtained
from Q by contracting those divisors is smooth. If DB

L̃
and DB

Λ̃
denote the points in B

obtained by contracting the corresponding divisors in Q then
∫

B
[DB

L̃
] =

κ2i,j
k2

and
∫

B
[DB

Λ̃
] =

κi,jκp,q
k2

.

Proof. For each of the two types of boundary divisors DQ
L and DQ

Λ , we will write a
neighborhood U as quotient stack [Ũ/G] with Ũ smooth, and show that the preimage of
the boundary divisor in Ũ is a P1 with self-intersection number −1. Castelnuovo’s criterion
then implies that this curve is smoothly contractible. The order of G will be k2

κ2i,j
for DQ

L

and k2

κi,jκp,q
for DQ

Λ . After contracting the covering P1, the quotient is a point with isotropy
group G and the claim on the degrees follows.

We first consider a cherry divisor DQ
Λ . Let DHmp

k
Λ denote its preimage in Hmp

k . As all

the abelian enhancements of the cover of i,jΛp,q are one, the divisor DHmp
k

Λ is irreducible, in
fact isomorphic to P1 with coordinates the scales of the differential forms on the cherries.

We compute the order of the automorphism group of any point (X̂, ω̂) in DHmp
k

Λ . Sup-
pose first that (X̂, ω̂) is generic. The irreducible components of X̂ group into three τ -orbits:
The components X̂⊤ corresponding to the top-level vertex of i,jΛp,q, the components X̂⊥

i,j
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corresponding to the vertex with marked points i, j, and the components X̂⊥
p,q correspond-

ing to the vertex with marked points p, q. Observe that there are κi,j edges between X̂⊤

and X̂⊥
i,j and κp,q edges between X̂⊤ and X̂⊥

p,q. The restriction of τ to each of the three
(not necessarily connected) curves X̂⊤, X̂⊥

i,j , X̂
⊥
p,q has order k. Given an automorphism

of the complete curve X̂ its restrictions to X̂⊤ and X̂⊥
i,j need to agree on the κi,j nodes,

and the analogue argument applies to X̂⊥
p,q. Hence after fixing the automorphism on the

top-level curve X̂⊤, there are k2

κi,jκp,q
possible choices for the automorphism on the two

bottom-level curves left. Together with the k choices for the top-level automorphism, we
obtain

|Aut(X̂, ω̂)| =
k3

κi,jκp,q
.

As the non-representable map Hmp
k → Q has degree 1

k , this yields that the generic point
of DQ

Λ has an isotropy group of size r := k2

κi,jκp,q
. Exactly the same argument also applies

to the two boundary points of DQ
Λ corresponding to the slanted cherries.

The automorphism group is thus generated by multiplying the transversal t-parameter
(compare Section 3.4) by an r-th root of unity in local charts covering all of i,jΛp,q. We may
thus take for U any tubular neighborhood ofDQ

Λ and take a global cover Ũ of degree k2

κi,jκp,q
.

Comparing with the degree of the normal bundle in Lemma 8.3 shows that preimage of DQ
Λ

in Ũ is a (−1)-curve.
We now consider a dumbbell divisor DQ

L . As above one checks that the isotropy group
at the generic point of DQ

L is of order k
|κi,j | and that the isotropy groups of the boundary

points of the divisor have a quotient group of that order. Consider a tubular neighborhood
of DQ

L and a degree k
|κi,j | cover that trivializes the isotropy group at the generic point. Let

D̃Q
L be the preimage of the boundary divisor in this cover.

Let p, q, r denote the three marked points on the bottom level of a point in Li,j .
By applying the above line of arguments again, the three boundary points of D̃Q

L have
cyclic isotropy groups of sizes k

κp,q
, k
κp,r

and k
κq,r

respectively. The triangle group T =

T ( k
κp,q

, k
κp,r

, k
κq,r

) is always spherical, because ai + aj > k implies ap + aq + ar < k and
hence

2− (1− κp,q
k

)− (1− κp,r
k

)− (1− κq,r
k

) = 2− 2
ap + aq + ar

k
> 0.

This implies that the T -cover of D̃Q
L ramified to order k/κp,q along the divisor where {p, q}

have come together etc, trivializes the isotropy groups on the boundary divisor D̃Q
L and

the preimage of D̃Q
L is a P1. More precisely, the isotropy groups of order k/κp,q do not fix

isolated points on the boundary divisor but have one-dimensional stabilizer, the boundary
divisors intersecting D̃Q

L . This implies that the above T -cover actually provides a chart of
a full tubular neighborhood.

It remains to show that |T | = k/|κi,j | in order to conclude with the normal bun-
dle degree from Lemma 8.3 that this P1 is a (−1)-curve. To show this, recall that as
T is spherical, there are only the cases ( k

κp,q
, k
κp,r

, k
κq,r

) = (2, 2, n) for n ∈ N≥2 and
( k
κp,q

, k
κp,r

, k
κq,r

) = (2, 3, n) for n ∈ {3, 4, 5} to consider. In the first case the order of
T (2, 2, n) is 2n, and assuming that k

κp,q
= k

κp,r
= 2, one easily checks that 2 k

κq,r
= k

|κi,j | by
using

∑
i ai = 2k. In the second case the order of T (2, 3, n) is 2 lcm(6, n), and the claimed

equality follows with a similar argument. □

We will now compute the Chern classes of B. Let c : Q → B denote the contraction
map. Let

Γ := {(i, j) : i < j, ai + aj < k} and L := {(i, j) : i < j, ai + aj > k}

be the pairs of integers appearing as indices of the Γi,j and Li,j . Let I = Ipqij denote the
common degeneration of Γij and Lpq, i.e. the three-level graph with points p, q on bottom
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level, i, j on top level and the remaining point on the middle level. Accordingly, we write

Λ := {(i, j, p, q) : i < j, i < p < q, j /∈ {p, q}, ai + aj < k, ap + aq < k} and
I := {(i, j, p, q) : i < j, i < p < q, j /∈ {p, q}, ai + aj > k, ap + aq < k}

for the quadruples of possible indices. Recall that Dhor is the union of all boundary
divisors DHij whose level graph has a horizontal edge, i.e. corresponding to pairs (i, j)
with ai + aj = k. We write

H := {(i, j) : i < j, ai + aj = k}.

We summarize the intersections of the boundary divisors: The cherry DQ
i,jΛp,q

intersects
precisely DQ

Γij
and ΓQ

pq. The divisor DLij intersects precisely the three divisors DQ
Γab

for
any pair (a, b) disjoint from {i, j}. For the divisor DQ

Γij
consider any pair (p, q) of the three

remaining points as {p, q, r}. This gives an intersection with a cherry if ap + aq < k, with
a horizontal divisor if ap + aq = k and with an L-divisor if ap + aq > k. Consequently, the
divisor DQ

Hij
intersects precisely the three divisors DQ

Γab
for any pair (a, b) disjoint from

{i, j}.

Lemma 8.5. The self-intersection numbers of the boundary divisors of B are

[DB
Γi,j

]2 = −
κ2i,j
k2

+
∑

p<q, ap+aq>k
p,q /∈{i,j}

κ2i,j
k2

and [DB
Hi,j

]2 = −1.

The mutual intersection numbers are for {i, j} ∩ {p, q} = ∅ given by

[DB
Γi,j

] · [DB
Γp,q

] =
κi,jκp,q
k2

and [DB
Γi,j

] · [DB
Hp,q

] =
κi,j
k

and for |{i, j, p}| = 3 by

[DB
Γi,j

] · [DB
Γi,p

] =

{κi,jκi,p
k2

if ai + aj + ap < k

0 otherwise.

Proof. We claim that the pull back of [DB
Γi,j

] is given by

c∗[DB
Γi,j

] = [DQ
Γi,j

] +
∑

p<q, ap+aq>k
p,q /∈{i,j}

κi,j
|κp,q|

[DQ
Lp,q

] +
∑

p<q, ap+aq<k
p,q /∈{i,j}

[DQ
i,jΛp,q

].

To determine the coefficients in the above expression, one may intersect the equation
c∗[DB

Γi,j
] = [DQ

Γi,j
] +

∑
p,q lp,q[D

Q
Lp,q

] +
∑

p,q λp,q[D
Q
i,jΛp,q

] with unknown coefficients with
each of the divisors [DQ

Lp,q
] and [DQ

i,jΛp,q
] in turn. The left hand side vanishes by push-pull,

and the intersection numbers on the right hand side are given by Lemma 8.3. The claimed
intersection numbers involving only Γ-divisors follow again by Lemma 8.3.

The pull back of the horizontal divisor is given by c∗[DB
Hi,j

] = [DQ
Hi,j

]. The intersection
number [DB

Γi,j
] · [DB

Hp,q
] = [DQ

Γi,j
] · [DQ

Hp,q
] follows from Lemma 7.7 and Lemma 8.2. Finally

by Proposition 4.5 and (68), the normal bundle of [DQ
Hi,j

] is given by −ψe in CH(DQ
Hi,j

),
where ψe is the ψ-class supported on the half edge of Hi,j that is adjacent to the vertex
with three adjacent marked points. □

Proposition 8.6. The log canonical bundle on B has first Chern class

(73) c1(Ω
1
B
(logDhor)) =

∑

i,j∈Γ
(
k

2κi,j
− 1)[DB

Γi,j
] +

1

2
[DB

hor] inCH1(B)

Its square and the second Chern class are given by

(74) c1(Ω
1
B
(logDhor))

2 = 6− 3
∑

i,j∈Γ

κi,j
k

+ 3
∑

i,j∈L

κ2i,j
k2

+ 3
∑

i,j,p,q∈Λ

κi,jκp,q
k2
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and

(75) c2(Ω
1
B
(logDhor)) = 2−

∑

i,j∈Γ

κi,j
k

+
∑

i,j∈L

κ2i,j
k2

+
∑

i,j,p,q∈Λ

κi,jκp,q
k2

.

respectively.

Proof. To derive (73) from Theorem 1.1 we insert into

c1(Ω
1
Q(logDhor)) =

3

k
· ζ +

∑

L

[DQ
L ] +

∑

Λ

[DQ
Λ ]

that 5ξ −∑(mi + k)ψi is a sum of boundary terms by the relation (7.8). Consider Keel’s
relation

ψi =
1

6

∑

c<d
i ̸∈{c,d}

∆cd +
1

2

∑

a̸=i

∆ia ,

where ∆ij is the boundary divisor in M0,5 where the points (i, j) have come together. We
pull back this relation via the forgetful map π : PΞkM0,5(µ) → M0,5. Since this map is a
root-stack construction and the isotropy groups of the divisors were computed in th proof
of Lemma 8.4, we obtain

π∗∆ab =





1
|κab| [D

Q
Lab

] if a+ b < −k
[DHab

] if a+ b = −k
1
κab

[DQ
Γab

] +
∑

i<j, ai+aj<k
i,j /∈{a,b}

1
κab

[DQ
i,jΛa,b

] if a+ b > −k.

Putting everything together we find in CH1(Q) that

(76)

c1(Ω
1
Q(logDhor)) =

∑

i,j∈Γ
(
k

2κi,j
− 1)[DQ

Γi,j
] +

∑

i,j∈L
(

k

2|κi,j |
− 1)[DQ

Li,j
]

+
∑

i,j,p,q∈Λ
(
k

2κi,j
+

k

2κp,q
− 1)[DQ

i,jΛp,q
] +

1

2
[DQ

hor]

and since the divisors DQ
Li,j

and DQ
i,jΛp,q

are smoothly contractible we deduce (73).
To derive (74) we first note that −1

4 |Γ|+ 1
2 |Λ|+ 5

4 |H|+ 5
4 |L| = 5 and that for (i, j) ∈ L

the relation

1 +
∑

p∈{1,...,5}\{i,j}
{q,r}={1,...,5}\{i,j,p}

(
−κp,q + κp,r

k
+ 2

κp,qκp,r
k2

+
κ2q,r
k2

)
= 4

κ2i,j
k2

holds because of
∑

i ai = 2k. Using those relations and the intersection numbers in Lemma 8.5
squaring (73) yields

c1(Ω
1
B
(logDhor))

2 = 5−
∑

i,j∈Γ

(
2
κi,j
k

+
κ2i,j
k2

)
+ 2

∑

i,j,p,q∈Λ

κi,jκp,q
k2

+ 4
∑

i,j∈L

κ2i,j
k2

and (74) follows because
∑

i ai = 2k implies

(77) 1 +
∑

i,j∈Γ

(
−κi,j

k
+
κ2i,j
k2

)
+

∑

i,j,p,q∈Λ

κi,jκp,q
k2

−
∑

i,j∈L

κ2i,j
k2

= 0 .

The second Chern class can be computed as

c2(Ω
1
B
(logDhor)) = χ(M0,5) +

∑

i,j∈Γ
χ(DB,◦

Γi,j
) +

∑

i,j∈L
χ(DB

L̃i,j
) +

∑

i,j,p,q∈Λ
χ(DB

i,jΛ̃p,q
),

where χ(DB,◦
Γi,j

) = χ(DQ,◦
Γi,j

) =
κi,j
k be Lemma 7.7 and Lemma 8.2 and the Euler character-

istics of the points are given in Lemma 8.4. □
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8.4. The ball quotient certificate. We can finally put together the previous inter-
section numbers and use our ball quotient criterion to show that the contracted spaces are
ball quotients.

Proof of Theorem 1.7. We apply Proposition 8.1 and check that first that the only
log-exceptional curves for c1(Ω1

B
(logDhor)) are the components of Dhor. In fact since the

expression (73) is an effective divisor and since B \ D ∼= M0,5 is affine, we only have to
check positivity of c21 and the intersection with DHab

and DB
Γi,j

. For the DB
Γi,j

-intersections
this follows from the intersection numbers in Lemma 8.5. In fact, the self-intersection
number of DB

Γi,j
is negative only if ap + aq ≤ k for any pair {p, q} disjoint from {i, j}.

Using Lemma 8.3 we compute in this case that

[DB
Γi,j

] · c1(Ω1
B
(logDhor)) =

κij
k

(2ap + 2aq + 2ar − ai − aj
k

− 1
)
,

where {a1, a2, a3, a4, a5} = {ai, aj , ap, aq, aq}. Since ai+aj < k, this expression is positive.
Moreover, one directly computes

[DHa,b
] · c1(Ω1

B
(logDhor)) = 0 .

That c1(Ω1
B
(logDhor))

2 > 0 is a consequence of the above, as c1(Ω1
B
(logDhor)) is by

Equation (73) a linear combination of the divisors DB
Γi,j

and DB
hor with positive coefficients.

□



CHAPTER III

The multi-scale boundary of the gothic locus

1. Introduction

Let µ = (m1, . . . ,mn) ∈ Nn such that
∑

imi = 2g − 2. We denote by PΩMg,n(µ)
the projectivized stratum of abelian differentials (X,ω), where X is a Riemann surface of
genus g and ω is an one-form with zeros as prescribed by µ. Affine invariant subvarieties of
ΩMg,n(µ), or equivalently GL2(R)+-orbit closures, are locally given by R-linear equations
in period coordinates. One orbit closures of special interest is the gothic locus ΩG ⊆
ΩM4,6(0

3, 23), first described in [MMW17]. The gothic locus ΩG was the first known
example of a primitive rank two R-linear submanifold and counterexamples to an earlier
conjecture of Mirzakhani. The interest in this locus stems moreover from the fact that it
contains a dense set of formerly unknown primitive Teichmüller curves. The name gothic
locus origins from [MMW17], as a translation surface in the locus resembles the outline of
a gothic cathedral.

Even after projectivization, the moduli spaces PΩMg,n(µ), and in particular orbit
closures, are in general non-compact. A well-behaved compactification of PΩMg,n(µ),
the so called moduli space of multi-scale differentials PΞMg,n(µ), has been constructed
by Bainbridge-Chen-Gendron-Grushevsky-Möller [BCGGM19b]. By a recent result of
Benirschke [Ben20], the boundary of a GL2(R)+-orbit closure in the moduli space of
multi-scale differentials is locally given by R-linear equations, but few non-trivial exam-
ples of such boundaries appear in the literature. In this article, which is still work in
progress, we will highlight some aspects of the boundary of the closure of the gothic locus
PΞG := PΩG ⊆ PΞM4,6(0

3, 23). The long term goal of this project is to compute the
fundamental class of the gothic locus PΞG, the Euler characteristic of PΩG by using the
results in Chapter II, a complete description of the boundary of PΞG, and the number of
ends of ΩG.

Our first statement is about the intersection of the gothic locus with non-horizontal
boundary divisors.

Proposition 1.1 (Proposition 5.1). The gothic locus PΞG intersects the non-horizontal
boundary divisors DΓ4 , . . . , DΓ9 whose dual graphs are listed in Figure 1.
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Figure 1. Vertical divisors intersected by the gothic locus

Remark 1.2. The gothic locus PΞG might intersect additional non-horizontal boundary
divisor. Those divisors are listed in Section 4.

73
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The intersection of the gothic locus with a non-horizontal boundary divisor consists of
a R-linear submanifold on every level. For the non-horizontal strata DΓ4 , . . . , DΓ9 we will
see in Section 5 that the top-levels of the intersection with the gothic locus are well-known
R-linear submanifolds.

Recall that a Teichmüller curve is an immersed algebraic curve C → Mg which is the
image under the forgetful map of a 2-dimensional variety M → ΩMg,n(µ) which is locally
cut out by R-linear equations in period coordinates. In strata of holomorphic differentials
several equivalent characterisations of Teichmüller curves exist. However, in strata of
meromorphic differentials those characterizations do no longer agree, and we are using the
above as our definition. If T is a Teichmüller curve and (X,ω) ∈ T is a differential, then in
the abelian case the GL2(R)+-orbit of (X,ω) will agree with T . In the meromorphic case
this is no longer true: in fact the GL2(R)+-orbit is never equal to T . Instead it sweeps out
only one of the chambers of T bounded by loci of parallel saddle connections; see [MM23]
for details. Following [MM23], we say that the differential (X,ω) ∈ T generates T if its
GL2(R)+-orbit is equal to T on an open subset of T .

A Teichmüller curve in a stratum of meromorphic differentials is called obvious if it is
the intersection of a Hurwitz space above another stratum of abelian differentials and a
locus prescribed by residue conditions. By analyzing the bottom levels of the intersection of
the gothic locus with DΓ4 in Section 6 we obtain an example of a non-obvious Teichmüller
curve.

Theorem 1.3. Let (X,ω) ⊆ ΩM1,6(−32, 23) be the canonical cover of the 6-differential
of type (−10,−5, 3). The differential (X,ω) generates a non-obvious Teichmüller curve.
In the chart in Figure 2 this Teichmüller curve is given by the equations

wi = −wi+3 for i = 1, 2, 3 and w1 + w3 + w5 = 0.

v6

w5

v4

v4

w3v2
v2

w1

v6

v5

w4

v3

v3

w2

v1
v1

w6
v5

w4

w3

w2

w1

w6

w5

Figure 2. A surface of infinite area generating a non-obvious Teichmüller
curve in the stratum ΩM1,6(−32, 23)

The fact that the generating differential in Theorem 1.3 is the canonical cover of a 6-
differential is a shadow of the fact that the gothic locus is the GL2(R)+-orbit closure of the
locus of unfoldings of quadrilaterals with angles π

6 ,
π
6 ,

π
6 ,

3π
2 , or equivalently the GL2(R)+-

orbit closure of the canonical covers of the stratum of 6-differentials Ω6M0,4(−53, 3). The
6-differential of type (−10,−5, 3) corresponds to the bottom level of the (up to permutation
of the marked points) unique boundary divisor of PΞ6M0,4(−53, 3). The other rank 2 orbit
closures constructed in [EMMW20] arise similarly to the gothic locus as the orbit closures
of canonical covers of strata of k-differentials in genus zero. We expect that an analysis of
the boundary divisors of those strata will yield more non-obvious Teichmüller curves which
are generated by canonical covers of k-differentials.

For the horizontal boundary divisors, we can provide a list of all boundary strata that
might possibly intersect the gothic locus.
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Proposition 1.4 (Proposition 7.1). The gothic locus PΞG only intersects the horizon-
tal strata listed in Figure 3.
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Figure 3. The purely horizontal boundary strata in the gothic locus

In some sense the intersections with the horizontal boundary divisors is a bit more sub-
tle. For example it is not straight forward to calculate the dimension of those intersections.
In Section 7 we will prove partial results that back the following expectation.

Expectation 1.5 (Expectation 7.2). We expect the following:
• The gothic locus intersects the three strata DΓ2, DΓ3 and DΓ15 (depicted in the

top row of Figure 3) in a divisor.
• The gothic locus intersects the three strata DΓ1, DΓ19 and DΓ18 (depicted in the

middle row of Figure 3) in codimension 2.
• The gothic locus intersects the two strata DΓ20 and DΓ22 (depicted in the bottom

row of Figure 3) in codimension 3.
• The gothic locus does not intersect the two strata DΓ17 and DΓ21.

Recall from above that the gothic locus contains a dense set of Teichmüller curves.
Those curves are non-compact, and the points in the boundary are called cups.

Proposition 1.6 (Proposition 7.6). The interior of each of the four horizontal strata
DG

Γ1
, DG

Γ2
, DG

Γ3
and DG

Γ20
contains cusps of a primitive Teichmüller curve contained in

the gothic locus ΩG. The interior of the stratum DG
Γ19

contains cusps of a non-primitive
Teichmüller curve.

To obtain the information about the boundary we proceed as follows. As we will recall
in Section 2, the gothic locus can be defined, following [EMMW20], via a certain Hurwitz
space H of dihedral covers. There is a subspace D ⊆ H of codimension 1 corresponding
to the gothic locus. Let H denote the admissible covers compactification and D ⊆ H the
closure of D therein. Then there are two natural forgetful maps

PΞG D

M4,6

whose images agree. In Section 3 we will analyze which of the boundary divisors of H
are intersected by D. In Section 4 we will relate this to the boundary of the gothic locus
PΞG and obtain a list of all strata of the ambient moduli space that can possibly contain



76 III. THE MULTI-SCALE BOUNDARY OF THE GOTHIC LOCUS

a boundary divisor of the gothic locus. The results in Section 4 rely heavily on a computer
program written in Sage that will be made available separately.

In the last Section 8, we outline a possible approach to compute the fundamental class
of the gothic locus. This would allow for the computation of its Euler characteristic via
Theorem II.1.3.

2. The gothic locus

We will recall the different definitions of the gothic locus ΩG from [MMW17] and
[EMMW20], and collect some facts that will be useful in the sequel.

2.1. Quadrilaterals and period coordinates. We begin be giving a geometric def-
inition of the gothic locus and recalling its equation in local period coordinates. We denote
by ΩZG the family of curves in ΩM4,6(0

3, 23) that is obtained by unfolding the quadri-
laterals with angles π

6 ,
π
6 ,

π
6 ,

3π
2 . We will revere to ΩZG as the cyclic locus. Via cutting

and gluing of the unfolded polygon one will eventually arrive at the polygons depicted in
Figure 4.

α′
× α γ′

×
γ β′

×
β

v4
v3

v2
v1

v6

v5

w1 v1
w6

v6

w5

v5
w4v4

w3

v3

w2

v2
w4

w3

w2

w1

w6

w5

Figure 4. A curve in the locus of cyclic forms ΩZG

Definition 2.1 (Gothic locus). We define the gothic locus ΩG as the orbit closure

ΩG := GL2(R)+ · ΩZG ⊆ ΩM4,6(0
3, 23).

Remark 2.2. In contrast to [MMW17] and [EMMW20], we explicitly mark the three
fixed points of the cyclic deck transformation.

Let J denote the involution of the surface depicted in Figure 4 that is given by rotating
the polygons by π. Observe that this involution must exist on all curves in the GL2(R)+-
orbit, hence for every curve in gothic locus ΩG. Let Σ := Z(ω) ∪ Fix(J). We regard
the vectors vi, wi, α, β, γ in Figure 4 as period coordinates in H1(X; Σ). We choose the
orientation of vi, wi as counterclockwise in the hexagons and the orientation of α, β and γ
from left to right. This 15 vectors span H1(X; Σ) ∼= C13 with the two relations

∑
vi =

∑
wi = 0.

In these coordinates the gothic locus ΩG is locally defined by the equations
vi = −vi+3, wi = −wi+3 for i = 1, 2, 3,

v1 + v3 + v5 = w1 + w3 + w5 = 0,

α+ v4 = β + w4 = α+ β − γ = 0.

(78)

The first two lines of equations can be found in [MMW17, Equation 9.2]. For the third
line notice that the action of J implies α′ = α, β′ = β and γ′ = γ. We can use this to
simplify the obvious relations α′ + α + v3 + v4 + v5 = 0, β′ + β + w3 + w4 + w5 = 0 and
γ′ + γ − w5 − v5 − w4 − v4 − w3 − v3 = 0.

The cyclic forms ΩZG ⊆ ΩG are cut out by the additional non-linear equations

(79)

|vi| = |vj | for 1 ≤ i, j ≤ 6

|wi| = |wj | for 1 ≤ i, j ≤ 6

v1 = λ · w1 for some λ ∈ R>0.
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2.2. Dihedral triples. We will now recall from [EMMW20] the relation of the gothic
locus to a certain Hurwitz space of dihedral covers. Let

D12 = ⟨r, f | r6 = f2 = (rf)2 = e⟩
denote the dihedral group of order 12. Let Y → P1 be a normal D12-cover with monodromy
datum

(f, f, f, rf, rf, rf, r3),

let X := Y/f denote the quotient, and let π : X → P1 be the induced (non-Galois) cover.
We denote by H the Hurwitz space of those covers π : X → P1. Moreover, we denote

the fiber above the branch point with ramification associated to r3 by X∗ ⊆ X and refer
to it as the special fiber of π. One checks that |X∗| = 3 and g(X) = 4.

We denote by D ⊆ H the locus of covers (π : X → P1) ∈ H such that X admits an
one-form ω ∈ Ω(X) subject to

(80) (ω) = 2 ·X∗ and (r + r−1)∗(ω) = (ζ6 + ζ−1
6 ) · ω,

where ζ6 = e2πi/6. We call the triples (X,ω, π) satisfying (80) dihedral triples, and we call
D the dihedral locus. As fr3 = r3f , the action of r3 on Y commutes with the action of f .
Thus the action of r3 descends to an involution on X = Y/f . We will denote this involution
by J . The involution J has 3 fixed points, one in each fiber above the ramification points
corresponding to rf .

We denote by S3+3 := S{1,2,3} ×S{4,5,6} ⊆ S6 the indicated subgroup of the symmetric
group. The Hurwitz space H comes with a map

(81) ϕ : H → M4,6/S3+3

where the three fixed points of J are mapped to the points 1, 2, 3 and the three points in
the special fiber are mapped to the points 4, 5, 6. If we denote by ΩD̃ the set of all dihedral
triples, we have a map

ΩD̃ → ΩM4,6(0
3, 23)/S3+3

and we denote by
ΩD ⊆ ΩM4,6(0

3, 23)

the preimage of ΩD̃ under the quotient map by S3+3.
Recall that we defined the gothic locus ΩG in Definition 2.1 as the GL2(R)+-orbit

closure of certain cyclic forms. The locus ΩD gives us another description.

Theorem 2.3 ([EMMW20, Theorem 5.3]). The gothic locus is the closure

ΩG = ΩD ⊆ ΩM4,6(0
3, 23)

of the dihedral locus.

Note that the cyclic forms ΩZG are not contained in ΩD (the corresponding covers
π : X → P1 would need to be Galois), but are in fact contained in the closure ΩG = ΩD
by [EMMW20, Theorem 4.2]. Using the fact that Y → P1 is a D12-cover, we can form the
commutative diagram

(82)

Y

X = Y/f

A := X/J = Y/⟨f, r3⟩ B := Y/⟨f, r2⟩

P1 ∼= Y/D12

ȷ p .

Observe that the map ȷ is of degree 2 and thus Galois. The genera of the quotient curves
is g(A) = g(B) = 1.

The Hurwitz space H comes with the target morphisms δ : H → M0,7. The image of
the dihedral locus D under this morphism will be the main object of our interest in the
next section.
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Definition 2.4 (Moduli space of critical values). Let

VG := δ(D) ⊆ M0,7

denote the image of the dihedral locus. We call VG the moduli space of critical values.

The dimension of the moduli space VG has been computed in [EMMW20].

Theorem 2.5 ([EMMW20, Theorem 4.4]). The moduli space of critical values is of
dimension dim(VG) = 3. In particular is VG a divisor in M0,7 and dim(ΩG) = 4.

2.3. Original definition. We obtained the maps in Diagram (82) as a consequence
of the construction of the gothic locus ΩG via the Hurwitz space H. To complete the
picture, we recall that the maps in the diagram can in fact be used to define the gothic
locus in the first place. In fact, this was the first published description.

To this end, let ΩM4,6(2
3, 03)− denote the subvariety of ΩM4,6(2

3, 03) where on the
curves (X,ω) there exists an involution J : X → X that fixes all the marked points and such
that ω is J-antiinvariant. For such a curve X we say that a holomorphic map p : X → B
is odd, if there exists an involution j : B → B such that p ◦ J = j ◦ p. In [MMW17], the
gothic locus was defined as

ΩG =



(X,ω) ∈ ΩM4,6(2

3, 03)−

∣∣∣∣∣∣

∃ a curve B ∈ M1 and an odd,
degree three rational map p : X → B
such that |p(Z(ω))| = 1.



 .

This definition agrees with our previous definitions as was shown in [EMMW20].

2.4. The quadratic quotients. For an abelian differential (X,ω) ∈ ΩG the differ-
ential ω is J-antiinvariant by (80). Therefore, the quotient (X,ω2)/J gives a well-defined
quadratic differential. We denote the quotient map by

ȷ : ΩG→ Q1,6(−13, 13).

and refer to the image QG := ȷ(ΩG) as the quadratic gothic locus
The stratum Q1,6(−13, 13) has a natural forgetful map to M1,3 by forgetting the mark-

ings at the zeros and only remembering the markings at the simple poles. The image of
QG under this map is the so-called flex locus F . It is of dimension 2 and was the first
known example of a totally geodesic surface, see [MMW17] for details. Its fundamental
class has been computed by Chen.

Theorem 2.6 ([Che22, Theorem 1.1]). The fundamental class of the flex locus is

[F ] =
4

3
δirr + 4(δ0;{1,2} + δ0;{1,3} + δ0;{2,3}) + 4δ0;{1,2,3} ∈ R1(M1,3).

3. The moduli space of critical values

To understand the compactification of the gothic locus ΩG, it will be useful to an-
alyze the closure of the moduli space of critical values VG inside the Deligne-Mumford
compactification M0,7. This will help us later on to understand the admissible covers
compactification D ⊆ H. The main goal of this section is to prove Corollary 3.3.

Remark 3.1. In theory it should be possible to push the techniques in this section
further to directly determine the complete list of boundary strata of the gothic locus PΞG.
However this is a very tedious and error-prone task. Instead we hope to determine the
complete list of boundary strata a posteriori from the fundamental class, see Remark 8.4.

By a result of [EMMW20], the dihedral triples ΩD̃ can be parametrized by certain tu-
ples of polynomials PG ⊆ (C[x])2. We will reformulate this result in terms of triples of poly-
nomials BG ⊆ (C[x])3/C× that parametrize the projectivization PΩD̃. Our parametriza-
tion has the advantage that the polynomials do depend more directly on the branch points
of the cover π : X → P1 and allows us to show:

Proposition 3.2. The point (b1, . . . , b6,∞) ∈ M0,7 belongs to the subvariety VG if
and only if there exist a, b ∈ C and c1 ∈ C×, such that

(x− b4)(x− b5)(x− b6)− c1(x− b1)(x− b2)(x− b3) = (ax+ b)3.
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Observe that the expression is symmetric in b1, b2, b3 and b4, b5, b6 as expected. To
describe which boundary divisors of M0,7 are intersected by the gothic locus ΩG it is
therefore natural to work on the quotient M0,7/S3+3, where S3+3 := S{1,2,3}×S{4,5,6} ⊆ S7.
We denote by ∆i,j ⊂ M0,7/S3+3 the reducible boundary divisor where i of the marked
points 1, 2, 3 and j of the marked points 4, 5, 6 lie on one irreducible component.

Corollary 3.3. The variety V G/S3+3 does not intersect the boundary divisors ∆1,2

and ∆2,1.

Proof. We will discuss the case ∆2,1, the case ∆1,2 follow by essentially the same
argument. In Proposition 3.10 we will see that we may assume that b1 = b2 = b4 = 0,
which implies b = 0. After dividing by x we are left with the equation

(x− b5)(x− b6)− c1x(x− b3) = a3x2.

Hence b5 = 0 or b6 = 0, a contradiction. □

Remark 3.4. By considering the equation in Proposition 3.2, one can check that the
variety V G/S3+3 intersects all other boundary divisors, that is ∆0,2, ∆0,3, ∆1,1, ∆1,3, ∆2,0,
∆2,2, ∆2,3, ∆3,0, ∆3,1 and ∆3,2.

We begin to prepare for the proof of Proposition 3.2 by recalling some facts and notation
from [EMMW20, §4].

Let C[x]k denote the space of polynomials of degree k or less. For (p, q) ∈ C[x]3×C[x]1
we have a factorization

(83) p2 − 4q6 = (p− 2q3)(p+ 2q3) = (d1s
2
1)(d2s

2
2),

where the di ∈ C[x] are square free polynomials. We define the subvariety

(84) PG := {(p, q) | d = d1d2 is separable of degree 6 and deg(d1) = 3} ⊆ C[x]3 × C[x]1.

Let Tt and Ut denote the Chebyshev polynomials of the first and second kind, respectively.
The space of pairs PG can be used to parametrize the dihedral locus:

Theorem 3.5 ([EMMW20, Theorem 4.3]). There is a surjective algebraic map

PG → ΩD̃, (p, q) 7→ (X,ω, π).

The D12-cover Y → P1 is defined in C[x, y] by the equation

(85) y12 − p(x)y6 + q(x)6 = 0,

the covering is given by (x, y) 7→ y and the action of D12 is given by

r · (x, y) = (x, ζ6y) and f · (x, y) =
(
x,
q(x)

y

)
.

Let u := (y + q/y)/2. The curve X = Y/f is defined in C[x, u] by the equation

2q(x)3T6(q(x)
−1/2u) = p(x)

and the map π : X → P1 is given by π(x, u) = x. The one-form ω is given by

ω =
dx

q(x)5/2U5(q(x)−1/2u)
∈ Ω(X).

Moreover, ω is the pushforward of the one-form

(86) ν := y · dx

2y6 − p(x)
∈ Ω(Y )

by the quotient map Y → X.

The special fiber of the dihedral map π : X → P1 is the fiber above ∞. The other
branch points of the dihedral map π are precisely the 6 zeros of the separable polynomial
d1d2 in (84). More precisely, the 3 zeros of d1 are the ramification points with monodromy
associated to [f ], while the 3 zeros of d2 are the ramification points with monodromy
associated to [rf ]. In order to understand the variety VG we need to understand which
polynomials d1, d2 can appear in (84).
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We first observe that the set PG is in some sense “to large”. The group of units C×

acts on PG by
z · (p, q) = (z3p, zq).

Note that this in particular implies a group action of the subgroup of the 3th roots of unity
µ3 ⊆ C× by

ζ · (p, q) = (p, ζq).

Corollary 3.6. There is a commutative diagram

PG PΩD̃

PG/C×

where all maps are surjective.

Proof. Let (p, q) ∈ PG and let

τ : PG → PΩD̃
denote the surjective map from the previous Theorem. We need to show that this map
factors through PG/C×, i.e. that for all z ∈ C× it is τ((p, q)) = τ((z3p, zq)). It suffices to
prove this for Y and ν, as X, ω and π are determined by those two. The equation (85) for
the curve Y1 corresponding to τ((p, q)) is

y12 − p(x)y6 + q(x)6 = 0,

the equation for the curve Yz corresponding to τ((z3p, zq)) is

y12 − z3p(x)y6 + z6q(x)6 = 0

and an isomorphism between both curves is given by

σ : Y1 → Y2

(x, y) 7→ (x, z1/2y).

The equations (86) for the corresponding one-forms are

ν1 := y · dx

2y6 − p(x)
and νz := y · dx

2y6 − z3p(x)

and the pull-back is

σ∗νz = z1/2y · dx

2z3y6 − z3p(x)
= z1/6ν1.

Thus τ((p, q)) = τ((z3p, zq)) agree in the projectivization PΩD̃. □
We gather some more or less obvious facts about all the polynomials floating around.

Lemma 3.7. For (p, q) ∈ PG and d1, d2, s1, s2 as in (83), we have
(i) p = 1

2(d2s
2
2 + d1s1), q

3 = 1
4(d2s

2
2 − d1s1),

(ii) deg(q) ≤ 1,
(iii) deg(d2) = 3,
(iv) deg(s1) = 0 and
(v) deg(s2) = 0.

In particular, we can choose s1 = s2 = 1 and hence

(87) p =
1

2
(d2 + d1), q

3 =
1

4
(d2 − d1).

Proof. Recall that (p, q) ∈ C[x]3 × C[x]1; in particular deg(q3) ≤ 3 (implying (ii)).
Thus all the inequalities in

3 = deg(d1) ≤ deg(d1s
2
1) = deg(p− 2q3) ≤ 3

need to be in fact equalities, implying (iv). Claim (i) is seen by solving (83) for p and q.
Claim (iii) follows from deg(d1d2) = 6 and deg(d1) = 3, and we finally see claim (v) by

3 = deg(d2) ≤ deg(d2s
2
2) = deg(p+ 2q3) ≤ 3.

□
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The relations obtained in the previous lemma motivate the definition of the subvariety

(88) BG :=



(d1, d2) ∈ (C[x])2

∣∣∣∣∣∣

deg(d1) = deg(d2) = 3
d1d2 separable

d2 − d1 ∈ (C[x]1)3





/
C×,

where C× acts ob BG by rescaling the polynomials. The locus BG provides an alternative
parametrization of the dihedral triples:

Proposition 3.8. There is a surjective map BG → VG. If b1, . . . , b3 are the roots of
d1 and b4, . . . , b6 are the roots of d2 the map is given by

(d1, d2) 7→ (b1, . . . , b6,∞).

Proof. By Corollary 3.6 we have a surjective map PG/C× → PΩD̃ → VG. Thus it
suffices to give a surjective map BG → PΩD̃. Consider the map

BG → PG/C×

(d1, d2) 7→
(
1

2
(d2 + d1),

(
1

4
(d2 − d1)

)1/3
)
.

This map is well-defined and surjective by Lemma 3.7. □
Proof of Proposition 3.2. This is a direct consequence of Proposition 3.8. □
We let PGL2(C) act on the polynomials C[x] by Möbius transformation of the roots:

for a polynomial f := c (x− a1) · · · (x− an) ∈ C[x] and a matrix A ∈ PGL2(C) we define

A · f := c (x−A · a1) · · · (x−A · an).
The group action of the stabilizer subgroup PGL2(C)∞ is partially compatible with the
ring structure on C[x].

Lemma 3.9. For all A ∈ PGL2(C) and all f, g ∈ C[x] the formal distributivity

(A · f) · (A · g) = A · (fg).
holds. If moreover deg(f) = deg(g) and A ∈ PGL2(C)∞, then there exists a λ ∈ C× such
that

(A · f) + (A · g) = A · (λ(f + g)).

Proof. The distributivity with multiplication is immediate and the second equation
can be checked on the generators

Tz :=

(
1 z
0 1

)
for z ∈ C and Dz :=

(
z 0
0 1

)
for z ∈ C×,

by checking that (A · f) + (A · g) vanishes on all the zeros of A · (f + g). □
Proposition 3.10. The group action of the stabilizer subgroup PGL2(C)∞ on BG

defined by
A · (d1, d2) = (A · d1, A · d2)

is well-defined and there is a commutative diagram

BG PΩD̃

BG/PGL2(C)∞
where all maps are surjective.

Proof. If the group action is well-defined, the existence of the diagram is immediate,
as the action of PGL(C)∞ on BG is obviously compatible with the group action on P1.
We need to prove that the action is indeed well-defined. Let (d1, d2) ∈ BG. The degree
and separability conditions in the definition of BG (see (88)) are invariant under the group
action. Assume that d2 − d1 = f3 for some f ∈ C[x]1. By the previous lemma there exists
an λ ∈ C× such that

(A · d2)− (A · d1) = A · (λ(d2 − d1)) = λA · f3 = (λ1/3A · f)3.
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Thus A · (d1, d2) ∈ BG as claimed. □
This completes the proof of Corollary 3.3.

4. The boundary superset

We denote by PΞ2G := PQG ⊂ PΞ2M1,6(−13, 13) the closure of the quadratic gothic
locus inside the moduli space of multi-scale differentials. The goal of this section is to
determine a superset of the boundary divisors of PΞ2M1,6(−13, 13) which are intersected
by the quadratic gothic locus PΞ2G. For this, it is more convenient to work with the
unordered quadratic gothic locus

PΞ2G/S3+3 ⊆ PΞ2M1,6(−13, 13)/S3+3,

as this allows for a more concise listing of the relevant enhanced level graphs. For an
enhanced quadratic level graph ΓQ we denote by DQ

ΓQ ⊆ PΞ2M1,6(−13, 13) the bound-
ary stratum parametrized by Γ.1 Our goal in this section is to obtain a list of all the
boundary strata DQ

ΓQ whose intersection with the gothic locus might be boundary divisor
of the gothic locus. By work of Benirschke-Dozier-Grushevsky (see Theorem 4.4 for the
precise statement) such strata might either be vertical divisors, or horizontal strata with
an arbitrary number of horizontal edges. Relying on the results of a computer program,
in this section we will prove:

Proposition 4.1. The boundary of the quadratic gothic locus ∂PΞ2G/S3+3 is contained
in the subspace

∂PΞ2G/S3+3 ⊆
⋃

i

DQ
ΓQ
i

where the union is taken over all graphs in Figure 5. More precisely, each generic point of
the boundary ∂PΞ2G is contained in the interior of one of the listed boundary strata DQ

ΓQ
i

.

For each covering (X → P1) ∈ H we may consider the intermediate covering X/J =
A → P1. Let HQ denote the Hurwitz space parametrizing those coverings and let HQ
denote the compactification with admissible covers. As for H (see (81)) there is a forgetful
map ϕ : HQ → M1,6/S3+3, where the marked points are the three points in the special
fiber and the images of the three fixed points of J .

Recall that there is the dihedral locus D ⊂ H. Denote by DQ ⊂ HQ its image and by
DQ ⊂ HQ the closure. It follows from the discussion in Section 2 that

ϕ(DQ) = π(PΞ2G)/S3+3,

where π : PΞM1,6(−13, 13) → M1,6 is the natural forgetful map. We will make use of this
equality to prove Proposition 4.1.

For a boundary stratum DQ
ΓQ we denote by DQG

ΓQ := DQ
ΓQ ∩ PΞ2G its intersection with

the quadratic gothic locus. Our intermediate goal is to prove:

Proposition 4.2. Assume that DQG
ΓQ ⊆ PΞ2G is a divisor. Then there exists a bound-

ary stratum ∆HQ ⊆ HQ such that π(DQG
ΓQ )/S3+3 ⊆ ϕ(∆HQ) and dim∆HQ ≥ 1.

The forgetful map π : PΞ2M1,6(−13, 13) → M1,6 may have positive fiber dimension
when restricted to a boundary divisor. An upper bound for this fiber dimension is given
as follows.

Lemma 4.3. If DQ
ΓQ ⊆ PΞ2M1,6(−13, 13) is a divisor, then the fiber dimension of

π|DQ
ΓQ

above a generic point of π(DQ
ΓQ) is at most 1.

Proof. The fiber dimension can only by greater than one if there exists a boundary
divisor with either at least three vertices on one level or two vertices on top- and bottom
level. By listing all the boundary strata (for example with diffstrata) one checks that
there is only one two-level graph with more than three vertices on one level, the one

1In Chapter I and II we indexed the boundary strata of quadratic strata PΞ2Mg,n(µ) by coverings of
enhanced level graphs. Here we only index them by “the lower half” of the covering, i.e. by the quadratic
level graph. A priori this gives a coarser indexing, but as we will see it doesn’t matter here as all the
coverings are uniquely determined by the quadratic level graphs.
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Figure 5. The boundary strata of PΞ2M1,6(−13, 13)/S3+3 that might by
intersected by the quadratic gothic locus PΞ2G/S3+3

depicted in Figure 6. Because of the GRC, the vertices on bottom level can not be scaled
independently, hence the fiber dimension of π restricted to this boundary divisor is 1. □
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Figure 6. A graph with three vertices on bottom level

Proof of Proposition 4.2. Let DQG
ΓQ ⊆ PΞ2G be a divisor. By Lemma 4.3 the

dimension of its image is 1 ≤ dimπ(DQG
ΓQ ) ≤ 2. Hence there must be a boundary stratum

∆HQ ⊆ HQ such that ϕ(∆HQ ∩ DQ) contains π(DQG
ΓQ )/S3+3 and is of dimension at least

one. □
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We want to proceed by listing all the boundary divisors of HQ and check whether
or not their image under ϕ admits a level graph structure. As we are, at least for now,
only interested in divisors of the gothic locus, we do not need to consider all level graph
structures by the following theorem.

Theorem 4.4 ([BDG22, Theorem 1.5]). Let DQG
ΓQ ⊆ PΞ2G be a divisor. Then ΓQ has

either
• two level and no horizontal edge or
• one level and at least one horizontal edge.

We prove Proposition 4.1 by relying on the output of a computer program written in
Sage that does the following:

• List all boundary strata ∆HQ ⊆ HQ/S3+3 of dimension at least 1.
• Throw away all strata that intersect the divisors ∆1,2 and ∆2,1.
• For each remaining stratum, consider its image under the forgetful map to M1,6/S3+3.
• For each stratum in the image check if it admits the structure of an enhanced

level graph as in Theorem 4.4, otherwise discard it.
The enhanced level graphs obtained in this way are exactly those listed in Figure 5.

Remark 4.5. Note that Figure 5 includes all horizontal level graphs that appear as
images of boundary strata of HQ up to codimension 3. By also listing the boundary strata
of codimension 4 of the Hurwitz space HQ one can check that there are no additional
horizontal level graphs.

5. Non-horizontal divisors

In Proposition 4.1 we have determined a superset for the boundary divisors of the
quadratic gothic locus PΞ2G. Note that for all the quadratic enhanced level graphs ΓQ

i
listed there the covering abelian enhanced level graph, which we denote by Γi, is uniquely
determined, see Section I.3 for details on the construction of the coverings. Hence this also
determines a superset for the boundary divisors of the gothic locus PΞG. In this section,
we will provide explicit families of flat surfaces converging to some of the non-horizontal
divisors, and thus prove that those divisors are in fact intersected by the gothic locus. For
those divisors we list the dual graphs of the double covers in Figure 7. The intersection
DG

Γi
:= DΓi ∩ PΞG on each level is a R-linear submanifold. On the left of each level we

indicate either the dimension of the respective linear submanifold, or the linear subman-
ifold itself if it is a locus of double covers: For a given stratum of quadratic differentials
PΞ2Mg,n(µ) on can define a linear submanifold in a stratum of abelian differentials via the
double cover construction. We will denote this linear submanifold by PΞ̂2Mg,n(µ). For
details of the definition see Section II.7.2

In this section we will mostly be concerned with the top-level of each stratum. We
remark that the dimension of the top-level determines the dimension of the bottom-level.
In the next Section 6 we will have a closer look at some of the bottom-levels. We will treat
the horizontal divisors in Section 7.

Proposition 5.1. The gothic locus PΞG intersects the boundary divisors DΓ4 , . . . , DΓ9.

Remark 5.2. We are currently unable to decide whether or not the gothic locus inter-
sects the vertical divisors that are listed in Proposition 4.1 but not in Proposition 5.1.

To prove Proposition 5.1 we will handle each of the boundary strata listed there sep-
arately. For each stratum, we will show that it is intersected by the gothic locus PΞG by
giving an explicit degeneration of the surface in Figure 4 along the Equations (78).

Remark 5.3. To see that the limiting surface is actually contained in the claimed
boundary stratum, one should work with the conformal topology on the moduli space: A
sequence (Xt, ωt) converges to a twisted differential (X,ω) if there exists an exhaustion
Kt of X \ {nodes of X} and a sequence of conformal maps gt : Kt → Xt such that g∗t ωt
converges to ω uniformly on compact sets, see [BCGGM19b, Section 3.3] for details. This

2The linear submanifolds are denote by Hk in loc. cit.
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Figure 7. Divisors intersected by the gothic locus

convergence can be verified in the flat pictures by choosing an appropriate exhaustion. In
the following we will suppress this technicality.

5.1. The stratum DΓ4. The stratum DG
Γ4

contains a point of the closure of the cyclic
forms PΞZG ⊆ PΞG (and is in fact the only stratum that does so). By letting wi → 0 with
equal speed, one gets to the polygons depicted in Figure 8. The boundary of the gothic
locus is cut out by the equations

∑

i

vi = 0, vi = −vi+3, v1 + v3 + v5 = 0, β + v2 = 0 and α− β = 0,

thus dimDG,⊤
Γ4

= 1. This implies dimDG,⊥
Γ4

= 1. We remark that the torsion equations
β′ = β = u5 still exists, but no longer relates the two zeros of order 3. Instead it relates
the two nodes at top-level.

The two hexagons in Figure 8 can be identified by translation. (We emphasize that
this is not the action of the involution J , which rotates the polygons). This identification
exhibits the top-level as a two-fold covering of the Teichmüller curve in ΩM1(0

2) with
marked points P,Q, which is given by the condition that [P −Q] is 3-torsion.

β′ βα′ α

v4
v3

v2
v1

v6

v5
v1

v6

v5
v4

v3

v2

× ×

Figure 8. The top-level of the cyclic curve in DG
Γ4

5.2. The stratum DΓ5. The top-level component of the stratum DG
Γ5

is again a
Teichmüller curve. The flat picture can be obtained by pinching the two small hexagons
in Figure 4 in different directions. The result of pinching the left hexagon vertically and
the right hexagon orthogonally to w2 is depicted on the left of Figure 9. This polygon can
be re-glued to the L-shaped surface on the right of the same figure. The top-level DG

Γ5
is

cut out be the equations
α1 = α2 and α3 = α4

and is thus a threefold cover of an elliptic curve where the three 2-torsion points are marked.
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v2
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×
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α1

α3

α1

α2

α3α4

α2 × ×
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Figure 9. The top-level component of DG
Γ5

and a re-gluing

5.3. The stratum DΓ6. A flat picture of the top-level component of the stratum DG
Γ6

can be obtained by pinching only one of the small hexagons in Figure 4. The resulting
flat picture is given in Figure 10. In the figure, we highlight in gray the part of the
surface that is coming from the large hexagon. This component has the property that for
v2 = v4 = w1/2 = w2 = w5 = α′ = α (note that this is only one additional condition) the
depicted polygon is an origami and thus gives rise to a Teichmüller curve.

v6

v2

v3
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z1
× α w1 v1 w5 α′

× z1

v1w5

z2 ×
α′w1v4w2α

×z2

v4 ×

×

×

Figure 10. The top-level component of DG
Γ6

We want to give a more precise description of the top-level DG,⊤
Γ6

. Let T ⊆ ΩM1(0
3) be

the two-dimensional subspace, where the marked points P,Q,Z are subject to the relation
P +Q = Z. If we choose Z as zero, this is equivalent to P +Q being 1-torsion. We claim
that the top-level of the stratum DG

Γ6
is a sixfold covering of T as follows. Consider the

covering that is ramified exactly above P,Q,Z. More precisely, let the ramification profile
above Z be (3, 13) and the ramification profiles above P and Q by (2, 15). The double zero
(marked with a black square) is the ramification point of order three above Z, the two
simple zeros (marked with black and white circles) are the two ramification points of order
two above P and Q, respectively. The three unramified points in the fiber above Z are the
three marked regular points (marked with a cross). In Figure 11 we depict the tessellation
of a generic curve in the stratum with the preimages of the torus.

w2
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α′
× z1

v1

w5

z2 ×
α′

w1

v4
w2

α
×z2

v4

×

×

×

Figure 11. A generic curve in the top-level component of DG
Γ6

and the
covered torus

5.4. The stratum DΓ7. The flat picture of the stratum DG
Γ7

can be obtained by
letting w1, w4 → 0 in Figure 4, the resulting polygon is depicted in Figure 12.
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Figure 12. The top-level component of DG
Γ7

We claim that the top-level component DG,⊤
Γ7

is a covering of a Hilbert modular surface
for a square discriminant Q(

√
d2) in M2. We can cut and re-glue the polygons to the

polygon in Figure 13, and by forgetting the marked regular points we obtain the image
under the forgetful map π : ΩM2(0

4, 12) → ΩM2(1
2). The image of DG,⊤

Γ7
is locally given

by the equations
α1 = α5 and α2 = α4.

The forgetful map π is locally injective on DG,⊤
Γ7

: The periods vi, w2 and w3 in Figure 12
are completely determined by the αi. For example it is α1 = v1 + v2, α3 = β′ + β = −2v1,
and similar equations hold for the other periods. By construction, the component DG,⊤

Γ7

is GL2(R)+-invariant and so is its image under the forgetful map π. The GL2(R)+-orbit
closures in genus two have been classified by McMullen [McM07b]. As the dimension of
the image is two, its projection to M2 needs to be a Hilbert modular surface by [McM07b,
Theorem 1.2].
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Figure 13. Image of the top-level component of DG
Γ7

in ΩM2(1
2)

5.5. The stratum DΓ8. A surface in this stratum can be obtained by letting not
only w1 and w4 converge to zero as for DG

Γ7
, but letting also v3 and v6 converge to zero,

all with equal speed. The resulting locus is 1-dimensional and coincides with the double
cover of the stratum PΞ2M0,4(−14) for dimensional reasons.

5.6. The stratum DΓ9. After rotating the right hexagon in Figure 4 by 30 degrees
we can find two pairs of simply crossing geodesics, see Figure 14. After cutting along these
geodesics and re-gluing the surface as depicted in Figure 15 the surface converges to the
top-level of DG

Γ9
by letting all the labeled periods converge to zero.

6. Non-obvious Teichmüller curves

In this section we will prove Theorem 1.3 by exhibiting DG,⊥
Γ4

as a non-obvious Teich-
müller curve. As we have seen in Section 5 the top-level of DG

Γ4
has dimension 1. Hence

the bottom level has dimension 1, too. In particular is DG,⊥
Γ4

a Teichmüller curve. We can
regard this either as a curve in ΩM1,6(−32, 0, 23), or, after forgetting the marked regular
point, in the stratum ΩM1,5(−32, 23). Before we prove the theorem, we recall some general
fact about coverings of flat surfaces.
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Figure 14. Two pairs of simply crossing geodesics
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Figure 15. The same curve as in Figure 14 after re-gluing

Lemma 6.1. Let f : (X,ω) → (Y, η) be a covering of flat surfaces and q ∈ Y . Then η
has a poles at q if and only if ω has a pole at every point in the fiber above q.

Proof. Let p ∈ X be a preimage of q. Assume that ordq(η) = a for some p ∈ X and
that f is ramified to order k at p. Then ordp(ω) = (a+ 1)k − 1, and thus

{
ordp(ω) ≥ a if a ≥ −1

ordp(ω) ≤ a if a ≤ −1.

In particular we see that η has a pole at q if and only if ω has a pole at every point in the
fiber above q. □

Proof of Theorem 1.3. We begin by showing that DG,⊥
Γ4

is not obvious. First note
that the condition on the residues is trivial, i.e. the only condition is the one imposed by
the residue theorem. Hence we need to check that DG,⊥

Γ4
does not coincide with a Hurwitz

space above a 1-dimensional stratum of abelian differentials. By the Riemann-Hurwitz
formula, any such stratum would necessarily parametrize curves in genus 0. We want to
rule out the existence of such a map DG,⊥

Γ4
→ ΩM0,4(m1, . . . ,m4).

For a contradiction assume that a map DG,⊥
Γ4

→ ΩM0,4(m1, . . . ,m4) exists and let
f : (X,ω) → (Y, η) be a corresponding covering. Let p1, p2 ∈ X be the two points where ω
vanishes to order −3. In the notation of Lemma 6.1 observe that

−3 = ordpi(ω) = (a+ 1)k − 1,

hence k ∈ {1, 2}. By Lemma 6.1 there are two possibilities for the points pi:
(1) They might lie in different fibers, and then necessarily are total ramification points

of f . In particular is deg(f) = 2 (because of k ∈ {1, 2}). In this case f must
be totally ramified above all four marked points of Y . On the other hand, two
of the points where ω vanishes to order 2 must lie in the same fiber (as all three
of those points must lie in the fibers above the two remaining marked points), a
contradiction.

(2) They might lie in the same fiber. Then deg(f) ∈ {2, 4} (because of k ∈ {1, 2}).
For deg(f) = 2 we arrive at the same contradiction as in Case (1): in this case
f would need to be totally ramified above all four marked points again. For
deg(f) = 4 one checks with the Riemann-Hurwitz formula that it is not possible
for two of the marked double zeros to lie in one fiber. Hence the ramification
profiles in the other three fibers must by (3, 1), and η of type (−2, 03). But then
DG,⊥

Γ4
would have REL while the gothic locus ΩG has REL zero, a contradiction.
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The cyclic locus ΩZG ⊆ ΩG agrees with the locus of unfoldings of quadrilaterals of
type (1, 1, 1, 9), or equivalently with the locus of canonical covers of the 6-differentials of
type (−53, 3). Hence the canonical cover of the (up to permutation of the marked points)
unique boundary point of the stratum PΞ6M0,4(−53, 3) must be contained in PΞG. One
easily checks that this canonical cover is actually contained in DΓ4 . The bottom level of the
canonical cover is precisely the 6-differential of type (−10,−5, 3), hence the GL2(R)+-orbit
closure of this differential is contained in DG,⊥

Γ4
and generates a non-obvious Teichmüller

curve.3
To obtain the flat picture in Figure 2 and the equations one traces the degeneration

discussed in Section 5.1 on the bottom level. □
We end this section with some remarks on the definition of obvious. The definition

we recalled in the introduction is the one introduced in [MM23]. Recall that strata of
meromorphic abelian differentials are in general not connected. The connected components
have been classified in [Boi15]. One of the components is the hyperelliptic component.
With their definition of obvious Möller-Mullane proved:

Theorem 6.2 ([MM23, Theorem 1.1]). The only Teichmüller curves in the hyperelliptic
connected component of a stratum of meromorphic differentials are obvious Teichmüller
curves.

As we have seen in Theorem 1.3, this theorem does not hold in the other components of
strata. The hope is that there aren’t “too many” non-obvious Teichmüller curves to allow
for a possible classification. However there is a large class of easily constructed non-obvious
Teichmüller curves: given a (projectively) 1-dimensional stratum of quadratic differentials,
for example Ω2M0,4(m1,m2,m3,m4), the canonical cover Ω̂2M0,4(m1,m2,m3,m4) will
be a Teichmüller curve in a stratum of meromorphic differentials, and in general this
Teichmüller curve will not be obvious. For example it follows from our discussion in
Section 5 that

DQG,⊥
ΓQ
5

∼= PΞ2M0,4(−32, 12),

and, using similar arguments to the ones in the proof of Theorem 1.3, one can check that
DG,⊥

Γ5
is in fact non-obvious.

7. Horizontal strata, cylinders, and cusps of Teichmüller curves

We are now turning our attention towards the horizontal boundary strata. Our first
observation is that Proposition 4.1 and Remark 4.5 imply that we know all horizontal
strata that might possibly be intersected by the gothic locus.

Proposition 7.1. The gothic locus PΞG only intersects the horizontal strata listed in
Figure 3.

In contrast to the non-horizontal strata, it is not obvious what the dimension of the
intersection of the gothic locus with a horizontal stratum is (even if we know that the
intersection is non-empty) as a consequence of Theorem 4.4. We arranged the graphs in
Figure 3 to match our expectation about the horizontal boundary.

Expectation 7.2. We expect the following:
• The gothic locus intersects the three strata DΓ2, DΓ3 and DΓ15 (depicted in the

top row of Figure 3) in a divisor.
• The gothic locus intersects the three strata DΓ1, DΓ19 and DΓ18 (depicted in the

middle row of Figure 3) in codimension 2.
• The gothic locus intersects the two strata DΓ20 and DΓ22 (depicted in the bottom

row of Figure 3) in codimension 3.
• The gothic locus does not intersect the two strata DΓ17 and DΓ21.

We are currently unable to prove all of the above expectations, but we will provide
partial results and evidence in the following.

3The Teichmüller curve generated by the canonical cover of the 6-differential might not agree with
DG,⊥

Γ4
, but might be an irreducible component.
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Proposition 7.3. The intersection of the gothic locus PΞG with the two horizontal
strata DΓ2 and DΓ3 is a divisor.

Before proving Proposition 7.3 we need to recall a technical tool we will use throughout
this section. Given a flat surface (X,ω), a cylinder decomposition C is the collection of
all cylinders in X in a given direction. We can go from (X,ω) to a nearby surface in the
moduli space by stretching all the cylinders in the decomposition C by the same speed. If
(X,ω) was contained in a GL2(R)+-orbit closure ΩH, then all those nearby surfaces will
also be contained in ΩH as a consequence of the cylinder deformation theorem [Wri15,
Theorem 1.1]. Hence if we start with a surface in the gothic locus, choose a cylinder
deformation and stretch all the cylinders at the same speed in the direction orthogonal
to their core curve to infinity, we will obtain a surface in the boundary of the gothic
locus PΞG. As noted in Remark 5.3, this should be verified in the conformal topology.
The necessary exhaustion can be obtained by cutting smaller and smaller pieces from the
infinite cylinders of the limiting surface.

Proof of Proposition 7.3. By stretching all cylinders in the direction orthogonal
to their core curves, the horizontal cylinder decomposition in Figure 16 gives rise to a
generic curve in the stratum DΓ3 . Similarly, the vertical cylinder decomposition in Fig-
ure 17 gives rise to a generic curve in the stratum DΓ2 .

For DΓ2 and DΓ3 the intersection with the gothic locus must be a divisor, as DQ
ΓQ
2

and

DQ
ΓQ
3

are divisors. □

× × ×
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Figure 16. Four vertical and two horizontal geodesics in a curve in the
gothic locus
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Figure 17. Two geodesics in a curve in the gothic locus

Proposition 7.4. The gothic locus PΞG intersects the two horizontal strata DΓ1 and
DΓ19. Moreover, the intersection with each of those strata has an irreducible component
which is of codimension 2 in the gothic locus.

Proof. To prove that the stratum DΓ19 is intersected consider the curve in Figure 18a,
which is the same curve as in Figure 17 after some re-gluing. In the coordinates in Fig-
ure 18a the gothic locus is cut out by the equations

xi = xi+3 for i = 1, 2, 3,

yi =
1

3
(x1 + x2 + x3) for i = 1, . . . , 6.

(89)
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Hence the curve in Figure 18b is contained in DG
Γ2

. Stretching the cylinders of the cylinder
decomposition given by the two finite geodesics depicted in the figure gives rise to a curve
in DG

Γ19
. Moreover, around this curve the intersection is of codimension 2.

To obtain a curve in DΓ1 one can stretch the vertical cylinder decomposition in Fig-
ure 16. The claim about the codimension follows as for DΓ19 . □

z1

y6

×
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y4
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×
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(a) A regluing of the curve in Fig-
ure 17
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(b) A curve in DG
Γ2

with two finite geodesic

Figure 18. Degenerations toward DG
Γ19

Remark 7.5. Our guess is that the strata DΓ17 and DΓ21 are not intersected by the
gothic locus. To see why, consider the surface in Figure 18b. Note that there can not be a
horizontal degeneration of the irreducible component that contains the three marked points
×: As all yi agree by (89) there can not be a finite geodesic that is disjoint from the already
infinite cylinder. Hence the connected component of DG

Γ2
to which this surface belongs can

not intersect DΓ17 or DΓ21.
Note that this argument alone is not sufficient to prove that the gothic locus does not

intersect DΓ17 and DΓ21, as the intersection DG
Γ2

= DΓ2 ∩ PΞG might have multiple irre-
ducible components.

Recall that the gothic locus ΩG contains a dense set of primitive Teichmüller curves,
see [EMMW20, Theorem 1.4]. Let T ⊆ ΩG be such a Teichmüller curve. Teichmüller
curves are never compact, and hence we may consider the closure PT ⊆ PΞG. The
boundary ∂PT consists of a finite number of points, the cusps of the curve.

Proposition 7.6. The interior of each of the four horizontal strata DG
Γ1

, DG
Γ2

, DG
Γ3

and DG
Γ20

contains cusps of a primitive Teichmüller curve contained in the gothic locus ΩG.
The interior of the stratum DG

Γ19
contains cusps of a non-primitive Teichmüller curve.

Proof. The surface depicted in Figure 16 generates, for the “correct“ choice of side
length, a primitive Teichmüller curve, as it is the unfolding of the quadrilateral in[EMMW20,
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Theorem 1.4]. As we have seen in the proof of Proposition 7.3, the horizontal and vertical
cylinder decompositions give rise to curves in the strata DG,◦

Γ1
and DG,◦

Γ3
.

We claim that the surface depicted in Figure 17 generates, again for the “correct“
choice of side length, a primitive Teichmüller curve. To see this, note that the moduli of
the vertical and horizontal cylinder decompositions agree with the moduli of the cylinders
in Figure 16, and hence are commensurable. Moreover, the curve needs to be defined
over some number field Q(

√
d) and hence is primitive. As we have seen in the proof of

Proposition 7.3, the vertical cylinder decomposition gives rise to curves in the stratum
DG,◦

Γ2
.

The horizontal cylinder decomposition of the surface depicted in Figure 14 gives rise to
a point inDG

Γ20
. This surface is in fact the so-called duck-shaped surface depicted in [MT20,

Figure 3]. By [MT20, Proposition 2.3] this surface generates, again for the “correct“ choice
of side length, a Teichmüller curve. The cylinder decomposition of the cathedral-shaped
surface depicted in [MT20, Figure 2] gives rise to a cusp in DG

Γ20
, too.4

The curve in Figure 18a can be chosen such that it is square tiled and has a vertical
cylinder decomposition that gives rise to a point in the stratum DG

Γ19
: In complex coor-

dinates choose z1 = x1 = −1, x2 = i and x3 = 1 (recall that those suffices to specify the
surface because of the Equations (89)). □

Corollary 7.7. The gothic locus intersects the stratum DΓ20.

8. Towards the fundamental class

In this section we give an outline of a possible approach to compute the fundamental
class of the image of the quadratic gothic locus PΞ2G in M1,6. We denote this class by

[PΞ2G] ∈ H6(M1,6).

We work with PΞ2G instead of PΞG for two main reasons:
• By [Pet14] all cohomology H•(M1,6) is tautological, in particular is [PΞ2G] ∈
R3(M1,6) a tautological class.

• We want to work with the Sage package admcyles [DSZ21]. Admcycles is barely
able to compute a generating set for the tautological ring R3(M1,6) on a typical
computer. The tautological ring R3(M4,6) is currently out of reach (at least
without special hardware).

8.1. Why this class is of interest. Let H ⊆ PΞMg,n(µ) be an arbitrary linear
submanifold. If one knows the fundamental class of H in the Chow ring of PΞMg,n(µ) one
can compute the Euler characteristic of this submanifold by using Equation (55). Actually
it suffices to know the fundamental class of the image of H in Mg,n: instead of intersecting
the ξ-classes in (55) with the fundamental class in PΞMg,n(µ), one can as well push those
ξ-classes to R•(Mg,n) and intersect with the class of the image of H there.

Hence knowing the fundamental class of the gothic locus [PΞG] would allow to compute
its Euler characteristic. However, if we can determine [PΞ2G], the work done in Section II.7
allows to pull this class back from PΞ2M1,6(−13, 13) to PΞM4,6(0

3, 23) to obtain [PΞG].
As we recalled in Section 2.4, the class of the flex locus [F ] ∈ R1(M1,3) has been

computed in [Che22]. Even though the flex locus is the image of the quadratic gothic
locus under the forgetful map π : M1,6 → M1,3 there is unfortunately no way to directly
compare those classes. This is because the fiber dimension of π above a generic point is 3,
while the fiber dimension of the restriction π|QG is 1.

8.2. Our setup. By applying the Faber-Zagier-Pixton relations [PP21], one checks
(using admcycles) that the vector space R3(M1,6) is generated by 756 elements. Let
α1, . . . , α756 ∈ R3(M1,6) be a generating set. Then there exist rational numbers λi such
that

(90)
756∑

i=1

λiαi = [PΞ2G].

4The reader should be warned that in the picture in loc. cit. there are two cylinders with the same
color (black).
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In the rest of the section we will outline possible approaches to obtain linear equations for
the λi.

8.3. Homogeneous equations. In a first step, we want to use our results from
Section 4 to obtain a list of homogeneous equations for the λi. In the previous sections
we have been slightly sloppy with notation and we need to be more precise now. The
underlying stable graphs of the graphs ΓQ

i listed in Figure 5 index a priori boundary strata
of the quotient M1,6/S3+3. For such a graph ΓQ

i we denote by ΓQ
i the set of all possible

marked versions of ΓQ
i . Our first observation is the following corollary.

Corollary 8.1. Let M∆ ⊆ M1,6 be a boundary stratum of codimension d < 3. If M∆

has empty intersection with all the strata MΓQ for ΓQ ∈ ⋃i Γ
Q
i for ΓQ

i in Proposition 4.1,
then

756∑

i=1

λi(αi · γ · [M∆]) = γ · [M∆] · [PΞ2G] = 0

for all tautological classes γ ∈ R3−d(M1,6).

Proof. This is a direct consequence of Proposition 4.1. □
To check whether or not M∆ and MΓQ have empty intersection is a combinatorial

question about the existence of a common degeneration of the two graphs ∆ and ΓQ.
Unfortunately, using admcycles one checks that Corollary 8.1 is completely useless: In
the notation of the corollary there is not a single boundary stratum M∆that has empty
intersection with all the strata MΓQ .

We can drastically improve the situation by using the fact that the quadratic gothic
locus PΞ2G is an irreducible subvariety of the moduli space PΞ2M1,6(−13, 13). We state
the following proposition in a more general context as it might be useful elsewhere.

Proposition 8.2. Let H ⊆ PΞkMg,n(µ) be a closed irreducible subvariety, and let
Θ1, . . . ,Θl be the enhanced level graphs corresponding to the zero dimensional boundary
strata DH

Θi
of H. Let M∆ ⊆ Mg,n be a boundary stratum. Then M∆∩π(H) is non-empty

if and only if there is an i ∈ {1, . . . , l} such that Θi is a degeneration of ∆.

Proof. Assume that Θi is a degeneration of ∆, then π(DH
Θi
) ⊆ M∆ ∩ π(H) ̸= ∅.

For the converse implication, assume that M∆∩π(H) ̸= ∅. Then there is a degeneration
Θ̃ of ∆ that admits the structure of an enhanced level graph such that DH

Θ̃
is non-empty. If

Θ̃ = Θi for some i we are done. So let us assume that Θ̃ ̸= Θi for all i. Then dimDH
Θ̃

≥ 1

by assumption. We claim that one of the Θi must be a degeneration of Θ̃. This follows
from the fact that a stratum of k-differentials never contains a complete curve and hence
every boundary stratum must degenerate further if it is of positive dimension, compare
the proof of Proposition I.5.17. In particular is this Θi a degeneration of ∆. □

We do not know the precise list of zero dimensional boundary strata of the gothic locus
at the moment, but we can obtain a list that certainly contains all the zero dimensional
boundary strata by choosing an approach similar to the one in Proposition 4.1:

• List all boundary strata ∆HQ ⊆ HQ/S3+3 (in all codimensions)
• Throw away all strata that intersect the divisors ∆1,2 and ∆2,1.
• For each remaining stratum, consider its image under the forgetful map to M1,6/S3+3.
• For each stratum in the image check if it admits the structure of an enhanced

level graph such that
– the number of levels plus the number of levels with horizontal edges is between

1 and 3,
– if the above number is smaller than 3 then there is a level with multiple

horizontal edges,
– after contracting all horizontal edges the graph is an intersection of a number

of vertical divisors listed in Proposition 4.1.
The conditions on the number of levels and the number of horizontal edges stems from
Theorem 4.4 and the fact that every stratum of codimension 3 must be the intersection of
precisely three divisors. With this list of graphs at hand we can apply:
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Corollary 8.3. Let H ⊆ PΞkMg,n(µ) be a closed irreducible subvariety, and let
Θ1, . . . ,ΘL be a set of enhanced level graphs that contains all enhanced level graphs cor-
responding to the zero dimensional boundary strata DH

Θi
of H. Let M∆ ⊆ Mg,n be a

boundary stratum. Then M∆ ∩ π(H) is empty if non of the Θi is a degeneration of ∆.

If ∆ is the list of all stable graph such that for all ∆ ∈ ∆ the stratum M∆ ⊆ M1,6

has codimension d∆ < 3 and M∆ fulfills the condition of the above corollary for our list
of possible zero-dimensional strata, then the same idea as in Corollary 8.1 gives us linear
equations

756∑

i=1

λi(αi · γ · [M∆]) = 0 for all ∆ ∈ ∆ for all γ ∈ R3−d∆(M1,6).

Let Ahom be the rational matrix corresponding to this linear system. Using sage we check
that

dim(ker(Ahom)) = 79.

Remark 8.4. Knowing the fundamental class [PΞ2G] would allow us to a posteriori
determine which of the possible zero dimensional strata are actually intersected by the gothic
locus: A zero dimensional stratum DQ

Θ is intersected if and only if [π(DQ
Θ)] · [PΞ2G] ̸= 0.

8.4. Towards inhomogeneous equations from M1,6-divisors. We would like to
use the information we obtained in Section 5 about the non-horizontal divisors to obtain
more relations. However, as we will see in the following, there are several obstructions on
our way.

Let us first consider the divisor DQG
ΓQ
6

. For the ambient divisor we have the maps

M1,5

DQ
ΓQ
6

MΓQ
6

M0,3

π

τ⊤

τ⊥

where the two rightmost arrows are the projections to the irreducible components at the
top and bottom level. Up to a rational factor c that can be worked out explicitly it is

(91) c · [π(DQ
ΓQ
6

)] = [MΓQ
6
] · [PΞ2G]

because MΓQ
6

is a divisor. Assuming that we know the class [π(DQ
ΓQ
6

)] we could evaluate

756∑

i=1

λi(αi · γ · [MΓQ
6
]) = γ · [MΓQ

6
] · [PΞ2G] = c · γ · [π(DQ

ΓQ
6

)]

for any class γ ∈ R2(M1,6) and obtain new relations for the λi. The class of π(DQ
ΓQ
6

)

is determined by the two classes τ•(π(DQ
ΓQ
6

)). The image of τ⊥(π(DQ
ΓQ
6

)) is conveniently
given by a point. From the picture in Figure 11 it is not hard to see that the component
of DQG,⊤

ΓQ
6

to which the depicted surface belongs is a locus of covers of P1 branched above 5

points: one simply divides both depicted curves by the involution J (which acts by rotation
by π). The class of this locus in R2(M1,6) can be computed with the methods described
in [Lia21]. However, we are currently unable to prove that this is all of DQG,⊤

ΓQ
6

.

Problem 8.5. Is DQG,⊤
ΓQ
6

irreducible?

Let us given an estimate of how useful this approach can be. There are five non-
horizontal graphs with one edge listed in Figure 5, namely ΓQ

j for j ∈ J := {4, 6, 9, 10, 11}.
We denote by ΓQ

vd :=
⋃
j∈J Γ

Q
j the set of all marked versions of those vertical divisors. Let

B be a basis of R2(M1,6) and consider the matrix

Avd := (αi · γ · [MΓQ ])(γ,ΓQ)∈B×ΓQ
vd

i=1,...,756

∈ Q|B|·|ΓQ
vd|×756.
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Then there is a vector b ∈ Q|B|·|ΓQ
vd| given by the intersection products on the right hand

side of (91) such that
Avd · (λi)i = b.

While we are currently unable to compute b we can easily compute A with admcycles and
check that

dim(ker(Avd)) = 148.

In our opinion this is surprisingly small given that our generating set αi has 756 elements
and we only considered 5 of the divisors listed in Figure 5.

More importantly we may consider the stacked matrix

A :=

(
Ahom

Avd

)

where Ahom is the matrix from the previous Section 8.3 and check that

dim(ker(A)) = 0.

Hence determining the vector b would yield the class of the quadratic gothic locus [PΞ2G].

8.5. Towards inhomogeneous equations from other strata. Let us now consider
DQG

ΓQ
4

, and let π and τ• be the analogue of the above maps. From our discussion in

Section 5.1 it follows that τ⊤(π(DQG
ΓQ
4

)) is a locus of pillowcase covers. The class of this

locus in R2(M1,3) can again be computed with the methods described in [Lia21]. For the
bottom-level we are not aware of any such description. Hence the following problem is
currently unsolved.

Problem 8.6. Compute the class of τ⊥(π(DQG
ΓQ
4

)).

The situation is slightly different for DQG
ΓQ
5

. Again following our discussion in Section 5,

one can check that DQG,⊤
ΓQ
5

is a locus of pillowcase covers. Hence the class of its images

under the analog of τ⊤ ◦ π can again be computed with the methods described in [Lia21].
The bottom level DQG,⊥

ΓQ
5

is a stratum of quadratic differentials, and the fundamental
classes of such strata are known by [BHPSS20] and can be computed using admcycles.
However, MΓQ

5
is not a divisor, hence the analogue of Equation (91) does not hold. There

is a possible way forward. One could pull back Equation (90) to the tautological Ring of
PΞ2M1,6(−13, 13) in the hope to intersect with the class of the divisor DQ

ΓQ
5

. There are
the following two problems. In theory this pullback can be computed with diffstrata.
But because diffstrata does currently not support graphs with horizontal edges it is
not possible to pull back all classes αi. The other problem is that π∗[PΞ2G] is a class
of codimension 3, while the gothic locus itself is of codimension 2 in PΞ2M1,6(−13, 13).
Hence π∗[PΞ2G] is actually the intersection of the gothic locus with a class of codimension
1 in the Chow ring of PΞ2M1,6(−13, 13).

Problem 8.7. Determine this codimension 1 class and extend diffstrata to support
horizontal edges.

All the other non-horizontal divisors have at least one of the above problems. One can
hope to obtain the fundamental class of the gothic locus if one solves those problems for a
sufficient number of divisors.





CHAPTER IV

Visible Lagrangians for Hitchin systems and pillowcase covers

1. Introduction

Mirror symmetry questions about Higgs bundle moduli spaces have been intensively
studied in recent years. The work of Hausel and Thaddeus [HT03] initiated the direction of
research by observing the SYZ mirror symmetry of the SL(n,C)- and PGL(n,C)-Hitchin
system and proving topological mirror symmetry for n = 2, 3. Later Donagi and Pantev
[DP12] established the duality between Hitchin systems associated to a complex reductive
Lie group G and its Langlands dual group GL. To a complex reductive group G, we
associate a moduli space of G-Higgs bundles MG with a Hitchin map Hit : MG → BG
to a half-dimensional vector space. Then Donagi and Pantev showed that there is an
isomorphism BG ∼= BGL , such that the generic fibers over corresponding points under
this isomorphism are torsors over dual abelian varieties. Furthermore, the Fourier-Mukai
transform yields an equivalence of derived categories of the regular loci of the G and GL-
Hitchin system.

About the same time the work of Kapustin and Witten [KW07] raised the question
about mirror symmetry of special subvarieties referred to as branes in the physical litera-
ture. A brane is a pair (N , F ) of a subvariety N and a sheaf F supported on N with special
geometric properties. This initiated plenty of mathematical research to find examples of
branes or their supports for G-Hitchin system [BS16]; [Hit16]; [Hit17]; [HS18]; [BS19];
[FJ22]; [HH22]; [FP23]. However, [KW07] also propose a correspondence between branes
under mirror symmetry. This seems to be less considered in the mathematical literature
(see [Hit16]; [FJ22]; [HH22]; [FP23] for exceptions).

In this paper, we consider so-called (B,A,A)-branes, that is pairs (N , F ), where N
is a complex Lagrangian subvariety and F is a flat bundle on N . We also describe the
subvarieties and sheaves related to these (B,A,A)-branes by the Fourier-Mukai transform.
The work of Kapustin and Witten [KW07] suggests that these are (B,B,B)-branes, i.e.
hyperholomorphic subvarieties with a hyperholomorphic sheaf. We give indication for this
conjecture for our main example.

More specifically, we are interested in complex Lagrangians L such that the restriction
of the Hitchin map factors through a proper subvariety B′ = Hit(L) ⊊ B. Such Lagrangians
are called visible in the symplectic geometry literature [Eva23]. This is complementary to
the recent work of Hausel and Hitchin [HH22], who studied the upward flow to certain
points in the nilpotent cone.

We first abstractly consider visible Lagrangians in theG = GL(n,C) andG = SL(n,C)-
Hitchin system and describe their proposed mirror dual by computing the Fourier-Mukai
transform of flat sheaves on them. The first main result is

Theorem 1.1 (Theorem 3.2). Let L ⊂ MG be a visible Lagrangian, such that B′ =
Hit(L) ⊊ BG and B′ ∩ Breg

G ̸= ∅. Let s : B′ → L be a section of Hit L. The fiber-
wise Fourier-Mukai transform of the structure sheaf OL is supported on a holomorphic
symplectic subvariety IL,s ⊂ MGL, such that Hit I : IL,s → B′ is an algebraically completely
integrable system.

Note that every hyperholomorphic subvariety is holomorphic symplectic. Hence, this
observation fits well with the mirror symmetry proposal in [KW07].

On the question of existence, we mention three situations under which we expect visible
Lagrangians, examples of which appeared in the literature. The first is Lie-theoretic. An
inclusion of a semisimple Lie group G1 into a reductive Lie group G2 defines a morphism
of Higgs bundle moduli spaces MG1 → MG2 . Its image is a hyperholomorphic subvariety.
We expect the mirror dual to this hyperholomorphic subvarieties to be visible Lagrangians.
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We consider the example of SL(n,C) ⊂ GL(n,C) in Section 3.3. Another example where
G1 = Sp(2n,C) and G2 = GL(2n,C) was considered by Hitchin in [Hit16]. Other than
that, we hope to return to this type of visible Lagrangians in a subsequent work and will
mainly focus on G = SL(2,C) in the remainder of the paper. The second type of visible
Lagrangians appeared in the work of [FGOP21]; [FP23]; [FHHO23]. They are completely
contained in the singular locus of the Hitchin map and substantially use the geometry of
the singular Hitchin fibers. In particular, they do not fall within the scope of this work.

The focus of this work is a third type of visible Lagrangians related to the symmetries
of the underlying Riemann surface. The general fiber of the Hitchin system is a torsor
over an abelian variety. A necessary condition for the existence of a visible Lagrangian
L → B′ is that the Hitchin fibers over B′ correspond to reducible (i.e. non-simple) abelian
varieties. Comparing the dimension of the SL(2,C)-Hitchin base and the reducible locus
in the corresponding moduli space of abelian varieties suggests that there are finitely many
directions in the Hitchin base, where the Hitchin fiber is isomorphic to a reducible abelian
variety. Hence, it is natural to look for visible Lagrangians L → B′ over lines Ca ⊂ BG in
the Hitchin base. We have the following second main theorem, of which a SL(n,C)-version
is proven in Theorem 6.1.

Theorem 1.2 (Corollary 6.2). Let q ∈ H0(X,K2
X) be a quadratic differential with

simple zeros only. Then there exists a visible Lagrangian

L → B′ = {tq | t ∈ C} ⊂ BSL(2,C)(X)

if and only if (X, q) is a pillowcase cover.

The notion of pillowcase cover stems from the theory of flat surfaces. It means that
there is a covering X → P1, such that the quadratic differential q is the pullback of
a quadratic differential on P1 with four simple poles. The later should be figured as a
pillowcase, see Figure 2. We give a short introduction to the idea of flat surfaces in Section
4.

Motivated by the above considerations on the moduli space of abelian varieties, in
Section 5, we study examples of Riemann surfaces, where there exist several lines in the
SL(2,C)-Hitchin base associated to visible Lagrangians. We prove the following result,
which might be of independent interest from the point of view of flat surfaces.

Theorem 1.3 (Proposition 5.1). There exist infinitely many genera g, such that there
exists a Riemann surface X of genus g with two quadratic differentials q1, q2 with simple
zeros only, such that (X, qi) are pillowcase covers and q1, q2 are not related by pullback
along an automorphism of X.

Finally, we consider the subintegrable system I ⊂ MPGL(2,C) of Theorem 1.1 asso-
ciated to the visible Lagrangian L of Theorem 1.2. We observe that I is birational to
Hausel’s toy model [Hau98]. Under the natural extra condition on the pillowcase cover to
be uniform, we prove the following theorem that confirms the Kapustin-Witten picture for
visible Lagrangians of this kind. All the pillowcase covers of Theorem 1.3 are uniform.

Theorem 1.4 (Corollary 6.5). Let (X, q) be a uniform pillowcase cover with simple
zeros only and L → Cq the visible Lagrangian of Theorem 1.2. Then the associated subin-
tegrable system I ⊂ MPGL(2,C) of Theorem 1.1 is a hyperholomorphic subvariety.

2. Symplectic geometry

2.1. Completely integrable systems.

Definition 2.1. A completely integrable system is a holomorphic symplectic manifold
(M,Ω) together with a proper flat morphism H : M → B to a complex manifold B, such
that on the complement B \ S of some proper closed subvariety S the fibers of H are
complex Lagrangian tori. It is called algebraically completely integrable, if the Lagrangian
tori are endowed with continuously varying polarizations ρb ∈ H(1,1)(Mb)∩H2(Mb,Z), i.e.
they are abelian varieties.

We will refer to Breg = B \ S as the regular locus and to S as the singular locus of a
completely integrable system.
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Definition 2.2. An integral affine structure on a smooth manifold B is a torsion-free
flat connection on the tangent bundle TB.

For completely integrable systems there is a natural identification of the cotangent
bundle to the base with the torus-invariant vector fields along to the fibers of H given as
follows. Let α ∈ T∨

b B be a (holomorphic) one-form then there exists an invariant vector
field X on Mb, such that Ω(X, ·) = H∗α. Denoting by VM the bundle of invariant vector
fields along to the fibers over Breg we obtain an identification T∨Breg ∼= VM . Locally over
U ⊂ Breg we can choose a section of H : M → B and identify H−1(U) ∼= VUM/Λ for a
family of lattices Λ ⊂ VUM . This yields a family of lattices Λ ⊂ T∨Breg. The dual family
of lattices Λ∨ ⊂ TBreg defines a torsion-free flat connection on TBreg, where a section is
flat if and only if it is constant with respect to lattice coordinates (see [Fre99, §3] for more
details).

2.2. Visible Lagrangians. This idea goes back to lecture notes of Jonathan David
Evans [Eva23, Chapt. 5] in the context of real completely integrable systems.

Definition 2.3 (Visible Lagrangians). Let H : M → B be a completely integrable
system. A Lagrangian subvariety L ⊂ M is called visible, if H L : L → B factors as
H L = f ◦ g, where f : B′ → B is an embedding of a proper subvariety B′, such that
g B′\S′ : L B′\S′ → B′ \ S′ is a smooth fiber bundle on the complement of some proper
subvariety S′ ⊊ B′.

The simplest example of a visible Lagrangian is a complex torus fiberMb with B′ = {b}.
On the other hand, a Lagrangian section s : B → M is an example of a Lagrangian that
is not visible. We denote B′reg = B′ \ S′. For the visible Lagrangians considered in the
present work we will mostly have B′reg = B′ ∩Breg.

Theorem 2.4. Let H : M → B be a completely integrable system and L → B′ ⊊ B a
visible Lagrangian with B′reg ⊂ Breg. Then at each smooth point b ∈ B′reg the base locus
B′ is rational with respect to the integral affine structure on Breg and for b ∈ B′reg the fiber
Lb is a union of complex tori generated by the invariant vector fields TbB′⊥ ⊂ VbM .

Proof. Locally at a smooth point b ∈ B′reg the subvariety B′ ⊂ B is cut out by
k = codimB′ many functions f1, . . . , fk ∈ OB. We can associate invariant vector fields
Xi ∈ VM B′ along the torus fibers so that Ω(Xi, ·) = H∗dfi for i = 1, . . . , k. Let m ∈ Lb
and Y ∈ TmM , such that DH(Y ) ∈ TbB

′, then

Ω(Xi, Y ) = H∗dfiY = dfi(DH(Y )) = 0.(92)

Therefore, the connected components of the fiber of L over b ∈ B′reg are integral subman-
ifolds of the distribution V L = span(X1, . . . , Xk). Hence the connected components of
the fibers of Lb → B′reg are complex subtori. In particular, the subspace VbL ⊂ VbM is
rational with respect to the lattice Λb. By definition this is equivalent to H∗TL = TB′

being rational with respect to the integral affine structure on B. Finally, by (92) we have
V L ⊂ (TB′reg)⊥ ⊂ T∨Breg ∼= VM . The first inclusion is an equality both being of rank
k. □

3. Hitchin systems

In this section, we will briefly review Hitchin systems - the algebraically completely
integrable systems of interest in this work. Then we will give an example of a visible
Lagrangian of MGL(n,C) that stems from the embedding of SL(n,C) ⊂ GL(n,C). In the
remainder of the paper we will focus on visible Lagrangians that do not come from Lie
theory.

3.1. Preliminaries about the GL(n,C) and SL(n,C)-Hitchin systems. Let G
be a complex reductive Lie group and X a Riemann surface, then there is a moduli space
of stable G-Higgs bundles. More precisely, we denote by MG(X) the neutral component
of the moduli space of stable G-Higgs bundles. It is a hyperkähler manifold, in particular,
holomorphic symplectic. There is the Hitchin map Hit : MG(X) → BG(X) to a half-
dimensional vector space BG(X), which is an algebraically completely integrable system in
the sense of Definition 2.1. So it is sensible to ask for the existence of visible Lagrangians.
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Let us be more concrete about the cases G = GL(n,C) and G = SL(n,C). A GL(n,C)-
Higgs bundles is a pair (E,Φ) of a holomorphic vector bundle E together with a section
Φ ∈ H0(X,End(E) ⊗ KX), where KX is the canonical bundle of X. Considering the
neutral component of the GL(n,C)-moduli space means to fix the degree of E to be 0. For
(E,Φ) to be a SL(n,C)-Higgs bundle we add the condition of the determinant bundle of
E and trace of Φ to be trivial. In the GL(n,C)-case the Hitchin map is given by

Hit : MGL(n,C) → BGL(n,C) =
n⊕

i=1

H0(X,Ki), (E,Φ) 7→ a(Φ) = (a1(Φ), . . . , an(Φ)),

where ai ∈ C[gl(n,C)]GL(n,C) is the i-th coefficient of the characteristic polynomial. In the
SL(n,C)-case it is given by

Hit : MSL(n,C) → BSL(n,C) =
n⊕

i=2

H0(X,Ki), (E,Φ) 7→ a(Φ) = (a2(Φ), . . . , an(Φ)).

Fixing a point a ∈ BG in the Hitchin base the eigenvalues of Φ define a branched n-sheeted
cover π : Σa → X - the so-called spectral curve. The discriminant of the characteristic
polynomial defines a map discG : BG → H0(X,Kr(r−1)). The discriminant locus ∆G ⊂ BG
is the preimage of the sections of H0(X,Kr(r−1)) with higher order zeros under discG. Its
complement Breg

G = BG \∆G is referred to as the regular locus. In particular, for a ∈ Breg
G

the spectral curve Σa is smooth. For G = SL(2,C) the regular locus Breg
SL(2,C) is the locus

of quadratic differentials with simple zeros only.
The fibers of the GL(n,C)-Hitchin map over Breg

GL(n,C) - the so-called regular fibers -
are torsors over Jac(Σa) via the spectral correspondence. The branched cover π : Σa → X
defines a norm map NmΣ/X : Jac(Σa) → Jac(X). The kernel of this morphism defines
the Prym variety Prym(Σa). A regular fiber of the SL(n,C)-Hitchin system is a torsor
over Prym(Σa). The neutral component of the Higgs bundles moduli space allows for the
existence of a section sH : BG → MG of the Hitchin map - the so-called Hitchin section.
For GL(n,C) it is given by

sH(a) =


K

n−1
2 ⊕ · · · ⊕K−n−1

2 ,




a1 a2 . . . an

1 a1
. . .

...
. . . . . . a2

1 a1





 .

The tangent space to Jac(Σa) at the identity is H1(Σa,OΣa) by the exponential se-
quence. The inclusion of the Hitchin fiber into MGL(n,C) yields an exact sequence of
tangent spaces

0 → H1(Σa,OΣa) → T(E,Φ)MGL(n,C) → H0(Σa,KΣa) → 0

(see [Mar94, Prop. 8.2]). The holomorphic symplectic form identifies the vertical tangent
vectors with the dual of the tangent space to the Hitchin base. Combining this with Serre
duality yields the following identification of the tangent space to base with differentials on
Σa.

Proposition 3.1 ([Bar16, Proposition 3.4]). Let a ∈ Breg
GL(n,C). The identification of

the tangent space TaBGL(n,C) with the dual of the tangent space to the fiber T∨
L Jac(Σa) ∼=

H0(Σa,KΣ) is given by

t :

n⊕

i=1

H0(X,Ki
X) → H0(Σa,KΣa)

n∑

i=1

αiXi 7→ 1

sB

n∑

i=1

αiπ
∗Xi

(
λn−i + π∗a2λ

n−2−i + · · ·+ π∗an−i
)
,

where sB = dπ ∈ H0(X,π∗Kn−1
X ) is supported at the branch divisor.

Proof. The original statement gives the isomorphism with values in H0(Σa, π
∗Kn

X).
We have the isomorphism of sheaves KΣa → π∗Kn

X given by ϕ 7→ ϕsB U for ϕ ∈ KΣa U .
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This is well-defined by the following: Let (U,w) a coordinate disc centered at y ∈ Σ, such
that π : U → π(U), w 7→ z = wb with b ≥ 1. Then sB U = wb−1(π∗dz)n−1. Hence,
ϕ · sB(U) = fdw · wb−1(π∗dz)n−1 = f(π∗dz)n, where we used that π∗dz = wb−1dw.
Composing Baraglia’s isomorphism with the inverse of the above defines the asserted iso-
morphism t. □

In the following proposition, we take a algebro-geometric point of view and will consider
the family of smooth curves Σ → Breg

G . The GL(n,C)-Hitchin system is a torsor over the
abelian scheme defined by the relative Jacobian Jac(Σ/Breg

G ).

Proposition 3.2. A subvariety L ⊂ MGL(n,C) over a proper subvariety B′ ⊊ BGL(n,C)
with B′reg ⊂ Breg and connected fibers is a visible Lagrangian if and only if

i) There exists an abelian subscheme A ⊂ Jac(Σ/Breg
G ) B′reg over B′reg, such that L

is an A-torsor.
ii) The relative tangent bundle TA/B′reg ⊂ TJac(Σ)/B′reg is the kernel of the map

TJac(Σ)/B′reg ∼= R1π∗OΣ → CdimB′reg

defined by evaluating on the image of

TB′reg → R0π∗KΣ, X 7→ t(X)

using the Serre pairing on Σ. Here t was defined in Proposition 3.1.

Proof. By Theorem 2.4 fibers of L → B′reg are complex subtori in the Hitchin fiber.
Hence, using a local section s : U → L on an open U ⊂ B′reg, we can identify the fibers
with an abelian subscheme of A → Jac(Σ/B′reg). Condition ii) is the family version of
Theorem 2.4 reformulated by using the observations about the holomorphic symplectic
form on MGL(n,C) in the previous paragraph. Conversely, condition ii) is equivalent to
the restriction of the symplectic form of MGL(n,C) to be zero on the tangent bundle to L.
Hence, L is a Lagrangian. □

In general, a visible Lagrangian might not have connected fibers. We will give an ex-
ample in Theorem 3.5.

To obtain an analogous statement in the SL(n,C)-case we have to identify the image
of TBreg

SL(n,C) ⊂ TBreg
GL(n,C) through the isomorphism t of Proposition 3.1. The pullback

π∗ : H0(X,KX) → H0(Σa,KΣa) defines an inclusion of the differentials on X into the
differentials on Σa. We define the linear map

prX : H0(Σa,KΣa) → H0(X,KX), λ 7→ η,

where η is define as follows: Let U ⊂ X be a trivially covered open, i.e. π−1(U) =
⊔n
i=1 Ui.

Define η(U) = 1
n

∑n
i=1 λ(Ui). Then η extends to an abelian differential on X by the

Riemann extension theorem. Clearly prX ◦ π∗ = id. Denote by H0(Σa,KΣa)
− the kernel

of prX . Then this induces a splitting H0(Σa,KΣa) = H0(X,KX)⊕H0(Σa,KΣa)
−.

The Prym variety is the kernel of the Norm map NmΣ/X : Jac(Σa) → Jac(X) in-
duced by the Norm map on structure sheaves NmΣ/X : π∗OΣa → OX , π∗f → det(π∗f).
Tangentially, we have a splitting of π∗OΣa = OX ⊕ π∗O−

Σa
, where π∗O−

Σa
is the kernel of

nmΣ/X : π∗OΣa → OX , π∗f 7→ tr(π∗f). This yields a splitting of the tangent space to the
GL(n,C)-Hitchin fiber over a

T Jac(Σa) = H1(Σa,OΣa) = H1(X,OX)⊕H1(X,π∗O−
Σa

)

= Tπ∗ Jac(X)⊕ TPrym(Σa).

Let α ∈ H0(X,KX) and β ∈ H1(Σa,OΣa)
∼= H(0,1)(Σa), then

∫

Σa

π∗α ∧ β =

∫

X
α ∧ nmΣ/X(β).
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MG M0
GL

BG = BGL

Prym(Σ/Breg
G ) Prym(Σ/Breg

G )/π∗ Jac(X)[n]

Breg
G = Breg

GL

sH
sH

e e

Figure 1. Langland’s duality between SL(n,C)-Hitchin system and
PGL(n,C)-Hitchin system

Therefore, the Serre pairing on Σa restricts to a non-degenerate pairing betweenH0(Σa,KΣa)
−

and H1(Σa,OΣa)
−. Consequently, the isomorphism t of Proposition 3.1 restricts to

t :

n⊕

i=2

H0(X,Ki
X) → H0(Σa,KΣa)

−

by the same formula.
Now Proposition 3.2 readily translates to a characterization of visible Lagrangians in

MSL(n,C).

3.2. Langland’s duality for Hitchin systems. In this section, we will review the
Langland’s duality of Hitchin system as considered in [DP12]. We will fix G = SL(n,C)
and GL = PGL(n,C) (cf. Remark 3.3). Recall that we consider the neutral components of
the moduli spaces. The situation is visualized in Figure 1. First there is an isomorphism
of the Hitchin bases for G and GL, which maps the G-discriminant locus to the GL-
discriminant locus. In the cases under consideration, this isomorphism is the identity.
The SL(n,C)-Hitchin system restricted to Breg

SL(n,C) is a torsor over the abelian scheme
Prym(Σ/Breg

SL(n,C)). On the other hand, the (neutral component of the) moduli space of
PSL(n,C)-Higgs bundles is the quotient

MPSL(n,C) = MSL(n,C)/ Jac(X)[n]

under the action of Jac(X)[n] on the moduli spaces of SL(n,C)-Higgs bundles by ten-
sor product. The PGL(n,C)-Hitchin system restricted to Breg

PSL(n,C) is a torsor for the
dual abelian scheme Prym(Σ/Breg

SL(n,C))
∨ = Prym(Σ/Breg

SL(n,C))/π
∗ Jac(X)[n]. In the case of

SL(n,C) and PGL(n,C) the quotient map δ : MG → MGL = MG/ Jac(X)[n] extends the
polarization to a finite morphism between the moduli spaces. This morphism is holomor-
phic symplectic, i.e. it induces an symplectic isomorphism of tangent spaces at the points
with non-trivial stabilizer.

Theorem 3.1. Let L → B′ ⊂ BG be a visible Lagrangian in MG with B′reg ⊂ Breg,
connected fibers and a section s : B′reg → L B′reg . Then there exists a holomorphic symplectic
subvariety I ⊂ MGL, such that I → B′ ⊂ BGL is an algebraically completely integrable
system and s′ = δ ◦ s defines a section s′ : B′reg → I B′reg .

Proof. Using the section s we can identify the Hitchin system over B′reg with the
abelian scheme Prym(Σ/B′reg) → B′reg. By Theorem 2.4 the fiber Lb for b ∈ B′reg is
complex subtorus that by assumption contains s(b). Hence, L defines an abelian subscheme
A ⊂ Prym(Σ/B′reg). We obtain an exact sequence of abelian schemes over B′reg

0 → A→ Prym(Σ/B′reg) → Q→ 0,(93)

where the quotient Q is again an abelian scheme over B′reg. Dually, we obtain an exact
sequence of abelian schemes

0 → Q∨ → Prym(Σ/B′reg)∨ → A∨ → 0.(94)
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We can define a section s′ = δ ◦ s : B′reg → Hit−1
GL(B′reg) ⊂ MGL . Acting by Q∨ on

s′ : B′reg → MGL defines a submanifold I ⊂ Hit−1(B′reg) ⊂ MGL . We define I = I. We
want to show that this is subintegrable system with regular locus I, i.e. the holomorphic
symplectic form restricts to a non-degenerate form on I and Hit I : I → B′reg is an
integrable system. First note that for all b ∈ B′reg

dim Ib = dim(Prym(Σb))− dimLb =
1

2
dimM(X,G)− dimLb = dimB′reg.

Hence, the restricted Hitchin map will lead the correct number of commuting Hamil-
tonian functions and the fibers are complex tori by definition. To show that it forms a
subintegrable system it suffices to show that the tangent space of I at the section s′ is a
symplectic vector space with the restriction of the symplectic form. The argument at a
general point follows by a translation along the fibers of I. We identify the tangent spaces
Ts(b)MG

∼= Ts′(b)MGL using δ. Then the vertical tangent spaces to L and I are comple-
mentary by definition. The tangent vectors in Ds′(TB′reg) pair to zero with the tangent
vectors to L being Lagrangian. One the other hand, the symplectic form on Ts′MGL is
non-degenerate. Hence, it restricts to a non-degenerate symplectic form on Ts′I. □

Theorem 3.2. Let L → B′ ⊂ BG be a visible Lagrangian in MG with B′reg ⊂ Breg,
connected fibers and a section s : B′reg → L. We identify the G- (respectively GL-) Hitchin
system over B′reg with the abelian schemes using the section s (respectively s′ = δ◦s). Then
the fiber-wise Fourier-Mukai transform of the structure sheaf OL over B′reg is the structure
sheaf of the holomorphic symplectic subvariety I ⊂ MGL defined in Theorem 3.1.

Proof. Let a ∈ B′reg and denote by P = Prym(Σa). As in the previous proof we use
the section s to obtain the exact sequences of abelian varieties

0 → A→ P → Q→ 0 (93) and 0 → Q∨ → P∨ → A∨ → 0 (94).

We use the symmetric Fourier-Mukai transform introduced in [Sch22]. More precisely, we
are going to use Proposition 1.6 therein. We denote by P → P ×P∨ the Poincaré bundle.
Then the symmetric Fourier-Mukai transform is defined by

SFMP : Db(P ) → Db(P∨), FMP ◦∆P ,

where ∆P = Hom(·, ωP [dimP ]) is the Serre duality functor. First we have to show that
OA is a GV-sheaf. Let ξ ∈ P∨. We have

H i(P, ι∗OA ⊗ P−1
ξ ) = H i(A,P−1

ξ A).

It is zero for i > dimA. For i ≤ dimA it is non-zero if and only if P−1
ξ A is trivial. Hence,

if and only if ξ ∈ Q∨. Hence, the support loci

{ξ ∈ P∨ | H i(P, ι∗OA ⊗ P−1
ξ ) ̸= 0}

have codimension ≥ i for all i. Therefore, ι∗OA is GV on P . In particular, it is WIT -
that is SFMP (OA) is a sheaf - by [PP11, Proposition 3.2].

The symmetric Fourier-Mukai transform on A has the property

SFMA(OA) = C0 SFMA∨(C0) = OA,(95)

where C0 is the skyscraper sheaf of length 1 at 0 ∈ P V . Now [Sch22, Proposition 1.6] says
that if a sheaf F is GV on A and ι∗F is GV on P then

SFMP (ι∗F) = (ι∨)∗ SFMA(F).

By (95) this yields SFMP (OA) = OQ∨ . □

Remark 3.3. The above arguments similarly work for the case of G = GL = GL(n,C).
Here the Hitchin system restricted to Breg

GL(n,C) is a torsor over the abelian scheme Jac(Σ) →
Breg
GL(n,C), which is self-dual due to the principal polarization of the Jacobians. Hence,

again given a visible Lagrangian with connected fibers together with a section we obtain
a holomorphic symplectic submanifold I by the arguments of the proof of Theorem 3.1.
Furthermore, the arguments in the proof of Theorem 3.2 work for the structure sheaf of
any abelian subvariety of an abelian variety.
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3.3. Visible Lagrangians in Hitchin systems. In this section, we will give the
first examples of visible Lagrangians in Hitchin systems. These examples are independent
of the choice of the Riemann surface. The first one is associated to the embedding of the
complex Lie groups SL(n,C) ⊂ GL(n,C). The second example appeared in the work of
[FGOP21] and is a subvariety of the singular fibers of the Hitchin map. The remainder of
the paper will deal with visible Lagrangians defined on special Riemann surfaces.

Visible Lagrangian associated to the subgroup SL(n,C) ⊂ GL(n,C):
Consider the embedding BSL(n,C) ⊂ BGL(n,C). In this section, we will define a visible
Lagrangian over B′ = BSL(n,C).

Theorem 3.4. Let B′ = BSL(n,C)(X) ⊂ BGL(n,C) with B′reg = Breg
SL(n,C). Then we can

act by the trivial torsor Jac(X) × B′ on the Hitchin section by tensoring the underlying
bundle. The orbit defines a visible Lagrangian L → B′. The fiber-wise Fourier-Mukai
transform of OL over B′reg is supported on the moduli space of SL(n,C)-Higgs bundles
MSL(n,C) ⊂ MGL(n,C).

Proof. Tensoring with a line bundle preserves stability. Hence L is well-defined. The
Hitchin fiber over a ∈ B′reg reflects the splitting of the differentials on Σ by the isomorphism

Jac(Σa) = π∗ Jac(X)× Prym(Σa)/π
∗ Jac(X)[n],

where π∗ Jac(X)[n] acts diagonally (see Mumford [Mum74]). In particular, we have an
exact sequence of abelian schemes over B′reg

0 → Jac(X)× B′reg ι−→ Jac(Σ/B′reg) → Prym(Σ/B′reg)/π∗ Jac(X)[n] → 0.(96)

As explained in Section 3.1 the holomorphic symplectic form on Hit−1(Breg
GL(n,C)) ⊂ MGL(n,C)

restricts to the Serre pairing between the tangent space of the base identified withH0(Σa,KΣa)

by Proposition 3.1 and the tangent space to the fibers H1(Σa,OΣa). With respect to this
pairing we have

H1(X,OX)
⊥ = H0(Σa,KΣa)

−

The subtorsor L ⊂ Hit−1(B′reg) that is defined by the action of Jac(X)×B′reg on the Hitchin
section has vertical tangent bundle H1(X,OX) and the tangent space to the SL(n,C)
Hitchin base are identified with H0(Σa,KΣa)

−. Therefore, L is a visible Lagrangian.
By Theorem 3.2 the fiber-wise Fourier-Mukai transform of the structure sheaf of L over

B′reg is supported on torsor over the abelian scheme that is dual to quotient in the exact
sequence (96). That is the abelian scheme Prym(Σ/Breg

SL(n,C)). The closure of this locus is
the moduli space of SL(n,C)-Higgs bundles. □

We expect that every embedding of complex reductive Lie groups G1 ⊂ G2, such that
center of G1 is mapped to the center of G2 defines a visible Lagrangian L → BG1 ⊂ BG2

Fourier-Mukai dual to image of the induced morphism of moduli spaces MG1 → MG2 .
By definition, the visible Lagrangian of Theorem 3.4 has connected fibers. We provide

an example with disconnected fibers by acting on a multi-section of the SL(2,C)-Hitchin
map instead of a section. Consider the moduli space of SL(2,R)-Higgs bundles MSL(2,R).
The Hitchin map restricts to a 26g−6-covering

Hit : MSL(2,R) ∩ Hit−1Breg
SL(2,C) → Breg

SL(2,C).

Theorem 3.5. Let B′ = BSL(2,C) ⊂ BGL(2,C) with B′reg = Breg
SL(2,C). We can act by

the trivial torsor Jac(X) × B′ on MSL(2,R) → B′ by tensoring. The orbit defines a visible
Lagrangian L → B′. For a ∈ B′reg the fiber-wise Fourier-Mukai transform of OLa is
supported on MSL(2,C) ⊂ MGL(2,C) and given by a flat vector bundle of rank 6g − 6 on
Prym(Σa).

Proof. Let U ⊂ Breg
SL(2,C) open, such that there exist sections

s1 = sH , s2, . . . , s6g−6 : U → MSL(2,C),

such that Hit−1(U)∩MSL(2,R) =
⊔6g−6
i=1 si(U). Then the orbit of each si(U) under tensoring

with line bundles in Jac(X) is Lagrangian by the previous proof. Hence, L defines a visible
Lagrangians.
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We identify the Hitchin fibers with the abelian scheme Jac(Σ) using the Hitchin section
s1. Fix a ∈ U and define li = (s1 − si)(a) ∈ Jac(Σa). Recall the exact sequence of abelian
schemes (96). We have

OLa =

6g−6⊕

i=1

t∗liι∗OJac(X),

where tli denotes the translation by li on Jac(Σa). Let J = Jac(Σa) and P → J × J
the Poincaré bundle. Using the relation between tensor product and translations under
Fourier-Mukai transform (see [Sch22]) we obtain

SFMJ(t
∗
li
ι∗OJac(X)) = Pli ⊗ SFMJ(ι∗OJac(X)) = Pli ⊗ (ι∨)∗C0 = Pli ⊗OPrym(Σa).

The right hand side defines a flat line bundle on Prym(Σa). The Fourier-Mukai of the
structure sheaf OLa is the direct sum of all these flat line bundles. □

Visible Lagrangians over the singular locus of the Hitchin base:
Other examples of visible Lagrangians were considered in [FGOP21]. Here B′reg ⊂ BGL(n,C)
is the locus of spectral curves with the maximal number of n(n− 1)(g − 1) nodes as their
only singularities and B′ = B′reg. In particular, these Lagrangians are completely contained
in the singular locus of the Hitchin map and hence Theorem 2.4 and 3.2 do not apply. The
compactified Jacobians over B′reg contain subvarieties isomorphic to (P1)n(n−1)(g−1), which
can be interpreted as parameters for Hecke modifications of the Higgs bundles at the node
by [Hor22]. Applying these Hecke modifications to the Hitchin section yields a visible
Lagrangian over B′. Interestingly, in this work the authors considered Arinkin’s Fourier-
Mukai transform for compactified Jacobians and found that the support of the fiber-wise
Fourier-Mukai transform is supported on a hyperholomorphic subvariety - the so-called
Narasimhan-Ramanan BBB-brane. In the subsequent work [FHHO23], together with the
first author this construction will be generalized to visible Lagrangians L → B′ over the
closure of the locus of spectral curves with any number of nodes as their only singularities.

Lagrangians that are not visible: The upward flow of a very stable Higgs bundle
considered in [HH22]; [PP19] defines a complex Lagrangian that is supported over the
whole Hitchin base and hence is not visible.

4. Parallelogram-tiled surfaces and pillowcase covers

In this section we will briefly review the interpretation of abelian and quadratic differ-
entials in terms of flat geometry. Then we will discuss certain types of these flat geometries
on a Riemann surface that will play a special role in the following section.

An abelian differential λ ∈ H0(Σ,KΣ) on a Riemann surface Σ determines a singular
flat metric, such that all transition functions are translation. A coordinate of the flat
metric at y ∈ Σ \ Z(λ) is a holomorphic coordinate z at y, such that λ = dz. In this way,
one obtains a flat metric on Σ \ Z(λ), such that coordinate transitions are translation. It
extends to a singular flat metric on Σ by cone points of cone angle (k + 1)π at a zero of λ
of order k. This is a so-called translation surface.

Similarly, we can associate a singular flat metric to a quadratic differential (X, q),
where X is a Riemann surfaces and q ∈ H0(X,K2

X). A flat coordinate at x ∈ X \Z(q) is a
holomorphic coordinate z at x, such that q = dz⊗2. In this case, the coordinate functions
are compositions of translations and reflections. It extends to a singular flat metric on X
by cone points of cone angle (k + 2)π at a zero of q of order k. This is a so-called half-
translation surface. When q has simple zeros only, the spectral curve defined in section 3
is referred to as the canonical cover of (X, q) from this point of view. It is the universal
cover X, such that the pullback of q has a square-root. (Here we consider λ as a section
of KΣ instead of π∗KX as in section 3. We have π∗KX = KΣ(−R). Hence, if q has simple
zeros, then the abelian differential λ has double zeros at all branch points.)

We say that a quadratic differential (X, q) is of type µ(q) = (m1, . . . ,mn) if the orders
of the zeros of the differential are m1, . . . ,mn. We will use exponential notation if multiple
mi agree, i.e. we write (14g(X)−4) for (1, . . . , 1).

In the following, particularly symmetric (half-)translation surfaces play a special role:
Parallelogram-tiled surfaces and pillowcase covers. We obtain coordinates on the moduli
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Figure 2. Pillowcase with canonical cover: Opposite sides identified, when
not indicated otherwise. The involution on the cover acts as central sym-
metry in the two-torsion points.

space of abelian differentials by recording periods. The periods of (Σ, λ) in H1(Σ, Z(λ),C)
are given by

H1(Σ, Z(λ),C) → C, c 7→
∫

c
λ

and local coordinates, the so called period coordinates, are given by the image of a basis
of relative homology under this map. The coordinate changes of period coordinates are
induced by diffeomorphisms of (Σ, Z(λ)) and hence preserve the lattice

H1(Σ, Z(λ),Z⊕ iZ) ⊂ H1(Σ, Z(λ),C).

These integral points correspond to square-tiled surfaces: One obtains a cover of an
elliptic curve by

p : Σ → C/Z⊕ iZ, y 7→
∫ y

y0

λ

for a choice of base point y0 ∈ Σ. This cover is branched over one point 0 ∈ E with ram-
ification points zi ∈ Z(λ) and ramification profile (ordz1(λ), . . . , ordzn(λ)). In particular,
this is a cover of flat surfaces, i.e. λ = p∗ω for some abelian differential ω on E. By scaling
the area of the flat torus (Σ, λ) we obtain a dense subset of translation surfaces, that are
square-tilde in the above sense. We use a slight generalization.

Definition 4.1. A translation surface (Σ, λ) is parallelogram-tiled if and only if there
exists a branched cover p : Σ → E branched over one point, such that λ = p∗ω for some
abelian differential ω on E.

Given a parallelogram-tiled surface we can act by GL+(2,R) on the representing poly-
gon and obtain a family of parallelogram-tiled surfaces over the j-line of elliptic curves. For
j = 1728 we recover a square-tiled surface. The analogue of parallelogram-tiled surfaces
for quadratic differentials are pillowcase covers. A pillowcase is a half-translation surface
(P1, η), where η has four simple poles 0, 1,∞, x, see Figure 2.

Definition 4.2. A half-translation surface (X, q) is called pillowcase cover if there
exists a cover p̌ : X → P1 branched over (0, 1,∞, x), such that q = p̌∗η for a quadratic
differential η on P1 with simple poles at (0, 1,∞, x).

The canonical cover of (P1, η) is the elliptic differential (E,ω), where E = C/(Z+ τZ)
with λ(τ) = x and the involution is given by multiplication with −1. Here λ is the modular
lambda function. For a given x, the number τ can be computed explicitly. Let K denote
the complete elliptic integral of the first kind

(97) K(k) =

∫ π
2

0

dθ√
1− k2 sin2 θ

.

Then t(x) = iK(
√
1−x)

K(
√
x)

is a section of λ. There is the following well-known relation between
parallelogram-tiled surfaces and pillowcase covers.

Lemma 4.3. Let (X, q) be a half-translation surface. The canonical cover (Σ, λ) is a
parallelogram-tiled surface if and only if the quadratic differential is a pillowcase cover.
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Proof. Starting from a pillowcase cover as above we have the following diagram

‘ (Σ, λ)

(X, q) (E,ω)

(P1, η)

pπ
mod J

p̌

2:1

and want to show that there exist the dashed arrow p : Σ → E, such that the diagram
commutes. Away from the singularities of the flat structure associated with (X, q) a point
on Σ corresponds to a choice of a (local) square of q. This corresponds to a choice of
a local square root of η under the covering map to P1. Hence there is a induced map
p : Σ \ Z(λ) → E \ Z(ω) such that p∗ω = λ. The map p uniquely extends to a map of
Riemann surfaces Σ → E. A zero x ∈ X of q of order k ≥ 0 corresponds to a (k + 2) : 1-
branch point of p̌. Hence, the map can be extended to p : Σ → E by gluing in a k : 1-
ramification point, if k is odd and a k

2 : 1-ramification point, if k is even, at y ∈ π−1(x).
By construction the relation of the differentials persists under this extension. Taking the
quotient of E by two-torison points we obtain a map (Σ, λ) → E/E[2], branched over one
point such that λ is the pullback of a differential on E. Hence, it is a parallelogram-tiled
surface.

For the converse, we start with the configuration

(Σ, λ)

(X, q) (E,ω).

pπ
mod J

The differential λ is anti-symmetric with respect to an involution J . In particular, J sends
singularities of the flat structure to singularities of the same type, saddle connections to
saddle connections and hence squares to squares. Hence it descends to the elliptic curve
(E,ω) to the reflection in the two torsion points of E. The quotient is the pillowcase surface
as illustrated in Figure 2. In particular, there is an induced map p̌ : Σ/J = X → P1, such
that q = p̌∗η. □

Remark 4.4. The proof of the previous lemma shows that one can always assume
the pillowcase cover to be non-simply branched over only one point on P1. This can be
achieved by taking the quotient by the order four automorphism of P1 that permutes the
four marked points preserving the cross-ratio.

In the following, a special kind of pillowcase cover will be important.

Definition 4.5. We call a pillowcase cover (X, q) uniform if every fiber of p̌ : X → P1

over y ∈ D consists of ramification points of the same ramification index i.

5. Multifold pillowcase covers

Motivated by the connection to visible Lagrangians in Theorem 6.1, we are interested in
Riemann surfaces X which admit multiple quadratic differentials q1, . . . , qn ∈ H0(X,K2),
such that

• the vanishing loci Z(q1), . . . , Z(qn) are pairwise different,
• the half-translation surfaces (X, qi) are pillowcase covers.

Definition 5.1. We call a Riemann surface X with quadratic differentials q1, . . . , qn
as above a n-fold pillowcase cover. We call a n-fold pillowcase cover a multifold pillowcase
cover if n ≥ 2.

Apart from being uniform, we want the pillowcase covers to have simple zeros only.
Two quadratic differentials q1, q2 on X are called isomorphic if there exists an auto-

morphism φ of X such that φ∗q1 = q2. We remark that from the point of view of flat
geometry isomorphic differentials are usually not distinguished. However two isomorphic
differentials might still have different vanishing loci and therefore correspond to different
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points in the SL(2,C)-Hitchin base. Hence, we will treat these differentials as different
from each other in the following. In this section we will prove

Theorem 5.2. For infinitely many genera g there exist multifold uniform pillowcase
covers with simple zeros only.

Proof. Assume that we know a single multifold uniform pillowcase cover X with
simple zeros only of some genus g ≥ 2. Let q1, . . . , qn be the corresponding quadratic
differentials. Then we can obtain examples in infinitely many genera by taking unramified
coverings f : X̂ → X in different degrees and the differentials q̂i = f∗qi.

We will provide explicit examples in the following. □

The following examples have been found by a computer search using [GAP22]. There
are many more examples to be found, but we will restrict our discussion to three examples
in low genus. While the claimed properties of the examples can be checked by hand, it is
much more convenient to use a computer algebra system.

Example 5.3 (Genus 2). Consider the group GL(2, F3) of order 48 and let f : X → P1

be the GL(2, F3)-cover branched above three points with monodromy datum
(
0 1
1 2

)
,

(
2 0
0 1

)
,

(
2 2
1 0

)
.

The orders of the matrices are 8, 2 and 6, and the genus of X is 2. The group GL(2, F3)
has 12 subgroups of order 6 which we denote by H1, . . . ,H12. For each such subgroup the
quotient X/Hi is of genus 0, and the quotient map gi : X → X/Hi is branched above
four points with ramification orders 2 and 3. Let ηi denote the quadratic differential on
X/Hi of type (−14) whose simple poles are supported at the branch points of gi. The
pullback qi := g∗i ηi is a uniform pillowcase cover with simple zeros only on X. We claim
that the vanishing loci of the differentials qi are pairwise different. This is a very explicit
but lengthy computation which is left to the reader. In particular, X is a 12-fold uniform
pillowcase cover with simple zeros only.

Example 5.4 (Genus 3). Consider the group SL(3, F2) of order 168 and let f : X → P1

be the SL(3, F2)-cover branched above three points with monodromy datum


1 0 0
0 1 0
1 0 1


 ,



0 1 0
0 0 1
1 0 0


 ,



1 0 1
1 0 0
0 1 0


 .

The orders of the matrices are 2, 3 and 7. The Riemann surface X is the Klein quartic
and has genus 3. The group SL(3, F2) has 14 subgroups of order 24, and as in the previous
example each of those subgroups gives rise to a uniform pillowcase covers with simple zeros
only. In particular, X is a 14-fold uniform pillowcase cover with simple zeros only.

Example 5.5 (Non-isomorphic differentials). Let G := A4 × Z/3Z. We choose gen-
erators ⟨a := (1 2 3), b := (1 2)(3 4)⟩ = A4 and ⟨c⟩ = Z/3Z. Consider the subgroups
H1 := ⟨a, c⟩ ∼= (Z/3Z)2 and H2 := ⟨a, b⟩ ∼= A4. Let f : X → P1 be the G-cover branched
above three points with monodromy datum (bc, a2c2, ab). The genus of X is 4.

Consider the two intermediate covers A1 := X/H1 and A2 := X/H2, both of genus 0.
We define the two differentials q1 and q2 on X as in the previous examples.

In this example it is relatively easy to see that the differentials q1 and q2 are non-
isomorphic. For this it is convenient to consider the respective canonical covers (Σi, λi) of
(X, qi).

Proposition 5.1. The canonical covers Σ1 and Σ2 are non-isomorphic. In particular,
(X, q1) ̸∼= (X, q2), i.e. there doesn’t exist an automorphism φ : X → X, such that φ∗q1 = q2.

Proof. The curves Σ1 and Σ2 are covers of P1 via Σi → X
f−→ P1, branched over

three points. Both covers Σi → P1 have a monodromy representation with elements in the
symmetric group S2|G|. The covers Σ1 and Σ2 are isomorphic if and only if the elements
of the monodromy representation are conjugated in S2|G|, which is easily checked not to
be the case. □
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In the rest of this section we will produce explicit flat pictures of the two quadratic
differentials (X, q1) and (X, q2) of Example 5.5. Recall that Σi is a square tiled surface by
Lemma 4.3. We thus have the diagram

Σ1 Σ2

X

E1 E2

A1 A2

P1

2:1 2:1

2:1 2:1

4:1 3:1

First we determine the tori Ei, which also determine the pillowcases Ai. We start with
the torus E2. The map A2 → P1 is cyclic of degree 3 and totally ramified over two points,
and unramified otherwise. One of the branch points of E2 → A2 agrees with a ramification
point of A2 → P1, while the three other branch points of E2 → A2 lie in one fiber of
A2 → P1. Hence we may assume that the branch points of E2 → A2 are 0, 1, ζ3 and ζ23 .
Those four points have the cross-ratio D(0, 1; ζ3, ζ

2
3 ) = ζ56 , and λ(ζ3) = ζ56 , where λ is the

modular lambda function. Hence up to isomorphism

E2
∼= C/(Z⊕ ζ3Z) ∼= C/(Z⊕ ζ6Z).

The cross-ratio of the four branch points 0, 1, x,∞ ∈ P1 of E1 → A1 is again uniquely
determined by the ramification profile of the maps E1 → A1 → P1 and is given by

D(0,∞; 1, x) = 15
√
3− 26.

One numerically computes τ := t(15
√
3−26) ≈ 1+2.143182698915i, where t is the function

from (97), and for this τ we have

E1
∼= C/(Z⊕ τZ).

To obtain pictures of the pillowcase covers X → Ai, we need to determine how to glue
the copies of the pillowcase Ai. We describe how to obtain this information for a general
pillowcase cover which is a G-cover. The idea is to compare two G-actions on the |G|-many
copies of Ai.

Given a G-cover X → P1 of degree d = |G| with monodromy datum (g1, . . . , g4), the
bijective map

mg : G→ G, h 7→ gh

induces a map ρ : G→ Sd when we identify σ : G→ {1, . . . , d}. If p ∈ P1 is a point (which
is not a branch point), and we identify the fiber of X → P1 above p with {1, . . . , d} via σ,
then the lift of a simple loop with basepoint p around the i-th ramification point starting
in q ⊆ {1, . . . , d} will end in a point ρ(gi)(q).

∖ ∖

−

∖∖∖∖

−

a a

b b

c

d

v

h1h1

h2h2

Figure 3. A pillowcase

On the other handX consists of d copies of the pillowcase P1 as depicted in Figure 3. We
can again label those copies with {1, . . . , d}. After choosing an orientation on the vertical
and horizontal cylinder, X is uniquely determined by the permutations h1, h2, v ∈ Sd,
which indicate which copy of the pillowcase we reach when we leave a given copy in the
direction indicated in the figure.
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We label the four branch points by a, b, c, d as in Figure 3. Lifting a small clockwise
cycle around point a will act on the copies as h2 ◦ v, around b as h1 ◦ v−1, around c as h−1

2

and around d as h−1
1 .

Hence h1, h2, v are given (up to the choice of σ and hence ρ) by

h1 = ρ(g0)
−1, h2 = ρ(g1)

−1, v = h−1
2 ◦ ρ(g3) = ρ(g4)

−1 ◦ h1.
Now we come back to the cases we are interested in. For X → A1 we can choose σ

such that

h1 = h2 = (1 2 3)(4 5 6)(7 8 9)

v = (1 5 9)(2 6 7)(3 4 8),

for X → A2 we can choose σ such that

h1 = (1 4)(2 3)(5 7)(6 8)(9 10)(11 12)

h2 = v = (1 7 12)(2 8 11)(3 5 10)(4 6 9).

Combined with the information about the tori Ei this gives rise to the pictures in
Figure 4, where the horizontal edges are glued by half-translation as indicated by the
labeling.

6. Visible Lagrangians over lines in the Hitchin base

In this section, we study visible Lagrangians over a line B′ = Ca ⊂ BSL(n,C). In the first
part, we give an existence criterion using Proposition 3.2. In second part, for G = SL(2,C)
and a = q a quadratic differential, we study the holomorphic symplectic subvariety Iq,
which is the proposed mirror dual by Theorem 3.2. If (X, q) is a uniform pillowcase cover
we will show that Iq is a hyperholomorphic subvariety birational to Hausel’s toy model.

Theorem 6.1. Let a = (0, . . . , 0, an) ∈ Breg
SL(n,C). Then there exists a visible Lagrangian

over Ca, if and only if the spectral curve with its abelian differential (Σ, λ) is parallelogram-
tiled.

Proof. First assume there exists a visible Lagrangian over Ca. Let (Σ, λ) be the
spectral curve to a. Then by Proposition 3.2 there is an exact sequence of abelian varieties

0 → A→ Prym(Σa)
ψ−→ E → 0.

Here A is of codimension 1 and E is an elliptic curve. Under the assumption on a the
spectral curve is Zn-Galois and sB = λn−1 (up to a constant). Hence, the map t of
Proposition 3.1 becomes

t :
n⊕

i=2

H0(X,Ki
X) → H0(Σ,KΣ),

n∑

i=2

αiXi 7→
n∑

i=2

αi
π∗Xi

λi−1
.

In particular, the tangent vector Xn = an is mapped to π∗an
λi

= λ. Hence, the differential
of the map ψ can explicitly be written as

dψ : H1(Σ,OΣ)
− → T0E, α 7→ c

∫

Σ
α ∧ λ.(98)

Therefore, ψ is given by D =
∑
aiyi 7→

∑∫ yi
y0
λ up to the choice of a point y0 ∈ Σ. Denote

by σ a generator of the Zn action on Σ. We want show that the composition ψ ◦ AP with
the Abel-Prym map

AP : Σ → Prym(Σ), y 7→ O(y − σy)

is a branched covering p : Σ → E. Clearly, AP identifies all ramification points of π :
Σ → X. If Σ is not hyperelliptic it is easy to see, that these are the only points on Σ
that are identified. The spectral curve Σ is never hyperelliptic by [Bar16, Lemma 4.1].
By definition σ∗λ = ξnλ for some primitive n-th root of unity ξn. This implies that the
differential of the composition ψ ◦AP is (1− ξ)λ. Hence the differential of the composition
is injective away from the ramification points of Σ → X. In particular, p = ψ◦AP : Σ → E
is a proper holomorphic map ramified at Z(λ) over 0 ∈ E. Furthermore, λ considered as
abelian differential has an order n zero at each branch point and hence the points in Z(λ)
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3 1 4 5 8 9

∖

HIDECA
∖

1 2 5 6 9 7

∖∖

IGEFAB

∖∖

2 3 6 4 7 8

∖∖∖

GHFDBC

∖∖∖

(a) The pillowcase cover X → A1

2 1 6 5 11 12

∖
BCABCA

∖

4 3 7 8 12 11

∖∖

EFDEFD

∖∖

3 4 6 5 9 10

∖∖∖

HIGHIG

∖∖∖

1 2 8 7 10 9

∖∖∖
∖

KLJKLJ

∖∖∖
∖

(b) The pillowcase cover X → A2

Figure 4. Two non-isomorphic pillowcase covers on the same curve X
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are n + 1 : 1-ramifications. In particular, the pullback of an abelian differential ω on E
has the same divisor as λ and we can find a specific ω with p∗ω = λ. Therefore, (Σ, λ) is
parallelogram-tiled.

For the converse, let a = (0, . . . , 0, an) ∈ Breg
SL(n,C), such that (Σ, λ) is parallelogram-

tiled, i.e. there is a covering p : Σ → E, such that λ = p∗ω for some abelian differential ω
on E. The covering p induces a Norm map

NmE : Jac(Σ) → E, D =
∑

aiyi 7→
∑

ai

∫ yi

y0

λ.

The restriction to Prym(Σ) defines the desired map

ψ = NmE Prym : Prym(Σ) → E.

Let D = (n − 1)y − σy − · · · − σn−1y. Then D ∈ Prym(Σ) and NmE(D) = nNmE(y).
Hence, ψ surjects onto E being a divisible group. Its differential is the map (98). As Σ
does not change, when multiplying q with a scalar, we can define an abelian subscheme
ker(ψ) ⊂ Prym(Σ/C×q) that satisfies the criterion of Proposition 3.2. To obtain a visible
Lagrangian over Cq we can act with the abelian scheme ker(ψ) on any section of Hit Ca.
To obtain a concrete example we may choose the Hitchin section. □

Corollary 6.2. Let q ∈ Breg
SL(2,C) be a quadratic differential with simple zeros only.

Then there exists a visible Lagrangian over Cq if and only if (X, q) is a pillowcase cover.

Proof. This is immediate from Theorem 6.1 and Lemma 4.3. □

6.1. The Fourier-Mukai dual. Now, we consider the Fourier-Mukai dual of the
visible Lagrangian defined above in the case of G = SL(2,C). Let (X, q) be a pillowcase
cover and Lq → B′ = Cq the visible Lagrangian defined as the closure of the orbit of the
abelian subscheme A ⊂ Prym(Σ/C×q) on the Hitchin section. In particular, B′reg = C×q.
The fibers of L → B′reg are of codimension 1 in the SL(2,C)-Hitchin fibers over B′reg.
Hence, by Theorem 3.2 the fiber-wise Fourier-Mukai transformation of the structure sheaf
of L is supported on an elliptic surface Iq → C×q obtained by acting with the abelian
scheme E ⊂ Prym(Σ/C×q)∨ on the Hitchin section of MPGL(2,C). Its closure Iq = Iq is
the proposed mirror dual. We have the following proposition.

Proposition 6.1. The subvariety Iq ⊂ MPSL(n,C) is birational to Hausel’s toy model
Mtoy [Hau98].

Proof. Hausel’s toy model is constructed as an elliptic surface as follows. Take
(P1, p1, p2, p3, p4) and consider the elliptic curve E → P1, which is the canonical cover
of the pillowcase with involution τ . Let further M = τ ′ be the involution −1 : C → C.
Consider E × C/(τ × τ ′). This orbifold has 4 Z2-points p̂i × 0. The projection to the
second factor induces the map M → C, (x, y) 7→ y2 with generic fiber E. Blowing up the
4 orbifold points we obtain a smooth surface - the toy model Mtoy. The subintegrable
system Iq associated to B′ = Cq for a pillowcase cover (X, q) is an elliptic fibration over
C×q ⊂ B′. The modulus of the elliptic curve is constant and determined by the four points
p1, . . . , p4 on the pillowcase. As for Hausel’s toy model the monodromy around 0 ∈ Cq is
given by −1. In fact if we scale our quadratic differential with eiϕ the abelian differential
is multiplied by ei

1
2
ϕ. □

For uniform pillowcase covers (X, q) we can indeed prove that Iq ⊂ MSL(2,C)(X) is
a hyperholomorphic subvariety. This will be achieved by defining a morphism Θ from a
moduli space of semi-stable parabolic SL(2,C)-Higgs bundles to MSL(2,C)(X), such that
the image of Θ is Iq. Denote by Mα = Mα(P1, D) the moduli space of semi-stable strongly
parabolic SL(2,C)-Higgs bundle (E,Φ) on P1 withD = 0+1+∞+y with parabolic weights
α = ((αy,1, αy,2)y∈D). Here E is a rank 2 bundle of determinant det(E) = O(−4) together
with complete flag {0} ⊊ Ey,1 ⊊ Ey,2 = Ey at each y ∈ D. By our convention flags are
ascending and weights descending, i.e. αy,1 > αy,2. The Higgs field Φ ∈ H0(P1,End0(E)⊗
K(D)) must preserve these flags, in the sense that Res(Φ)(Ey) ⊂ Ey,1. The Higgs bundle
(E,Φ) is called semi-stable if and only if for each sub-Higgs bundle (L,ψ) ⊂ (E,Φ) we
have pardeg(L,ψ) ≤ pardeg(E,Φ). On (P1, D) this condition is automatically satisfied
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for all Higgs bundles that are not nilpotent. Mα(P1, D) carries a hyperkähler metric
defined by interpreting it as the moduli space of flat logarithmic connections with certain
fix monodromy at D via non-abelian Hodge theory. See [FMSW22] for more details.
For generic weights, the moduli space Mα is isomorphic to the smooth surface Mtoy

constructed above.
Recall from Definition 4.5 that for a uniform pillowcase cover (X, q) every fiber of

p̌ : X → P1 over one of the four marked points on P1 has a well-defined ramification index.

Theorem 6.3. Let (X, q) be a uniform pillowcase cover with simple zeros only. We
define so-called compatible parabolic weights at y ∈ D of ramification index i by (α0 =
i+1
i+2 , α1 = 1

i+2). Let Mα(P1, D) be the moduli space of strongly parabolic Higgs bundles on
(P1, D) with compatible parabolic weights. Then there exists a holomorphic map

Θ : Mα(P1, D) → MSL(2,C)(X),

such that
i) it maps the Hitchin section of Mα to the Hitchin section of MSL(2,C)(X) restricted

to Cq.
ii) for all c ∈ C×, it makes the following diagram commute

E Prym(Σq)

Hit−1(cη) Hit−1(cq)

p∗

∼= ∼=

Θ

where we used the Hitchin section to identify the corresponding Hitchin fibers with
abelian varieties.

iii) Θ can be promoted to a morphism of hermitian Higgs bundles, such that solutions
to the Hitchin equation on (P1, D) are mapped to solutions to the Hitchin equation
on X.

Proof. Recall the square of coverings of Figure 5. The morphism Θ is given by a
Hecke modified pullback along p̌. Let (E,Φ) ∈ Mα. First define

(E′,Φ′) =

(
p̌∗(E ⊗O(3))⊗K

− 1
2

X , p̌∗Φ

)
.

This is a meromorphic Higgs bundle on X with tr(Φ′) = 0. By assumption of q having
simple zeros only all points in p̌−1(D) are ramification points of p̌, which are 2 : 1 or 3 : 1.
Let Ri ∈ Div+(X) be the divisor that has weight 1 at the branch points that are (i+1) : 1
and R = R1 +R2. The pullback of the quasi-parabolic structure defines a quasi-parabolic
structure on E′ at R given by E′

x,1 := p̌∗Ep̌x,1 ⊂ Ex. Now we define a Hecke modification

0 → (Ê, Φ̂) → (E′,Φ′) →
⊕

x∈suppR
E′
x/E

′
x,1 → 0.

Then the map Θ is defined as
Θ : (E,Φ) 7→ (Ê, Φ̂).

(Σ, λ)

(X, q) (E,ω)

(P1, η)

pπ

p̌

π̌

Figure 5. Square of coverings associated to a pillowcase.

Well-definedness: First, we have to show that Θ is well-defined. We have

p̌∗OP1(−2) = p̌∗KP1 = KX(−R1 − 2R2)
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and div(q) = R2. Hence, the determinant of E′ computes to

det(E′) = p̌∗O(2)⊗K−1
X = K−2

X (R1 + 2R2) = O(R1 +R2).

Therefore, the determinant of Ê is det(Ê) = det(E′)(−R1 −R2) = OX .
To show that the Higgs field Φ̂ is holomorphic we do a local computation. Locally at

each y ∈ D we can find a frame s1, s2 of E adapted to the parabolic structure such that

Φ =

(
ϕ0(z)dz ϕ1(z)

dz
z

ϕ2(z)dz −ϕ0(z)dz

)
.(99)

and Ey,1 = ⟨s1 y⟩. Hence, at all ramification points x ∈ p̌−1D the pullback has the form

p̌∗Φ =

(
ϕ0(w

k)wk−1dw ϕ1(w
k)dww

ϕ2(w
k)wk−1dw −ϕ0(wk)wk−1dw

)
,(100)

where w is a coordinate centered at x, such that p̌ : w 7→ z = wk. By assumption k = 2, 3.
The pullback quasi-parabolic structure is given by E′

x,1 = ⟨p̌∗s1 y⟩. Now, it is an easy
computation to see that the Hecke modification modifies the Higgs field to

Φ̂ =

(
ϕ0(w

k)wk−1dw ϕ1(w
k)dw

ϕ2(w
k)wk−2dw −ϕ0(wk)wk−1dw

)
.

Hence, indeed (Ê, Φ̂) defines a SL(2,C)-Higgs bundle. Its poly-stability will follow from
the existence of a solution to Hitchin’s equation at the end of the proof.

Hitchin sections: Now, we want to apply this morphism to a point in the Hitchin
section. We identify the Hitchin base of Mα as {cη | c ∈ C} for a fixed quadratic differential
η with simple poles at D. Denote by q = p̌∗η its pullback. Then a point (E,Φ) in the
Hitchin section of Mα is given by

(E,Φ) =

(
O(−1)⊕O(−3),

(
0 c
η 0

))
∈ Mα.

After pullback and tensoring we obtain

(E′,Φ′) =

(
K

1
2 (R1 +R2)⊕K− 1

2 ,

(
0 cp̌∗1
p̌∗η 0

))
.

Here p̌∗1 ∈ p̌∗O(2) ⊗ p̌∗KP1 has a zero of order 1 at each 2 : 1 ramification point and a
zero of order 2 at each 3 : 1 ramification point. The pullback quasi-parabolic structure at
p̌−1D is given by the second coordinate with respect to the splitting. Hence, the Hecke
modification yields

Θ(E,Φ) =

(
K

1
2 ⊕K− 1

2 ,

(
0 cq
1 0

))
= sH(cq)

as asserted.
Compatibility with pullback by p: We show that this map extends the spectral

correspondence on the regular locus. First we showed above that the Hitchin section of
Mα is mapped on the Hitchin section of MSL(2,C)(X). It is easy to see that the eigen line
bundle on E of the Hitchin section of Mα is π̌∗O(−3). Similarly, the eigen line bundle on

Σ of the Hitchin section of MSL(2,C)(X) is π∗K− 1
2

X . We use these two Hitchin sections to
identify the fibers with the corresponding abelian varieties. Then (E,Φ) ∈ Mα corresponds
to an element L1 ∈ Jac(E). Similarly, (Ê, Φ̂) corresponds to an element L2 ∈ Prym(Σq).
We need to show that L2 = p∗L1. From the spectral correspondence we have an exact
sequence

0 → L1 ⊗ π̌∗O(−3) → π̌∗E
π̌∗Φ−ω idπ̌∗E−−−−−−−−→ π̌∗ (E ⊗O(2)) .

Tensoring with O(3) and pulling back we obtain

0 → p∗L1 → π∗
(
E′ ⊗K

1
2
X

)
π∗Φ′−λ idπ̌∗E−−−−−−−−−→ π∗

(
E′ ⊗K

1
2
X

)
⊗ (π̌ ◦ p)∗O(2).

Here we used the commutativity of diagram 5. Finally, twisting by K− 1
2

X we see that the
line bundle associated to π∗(E′,Φ′) through the spectral correspondence is p∗L1. The
(pullback of the) Hecke modification Ê → E can potentially change this line bundle by
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twisting it with a divisor supported at π−1R. However, on the regular locus of Mα the
quasi-parabolic structure is uniquely determined through the Higgs field at each p ∈ D
(see [FMSW22, Prop. 8.1]). Hence, we can compute the eigen line bundle and the quasi-
parabolic structure of π∗(E′,Φ′) with respect to the pullback of the local frame of (99).

Then it is easy to see that the eigen line bundle p∗L1 ⊗K
− 1

2
x descends to a subbundle of

π∗(Ê, Φ̂). Hence p∗L1 = L2.
Solutions to Hitchin equation: Finally, we will show that a hermitian metric h on

(E,Φ) ∈ Mα that solves the Hitchin equation is transformed to a solution to the Hitchin
equation for (Ê, Φ̂) ∈ MSL(2,C)(X). First there is a section of O(4) with divisors D.
Promoting this section to have norm 1 defines a singular hermitian metric on O(4) locally
given by |z|−2 at y ∈ D. This induces a singular hermitian metric on O(1) and hence
on O(3). The latter is given by |z|− 3

2 at y ∈ D and will be denoted by hO(3). Similarly,

q ∈ H0(X,K2
X) induces a singular hermitian metric h− 1

2
KX

on K− 1
2

X that is smooth away

from Z(q) and given by |w| 12 locally at x ∈ Z(q). It is easy to see that singular hermitian
metrics defined in this way are automatically flat.

We need to extend the morphism Θ to hermitian Higgs bundles (E,Φ, h). In the first
step we use the singular hermitian metrics defined above to obtain a hermitian metric on
E′ by

(E′, h′) = π∗
(
(E, h)⊗ (O(3), hO(3))

)
⊗ (K

− 1
2

X , h− 1
2
KX

).

This hermitian metric is holomorphic on X \ R. The hermitian metric h′ pulls back to a
hermitian metric ĥ on E through the Hecke modification Ê → E a priori holomorphic only
on X \R.

Now, we start with a poly-stable Higgs bundle (E,Φ) ∈ Mα and let h be a solution to
Hitchin’s equation. By the flatness of the hermitian metrics hO(3) and h− 1

2
KX

the resulting
hermitian metric h′ on E will still be a solution to Hitchin’s equation wherever it is smooth.
By definition the Hecke modification Ê → E is an isomorphism on X \ R and hence the
induced metric ĥ is a solution to Hitchin’s equation on this locus. To show that it defines
a solution to Hitchin’s equation on X we are left with showing that it extends smoothly
over R.

To do so we compute the local description of ĥ at x ∈ R. The metric h is adapted to
the parabolic structure. Hence, at y ∈ D we can find a local frame s1, s2 of E, such that
firstly

h =

(
|z|2α1

|z|2α2

)
,

secondly the Higgs field is given by (99) and thirdly the quasi-parabolic structure is the
ascending flag ⟨s1⟩ ⊂ ⟨s1, s2⟩. We have to consider two cases depending on the ramification
index of the fiber over y ∈ D. We will only give the details for y ∈ D of ramification index
2, i.e. p̌−1y is made up from 3 : 1-ramification points.

In this case, the compatible parabolic weight are αy = (34 ,
1
4), so that h = diag(|z| 43 , |z| 23 ).

Tensoring with (O(3), hO(3)), pulling back and then tensoring with (K
− 1

2
X , h− 1

2
K) we obtain

a local description for h′ at x ∈ Z(q) with respect to the induced frame

h′ = p̌∗ diag(|z| 43− 3
2 , |z| 23− 3

2 )|w| 12 = diag(1, |w|−2).

Here w is local coordinate at x ∈ p̌−1y, such that p̌ : w 7→ w3 = z. Finally, with respect
to the frame s1, s2 the Hecke modification Ê → E is given by diag(1, w) and hence the
induced metric on Ê is indeed smooth at x ∈ R of ramification index 2. The case of
ramification index 1 follows along the same lines. Hence, ĥ defines a smooth solution to
the Hitchin equation for the Higgs bundle (Ê, Φ̂).

In particular, for a poly-stable Higgs bundle (E,Φ) ∈ Mα the image Θ(E,Φ) is poly-
stable and hence indeed Θ defines a map of moduli spaces

Θ : Mα → MSL(2,C)(X).

This finishes the proof. □
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Remark 6.4. If (X, q) is an uniform pillowcase cover, such that there is an odd number
of y ∈ D of ramification index 1, then the compatible weights are generic in the sense that
semi-stability implies stability. In particular, Mα is the elliptic surface referred to as
Hausel’s toy model with the nilpotent cone being of Kodaira type I∗0 .

Corollary 6.5. Let (X, q) be a uniform pillowcase cover. Then Iq ⊂ MPGL(2,C)(X)
is a hyperholomorphic subvariety.

Proof. By Theorem 6.3 Θ maps solutions to the Hitchin equation on (P1, D) to
solutions to the Hitchin equation on X. Hence, it is holomorphic not only with respect
to the holomorphic structure I, but also with respect to the holomorphic structure J
and K on the moduli spaces Mα(P1, D) and MSL(2,C)(X). In particular, its image is a
hyperholomorphic subvariety. However, Theorem 6.3 i) and ii) shows that Θ restricts to
an isomorphism from the regular locus of Mα to the torsor I ′ ⊂ MSL(2,C)(X) obtained
by acting with the abelian scheme E ⊂ Prym(Σ/C×q) over C×q on the Hitchin section.
Hence, I ′ the image of Θ is a hyperholomorphic subvariety. In particular, its image Iq
under the quotient map δ : MSL(2,C)(X) → MPGL(2,C)(X) is hyperholomorphic. □
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Zusammenfassung

1. R-lineare Untermannigfaltigkeiten

Wenn Sie einen rechteckigen Billardtisch haben und eine Kugel in einer der Ecken
starten, fragen Sie sich möglicherweise: „Wird diese Kugel jemals wieder in einer Ecke an-
kommen?“. Lassen Sie uns für den Moment annehmen, dass Ihr Billardtisch ganzzahlige
Seitenlängen hat. Die Bahn der Kugel entlang aller Reflexionen im Rechteck nachzuver-
folgen wird schnell mühsam. Statt jedes Mal die Kugel zu reflektieren, wenn sie eine Seite
des Tischen berührt, ist es sehr viel angenehmer, stattdessen den Tisch zu reflektieren wie
in Abbildung 6. Jetzt spannen die Ecken des Tischen ein Gitter in der Euklidischen Ebene
auf. In diesem Setting übersetzt sich die Frage „Wird die Kugel jemals wieder in einer
Ecke ankommen?“ zur Frage „Wird die Kugel jemals wieder einen Gitterpunkt treffen?“.
Letztere Frage kann man sofort beantworten: Die Kugel wird einen Gitterpunkt treffen
genau dann, wenn der Winkel zwischen der Trajektorie und einer Seite des Polygons ein
rationales Vielfaches von π ist.

(a) Wir können die Kugel reflek-
tieren. . . (b) . . . oder den Tisch.

Abbildung 6. Ein rechteckiger Billardtisch

Aber was passiert, wenn die Kugel keine Ecke trifft? In diesem Fall wird die Trajektorie
offensichtlich unendlich sein. Wir können aber noch mehr sagen: Die Trajektorie wird dicht
im Tisch liegen als Konsequenz des Dirichletschen Approximationssatz. Das motiviert die
folgende Definition.

Definition 1.1. Ein Billardtisch in dem jede Trajektorie entweder geschlossen oder
dicht ist hat optimale Dynamik.

Wie wir oben gesehen haben, haben rechteckige Billardtische mit ganzzahligen (oder
allgemeiner rationalen) Seitenlängen optimale Dynamik. Für einen komplizierteren Billard-
tisch wird unser Ansatz mit Gittern nicht mehr funktionieren. Stattdessen können wir die
folgende Beobachtung benutzen. Den Tisch einmal zu reflektieren produziert einen Tisch
mit einer anderen Orientierung im Vergleich zum ursprünglichem Tisch. Den neuen Tisch
noch einmal in die gleiche Richtung zu reflektieren produziert einen Tisch mit der gleichen
Orientierung wie der ursprüngliche Tisch. Anstatt also schon wieder einen neuen Tisch zu
produzieren (wie wir es getan haben um das Gitter zu erhalten), können wir den zweiten
Tisch mir dem ersten verkleben, um eine Mannigfaltigkeit zu erhalten. Wenn wir die ur-
sprüngliche Fläche eingebettet in die Gaußschen Ebene denken, dann hat die so erhaltene
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Mannigfaltigkeit in natürlicher Weise die Struktur einer Riemannschen Fläche X. Indem
man die Differentialform dz von der Ebene auf die Fläche zurück zieht, erhält man eine
Differentialform ω auf X. Dieser Prozess, um (X,ω) aus einem Polygon zu erhalten, heißt
Entfaltung und wird uns in Kapitel III wieder begegnen. Das Paar (X,ω) heißt flache
Fläche, da ω auf X eine flache Metrik induziert.

Umgekehrt kann jede flache Fläche (X,ω) mit Polygonen dargestellt werden: Wenn
γ1, . . . , γn eine Basis der relativen Homologie H1(X,Z(ω)) ist, dann sind die Seiten der
Polygone gegeben durch

(101)
∫

γi

ω.

Lassen Sie uns zu unserem Billardtisch zurückkehren. Die Trajektorien der Kugel kor-
respondieren zu Geodäten in X bezüglich der durch ω gegebenen Metrik. Der Begriff der
optimalen Dynamik überträgt sich dadurch in eine Frage über die Geodäten auf (X,ω).
Das Hodgebündel ΩMg → Mg über dem Modulraum der kompakten Riemannschen Flä-
chen in Geschlecht g ist ein Modulraum der flachen Flächen. Die Gruppe GL2(R)+ operiert
auf diesem Modulraum vermöge der Operation auf den Polygondarstellungen der Flächen.
Veech [Vee89] [Vee91] hat beobachtet, dass die flache Fläche (X,ω) optimale Dynamik hat
genau dann, wenn ihr GL2(R)+-Orbit abgeschlossen ist.

Definition 1.2. Falls der GL2(R)+-Orbit von (X,ω) ∈ ΩMg abgeschlossen ist, dann
heißt (X,ω) Veechfläche. Das Bild von GL2(R)+ · (X,ω) in Mg heißt Teichmüllerkurve.

Wir haben oben das einfachste Beispiel einer Veechfläche gesehen: Die Entfaltung un-
seres rechteckigen Billardtisches (X,ω). Seit Veechs Beobachtung ist viel Arbeit in die
Klassifikation von Teichmüllerkurven geflossen. Da man leicht neue Veechflächen aus be-
kannten mittels Überlagerungen konstruiert, ist man hauptsächlich an solchen Veechflächen
interessiert, die nicht via Überlagerungen aus bekannten hervorgehen. Die zugehörigen
Teichmüllerkurven heißen primitiv. In Geschlecht 2, 3 und 4 kennen wir unendlich viele
primitive Teichmüllerkurven, die von Veech [Vee89], Ward [War98], Bouw-Möller [BM10],
McMullen [McM03] [McM06], Calta [Cal04], Vorobets [HS01] und Kenyon-Smillie [KS00]
entdeckt wurden. In jedem Geschlecht größer 4 kennen wir nur endlich viele primitive
Teichmüllerkurven, die alle zur Bouw-Möller-Serie gehören. Die Existenz unendlich vieler
primitiver Teichmüllerkurven in jedem Geschlecht ist eine offene Frage.

Für ein festes Geschlecht g sei µ = (m1, . . . ,mn) eine ganzzahlige Partition von 2g−2.
Für eine flache Fläche (X,ω) vom Geschlecht g sagen wir dass ω vom Typ µ ist, falls ω
genau n Nullstellen mit Ordnungen m1, . . . ,mn hat. Der Modulraum der flachen Flächen
ΩMg, auch bekannt als der Modulraum der abelschen Differentiale, besitzt eine natürliche
Stratifikation bezüglich der Typen der Differentiale, und wir bezeichnen mit ΩMg,n(µ) das
Stratum der Differentiale vom Typ µ. Die Integrale in (101) sind lokale Koordinaten auf
dem Stratum, genannt Periodenkoordinaten.

Definition 1.3. Ein Unterraum ΩH ⊆ ΩMg,n(µ) heißt K-lineare Untermannigfaltig-
keit, wenn er von linearen Gleichungen in Periodenkoordinaten mit Koeffizienten in einem
Körper K ausgeschnitten wird.

Da die GL2(R)+-Operation Gleichungen mit Koeffizienten in R erhält, ist jede R-
lineare Untermannigfaltigkeit der Abschluss einer Vereinigung von GL2(R)+-Orbits. Nach
dem bahnbrechenden Resultat von Eskin-Mirzakhani-Mohammadi ist auch die Umkehrung
wahr.

Theorem 1.4 ([EMM15]). Jeder GL2(R)+-Bahnabschluss ist eine R-lineare Unter-
mannigfaltigkeit.

Eine wichtige Invariante einer linearen Untermannigfaltigkeit ist ihr Rang, der wie
folgt definiert werden kann. Über ΩH betrachten wir das Bündel H1, dessen Faser über
(X,ω) durch H1(X,C) gegen ist und das Bündel H1

rel, dessen Faser über (X,ω) durch
H1(X,Z(ω),C) gegeben ist. Sei p : H1

rel → H1 die natürliche Abbildung. Nach Avila-
Eskin-Möller [AEM17] ist der Raum p(T (ΩH)) symplektisch, insbesondere von gerader
Dimension, und wir definieren den Rang von ΩH als 1

2 dim p(T (ΩH)).
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Teichmüllerkurven (oder genauer die Bahnabschlüsse der zugehörigen Veechflächen)
sind R-lineare Untermannigfaltigkeiten vom Rang 1. Es war eine Überraschung als McMullen-
Mukamel-Wright [MMW17] die erste primitive R-lineare Untermannigfaltigkeit vom Rang 2
gefunden haben, den sogenannten gotischen Lokus. Bis jetzt wurden nur 6 weitere primi-
tive R-lineare Untermannigfaltigkeiten vom Rang 2 von Eskin-McMullen-Mukamel-Wright
[EMMW20] gefunden. Es gibt rechnerische Hinweise auf die Existenz mindestens einer
weiteren solchen Untermannigfaltigkeit [DR23]. Die Existenz einer R-linearen Unterman-
nigfaltigkeit vom Rang mindestens 3 ist ein vollständig offenes Problem.

2. Die Chernklassen linearer Untermannigfaltigkeiten

Um mathematische Objekte (wie z.B. R-lineare Untermannigfaltigkeiten, die wieder-
um komplexe Orbifaltigkeiten sind) zu klassifizieren, ist es oft eine gute Idee, Invarianten
dieser Objekte zu bestimmen. Eine wichtige Invariante einer komplexen Orbifaltigkeit sind
die Chernklassen. Hier gibt es ein kleines Problem: Auf einer linearen Untermannigfaltig-
keit ΩH operiert die Gruppe C× via Skalierung des Differentials, so dass ΩH eine triviales
C×-Bündel ist und damit alle Chernklassen 0 sind. Wenn wir nützliche Resultate erwar-
ten wollen, sollten wir statt ΩH die Projektifizierung H := ΩH/C× betrachten. In Kapi-
tel II, das in Zusammenarbeit mit Matteo Costantini und Martin Möller entstanden ist,
beweisen wir eine Formel für den vollständigen Cherncharakter des logarithmischen Ko-
tangentialbündels einer linearen Untermannigfaltigkeit in Theorem II.1.2. Das erlaubt es
uns insbesondere, eine geschlossene Formel für die Eulercharakteristik einer linearen Unter-
mannigfaltigkeit anzugeben. Für eine lineare Untermannigfaltigkeit H sei ξH = c1(O(−1))
die erste Chernklasse des tautologischen Bündels.

Theorem 2.1 (Theorem II.1.3). Sei H → PΩMg,n(µ) eine projektifizierte lineare
Untermannigfaltigkeit. Die orbifaltige Eulercharakteristik von H ist gegen durch

χ(H) = (−1)d
d∑

L=0

∑

Γ∈LGL(H)

KH
Γ ·N⊤

Γ

|AutH(Γ)|
·
−L∏

i=0

∫

H[i]
Γ

ξ
d
[i]
Γ

H[i]
Γ

,

wobei die Integrale über die Normalisierung der Abschlüsse H → PΞMg,n(µ) im Modulraum
der Multiskalendifferentiale sind und ähnliche Integrale über Randstrata, wobei

• H[i]
Γ die linearen Untermannigfaltigkeiten auf Level i von Γ wie in Abschnitt II.3.5

definiert,
• d

[i]
Γ := dim(H[i]

Γ ) die projektifizierten Dimensionen sind,
• KH

Γ das Produkt der Anzahl der Zackenpaarungen für jede Kante von Γ, die tat-
sächlich in der linearen Untermannigfaltigkeit H enthalten sind, ist,

• AutH(Γ) die Menge der Automorphismen des Graphen Γ, dessen induzierte Ope-
rationen auf einer Umgebung von DH

Γ den Raum H erhält, ist,
• d := dim(H) die projektifizierte Dimension ist.

Für die meisten Begriffe, die in obigem Theorem benutzt werden, verweisen wir den
Leser auf Kapitel II. Als Einziges wollen wir an dieser Stelle hervorheben, dass das Theo-
rem den Modulraum der Multiskalendifferentiale PΞMg,n(µ) benutzt. Diese Kompaktifi-
zierung des projektifizierten Stratums PΩMg,n(µ) wurde von Bainbridge-Chen-Gendron-
Grushevsky-Möller [BCGGM18] [BCGGM19b] konstruiert. Die Objekte im Rand bestehen
grob gesprochen aus nodalen Kurven mit einem Differential auf jeder irreduziblen Kompo-
nente und einer Levelstruktur auf den irreduziblen Komponenten. Für mehr Details verwei-
sen wir auf Abschnitt I.3. Der Rand dieser Kompaktifizierung lässt seinerseits wieder eine
Stratifikation zu, wobei die Strata mit sogenannten angereicherten Levelgraphen indiziert
sind: Diese sind die dualen Graphen der zugrundeliegenden nodalen Kurven zusammen mit
einer Dekoration die Informationen über die Differentiale und die Levelstruktur festhält.
Diese Kompaktifizierung wird im Folgenden mehrmals auftauchen.

3. Der gotische Lokus

Der gotische Lokus ΩG ⊆ ΩM4,6(0
3, 23) ist der Bahnabschluss der Entfaltungsflächen

aller Vierecke mit Winkeln (16π,
1
6π,

1
6π,

3
2π). Sein Name rührt von dem Fakt, dass er die

Fläche in Abbildung 7 enthält, die dem Grundriss einer gotischen Kathedrale ähnelt. Wie
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oben erwähnt, war der gotische Lokus ΩG die erste bekannte primitive R-lineare Unter-
mannigfaltigkeit von Rang 2. Dieser Lokus hat zusätzliche überraschende Eigenschaften:
Er enthält eine dichte Teilmenge primitiver Teichmüllerkurven, und er kommt mit einer
natürlichen Abbildung nach M1,3 und sein Bild unter dieser Abbildung ist eine geodätische
Fläche bezüglich der Teichmüllermetrik.

| ||

≀≀ ≀

|||

≀≀≀

Abbildung 7. Die gotische Kathedrale (gegenüberliegende Seiten sind
identifiziert soweit nicht anders angegeben)

Eine Teichmüllerkurve in einem Stratum meromorpher Differentiale heißt offensichtlich,
falls sie der Schnitt einer Überlagerungskonstruktion mit einer Bedingung an die Residuen
ist. In Kapitel III werden wir den Rand des Abschlusses PΞG := PΩG ⊆ PΞM4,6(0

3, 23)
analysieren. Diese Analyse ist noch nicht abgeschlossen, aber wir präsentieren im Fol-
genden einige Teilergebnisse. Als Teil des Randes finden wir ein Beispiel für eine nicht-
offensichtliche Teichmüllerkurve.

Theorem 3.1 (Theorem III.1.3). Sei (X,ω) ⊆ ΩM1,6(−32, 23) die kanonische Über-
lagerung des 6-Differentials vom Typ (−10,−5, 3). Das Differential (X,ω) erzeugt eine
nicht-offensichtliche Teichmüllerkurve. In der Karte in Abbildung 8 ist diese Teichmüller-
kurve ausgeschnitten durch die Gleichungen

wi = −wi+3 für i = 1, 2, 3 und w1 + w3 + w5 = 0.

v6

w5

v4

v4

w3v2
v2

w1

v6

v5

w4

v3

v3

w2

v1
v1

w6
v5

w4

w3

w2

w1

w6

w5

Abbildung 8. Eine unendliche Fläche, die eine nicht-offensichtliche Teich-
müllerkurve im Stratum ΩM1,6(−32, 23)

erzeugt

Bis jetzt ist es uns nicht gelungen, genau zu bestimmen, welche Randstrata vom go-
tischen Lokus geschnitten werden, aber wir verfügen über partielle Informationen in diese
Richtung. Für die horizontalen Strata zeigen wir:

Proposition 3.2 (Proposition III.1.4). Der gotische Lokus PΞG schneidet nur die
horizontalen Strata die in Abbildung 9 gelistet sind.
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Wir erinnern daran, dass der gotische Lokus eine unendliche Zahl an primitiven Teich-
müllerkurven enthält. Diese Kurven sind nicht kompakt. Daher schneidet der Abschluss
dieser Kurven den Rand von PΞG in einigen Punkten, genannt Spitzen. Solche Spitzen
können nur in rein horizontalen Randstrata enthalten sein. Für die Strata die zu den an-
gereicherten Levelgraphen in Abbildung 9 korrespondieren zeigen wir:

Proposition 3.3 (Proposition III.1.6). Das Innere jedes der vier Strata DG
Γ1

, DG
Γ2

,
DG

Γ3
und DG

Γ20
enthält Spitzen einer im gotischen Lokus ΩG enthalten Teichmüllerkurve.

Das Innere des Stratums DG
Γ19

enthält Spitzen einer nicht-primitiven Teichmüllerkurve.
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Abbildung 9. Die rein horizontalen Randstrata im gotischen Lokus

Man könnte hoffen, mittels Theorem 2.1 die Eulercharakteristik des gotischen Lokus
PΩG zu bestimmen. Dieses Theorem kann so umformuliert werden, dass es reicht, die
Fundamentalklasse des Bildes des gotischen Lokus in M4,6 zu kennen. In Kapitel III werden
wir einen möglichen Ansatz zur Bestimmung dieser Klasse skizzieren. Momentan fehlt uns
das nötige Handwerkszeug, um die Rechnung tatsächlich auszuführen.

4. Strata von k-Differentialen

Wir betrachten eine Verallgemeinerung des obigen Settings: Anstelle von Strata von
abelschen Differentialen können wir auch Strata von k-Differentialen ΩkMg,n(µ) betrach-
ten, die Paare (X, η) parametrisieren, wobei η ein Schnitt von Ω⊗k(X) ist. Hierbei ist µ eine
ganzzahlige Partition von k(2g−2). Wie im abelschen Fall, gibt es eine Kompaktifizierung
dieser Strata, den Modulraum der k-Multiskalendifferentiale. Bainbridge-Chen-Gendron-
Grushevsky-Möller [BCGGM19a] und Costantini-Möller-Zachhuber [CMZ19] haben in die-
se Richtung gearbeitet. In Kapitel II präzisieren wir die genau Struktur als Orbifaltigkeit
dieser Räume. Diese Räume stehen, vermöge einer Überlagerungskonstruktion, in Bezie-
hung mit mit linearen Untermannigfaltigkeiten (nicht notwendiger Weise R-linear), und
wir geben in Korollar II.1.5 eine geschlossene Formel für ihre Eulercharakteristik.

Diese Formel haben wir in einem Sage-Paket genannt diffstrata implementiert, das
Teil des Paketes admcycles [DSZ21] ist. Diffstrata wurde ursprünglich von Costantini-
Möller-Zachhuber [CMZ23] entwickelt, um deren Formel für die Chernklassen von Strata
von abelschen Differentialen auszuwerten [CMZ22]. Wir haben diffstrata erweitert, so
dass es nun mit allen Strata von k-differentialen arbeitet. Als Beispiel kann die Eulercha-
rakteristik und das Masur-Veech-Volumen des Stratums PΩ2M2,2(−1, 5) mit den folgenden
Befehlen berechnet werden.
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sage : from admcycles . d i f f s t r a t a import Stratum
sage : X = Stratum (( −1 ,5) , k=2)
sage : X. e u l e r_ ch a r a c t e r i s t i c ( )
−7/15
sage : X. masur_veech_volume ( )
28/135∗ p i^4

Die Eulercharakteristiken der minimalen Strata in Geschlecht 2 sind, für kleine k, in
Tabelle 1 gelistet. Wie das obige Beispiel schon zeigt, kann das Paket diffstrata mehr
als nur die Eulercharakteristik auszurechnen. Zum Beispiel ist es möglich

• alle nicht-horizontalen Randstrata eines Stratums von k-Differentialen aufzulisten,
• beliebige Schnittprodukte im vertikalen tautologischen Ring (d.h. den Ring er-

zeugt von allen nicht-horizontalen Strata, ψ- und κ-Klassen) zu berechnen,
• das Pushforward von Klassen im Stratum zum Modulraum der markierten stabilen

Kurven zu berechnen.
Die größte Einschränkung der diffstrata momentan unterliegt, ist die Tatsache, dass es
nicht mit horizontalen Kanten umgehen kann. Dies würde deutlich allgemeinere Berechnun-
gen erlauben, wie z.B. das Pullback von beliebigen Klassen aus dem tautologischen Ring
des Modulraums der markierten stabilen Kurven zu einem Stratum von k-Differentialen.

k 1 3 4 5 6 7 8 9

χ(PΩkM2,1(2k)) − 1
40

1
3

3
2

21
5 9 18 30 51

Tabelle 1. Eulercharakteristiken einiger minimaler Strata von k-
Differentialen, berechnet mit diffstrata

Als eine Anwendung unserer Resultate über die Chernklassen zeigen wir, dass für be-
stimmte Typen µ der Raum ΩkMg,n(µ) birational äquivalent zu einem Quotienten der
komplexen Einheitskugel ist.

Theorem 4.1 (Theorem II.1.7). Angenommen µ = (−a1, . . . ,−a5) ist ein Tupel mit
ai ≥ 0 so dass (

1− ai
k

− aj
k

)−1
∈ Z falls ai + ak < k

für all i ̸= j. Dann gibt es einen birationalen Kontraktionsmorphismus PΞkM0,5(µ) → B

auf einen glatten eigentlichen DM-stack B für einen Ballquotienten B.

Diese Ballquotienten wurden in früheren Arbeiten von Deligne-Mostow [DM86] und
Thurston [Thu98] mit anderen Methoden konstruiert.

5. Das tropische k-Hodgebündel

Analog zum abelschen Fall ist der Rand von PΞkMg,n(µ) indiziert mit angereicherten
k-Levelgraphen. Man kann hoffen, die Struktur des Randes zu verstehen, indem man die
Graphen selbst als abstrakte Objekte studiert. Um über stetige (Un)degenerationen von
Graphen reden zu können, versehen wir jede Kante mit einer reellen Länge. Das führt uns
zur Definition einer tropischen Kurve.

Definition 5.1. Eine tropische Kurve ist ein zusammenhängender Graph mit reellen
Kantenlängen und Gewichten g : V → N an jedem Knoten.

Die Levelstruktur eines angereicherten Levelgraphen können wir erfassen, indem wir
jeder Kante eine ganzzahlige Steigung zuweisen. Die Nullstellen des Differentials können
mit zusätzlichen Halbkanten erfasst werden. In Kapitel I, das in Zusammenarbeit mit Fe-
lix Röhrle entstanden ist, definieren wir das k-Hodgebündel PΩkM trop

g grob gesagt als
den Raum aller tropischer Kurven mit Halbkanten und ganzzahligen Steigungen an den
Kanten die bestimmte Kompatibilitätsbedingungen erfüllen. Diese Bedingungen sollen das
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Verhalten von k-Differentialen widerspiegeln. Dieser Raum ist ein verallgemeinerter Kegel-
komplex, aber nicht äquidimensional, siehe Theorem I.1.1.

Die Kluft zwischen der klassischen Welt, sprich PΩkMg, und der tropischen Welt, also
PΩkM trop

g , wird überbrückt von einem Prozess namens Tropikalisierung: Es gibt eine stetige
Tropikalisierungsabbildung tropΩk : PΩkMan

g → PΩkM trop
g . Allerdings ist diese Abbildung

nicht surjektiv. Das Bild von tropΩk ist der Realisierbarkeitslokus. In Theorem I.1.4 geben
wir ein kombinatorisches Kriterium um zu entscheiden, ob ein Element von PΩkM trop

g im
Realisierbarkeitslokus enthalten ist. Das erlaubt es uns zu zeigen, dass der Realisierbar-
keitslokus sehr viel schönere Eigenschaften hat als das tropische k-Hodgebündel selbst.

Theorem 5.2 (Theorem I.1.5). Für k ≥ 2 hat der Realisierbarkeitslokus die Struktur
eines verallgemeinerten Kegelkomplexes, dessen maximale Kegel alle von Dimension (2 +
2k)(g−1)−1 sind. Die Faser des Realisierbarkeitslokus über einem maximaldimensionalen
Kegel in M trop

g ist ein verallgemeinerter Kegelkomplex, dessen maximale Kegel alle von
relativer Dimension (2k − 1)(g − 1) sind.

6. Pillowcase-Überlagerungen und sichtbare Lagrangesche

Zu einer Überlagerung von Riemannschen Flächen f : X → P1, die über höchstens vier
Punkten verzweigt ist, gibt es ein (bis auf Skalieren) eindeutiges quadratisches Differential η
vom Typ (−14) auf P1, so dass die einfachen Pole an den Verzweigungspunkten liegen. Wir
können diese Differential zurückziehen, um ein Differential q = f∗η auf X zu erhalten. Ein
auf diese Art konstruiertes quadratisches Differential (X, q) heißt Pillowcase-Überlagerung.
In Kapitel IV, welches in Zusammenarbeit mit Johannes Horn entstanden ist, untersuchen
wir Riemannsche Flächen X, die mehrere quadratische Differentiale q1, . . . , qn zulassen, so
dass

• der Verschwindungloki von q1, . . . , qn paarweise disjunkt sind,
• alle Paare (X, qi) Pillowcase-Überlagerungen sind.

Wir nennen eine solche Riemannsche Fläche X eine mehrfache Pillowcase-Überlagerung.
Wir sagen, dass eine Pillowcase-Überlagerung f : X → P1 uniform ist, wenn jede Faser
aus Verzweigungspunkten der gleichen Ordnung besteht.

Theorem 6.1 (Theorem IV.5.2). Für unendlich viele Geschlechter g gibt es mehrfache
uniforme Pillowcase-Überlagerungen mit nur einfachen Nullstellen.

Ein Beispiel einer mehrfachen Pillowcase-Überlagerung ist die Kleinsche Quartik. Man
beachte, dass unserer Definition von mehrfacher Pillowcase-Überlagerung nicht verlangt,
dass die qi nicht-isomorph sind. Nichtsdestotrotz geben wir auch ein Beispiel für eine mehr-
fache Pillowcase-Überlagerung an, bei der die quadratischen Differentiale nicht alle iso-
morph sind.

Dies hat eine schöne Anwendung in der Theorie von Higgs-Bündeln. Für eine komplexe
reduktive Gruppe G sei MG der Modulraum der G-Higgsbündel und Hit : MG → BG
die Hitchinabbildung. Eine komplexe Lagrangesche L ⊆ MG heißt sichtbar, wenn die
Restriktion der Hitchinabbildung über eine eigentliche Untervarietät B′ = Hit(L) ⊊ B
faktorisiert. Für den Spezialfall G = SL(2,C) beweisen wir:

Theorem 6.2 (Theorem IV.1.2). Sei q ∈ H0(X,K2
X) ein quadratisches Differential

mit nur einfachen Nullstellen. Dann gibt es eine sichtbare Lagrangesche

L → B′ = {tq | t ∈ C} ⊂ BSL(2,C)(X)

genau dann, wenn (X, q) eine Pillowcase-Überlagerung ist.

Insbesondere geben unsere Beispiele von mehrfachen Pillowcase-Überlagerungen Bei-
spiele von Riemannschen Flächen für die es mehrere Geraden in der SL(2,C)-Hitchinbasis
BSL(2,C) gibt, die zu sichtbaren Lagrangeschen gehören.
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