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Introduction

1. R-linear submanifolds

Looking at a rectangular billiard table and starting a ball in one of the corners, you
might wonder “will the ball hit a corner ever again?”. For the moment let us assume that
your billiard table has integer side lengths. Tracing the trajectory of the ball along all
the reflections in the rectangle becomes tedious very soon. Instead of reflecting the ball
when it hits the side of the table it is much more convenient to reflect the table instead
as in Figure I Now the copies of the corners of the table span a lattice in the Euclidean
plane. In this setting the question “will the ball hit a corner ever again?” translates to the
question “will the ball hit a lattice point ever again?”. The latter question can be answered
immediately: The ball will hit a lattice point if and only if the angle between the trajectory
and one side of the polygon is a rational multiple of 7.

(A) We can reflect the ball. .. (B) ...or the table.
FIGURE 1. A rectangular billiard table

But what will happen if the ball does not hit a corner? In this case the trajectory
will obviously be infinite. We can actually say more: The trajectory will be dense in the
table as a consequence of the Dirichlet approximation theorem. This motives the following
definition.

DEFINITION 1.1. A billiard table where each trajectory is either closed or dense is said
to have optimal dynamics.

As we have seen, rectangular billiards with integer (and more generally rational) side
lengths have optimal dynamics. For more complicated billiard tables our approach with
lattices will not work any more. Instead, we can use the following observation. Flipping
the table once produces a table with a different orientation opposed to the original table.
Flipping the new table again in the same direction produces a table with the same ori-
entation as the original table. So instead of producing a new table (as we have done to
obtain the lattice) we can glue the second table to the first table to produce a manifold.
If we think of the original surface as being embedded in the Gaussian plane, the manifold
obtained in this way will naturally have the structure of a Riemann surface X. By pulling
back the differential form dz from the plane to the surface we obtain a differential form w
on X. This process of obtaining (X,w) for a polygon is called unfolding. We will see this
again is Chapter The pair (X, w) is called a flat surface, as w induces a flat metric on
X.
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Conversely, each flat surface (X,w) can be represented by polygons: if v1,...,7, is a
basis of the relative homology H;(X, Z(w)), then the sides of the polygons are given by

(1) [/w

Let us return to our billiard table. The trajectories of the ball correspond to geodesics
in X with respect to the metric given by w. So the notion of having optimal dynamics
may be rephrased in terms of geodesics on (X,w). The Hodge bundle QM , — M,
over the moduli space of compact Riemann surfaces of genus ¢ is a moduli space for flat
surfaces. The group GLg(R)™ acts on this moduli space via the action on the polygon
representation of the surfaces. Veech [Vee89| [Vee91| observed that a flat surface (X,w)
has optimal dynamics if and only if its GLa(R)"-orbit is closed.

DEFINITION 1.2. If (X,w) € QMg has closed GLa(R)"-orbit then (X,w) is called
Veech surface. The image of GL2(R)T - (X,w) in M, is called Teichmiiller curve.

We have seen the simplest example of a Veech surface above: The unfolding of our
rectangular billiard table (X,w). Since Veech’s observation a lot of effort has gone into
the classification of Teichmiiller curves. As one can easily obtain new Veech surfaces from
known ones via covering constructions, one is mainly interested in classifying those that do
not arise via covering constructions, so called primitive Teichmiiller curves. In genus 2, 3,
and 4 we know infinitely many primitive Teichmiiller curves, discovered by Veech [Vee89),
Ward [War98|, Bouw-Moller [BM10], McMullen [McMO03| [McMO06|, Calta [Cal04]|, Voro-
bets |[HSO1| and Kenyon-Smillie [KS00|. In each genus greater than four we know only
of finitely many primitive Teichmiiller curves which all belong to the series discovered by
Bouw-Moller, and it is an open question to decide if there exist infinitely many primitive
Teichmiiller curves in every genus.

Let us fix a genus g and let g = (mq,..., my,) be an integer partition of 2g—2. If (X, w)
is a flat surface of genus g we say that w has type u if w has precisely n zeros of orders
mi,...,my. The moduli space of flat surfaces {2M,, also known as the moduli space of
abelian differentials, comes with natural stratification by the types of the differentials, and
we denote by QM ,, (1) the stratum of differentials of type p. The integrals in provide
local coordinates for the stratum, called period coordinates.

DEFINITION 1.3. A subspace QH C QMg () is called K-linear submanifold if it is
cut out by linear equations in period coordinates with coefficients in the field K.

As the action of GLy(R)™ preserves equations with coefficients in R, any R-linear
submanifolds is the closure of an union of GL2(R)"-orbits. By the ground braking result
of Eskin-Mirzakhani-Mohammadi the converse is also true.

THEOREM 1.4 ([JEMM15|). Every GLo(R)"-orbit closure is an R-linear submanifold.

An important invariance of a linear submanifold Q# is its rank which can be defined
as follows. Over QH we consider the bundle H! whose fiber over (X,w) is H'(X,C) and
the bundle H!, whose fiber over (X,w) is H (X, Z(w),C). Let p : HL, — H' be the
natural map. By work of Avila-Eskin-Moller [AEM17] the space p(T(Q2#)) is symplectic,
in particular of even dimension, and we define the rank of QH as %dim p(T(QH)).

Teichmiiller curves (or more precisely the orbit closures of the corresponding Veech
surfaces) are R-linear submanifolds of rank 1. It came as a surprise when McMullen-
Mukamel-Wright [MMW17| discovered the first primitive R-linear submanifold of rank 2,
the so-called gothic locus. By now only 6 additional primitive R-linear submanifolds of
rank 2 have been discovered by Eskin-McMullen-Mukamel-Wright [EMMW20|. There is
computational evidence for the existence of at least one more such submanifold [DR23|.
The existence of a R-linear submanifold of rank at least 3 is a completely open question.

2. Chern classes of linear submanifolds

To classify mathematical objects (as for example R-linear submanifolds, which are in
fact complex orbifolds) it is often a good idea to compute their invariants. For complex
orbifolds an important invariant are the Chern classes. There is a slight problem here: On a
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linear submanifold QH the group C* acts by scaling the differential, so QH is a trivial C*-
bundle and hence all Chern classes are 0. So if we want to expect a useful answer, we should
not consider QH but instead its projectivization H := QH/C*. In Chapter [[I, which is
joint work with Matteo Costantini and Martin Méller, we prove a formula for the full Chern
character of the logarithmic cotangent bundle of a linear submanifold in Theorem
This allows in particular to derive a closed formula for the Euler characteristic of a linear
submanifold. For a linear submanifold H, we denote by {3 = ¢1(O(—1)) the fist Chern
class of the tautological bundle.

THEOREM 2.1 (Theorem [[[1.3). Let H — PQM, () be a projectivized linear sub-
manifold. The orbifold Fuler characteristic of H is given by

d K7 NT
V() = (-1)1 S Z Tty H / £

L=0T€eLG,

where the integrals are over the mormalization of the closure H — PEﬂgvn(u) inside the
moduli space of multi-scale differentials and similar integrals over boundary strata, where

° 7-[[] are the linear submanifolds at level i of I' as defined in Section

. dp = dim(?—lp) is the projectivized dimension,

° K%{ s the product of the number of prong-matchings on each edge of I' that are
actually contained in the linear submanifold H,

o Auty(T") is the set of automorphism of the graph T' whose induced action on a
neighborhood ofD preserves H,

o d:=dim(H) is the projectivized dimension.

For most of the notions used in this theorem we refer the reader to Chapter [[I The
one thing we want to highlight is the fact that the theorem makes use of the mod-
uli space of multi-scale differentials PEﬂgm(u). This compactification of the projec-
tivized stratum PQM, (1) was constructed by Bainbridge-Chen-Gendron-Grushevsky-
Moéller [BCGGM18| [BCGGM19b|. The objects in the boundary roughly consist of nodal
curves together with a differential on each irreducible component and a level structure
on the irreducible components. For more details see Section [} The boundary of this
compactification again admits a stratification where the strata are indexed by so-called en-
hanced level graphs: those are the dual graphs of the underlying nodal curves together with
some decoration that records information about the differentials and the level structure.
This compactification and enhanced level graphs will appear multiple times hereinafter.

3. The gothic locus

The gothic locus QG C QMy6(03,23) is the orbit closure of the unfoldings of all
113

quadrilaterals with angles (671', 57 T, 57). Its name stems from the fact that it contains
the surfaces depicted in Figure [2] which resembles the layout of a gothic cathedral. As
mentioned above, the gothic locus G was the first known primitive R-linear subvariety of
rank 2. This locus has additional quite surprising properties: It contains a dense subset of
primitive Teichmiiller curves, and it comes with a natural map to My 3, and the image of
QG under this map, the so-called flex locus, is a totally geodesic surface with respect to
the Teichmiiller metric.

A Teichmiiller curve in a stratum of meromorphic differentials is called obvious if it
arises as the intersection of a covering construction and a condition on the residues. In
Chapter [[1I| we will analyze the boundary of the closure PEG := PQG C PEM,4(03,23).
While this analysis is still work in progress, we will present some partial results. As part

of this boundary we find an example for a non-obvious Teichmiiller curve.

THEOREM 3.1 (Theorem [[II|[1.3). Let (X,w) C QM ¢(—3%,23) be the canonical cover
of the 6-differential of type (—10,—5,3). The differential (X,w) generates a non-obvious
Teichmiiller curve. In the chart in Figure[3 this Teichmiiller curve is given by the equations

w; = —witrs  fori=1,2,3 and  wy; + w3+ ws = 0.
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FIGURE 2. The gothic cathedral (opposite sides are identified unless indi-
cated otherwise)
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FIGURE 3. A surface of infinite area generating a non-obvious Teichmiiller
curve in the stratum QM (—32,23)

By now we have not succeeded in determining precisely which boundary strata are
intersected by the gothic locus, but we have some partial information. For the horizontal
boundary strata we prove:

PROPOSITION 3.2 (Proposition [[TIf1.4). The gothic locus PEG only intersects the hor-
izontal strata listed in Figure [4)

Recall that the gothic locus itself contains an infinite number of primitive Teichmiiller
curves. Those curves are not compact. Thus the closure of each of this Teichmiiller curves
will intersect the boundary of PEG in a number of points, called cusps. Such cusps can
only be contained in purely horizontal boundary strata. For the strata corresponding to
the enhanced level graphs depicted in Figure [4] we will prove:

PROPOSITION 3.3 (Proposition . The interior of each of the four horizontal
strata Dlgl, Dl%, D% and D%O contains cusps of a primitive Teichmiiller curve contained
in the gothic locus QG. The interior of the stratum Dlglg contains cusps of a non-primitive
Teichmailler curve.

One might hope to apply Theorem [2.1]to compute the Euler characteristic of the gothic
locus PQYG. This theorem can be rephrased in such a way that it is sufficient to know the
fundamental class of the image of the gothic locus in ﬂ4,6. We will outline an approach
to the computation of this fundamental class in Chapter [[IIl We are currently short on the
necessary computational tools to actually carry out this computation.

4. Strata of k-differentials

Let us consider a generalization of the above setting: Instead of strata of abelian differ-
entials we may also consider strata of k-differentials QF M g,n(t) parametrizing pairs (X, ),
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FIGURE 4. The purely horizontal boundary strata in the gothic locus

where 7 is a section of Q®¥(X). Here u is an integer partition of k(2g — 2). As in the
abelian case those strata admit a compactification called strata of multi-scale k-differentials
PEkﬂg,n (1). Work in this direction was done by Bainbridge-Chen-Gendron-Grushevsky-
Méller [BCGGM19a] and Costantini-Moller-Zachhuber [CMZ19|. In Chapter [IIj we estab-
lish the precise orbifold structure of those spaces. Via a covering construction those spaces
are related to linear submanifolds (not necessarily R-linear), and we give a closed formula
for their Euler characteristic in Corollary [[T[I.5]

We implemented this formula in a Sage package called diffstrata which is part of
the package admcycles |[DSZ21|. Diffstrata was originally created by Costantini-Moller-
Zachhuber [CMZ23]| to allow the evaluation of their formula for the Chern classes of strata
of abelian differentials [CMZ22|. We extended diffstrata to work with all strata of k-
differentials. As an example, the Euler characteristic and the Masur-Veech volume of the
stratum PQ* My 9(—1,5) can be computed with the following commands.

sage: from admcycles. diffstrata import Stratum
sage: X = Stratum((—1,5), k=2)

sage: X.euler characteristic()

~7/15

sage: X.masur veech volume ()

28 /135% pi~4

The Euler characteristics of the minimal strata in genus 2 are listed for small &k in
Table As the above example already shows, the package diffstrata can actually do
more than only compute the Euler characteristic. For example it can

e list all non-horizontal boundary strata of a stratum of k-differentials,

e compute arbitrary intersection products in the vertical tautological ring (i.e. the
ring generated by all non-horizontal strata, 1- and k-classes),

e compute the push-forward of classes from the stratum to the moduli space of
marked stable curves.

The main limitation diffstrata currently has is the fact that it can not work with hori-
zontal strata. This would allow for much more general computations, including pull-backs
of arbitrary tautological classes from the moduli space of stable curves to a stratum of
k-differentials.

As an application of our computation of the Chern classes we prove that for specific
types p the space Qk/\/lg,n(,u) is birational equivalent to a quotient of the complex unit
ball.
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k 1 3 4 5 6 7 8 9

X(PQF M1 (2k)) | —45 18 | 30 | 51

Wl

N

o2
Ne)

TABLE 1. Euler characteristics of some minimal strata of k-differentials
computed with diffstrata

THEOREM 4.1 (Theorem[[1I1.7)). Suppose that p = (—aq,...,—as) is a tuple with a; > 0
and with the condition
. N —1
(—%—%) €7 if a; +ap < k

for all i # j. Then there exists a birational contraction morphism ]P’Ekﬂ075(u) — B onto
a smooth proper DM-stack B for some ball quotient B.

These ball quotients have previously been constructed by Deligne-Mostow [DM86| and
Thurston |[Thu98| by different methods.

5. The tropical k-Hodge bundle

Similar to the abelian case, the boundary of PE¥M, (1) is indexed by enhanced k-
level graphs. One might hope to understand the structure of the boundary by study-
ing the graphs themselves as abstract objects. To be able to talk about continuous
(un)degeneration of graphs, we might assign to each edge a real length. This leads to
the definition of a tropical curve.

DEFINITION 5.1. A tropical curve is a connected graph with real edge lengths and
weights g : V- — N assigned to each vertex.

The level structure of the enhanced level graph can be recorded by assigning integer
slopes to the edges, and the zeros of the differential can be recorded by adding legs to the
graph. In Chapter [, which is joint work with Felix Rohrle, we define a tropical k-Hodge
bundle PQ¥ M{™P as, roughly speaking, the space of all tropical curves with legs and integer
slopes at the edges that fulfill certain compatibility conditions made to mimic the behaviour
of k-differentials. This space is a generalized cone complex, but not equidimensional, see
Theorem [Tl

The gap between the classical world, that is IP’QkMg, and the tropical world, that is
IP’QkM;rOp, is bridged by a process called tropicalization: There is a continuous tropical-
ization map tropgk : ]P’Qk./\/lgn — PQFM,™P. However, this map is not surjective. The
image of tropgy is the realizability locus. In Theorem [[|T.4] we give a combinatorial criterion
to determine for a given element of IP’Q’“M;mp if it is contained in the realizability locus.
This allows us to prove that the realizability locus is much nicer behaved than the tropical
k-Hodge bundle itself.

THEOREM 5.2 (Theorem. For k > 2, the realizability locus admits the structure of
a generalized cone complex, all of whose mazimal cones have dimension (2+2k)(g—1)—1.
The fiber in the realizability locus over a maximal-dimensional cone in M;rOP 1s a generalized
cone complex, all whose maximal cones have relative dimension (2k —1)(g —1).

6. Pillowcase covers and visible Lagrangians

Given a covering of Riemann surfaces f : X — P! that is ramified above at most four
points, there is an unique (up to scale) quadratic differential 7 of type (—1%) on P* such
that the simple poles are supported at the four branch points. We might pull back this
differential to X to obtain a quadratic differential ¢ = f*n. A quadratic differential (X, q)
that arises in this way is called a pillowcase cover. In Chapter [[V] which is joint work with
Johannes Horn, we study Riemann surfaces X that admit multiple quadratic differentials
qi,...,qn such that

e the vanishing loci of ¢, ..., ¢, are pairwise different,
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e the pairs (X, ¢;) are pillowcase covers.

We call such a Riemann surface X a multifold pillowcase cover. We say that the pillowcase
cover f : X — P! is uniform if every fiber consists of ramification points of the same
ramification index.

THEOREM 6.1 (Theorem [IV|5.2). For infinitely many genera g there exist multifold
uniform pillowcase covers with simple zeros only.

An example of a multifold pillowcase cover is the Klein quartic. Note that our definition
of a multifold pillowcase cover does not require the ¢; to be non-isomorphic. Nevertheless,
we also provide an example of a multifold pillowcase cover where the quadratic differentials
are not all isomorphic.

This has a nice application in the theory of Higgs bundles as follows. For a complex
reductive group G consider the moduli space of G-Higgs bundles Mg with the Hitchin
map Hit : Mg — Bg. A complex Lagrangian £ C Mg is called wisible if the restriction
of the Hitchin map factors through a proper subvariety B’ = Hit(£) C B. For the special
case G = SL(2,C) we will prove:

THEOREM 6.2 (Theorem [IV|[1.2). Let ¢ € HY(X, K%) be a quadratic differential with

simple zeros only. Then there exists a visible Lagrangian
L— B = {tq |t € (C} C BSL(2,(C)(X)
if and only if (X, q) is a pillowcase cover.

Hence our examples of multifold pillowcase covers give examples of Riemann surfaces
for which there exist several lines in the SL(2, C)-Hitchin base Bgy,2,c) associated to visible
Lagrangians.
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CHAPTER 1

Realizability of tropical pluri-canonical divisors

1. Introduction

The close analogy between Riemann surfaces and graphs was first described in [Mik05].
Since then many definitions in tropical geometry have been modeled with the aim that trop-
icalization of algebro-geometric objects produces the corresponding tropical objects. The
realizability problem then asks whether a given instance of the tropical notion does indeed
arise in this way. For example consider this question for curves with effective divisors.
Given an abstract tropical curve I" (i.e. a vertex weighted metric graph) with an effective
divisor D, the realizability problem asks if there exists a smooth proper algebraic curve
X with effective divisor D of the same degree and rank as D such that the tropicalization
of (X, D) is (I, D) (see Section below for details on the tropicalization of curves with
divisor). This question is very difficult in general. In fact, |[Carl5| shows that it satisfies
a version of Murphy’s law that makes a general solution seem unlikely. In this article we
restrict our attention to the special case of effective pluri-canonical divisors and give a
complete characterization of those tropical objects that are realizable over an algebraically
closed base field of characteristic 0.

Let g > 2 and k > 1 be integers. In algebraic geometry the k-Hodge bundle Qk./\/lg is a
moduli space parametrizing pairs (X, 7n) consisting of a smooth curve X of genus g and a
k-differential 7, i.e. a global section of the k-th tensor power of the canonical bundle on X.
We start our exposition in Section [2| with a review of basic definitions for tropical curves,
divisors, and linear equivalence. In Section we then construct a tropical counterpart of
the projectivized moduli space ]PQkMg. More precisely, we prove:

THEOREM 1.1. There exists a generalized cone complex in the sense of [ACP15|, Section
2.6] which parametrizes pairs ([I'], D) of isomorphism classes of abstract tropical curves T’
of genus g and effective divisor D € Div(T') linearly equivalent to k times the canonical
divisor Kr. We denote this space by IP’QkMgmp and call it the tropical k-Hodge bundle. It
is not equidimensional. The dimension of a mazimal cone is (3 + 2k)(g — 1).

Tropicalization of curves with divisor has been described e.g. in |[BJ16, Section 6.3]
in the following way. Let X be a smooth curve over a non-Archimedean field and let D
be an effective divisor on X. Let & be the stable model of X. Define I" to be the dual
graph of the nodal special fiber endowed with edge lengths obtained from the deformation
parameters of the nodes. Furthermore, via the specialization map in the sense of Baker
[Bak08, Section 2C]| the divisor D gives rise to a divisor on I'. In [MUW?21| the authors
gave a description of this procedure as a continuous map between moduli spaces. By
restricting this general construction to effective pluri-canonical divisors we obtain a con-
tinuous tropicalization map tropgs : IP’QkMZH — PQF M in Section Throughout,
() denotes analytification in the sense of [Ber90]. The dimension of PQ*M, is at most
(2 +2k)(g— 1) — 1 by [BCGGM19a, Theorem 1.1]. Comparing this to the dimension of
POF M obtained in Theorem [1.1) we see that tropge cannot be surjective. The realiz-
ability problem amounts to describe the image of tropqk, the realizability locus, as a subset
of PQFMS™P.

As it turns out, the question can be reduced to the realizability problem for so-called
normalized covers. Recall that the authors of [BCGGM19a| canonically associate to any
smooth curve with k- dlfferentlal an admissible, normalized, Cychc potentially ramified and
disconnected cover 7 : X —> X with abelian differential w on X and a deck transformation

: X — X such that wk = 7* n and 7*w = (w for a primitive k-th root of unity (.
Recall that the k-Hodge bundle admits a natural stratification by so-called types u =

1
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(m1,...,my) € Z" such that the sum of the m; is k(29 — 2). The moduli space of multi-
scale k-differentials PE* M, (1) was introduced in [CMZ19|. It is a compactification of
the projectivized strata PQF M, (u) of the k-Hodge bundle and parametrizes normalized
covers in its interior. Accordlngly, we define a tropical normalized cover in Deﬁmtlon 49
to be a tropical Hurwitz cover T — T in the sense of [CMR16| such that the legs of T and
I" encode a (pluri-)canonical divisor and additionally we require a deck transformation on
T as well as compatibility conditions mimicking the above. Again we introduce a tropical
moduli space in analogy to the algebro-geometric setting.

THEOREM 1.2. There is a moduli space of tropical normalized covers, denoted IP’EkM;rOP.
It carries the structure of a generalized cone complex. The dimension of a maximal cone
is (3 +2k)(g — 1). Furthermore, there is a well-defined, continuous, closed, and proper
tropicalization map tropzs : PQEMy(1,...,1)™ — P=F My™P.

The following corollary will be an easy consequence of the properties of tropzx. It is the
key to reduce our original realizability problem to the realizability of tropical normalized
covers (see Corollary for the precise statement).

COROLLARY 1.3. A tropical curve I' with effective pluri-canonical divisor D = kKr +

(f) is realizable if and only if there exists a realizable tropical normalized cover T : LT
such that the legs of I' encode D.

In Section [5| we solve the realizability problem for tropical normalized covers using
similar ideas as in [MUW21|. This means that we proceed in two steps.

(1) For every vertex v in I' we realize m[;-1((,)) With a normalized cover of smooth
curves with meromorphic differentials.

(2) We glue these parts into a normalized cover of nodal curves which lies in the
boundary of IP’Ekﬂgm(l, ..., 1) and smoothen these curves.

Observe at this point that for a tropical curve with pluri-canonical divisor D = kKt + (f)
the zero and pole orders of any of the realizations in step (1) are already determined. More
precisely, the rational function f gives rise to a canonical enhanced level graph structure on
I (see Definition and Lemma for details). Consequently, we only need to specify
(k-)residues to proceed. Both steps from above impose restrictions on the possible choices.
For step (1) these are given by |[GT21a|, |GT21b| and |[GT22a] and lead us to the notions of
illegal vertex (such a vertex is never realizable) and inconvenient vertex (here special care in
choosing residues has to be taken). Step (2) is only feasible if the global residue condition
(see Definition as well as the above mentioned compatibilities with 7 and 7 are
respected. We will ensure this by assigning residues along 7-orbits of simple closed cycles
in I'. In contrast to the case k = 1 that was treated in [MUW?21| not any cycle is sufficient
for this purpose. Rather we have to ask for each inconvenient vertex for a corresponding
admissible cycle (Definition or an independent pair of cycles (Definition . Having
introduced the necessary notation we state our main result in Theorem [5.11] which roughly
says the following.

THEOREM 1.4. Fix an algebraically closed base field of characteristic 0. Let g > 2 and
fix an integer k > 1. Let m : I 5T bea tropical normalized cover and D = kKyp + (f) be
an effective pluri-canonical divisor on I'. The pair is realizable if and only if the following
conditions hold.

(i) There is no illegal vertex in .
(ii) For every edge € in r for which fom is constant there is an effective cycle in r through
e.
(i1i) For every inconvenient vertex v in I' there is an admissible cycle in r through one of
the preimages U or there is an independent pair of cycles.

Corollary [I.3] together with Theorem [I.4] provide a complete description of the locus of
realizable curves in IP’QkM;rOp. We conclude Sectionwith a result in analogy to [MUW21|
Theorem 6.6].

THEOREM 1.5. For k > 2, the realizability locus admits the structure of a generalized
cone complezx, all of whose maximal cones have dimension (2 + 2k)(g — 1) — 1. The fiber
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i the realizability locus over a maximal-dimensional cone in M;mp s a generalized cone
complez, all whose maximal cones have relative dimension (2k —1)(g —1).

In Section [6] we illustrate the language that we developed throughout Section [5] by ap-
plying our theory to give a complete description of the realizability locus over the dumbbell
graph for k = 2.

REMARK 1.6. (i) For the general study of realizability of curves with divisors as in
[Carl5| it is crucial to ask for realizations by divisors of the same rank, i.e. Baker’s
specialization inequality |[Bak08, Corollary 2.11] should be an equality. Without this
condition every effective divisor on a tropical curve of genus > 2 would be real-
izable, simply because tropicalization of curves with divisors is surjective onto the
tropical moduli space by [MUW21, Theorem 3.2|. For pluri-canonical divisors, this
rank condition is always implicitly included, simply because the (tropical) rank of a
(tropical) pluri-canonical divisor is always equal to (2k — 1)(g — 1) by the (tropical)
Riemann-Roch theorem (see |GKOS| for the tropical Riemann-Roch theorem).

(ii) For k =1 our Theorem |1.1| contains [LU17, Theorem 4.3 (i) and (ii)] as special case.
Furthermore, every tropical normalized cover with k = 1 is necessarily the identity
and the conditions from Theorem reduce to the conditions of [MUW21, Theorem
6.3] (see Remark for details). Hence we recover the results of [MUW21J.

(iii) Our construction of IP’QkM;rOP is a straight-forward generalization of the tropical
Hodge bundle introduced in [LU17|. In fact, Theorem could have been proved
with the same ideas as in |[LU17].

(iv) The techniques involved in the proof of Theorem give a very similar criterion
to decide which boundary strata of the moduli space of multi-scale k-differentials
P=F M, (1) are nonempty, see Appendix

(v) In Theorem [1.4] we are concerned with finding realizations in the principal stratum
pw=(1,...,1). A slight modification of the ideas from the proof can be used to give
a criterion for realizability in any other stratum as well, see Remark [4.2]

(vi) The reason for reducing the realizability problem to the seemingly more complicated
question for normalized covers is subtle. On the classical side, a k-differential is called
primitive if it is not a power of some k' differential with &’ < k and &’ dividing k.
This property is entirely invisible on the tropical side, i.e. when realizing a tropical
curve consisting of a single vertex we may choose to realize it with a primitive or non-
primitive differential. This choice has to be fixed in order to proceed and corresponds
precisely to choosing a normalized cover.

Very little is known about the topology of the projectivized strata IP’QkMg(,u) of the
k-Hodge bundle. We believe that our criterion will be useful for further research in this
direction.

In the recent and much-celebrated work [CGP21| the authors computed the top weight
cohomology of M, from the reduced rational cohomology of the link of Mgmp. The same
technique was shortly after applied to compute the top weight cohomology for some in-
stances of the moduli space of abelian varieties A, in [BBCMMW?21|. In both cases it is
vital to identify the tropical moduli space with the boundary complex of the classical mod-
uli space (see e.g. [JACP15| for the case of curves). With our description of the realizability
locus in IP’Q’“M;rOp we take the first step towards a similar computation of the top weight
cohomology of strata of k-differentials.

We want to highlight some work related to this article. Amini-Baker-Brugallé-Rabinoff
study in [ABBRI15a| and [ABBR15b| the realizability problem for finite harmonic mor-
phisms of tropical curves. Without the extra data of a pluri-canonical divisor, the global
obstruction to realizability induced by the global k-residue condition from [BCGGM19al]
does not occur. Indeed [ABBR15a, Corollary 1.6] shows that the only obstructions occur
locally at the vertices. Furthermore, adding the data of an effective divisor to the problem
the condition on the rank of the realization being equal to the rank of the tropical divisor
is a non-trivial condition, see [ABBR15b, Section 5|.

By [CJP15, Theorem 1.1] every effective divisor class on a chain of loops is realizable
by an effective divisor of the same rank. This is not a contradiction to our findings in
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Section because in this article we consider the much harder problem of realizability of
divisors rather than divisor classes.

In some sense Baker-Nicaise use in [BN16| a different framework to discuss tropical-
izations of k-differentials. More precisely, they associate to any pluri-canonical form on a
curve X a so-called weight function on the Berkovich analytification X2". This is related
to our divisor-based point of view since the induced divisor of a weight function is again a
pluri-canonical divisor by |[BN16, Corollary 3.2.5|.

2. Tropical k-Hodge Bundle

Fix integers ¢ > 2 and k& > 1. In this section we will describe a tropical version
IP’Q]“M;mp of IP’QkMg together with a tropicalization map

tropgk : IP’Q’“MZ“ — IP’Q]"’M;TOP .

The underlying set of the tropical k-Hodge bundle PQF M, parametrizes pairs ([I'], D) of
isomorphism classes of stable tropical curves I' of genus g and effective divisors D linearly
equivalent to kK. In the special case of k = 1 we recover the description of the tropical
Hodge bundle from |[LU17, Definition 4.1]. In Section we prove Theorem To this

end we use the moduli space Divgrflp of tropical curves with effective divisor of fixed degree

d = k(2g — 2) which was constructed in [MUW21, Definition 2.1] and exhibit PQ*M;™P as
a locus in Divzrflp. The tropicalization map tropge is defined in Section [2.5 by restricting
the more general tropicalization map from [MUW21, Section 3.1].

We conclude this section by defining the realizability locus as the image of tropgr and
formally state the realizability problem in Section [2.6]

2.1. Tropical curves.

DEFINITION 2.1. A graph is a tuple G = (V, H, L, 1, a) where

(i) the finite sets V', H, and L are the vertices, half-edges and legs of the graph respec-
tively,
(ii) the map ¢: H — H is a fixpoint-free involution on the half-edges H that determines
the edges of the graph, and
(iii) the map a: H U L — V assigns to every half-edge and leg the incident vertex.
For a graph G let E := {{h,h'} € H? | «(h) = W'} be the set of unoriented edges. In
the following we will often denote a graph simply as 3-tuple (V, E, L) of vertices, edges
and legs with the rest of the underlying data remaining implicit. If there are no legs, we
abbreviate further and simply write (V| E).
The valence of a vertex v € V is defined as val(v) := |a=1(v)].
A (vertex) weighted graph is a graph G together with a map g : V' — N. The weighted
graph is called stable if for each vertex v € V' the stability condition

2g(v) — 2+ val(v) >0
holds. The genus of a weighted graph is defined to be

9(G) =b1(G) + > _ g(v),

veV
where b1 (G) is the first Betti number of G.

A tropical curve is a connected weighted metric graph I' given by the data of a graph
G, vertex weights g : V' — N and edge lengths [ : E — Ryy. We call g(v) the genus of
the vertex v. The topological realization of I' is the metric space obtained by gluing real
intervals [0,1(e)] for every edge and [0, 00) for every leg according to adjacency in G. Any
weighted graph (G’,¢’) giving rise to the same topological realization is referred to as a
model for I'. Note that every stable tropical curve has a unique minimal model in the
sense of minimal number of edges and vertices. We will usually not distinguish between
topological realization and minimal model.

The genus of I is defined to be

g(T) = bi(G) + Y g(v),

veV
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The tropical curve I' is called stable if its minimal model is stable.

2.2. Moduli of tropical curves. The following description of the moduli space
M;fﬁp of stable tropical curves of genus g with n legs can be found e.g. in [ACP15| Section
4]. Note that in the description of M;ﬁp the legs are usually assumed to be labeled. Let
G be a weighted graph and let e be an edge in G. We denote by G/{e} the graph that
arises from G by contracting e into a single vertex v of weight

(v) = g(v1) + g(ve) if e was connecting v; and v
g(vi)+1 if e was a self-loop at vertex vj.

Define the category G,, with objects being stable weighted graphs of genus g with n legs
and morphism are generated by weighted edge contractions G — G/{e} as well as graph
automorphisms respecting the labeling of the legs.

Given G € Gy, we associate to it the rational polyhedral cone og := RE(()G). In fact,
this defines a contravariant functor from G, ,, to the category of rational polyhedral cones,
where edge contractions are taken to isomorphisms onto faces. The moduli space is now
defined as

M ;rr(zp = hgl oG-
Gg,n
Note that the points of M;fﬁp are in one-to-one correspondence with isomorphism classes
of tropical curves of genus g with n legs. A topological space arising as colimit over a finite
diagram of rational polyhedral cones where all morphisms are isomorphisms onto faces is
called generalized cone complex in [ACP15| Section 2.6|.

2.3. Divisors on tropical curves. Let I be a tropical curve without legs. A divisor
D on I' is an element of the free abelian group generated by the points in the topological
realization of I'. We denote the abelian group of divisors on I" by Div(I'). A divisor
D =" app is called effective if a, > 0 for every p. In this case we write D > 0. The degree
of D is defined as deg(D) := > ap. The support of D is supp(D) :={p € I" | a, # 0}. By
definition, the support is a finite subset of I'. One often imagines an effective divisor D as
a pile of D(p) = a, “chips” at every point p € supp(D) overing The data of an effective
divisor D on a tropical curve I without legs is equivalent to a tropical curve r arising from
I by attaching D(p) many legs at every p € supp(D). From now on all tropical curves are
a priori without legs, but given a divisor we will pass to the equivalent representation r
whenever convenient.

A rational function on I' is a continuous function f : I' — R whose restriction to any
edge is piece-wise linear with integer slopes. We denote the set of rational functions on I'
by Rat(I"). Every f € Rat(I") gives rise to an induced divisor

(f):= Z (sum of outgoing slopes of f at p) - p € Div(I) .
pel’

Note that (f) is indeed a finite sum. Two divisors D, D" € Div(T") are linearly equivalent if
there exists f € Rat(I") such that D = D’+(f). In this case we write D ~ D’. Analogously
to |[LUL7, Definition 3.1] we define:

DEFINITION 2.2. Let D € Div(I") be a divisor. We define the linear system of D to be
|D|:={D' € Div(l') | D’ > 0 and D ~ D'}
The canonical divisor of a tropical curve I' without legs is defined as
Kr = Z (2g(v) — 2 + val(v))wv.
veV

If " has legs, then we define KT to be the canonical divisor of the tropical curve arising from
I' by removing the legs. Note that contrary to the classical situation there is a canonical
element in the canonical linear system. Furthermore, note that deg Kp = 2¢g(T") — 2. The
elements of |kKr| are called pluri-canonical.
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2.4. Tropical k-Hodge bundle. We are now ready to define the central object of
this section:

DEFINITION 2.3. Let integers g > 2 and k > 1 be given. Define
PQFM™P := {([T'],D) | [[] € M and D € [kKp|}.

This space is called tropical k-Hodge bundle.

Recall [IMUW21, Proposition 2.2|, where the authors construct a moduli space Div;r?lp

parametrizing pairs ([I'], D) of isomorphism classes of stable tropical curves of genus g
and effective divisors of degree D € Div(I'). The construction works completely analogous
to the one of M;fﬁp given in Section above with the only modification being that
legs (corresponding to support points of divisors) are now unlabeled. Hence, the colimit
involves more automorphisms.

PROOF OF THEOREM [L1l We identify PQFM;™P as a subcomplex of (a subdivision
of) Divg‘c’lp for d = k(29 — 2) as follows. Let ([I'],D) € Divzrzp and let G be the minimal
model for (I', D) such that D is supported on the vertices of G. By construction ([I'], D)

is contained in (a quotient of) the cone oG = Rf((]G). We will now describe finitely many

rational polyhedral cones in o that contribute to IP’QkM;rOp.
By Definition the pair ([I'], D) is contained in IP’QkMgtrOp if and only if there exists
a rational function f on I" such that

(2) D = kKr + (f).

Fix an orientation for the edges of G. To specify a rational function f (up to a global
additive constant in R) that satisfies (2) we first need to choose an initial slope m, € Z
at the beginning of every edge e € E(G) subject to the condition that at every vertex
veV(G)

(3) D(v) = k(2g(v) — 2 4 val(v)) + Z Me — Z Me
outward edges at v inward edges of v
holds. By [GKO08, Lemma 1.8] there are only finitely many {m.}.cp(q) subject to ()}
For each such choice a linear subspace of o is cut out by the continuity of f. The cones
determined this way constitute the entire generalized cone complex structure of PQF Mg™P.
For the statement on the dimension recall from [MUW?21, Porposition 2.2| that
. . tr
dim DlVg’ZI()2g_2) =39g—-3+k(2g—2).
This provides an upper bound. This bound is attained by the cone described in Exam-

ple 2.4 O

EXAMPLE 2.4. Consider the graph G depicted in Figure [I] It consists of g vertices
each of which has one self-loop as well as an incident separating edge joining it to a central
chain of g — 2 vertices. All vertices have weight 0. This graph is trivalent and hence stable.
If G is endowed with edge-lengths, we obtain a tropical curve I". The canonical divisor of
I is the sum over all trivalent vertices, hence kK has k chips on each vertex. All of these
chips can be moved independently onto the bridge edges joining the vertices with self-loops
to the rest of the graph. Call the resulting divisor D (see Figure [l for a picture of D with
k = 3). The pair (I', D) has precisely (34 2k)(g—1) degrees of freedom: g for the length of
the self-loops, 2g — 3 for the lengths of the remaining edges, and k(2g — 2) for the positions
of the support points of D along the edges they lie on. Hence, the cone of tropical curves
with underlying graph G and divisor D is of maximal dimension in IP)QkMgtmp.

2.5. Tropicalization. Let g > 2 be an integer and let X be a smooth, proper alge-
braic curve of genus g over a non-Archimedean field K. Possibly after passing to a finite
non-Archimedean field extension K C K’, there is a stable model X of X over the valu-
ation ring R of K’'. The central fiber Xj is a nodal curve. Denote the set of irreducible
components of Xy by {Cy}yev. Let G denote the dual graph of Xp, i.e. the set of vertices
of G is precisely V' and for every node in &j there is one edge in G. Here, the edge corre-
sponding to a node ¢ joins two distinct vertices v and w if ¢ € C,, N C), and it is a self-loop
at vertex v if ¢ is a node of C,,. This graph is vertex weighted by g(v) equal to the genus of
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F1GURE 1. Graph G with divisor D defining a maximal cone in
PQ3 M, P.

the normalization C} of C,,. We endow the edge e corresponding to some node g € A with
an edge length in the following way. Write X locally around ¢ as zy = f for f € R and
let valg denote the valuation of R. The length of e is defined to be valr(f). The resulting
metric graph I' is the tropicalization of X in the sense of curves. The tropicalization map

trop : Mg, — M, tmp
X+—T

is well-defined (see [Viv13, Lemma-Definition 2.2.7] for independence of the choice of K'),
continuous, and surjective by [ACP15, Theorem 1.2.1]. Here ()*" denotes analytification
in the sense of [Ber90| as before.

If X was endowed with a divisor D then we obtain a divisor on trop(X) by special-
ization. [MUW21| presents this extended construction as a map between moduli spaces
again. More precisely, for any degree d > 0 the authors of [MUW21| construct mod-
uli spaces Divg g and D1Vtr0p of pairs of smooth algebraic (resp. stable tropical) curves
of genus g together with an effective divisor of degree d and give a tropicalization map
trop, 4 : Divi’ od DIVZI Y in the following way. The curve X can be extended to a semi-
stable model X such that D extends to a divisor D on X that does not meet any of the nodes
of the special fiber. As before, this might require a base change to a non-Archimedean field
extension. The specialization of D to I' is defined to be the multidegree of Dy := X N D,
ie.

mdeg(Dy) = Zdeg Dolcy) - [v].
veV

For the purposes of this article we simply define

tropak : IP’Qk./\/lzn — ]P’QkM;mp
to be the restriction of tropg 2¢—2)-
LEMMA 2.5. The map tropqr is well-defined, continuous, proper, and closed.

PRrROOF. By [Bak08, Lemma 4.20], the specialization of a canonical divisor on a curve
X is the canonical divisor on trop(X). Furthermore, the specialization map is linear and
linearly equivalent divisors tropicalize to (tropically) linearly equivalent divisors (see e.g.
[BU19, Theorem 4.2]|). In particular, tropgr is well-defined. The map is also continu-
ous because trop, ; is continuous by [IMUW21, Theorem 3.2|. Finally, properness and
closedness follow from the same properties for trop, ,; (see [MUW21, Section 3.2]) and

POFMP C Div;rzp being closed. O

Note that PQF M, as well as PQFM;*P admit natural forgetful map to M, and My"P,
respectively. These are compatible with tropicalization maps in the following sense.

PROPOSITION 2.6. The diagram

n tropok t
PQF M3 = PQFM,;™P
J trop tr
M Zn Mg op
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commutes, where the vertical arrows are natural forgetful morphisms.

PROOF. This is essentially a modified version of the first part of [ACP15, Theorem
1.2.2] using unlabeled points. Alternatively, one can see this with the explicit descriptions
of the two tropicalization maps that were given above. O

2.6. The realizability problem. We conclude this section with the following obser-
vation: by Theorem , the dimension (of a maximal cone) of PQFM;™P is (3+2k)(g—1).
On the other hand, dim PQ¥ M, < (2 + 2k)(g — 1) — 1 by [BCGGM19a, Theorem 1.1|. By
the following argument, this implies that tropgr cannot be surjective.

First note that }P’Qk./\/lg is a closed substack of Divy 4. The compactification Divg g C
Divgq was identified in [MUW21, Theorem 1.2] as a toroidal embedding of Deligne-
Mumford stacks in the sense of [ACP15, Definition 6.1.1]. This means that locally around
any geometric point of Div, 4 there exists a so-called small toric chart V |ACP15, Defini-
tion 6.2.4], i.e. a scheme V and an étale morphism V — ng,d such that the pull-back V*°
of Divg 4 to V is a toroidal embedding V° C V' in the sense of [KKMS73|. In particular,
the boundary is without self-intersection. Now consider the pull-back U of PQkMg to V.
The tropicalization tropy (U) in the sense of |Ulil7] is then a finite rational polyhedral
cone complex of dimension < dimU < dim IP’Qk./\/lg by |Ulil5, Theorem 1.1|. Taking the
supremum over all small toric charts V' we get

dim tropp; (PQ* M) = sup dim tropy (U) < dim PQ* M,

It remains to argue that this coincides with the dimension of Im tropgx. To this end note
that by |Ulil7, Theorem 1.2] the tropicalization troppg coincides with the retraction

map p : wad — &(Divg4) in the sense of [Thu07|. However, the same holds for tropgx
by [IMUW?21| Theorem 3.2], so the claim follows. Putting everything together we conclude

dim tropx (PQF M) < (24 2k)(g — 1) — 1 < (3 4 2k)(g — 1) = dim PQ"M™P.
Thus, tropgr cannot be surjective. This motivates the following definition.

DEFINITION 2.7. The image of tropgr is called realizability locus. A tropical curve I'
with effective pluri-canonical divisor D € |kKT| is called realizable if the pair ([I'], D) €
POQF M P is contained in the realizability locus.

The realizability problem asks for a criterion to determine if ([I'], D) is in the realiz-
ability locus. Corollary together with Theorem provide its answer.

3. Moduli space of multi-scale k-differentials

Fix integers ¢ > 2 and k > 1. Throughout this section we work over the field C of
complex numbers. A tuple p = (my,...,my) € Z" such that > m; = k(29 — 2) is call a
type. The stratum of k-differentials of type p is the subspace Qk/\/lg(u) of the k-Hodge
bundle ij\/lg parametrizing k-differentials where the zero and pole orders are as prescribed
by u.

For an integer d | k, taking a global d-th power of a k/d-differential on a curve X gives
rise to a k-differential on X. We will often be interested in those k-differentials that are
not global powers of k/d-differentials.

DEFINITION 3.1. A k-differential is called primitive if it is not a global d-th power
of a k/d-differential for some d > 1. We denote the union of connected components of
QF M, (u) parametrizing primitive k-differentials by QF M (p)Prim,

For strata of abelian differentials QM (p), the authors of [BCGGM19b| constructed
a closure =M, (), the moduli space of multi-scale diﬁerentz’alsﬂ Recall that C* acts on
QM(p) by multiplication on the differential. This action extends to EM, (i) and the
projectivization PE M, ,(u) with respect to this action is a well-behaved compactification

L'In [BCGGM19b], the marked points of the stratum are labeled. We consider the marked points to
be unlabeled, i.e. we consider the quotient of the space in [BCGGMI19b| by Sym(u) = {¢ € Sn | mg) =
m; fori=1,...,n}.
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of PQMy(p). The construction of EMy,(u) was generalized to strata of primitive k-
differentials QX M, (p)P"™ in [CMZ19).

Let (X,n) be a primitive k-differential in Qk./\/lg (p)P™. In Section we recall that
(X,7n) admits a canonical cover

T ()?,w) — (X, n),

where ()? ,w) is an abelian differential of some type u. The canonical cover is unique up
to multiplication of w by a k-th root of unity. Hence, after projectivizing, there is a well-
defined map PQFM ()P — POMG(12) for g, fi as described in Section below. In
other words, we can think of PQ* M, (1)P"™ not only as a space parametrizing primitive
k-differentials of type u, but equivalently as a space parametrizing canonical covers.

The boundary of the compactification constructed in [CMZ19| parametrizes so-called
multi-scale k-differentials. These are twisted k-differentials with the additional data of an
(enhanced) level graph together with some compatibility conditions. Details are outlined
in Sections and [3:3] The compactification has the following properties.

THEOREM 3.2 (|[CMZ19]). There exists a complex orbifold PEK M (1), the moduli
space of multi-scale k-differentials, with the following properties
(i) The space PEF Mg () is a compactification of POF M, (p)Prim.
(ii) Via the canonical cover construction, the space PE¥ Mg, (1) is embedded as a suborb-
ifold in the corresponding stratum PEMg 5 (1) of abelian multi-scale differentials.

We conclude this section with some more properties of PEkﬂgm(u) In Sections and
3.6] which will turn out to introduce major difficulties in solving the realizability problem
in Section Bl

3.1. Twisted k-differentials. The underlying curves of the boundary points of the
moduli space of multi-scale k-differentials PZ¥M,, ,(u) will be nodal curves. The k-
differentials will degenerate into so-called twisted k-differentials with some additional data
and compatibility conditions that we will describe in the following.

For an abelian differential, the residue at a pole is defined as the coefficient in front of
271 in the Laurent expansion around that pole. To define a useful notion of residues for
k-differentials, recall from |[BCGGM19a), Proposition 3.1] that a k-differential 7 of order
m = ordg n may locally be written as

2™ (dz)k ifm>—korktm,
m\* k T
(4) <;) (dz) it m=—k,

k
t
(zm/k—i—) (dz)F ifm< —kand k|m
2

for some r € C* and t € C.

DEFINITION 3.3. For a k-differential n written as in , the k-residue of 7 is defined
" 0 ifm>—korktm,
(5) Reskn:={ 7" if m= -k,
t* if m < —kand k | m
for r and t as above.
DEFINITION 3.4. Let X be a nodal curve and let u = (my,...,m;,) be a type. A
twisted k-differential of type p on a stable n-pointed curve (X, s) is a collection of (possibly

meromorphic) k-differentials n = {n,}, on the irreducible components X, of X such that
no 1), is identically zero with the following properties.

(i) (Vanishing as prescribed) Each k-differential 7, is holomorphic and nonzero out-
side the nodes and marked points of X,. Moreover, if a marked point s; lies on X,
then ordg, n, = m;.

2Here again, we consider the quotient of the space in [CMZ19| by Sym(u).
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(ii) (Matching orders) For any node of X that identifies ¢; € X, and ¢2 € X,,, the
vanishing orders satisfy ordg, 7,, + ordg, 7., = —2k.

(iii) (Matching k-residues condition, MRC) If at a node of X that identifies ¢; € X,,
with g2 € X,, the condition ordg, 7,, = ordg, 7, = —Fk holds, then Res];1 My, =
(—1)’“ Resg2 Ny -

3.2. Normalized covers. Consider first a smooth curve with k-differential (X, 7). It
admits a canonical cover 7 : ()? ,w) — (X,n) that is unique up to multiplying w with a
k-th root of unity. In particular, the class of (X,w) in PQM5(jz) is unique. The cover X
is connected if and only if 7 is a primitive k-differential. If 5 is a d-th power of a primitive
k/d-differential, then X has k /d isomorphic connected components.

For a twisted k-differential a similar cover can be constructed, but no longer uniquely.
Assume that the twisted k-differential n is of type p = (mq,...,my), let m; := (k +
m;)/ ged(k,m;) — 1 and let

~

W= (M1, .. ,M1, Moy ..., M2, ..., My, ..., Mpy).

ged(k,m1) ged(k,m2) ged(k,mn)
Moreover, let n := |u| and g := %Zmieﬁmi + 1.

THEOREM 3.5 (|[BCGGM19al). For a pointed nodal curve (X,s) with a twisted k-

differential 1 of type u, there exists a pointed nodal curve ()2,/5\) with o twisted abelian
differential w of type i such that

(i) 7 : X > Xisa cyclic cover of degree k with deck transformation T,
(i) w0 = wk,
(i1i) T*w = (w for a primitive k-th oot of unity ¢,
(iv) marked points are mapped to marked points, i.e. w(S) =s,
(v) 7 is unramified outside of the nodes and marked points of )?,

(vi) every node or marked point ¢ € X, has precisely ged(k,ordgn,) preimages.

DEFINITION 3.6. We refer to a tuple (7 : X = X, s,w) as above as a normalized cover
of (X,s,n). A normalized cover is called primitive if X is connected.

REMARK 3.7. (1) Condition (vi) in the above theorem is well-defined at nodes
because the twisted k-differential n is subject to the matching orders condition of
Definition B.41

(2) If n, is a d-th power of a primitive k/d-differential, then the irreducible component
X, has precisely d isomorphic preimages.

(3) In general, the normalized cover is not unique: While the fibers 7|1,y : [[5 X5 —
X, are uniquely determined by the k-differential 7,, there may be a choice how
to glue the different fibers along the nodes.

To determine the relation between the residues of the cover and the k-residues of the
base curve, let us again consider a normalized cover of smooth curves with differentials
T ()/(\',w) — (X, 7). Let us fix a pole p € X of n and let ¢ € 7~ 1(p) be some preimage.
If 7 is ramified at p, we claim that both the k-residue Res];(n) and the residue Resg(w)
vanish. For the k-residue, this is immediate by Definition [3.3] and for the residue this is a
consequence of the compatibility with the 7-action as follows. If 7 is ramified at ¢, then
there is an integer 1 < d | k such that ¢ is fixed by 7¢,7%¢, ... 7%, Because of 7*w = (w,
this implies that

L k/d
3 -Resy(w) = ZCM Resq(n) =0,
=1
as the g—th roots of unity sum to zero. If the cover is unramified at p, then the k-residues
of the twisted k-differential and the residues of the normalized cover are related as follows.

LEMMA 3.8. If w is unramified at p, then

Res’; (1) = (Resq(w)) F
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PRroor. Let m := ord,n and note that & divides m. Recall from that the k-form
1 may locally be written as

(g)k (dz)k if m = —k,

k
<zm/k + t) (d2)* if m < —k.

z

In these cases, the k-residues are by definition 7* and t*, respectively. As 7 is locally given
by 7 : 2z — z, we get

k
(fdz> it m = —k
k * z
wh =7 = " k
<<zm/k + ) dz) if m< —k.
z
Thus the residues of w at g are r and ¢, respectively. ]

REMARK 3.9. In general, the k-residue does not coincide with the coefficient in front
of z7% in the Laurent expansion around the given pole. Moreover, there is nothing similar
to the residue theorem for k-residues.

3.3. Enhanced level graphs. The boundary points of the moduli space of multi-
scale differentials }P’Ekﬂg,n(u) are normalized covers subject to some conditions on the
underlying dual graph of the stable curves. We will recall here the necessary terminology
to give the characterization of the boundary points in Section below.

Let G be a stable graph. A full order on G is an order = on the vertices V' of GG that is
reflexive, transitive, and such that for any v{,ve € V at least one of the statements v1 = v
or vy = vy holds. If v1 = v2 and v = v1, we write v < v1. We call a function £ : V — Z<q
such that £71(0) # () a level function. Note that a level function induces a full order on G
by setting v = w whenever £(v) > f(w). A level graph (G,{) is a graph G together with
a choice of a level function £. When the level function is clear from context, we abuse
notation and denote the level graph (G, ¢) by G as well.

For a given level L we call the subgraph of G that consists of all vertices v with ¢(v) > L
along with the edges between them the graph above level L of G, and denote it by G~
We similarly define the graph G, above or at level L, and the graph G_r, at level L. An
edge e € F is called horizontal if it connects two vertices of the same level, and it is called
vertical otherwise. Given a vertical edge e, we denote by v™(e) and v~ (e) the vertex that
is its endpoint of higher and lower level, respectively.

Let m : G — G be a morphism of graphs. By this we mean that m maps vertices
to vertices, edges to edges, and legs to legs while respecting edge—vertex and leg—vertex
incidences. Assume further that m is surjective on vertices and let =5 denote a full order
on G. We get an induced full order on G by setting v1 =5 v if and only if 7(v1) =g 7(v2).
If =¢ was induced by a level function ¢, then =5 is induced by the lifted level function
l:=lor.

In the following, given a twisted k-differential (X,s,n) and a level graph (G, ¢), we will
always assume that G is the dual graph of X. We denote by X~ (resp. X>r, resp. X—r)
the subcurve whose dual graph is G, (resp. G>r, resp. G=p,).

DEFINITION 3.10. Let 7: G — G be a morphism of graphs. It is called cover of graphs
if 7 is surjective on vertices, edges, and legs. Furthermore, it is called k-cyclic cover of
graphs if there is the additional data of an automorphism 7 of G such that 7F = id and 7
is the quotient map G — @/T

REMARK 3.11. We would like to stress that morphisms (and covers) of graphs do not
contract edges. Also note that in a k-cyclic cover of graphs the order of 7 may in fact be
k" < k with k" dividing k. We think of a k-cyclic cover of graphs as the dual graphs of a
k-cyclic cover of curves. Hence the name k-cyclic.

The following definition is taken from [BCGGM19a].
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DEFINITION 3.12. Let 7 : (@,Z) — (G, ?) be a k-cyclic cover of level graphs. We say
that a normalized cover of twisted k-differential (7 : X5 X ,S,w) is compatible with m if
it satisfies the following two conditions.

(iv) (Partial order) If a node of X identifies ¢, € X,, with g2 € X,,, then v, = vy if
and only if ordy, w,, > —1. In particular, v1 < vy if and only if ordy, w,, = —1.

(v) (Global residue condition, GRC) For every level L and every connected com-
ponent Y of X> 1, that does not contain a marked point with a prescrlbed pole the
following condition holds: Let q1, ..., g, denote the set of all nodes where Y intersects
)?:L- Then

b
Z Resq]_— Wy—(g;) = 0.
j=1

where g; € X_y is the point on the irreducible component corresponding to v~ (g;) €

G_p, that is part of the node g;.

Note that condition (iv) is equivalent to the analogous condition on the induced twisted
k-differential 7 on X: If a node of X identifies ¢; € X,, with ¢» € X,,, then v; = vy if and
only if ordy, 1y, > —k, and v1 < vo if and only if ordy, 7,, = —k.

Though not strictly necessary at the moment, it will be more convenient later on to
consider enhanced level graphs instead of level graphs. Enhanced level graphs additionally
carry the data of an integer valued function o which should be thought of as an order at
every node and marked point.

DEFINITION 3.13. Let k € N>1. A k-enhanced level graph Gt = (V, H, L, ¢, a, £, 0)
is a tuple where (V, H, L, ¢, a) is a stable graph, the map ¢ : V. — Z< is the level
function and the so-called enh(mcement o: HUL — Z such that the following hold.

(i) The genus is well-defined, i.e. for all v € V there is a non-negative integer g(v) such

that
E(29(v) —=2) = > o(h).
hea=1(v)
We call p(v) := (0(h))peq—1(v) the type of v.
(ii) The orders at edges match, i.e. for all h € H we have o(h) + o(c(h)) = —2k.

(iii) The orders at the half-edges are compatible with the level function, that is: for all

h € H we have o(h) > o(u(h)) if and only if £(a(h)) > £(a(c(h))).
Note that and imply that the levels at both ends of an edge are equal if and only if
the orders at both ends are —k. We call such an edge horizontal. Any other edge is called
vertical.

DEFINITION 3.14. Let Gt = (V, H, L, t, a, ¢, o) be a k-enhanced level graph. A
normalized cover of G* is a triple (G, , 7), where
() Gt=(V, H, L, 7, a, ’, 0) is an 1-enhanced level graph,
(ii) 7 : GT — G* is a cover of graphs such that
(a) 7 preserves the levels, i.e. £ = lor,
(b) the order at the preimages is the expected one, i.e. for all half-edges and legs

heHULandall h € 7 (h) it is

o ~o(h)+k
M= (o(h), k)

(c) the number of preimages is the expected one, i.e. for all half-edges and legs
h € HU L we have

7 ()| = ged (o(h), k).
(iii) 7 : G- Gisa graph automorphism that exhibits 7 as a k-cyclic cover of graphs.

Note that the genus of each vertex v € V is an integer by definition of an 1-enhanced
level graph.
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DEFINITION 3.15. Let 7 : Gt — G be a k-cyclic cover of enhanced level graphs. We
say that a normalized cover of a twisted k-differential (7 : XX ,S,w) is compatible with
m if it is compatible with the underlying cover of level graphs  : (@, Z) — (G,{) and the
orders of the differentials coincide with the enhancements.

3.4. Multi-scale k-differentials and the characterization of limit points. The
points in the boundary of PE¥ M, ,,(11) may be described as follows.

DEFINITION 3.16. A multi-scale k-differential of type p on a pointed stable curve (X, s)
consists of the following data.

(i) A primitive normalized cover of a twisted k-differential (7 : X = X, s,w) of type p.
(i) A compatible k-cyclic cover of enhanced level graphs 7 : GT — G™T.
(iii) A prong-matching for each node of X joining components on non-equal levels.

A prong-matching roughly represents a choice of gluing the differentials at the nodes
of the curve. While it is needed to get a well-behaved compactification, it will be of no
importance to us and we will suppress it in the following.

THEOREM 3.17 ([CMZ19]). The points in the moduli space of multi-scale k-differentials
PEkﬂg,n () are precisely the C* -equivalence classes of multi-scale k-differentials (w : X —
X,s,w,m:GT — G) of type p.

Note that the tuple (7 : X - X,s,w,nm: Gt — GT) is equivalent to the tuple
(1 ~ )?,/S\,W,T ~ GT), where § is the lift of s to X. We give another version of the
same theorem that highlights the possible scaling parameters of one-parameter families
approaching the boundary.

Suppose that S is the spectrum of a discrete valuation ring R with residue field C,
whose maximal ideal is generated by t. Let X /S be a family of semi-stable curves with
smooth generic fiber X and special fiber )?0 and such that there is an automorphism 7 of
degree k on the family 2?/5 Let w be a section of the (i-eigenspace (with respect to 7)
of wy/g of type [i = (M, ..., M5z) whose divisor is given by the sections 8 = (51,...,3,)
with multiplicity m;. If moreover (2?/5’, s) is stable, then the tuple (.5(\/5, T,8,w) is called
a pointed family of stable k-differentials. (Note that (X = X /7, n := (w|g)/7) is in fact
a k-differential, where w| ¢ is the restriction of w to the generic fiber X. ) We define the
scaling factor Z( v) of a vertex ¥ of the dual graph G of Xo as the non-positive 1nteger such
that the restriction of the meromorphlc differential #~®) . & to the component XO 5 of the
special fiber corresponding to ¥ is a well-defined and generically nonzero differential w; on
)?07@. The wy are called the scaling limits of w.

THEOREM 3.18 ([CMZ19]). If (X/S,T,8,w) is as above, then the function {(3) defines
a full order on the dual graph G of the special fiber )A(o and the collection wg is a twisted
k-differential of type & compatible with the level function ‘.

Conversely, suppose that Xo is a stable n-pointed curve with dual graph G and a degree k
automorphism 7. Moreover, suppose that w = {wU}Ag; is a twisted k-differential of type
n the (i-etgenspace and compatible with a full order on G. Then for every level function
1:G—7Z defining the full order on G and for every T-invariant assignment of integers ng
to horizontal edges there is a stable family X /S over S = Spec C[[t] with smooth generic
fiber and special fiber )?0 that satisfies the following properties.

(i) The action of T extends to a degree k automorphism on X /8.

(i) There erists a global section w of the relative dualizing sheaf wy ;g whose horizontal
divisor divper(w) = Z?\:l m;Y; 18 of type o and whose scaling limits are the collection
{wﬁ}ﬁef/' Moreover, the restriction of w to each fiber is contained in the (-eigenspace
of T.

(iii) The intersections $; N Xo = {3} are smooth points of the special fiber and w has a
zero of order m; in S;.
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(iv) There exists a positive integer N such that near every node € a local equation for X
s given by

thne if € 1s a horizontal edge,

Ty = . o
tN(Z(”Jr(e))_E(U @) if € is a vertical edge.

PROOF. The first statement is proved in [CMZ19|. Note that the arguments given
there hold over any discrete valuation ring with residue field C.

For the second statement we recall from the proof of [MUW21, Theorem 5.2| that
there are no constraints for the plumbing fixtures to be used for plumbing horizontal
nodes, whereas for a vertical node corresponding to an edge € the level function £y on the
cover used for plumbing has to satisfy the condition

(6) (ordyt(z @ + 1) | (lo(v™ () — Lo(v™(2))).

Multiplying the prescribed function v by a sufficiently divisible N, the resulting level func-
tion fg = N - £ satisfies the divisibility property. O

3.5. Empty primitive strata. The primitive strata of k-differentials Qk/\/lg(u)prim
are empty for some types u. To keep the notation concise, we will denote a type yu =
(mq,...,my) where multiple m; agree with exponential notation, e.g. we will denote the

type (0,...,0) by (0™).

THEOREM 3.19 (|GT21a|, |GT21b|, |GT22a|). The primitive stratum Qk./\/lg(u)prim
(and hence the stratum of mutli-scale k-differentials ]P’Ekmg,n(,u)) is empty if and only if
(i) k=1 and p=(—1,ma,...,my) with ma,...,m, >0,
(i) g =0 and p = (ma,...,my) with ged(maq, ..., mu, k) # 1,
(iii) g =1 and p = ("2, -1,1),
(v) g=1,k>2 and p= (0"),
(v) g=2, k=2 and p= (0""14) or p = (0"2,1,3).

REMARK 3.20. A stratum QkMg(,u) may be nonempty even if its primitive part
QF M, (p2)P"™ is empty: For each d | k, the stratum QF M, (1) may have nonempty con-
nected components that parametrize d-th powers of primitive k/d-differentials.

3.6. The image of the residue map. In Section [5] when we prove Theorem [I.4] we
will first translate a given tropical normalized cover into a normalized cover of enhanced
level graphs m : G — G and then try to construct a normalized cover of a twisted
k-differential (X,n) that is compatible with 7. If this is possible, then the irreducible
component (X,,7,) is a (possibly meromorphic) k-differential for each v € V(G™), whose
type u(v) is prescribed by the enhancements of G*. To construct the twisted k-differential,
we will need to fix the k-residues at the poles of n,. The question which k-residues are valid
choices was answered by Gendron-Tahar. We will summarize their results in this section.

DEFINITION 3.21. For a type u = (my,...,my,), we defined the reduced type pireq as
the sub-tuple of u consisting of all nonzero entries. Following |GT22a], we denote this
tuple by

fired = (@1, ..., at; —by, ..., =bp;—c1,..., —cr; —k7)
where the a; > —k are the zeros, the b; € kN-; are the poles where the order is greater

then k and divisible by &, and the ¢; € N5y \ (kN) are the poles with order not divisible
by k. As above, the power —k* indicates that there are s poles of order k.

Recall that the k-residues at the poles with orders —c¢; are zero, while the k-residues
at the poles with orders —k cannot be zero. We let

Resk (ttrea) + Q¥ M (firea)P™™ — CP x (CX)°

denote the residue map. For almost all reduced types pireq, the residue map is surjective. In
the rest of this section, we will discuss all the cases where the residue map is not surjective.
The following proposition lists all those cases where exactly the origin is missing in the
image of the residue map.
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ProPOSITION 3.22 (|GT21al, |GT21b|, |GT22a]). In the following cases, precisely the
origin is missing from the image of the residue map, i.e. the image of the residue map is

Im (Res’;(,ured)) = (C*)P.
(i) If k=1, g =0, s =0 and there exists an index i such that the inequality

p
ai>ij—(p+1)

j=1
holds. (Note that k =1 implies r = 0.)
(it) If k=2, g =1 and pireq = (4p; (—4)) 07 prea = (2p — 1,2p + 1;(—4P)) for p € N*.

(111) If k> 2, g =0, fiyea = (a1,...,at;—b1,...,—by; —c1) and there is at most one a; not
divisible by k and Zk|ai a; < kp.

() If k > 2, g =0, ptiyea = (a1,...,a4;;—b1,...,—bp), p # 0 and none of the following
holds:

(a) p=1andt>3,

(b) p>2,t>3 and there exist at least three a; not divisible by k,

(c) p>2,t>3 and there exist precisely two a; not divisible by k and Zklai a; > kp,

(d) k=2 and pirea = (20 +b—5)* —b, —b—2,(=4772)) or pireq = (2p+b—T7,2p +
b—5;(=b?),(—4P=2)) for p > 2 and even b > 4.

In the cases of the following two propositions not only the origin, but a finite number
of C-lines is missing from the image of the residue map.

PROPOSITION 3.23 ([GT21b], [GT22a]). For the reduced types pea in Figure[3, pre-
cisely the C-lines spanned by the vectors w; are missing from the image of the residue map,
1.e.

Im (Res’g(,ured)) = (C? x (C*)*) \U(wz)(c.

(Note that if there are multiple poles with the same order in jieq, then the order of the
entries of the vectors w; may not be uniquely determined. In those cases all possible per-
mutations need to be taken into account.)

PROPOSITION 3.24 (|GT21a]). For k =1, g = 0 and pyeq = (a1,...,a1;(—1%)) with
s > 2, precisely those C-lines <(:1:1, ey Ty =YLy e e —y52)>c are missing from the image
of the residue map for which the x;,y; € N are pairwise relatively prime and

s1 D)
E T; = g yj < max(ay,...,a).
i=1

j=1

Finally, there are some cases where a finite number of at most 2-dimensional sub-
varieties is missing from the image of the residue map. For k& = 2, following [GT21b),
Définition 1.8] we call three numbers Ry, Ry, R3 € C* triangular, if there exist square
roots 1,79, 73 of Ry, Ry, Rg such that r{ + r9 4+ r3 = 0.

PROPOSITION 3.25 (|GT21b|). For k =2, g = 0 and piyeq = (a1, ..., as; (—2%)), pre-
cisely the following C-lines are not in the image of the residue map.
(i) For pireq = (25" —1,25'+1; (—=22+2)) with s’ € N the lines spanned by (1,...,1, R, R)
for R € C* are missing.
(i) For pireq = ((25'—1)%; (—22'+1)) with s' € N* the lines spanned by (Ry, Ry, Rs, ..., R3)
for triangular R; € C* are missing.
(ii) If precisely two a; are odd (say a1 and az), the lines spanned by (ri,...,r2) for
relatively prime r; € N and such that for S := . r; either
(a) S is odd and S < max(ai,az) +2 or
(b) S is even and S < a1 + ag + 4
are missing.

THEOREM 3.26 (|GT21a]|, |GT21b|, |GT22al). For k > 1, the residue map is surjective
in all cases not covered by Propositions[3.23, [3.23, [3.24 and [3.25.
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Hred w;
‘ﬂ‘ (2s; (—2%)) for s € 2N* (1,...,1)
o (s—1,8s+1;(—2%) for s € 2N* (1,...,1)
(s —1,s+1;—4;(—2%)) for s € 2N~ (0;1,...,1)
(2p—1 2p + 1; (—4P); (=22)) forp > 0 | (0,...,0;1,1)
Cl“l (825 —4; (—2%)) for s € (N* \ 2N) (1;1,...,1)
= T (@2p- 1) (—47); =2) forp > 1 (1,0,...,0;1)
o (@Fb=8% b b—2.(#) |
for p > 2 and even b > 4 Ty
(2p+b—17,2p+b—5;(—=b?), (—4P~2)) (11,0 0)
for p > 2 and even b > 4 o
(_1747(_33)> (13)
(1,2;(=37%)) (1%)
™ = (2,4(=3)) (1%, —1%)
< (2,7 (=3%) (1%, -1)
(2,10; (=3%)) (1%)
(5,7;(=3°)) (1%
(—1,5(—4%)) (1%, —4)
T2 35 () ()
< = (-19%(=4") (1)
(3,13; (—4°)) (15)
== (LT (-6) ()
< = (=1,13;(=6%)) (1)
AT (L (k) (1, (-1

FIGURE 2. Reduced types preq and generators w; of the C-lines
missing in the image of the residue map.

4. Reduction to realizability of normalized covers

The goal of this section is to reduce the realizability problem for curves with pluri-
canonical divisor to the realizability problem for normalized covers, i.e. we want to formally
state and prove Corollary To do so, we define a notion of tropical normalized cover in
Definition 4.9 which should be thought of as a tropical version of Definition[3.6] Essentially,
we require a tropical normalized cover to be a cyclic degree k tropical Hurwitz cover [>T
in the sense of [CMR16, Definition 16] with the additional property that the underlying
cover of graphs admits the structure of a normalized cover of enhanced level graphs in the
sense of Definition Of course, the enhancement should be compatible with the divisor
marked by the legs of I'. More precisely, in Lemma we give a canonical construction
to endow a tropical curve with an effective pluri-canonical divisor with the structure of an
enhanced level graph. In the definition of a tropical normalized cover we will then require
the structure of normalized cover of enhanced level graphs to coincide on I' with the output
of Lemmal[4.1} Once the notion of tropical normalized cover is introduced, we can construct
the moduli space of tropical normalized covers IPL"”M P and the tropicalization map

tropzs : IP’QkMgfln — IP)E’“M;;YOP .

Finally, we prove Theorem and perform the reduction step.

4.1. From rational functions to k-enhanced level graphs. So far we have con-
sidered on one hand tropical curves I'" together with an effective pluri-canonical divisor
D € |kKrp| and on the other hand k-enhanced level graphs G*. These notions are related
by
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LEMMA 4.1. Let T be a tropical curve and D = kKp + (f) € |kKr| an effective pluri-
canonical divisor. Let G be the minimal graph model of I' where D is represented with legs.
We can associate a natural k-enhanced level graph structure Gt = GT(f) on G.

PROOF. Let G be the minimal model of I' including D(p) legs for every point p €
supp D. First we endow G with the total order given by f, i.e. for vertices v and w we
set v < w if and only if f(v) < f(w). Next we define a k-enhancement o : HUL — Z
compatible with the total order by the following rule

1 if his a leg
7) o(h) = s
—s(h) — k if h is part of an edge,

where s(h) is the outgoing slope of f on the half-edge h. It is easy to check Definition
O

REMARK 4.2. Our choice to represent the effective divisor D by attaching D(p) legs
at each point p € T" and endowing these with o-value 1 amounts to seeking realizations
in the principal stratum ]P’Q’I“./\/lg(l7 ...,1) in the end. Of course one could also ask for
realizability in other strata — the definition in would then have to be adapted.

4.2. Tropical k-cyclic Hurwitz covers. A tropical Hurwitz cover is a harmonic
morphism of tropical curves satisfying the local Riemann-Hurwitz conditions. The moduli
space of such maps of fixed degree d and ramification profile £ was introduced in [CMR16].
For our purposes we need the slightly modified notion of tropical k-cyclic Hurwitz covers,
which we will introduce now.

DEFINITION 4.3. Let I” and T" be tropical curves. A morphism of metric graphs ¢ :
I — T is called morphism of tropical curves if it maps edges of I" linearly to edges of T"

such that the ratio of edge lengths do/ := l(f(gf/)) is an integer for every edge €’ of IV. In

this case the numbers d. are called expansion factors.

DEFINITION 4.4. Let ¢ : IV — T be a morphism of tropical curves, p’ € I and
p = ¢(p'). Then ¢ is called harmonic at p if for every tangent direction € € T,(I") to p in
I" the value of the local degree
dy = Y do

€T, (")
e'—e
does not depend on €. Here the sum is running over all tangent directions to p’ that map
to €. A morphism is harmonic if it is surjective and harmonic at every p’ € I". In this case
the number d = Zp’e F1(p) d,y is independent of p and is called degree of .

DEFINITION 4.5. A harmonic morphism ¢ : IV — T is called tropical Hurwitz cover if
for every p’ € I the local Riemann-Hurwitz condition holds, i.e.

2-29(p)) =dpy(2-29(0(p)) = > (dw—1).
h' half-edge
incident to p’
We remark that tropical Hurwitz covers are not covers in the sense of topology, i.e.
they are not local isomorphisms in general.

DEFINITION 4.6. Let 7 : I — T" be a tropical Hurwitz cover and let £ > 1 be an integer.
We call an automorphism of metric graphs 7 : IV — TV a (tropical) deck transformation
if it is an isometry and w is 7-invariant. The data of 7 together with 7 is called tropical
k-cyclic Hurwitz cover if

(i) 7 is of degree k,
(ii) the morphism of graphs underlying = is a k-cyclic cover of graphs in the sense of
Definition m (with deck transformation given by the morphism of graphs underlying
7), and
(i) T =T"/.

REMARK 4.7. In a tropical k-cyclic Hurwitz cover the deck transformation 7 satisfies
necessarily 7% = id. This however does not mean that 7 is of degree k. Rather we only
have that the degree of 7 divides k.
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We will now construct the moduli space of tropical k-cyclic Hurwitz covers in analogy to
the moduli space of tropical Hurwitz covers (see [CMR16, Section 3.2]). The construction
follows the same pattern as the construction of M;fgp in Section Fix a degree k, genera
¢' and g, and a tuple of ramification profiles £ = (&1, ...,&,), i.e. each &; is a partition of d.
Consider a tropical k-cyclic Hurwitz cover (w : IV — I, 7) with the specified parameters.
In particular, I' has to have precisely n legs l1, ..., [, such that the leg [; has |;| preimages
with expansion factors given by the entries of £;. Then the combinatorial type of 7 is the
underlying k-cover of weighted graphs (7 : G’ — G, 7) together with the data of all the
expansion factors. Here we denote by G’ and G the minimal graph models for I and
I' respectively. We describe a category Jy_41(§) as follows. Objects are combinatorial
types. Morphism are commutative diagrams of the form

G > GY
N Y
- a I Nye
T 2
G1 f > GQ

where the maps f’ and f are either graph automorphism respecting expansion factors or f
is an edge contraction. Note that in case f is an edge contraction, f’ is already determined
by |[CMR16, Proposition 19]. Now associate to each combinatorial type p the rational
polyhedral cone o), := Rf(()G). This cone parametrizes the set of tropical k-cyclic Hurwitz
covers with underlying combinatorial type p (note that edge lengths on G determine edge

lengths on G’). Finally the moduli space is defined as

Hyb (€)= lim o,
Tyt Sg.1(8)

In [CMR16|, Definition 25| the authors define a tropicalization which maps the analyti-
fication of Hurwitz space to the tropical Hurwitz space. Given a Hurwitz cover X' — X
defined over a non-Archimedean field, its tropicalization is a tropical Hurwitz cover IV — I"
where I" is the tropicalization of X’ in the sense of curves and I' the tropicalization of X.
More precisely, the Hurwitz space ﬁg/_%k(ﬁ ) comes with two natural forgetful maps,

tgt Hy gk (§) — Mg, (X' = X)— X
ste Hy g k(6) — My, (X' = X)— X'

called target and source map respectively. We abuse notation and denote the corresponding
maps on H;ff%k(ﬁ) with the same symbols. By [CMR16, Theorem 4| tropicalization (in
the sense of [CMR16| Definition 25|) and source (resp. target) map commute. We now
define the tropicalization map for the moduli space of k-cyclic Hurwitz covers

tr
tropy : My gk ()™ —> Hy % 1 (€)

simply by tropicalizing any X’ — X and adding the induced tropical deck transformation
7 to the data. With this definition, compatibility with source and target map remains
true.

PROPOSITION 4.8. Set n’ := Y |&|. Then the following diagram commutes.

Hyr g (O™ e » M2
g’ —g,k ’ g,n
tropy
trop
trop tgt trop
src®™ Hg’—)ch(g) — Mgvn
isrc
trop tro
an p
MR MU



4. REDUCTION TO REALIZABILITY OF NORMALIZED COVERS 19

PRrROOF. By definition trop; commutes with forgetting the deck transformation. The
claim then follows from |[CMR16, Theorem 4]. O

4.3. Tropical normalized covers. From now on fix the tuple of ramification profiles
to be £ = ((k),...,(k)) with n = k(29 — 2) entries.

DEFINITION 4.9. Let (7 : T — I, 7) be a tropical k-cyclic Hurwitz cover with ramifica-
tion profiles £ = ((k),..., (k)). Assume that the effective divisor D € Div(I") given by the
legs of T is pluri-canonical, i.e. D = kK + (f). Let I'" denote the k-enhanced level graph
structure on I' induced by Lemma We say that « is a tropical normalized cover if r
admits a structure It of an l-enhanced level graph such that [t — I't is a normalized
cover of enhanced level graphs in the sense of Definition

Define PEF M, as the locus of tropical normalized covers in H rifg w(R),...,(k))/Sh
with n = k(29 — 2).

The following lemma motivates that our notion of tropical normalized cover is indeed a
tropical analog of Definition in the sense that the legs of T encode a canonical divisor.
Note however that all legs of I' necessarily have to carry o-value k by Definition
Hence, the structure I't is not exactly the one constructed in Lemma 1| but rather “k
times” the output of Lemma [4.1]

LEMMA 4.10. Let 7 :T — T be a tropical normalized cover with divisor D = kKt + (f)
on the base. Then the legs of T’ (neglecting the dilation factor k) mark the canonical divisor

F:Kf—l-(‘f;:ﬂ).

Furthermore, the 1-enhancement of any half-edge which is part of an edge in I'* coincides
with the one constructed in Lemma based on F'. In particular, the 1-enhanced level
graph structure on T s uniquely determined and thus we may speak of the normalized
cover of enhanced level graphs associated to .

PROOF. Let p € T. To show the first claim we need to check that the number of legs at
p is given by F'(p). The claim is clear if p does not carry a leg. Denote the k-enhancement
on I' by 0 and note that any leg in I' carries o-value 1. Thus, by definition of normalized
cover of enhanced level graphs any leg will have a single preimage in T and furthermore
any point in I with at least one leg will have a single preimage under 7. In particular, p
is the sole preimage of m(p) and the local degree at p is k. In the following computation
we use the notation s(h) to denote the outgoing slope of f on a half-edge h of I" and s(h)
for the outgoing slope of fo” on the half-edge h of T'. With this notation we see

#{legs at p} = #{legs at m(p)}
= D(n(p))

= ]{7(29(7'('(]))) — 2+ val(m ) + Z

On the other side, we have by definition F'(p) = 2g(p) — 2 + val(p) + > 5 3 5(h). Since the
tropical normalized cover satisfies the local Riemann-Hurwitz condition, we obtain:

F(p) = k(2g(7r(p)) — 2) + Z dy — 1) + val(p Z
k(2g( —2)+Z< > dA>+Z

her—1(h)
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The last step of Equation used that 7 is harmonic. If h maps to h with dilation factor
d> then
h

s(h)dy
.
Hence, using the harmonic property once more, we see

ZTS\@):ZS(:) ( 3 dﬁ> =" s(h).
»

h h hen—1 h

9) 3(h) =

=k
Pluging this into Equation yields the first claim.
For the second claim we need to verify that the 1-enhancement 0 on T which was induced
by o does satisfy 5@) +1= —§(ﬁ) for every internal half-edge h of T. By definition of
normalized cover of enhanced level graphs we have

U _ oh)+k _ s(h)
L= o) R) T

On the other hand we need to determine d;. Once again we use that 7 is harmonic of

degree k, i.e.
Y. =k
her—1(h)

while at the same time 7 is an isometry acting transitively on 7~ !(h). Consequently,
di = k/|m~*(h)|. Combing this result with Equation () we obtain

~ s(h)ds s(h)
—s(h) = — h — .
k [m=1(h)]
This completes the proof. O

Note that for & = ((k),...,(k)) the tropicalization tropy from Section is Sp-
equivariant. We define tropicalization of normalized covers

tropzs : PQ" Mg, (1,...,1)* — PEFALITP

by restricting trop /Sh.

LEMMA 4.11. The map tropzx is well-defined, continuous, proper, and closed. Further-
more, the following diagram commutes.

PO My (L, 1)
w)\

(10) P=k MEoP B, pOF P

lSI‘C

POMg(1,... 1) 22 PO

PrOOF. To show that tropzx is well-defined, let ()? — X, s,w) be a normalized cover
of smooth curves defined over a non-Archimedean field. Its tropicalization is in particular a
tropical k-cyclic Hurwitz cover [ —T. By Proposition we know that T' = tropg (X', w)
and I' = tropgr (X, n), where 7 is the k-differential on X. By well-definedness of tropg and
tropgr the legs on T and I do indeed represent canonical and pluri-canonical divisors F' and
D respectively. Finally we need to check that T — T can be endowed with the structure
of a normalized cover of enhanced level graphs [t — I't such that T'" is induced by D
via Lemma First of all, there is indeed such a structure G+ — G* on the underlying
k-cover of graphs G- G simply because the graphs are dual to the special fiber of the
degeneration of X — X. We check that the enhancements induced by the divisors are the
same as Gt and GT. On the cover this was part of the argument of [MUW?21| Theorem 1]
and hence the claim.
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Finally we check that tropzx is continuous, proper, and closed. The proof of [CMR16),
Theorem 1] shows that the retraction map from the analytification of Hurwitz space to its
Berkovich skeleton can be extended to a compactification of both of these spaces. Hence the
retraction map is continuous, proper, and closed. By [CMR16, Theorem 1] tropicalization
of Hurwitz covers behaves on each cone of the tropical moduli space like the retraction map.
Thus the properties still hold for tropicalization of Hurwitz covers. It is now easy to check
that they remain to hold after taking the S,-quotient, i.e. for tropz and continue to hold
after restricting to the closed subset PEFM,™P C Hj;il; w((k), ..., (k)). This completes the
proof. O

PrROOF OF THEOREM [[.2l The claim on trop=zx was proved in Lemma [L.11] We de-
scribe the generalized cone complex structure on IP’E’“M;mp. Consider a combinatorial
type « of a tropical k-cyclic Hurwitz cover, i.e. a normalized cover of enhanced level graphs
p G+ — GJr with dilation factors on every edge of G and with a deck transformation

: G = G. In the proof of Theorem [1.1| we showed that the range of possible choices
for edge lengths on G such that it becomes a tropical curve with pluri-canonical divisor
is a finite union of rational polyhedral cones. Now note that each such choice determines
a unique tropical Hurwitz cover by [CMR16, Lemma 17|. All of these choices give indeed
tropical normalized covers, because this property does only depend on the combinatorial
type. Hence we obtain a stratification of IPL’“M TP in rational polyhedral cones.

For the statement about the dimension con81der again Example[2.4] The graph depicted
in Figure [1| can be endowed with a tropical normalized cover by covering every vertex
with a single preimage and every edge with as many preimages are necessary to satisfy
the definition of a normalized cover of enhanced level graphs. This describes a cone in
P=F M, that maps under tgt isomorphically onto the cone from Example O

DEFINITION 4.12. The image of tropzx in IPE’“M;TOP is called locus of realizable covers.

Note that the locus of realizable covers is of positive codimension in PE*M;"P by the
exact same argument as for the realizability locus in IP)QkM;mp. Hence, realizability of
normalized covers is a nontrivial problem as well. The following is a more precise version
of Corollary and reduces our original realizability problem to the one for covers.

COROLLARY 4.13. Let ([I'], D) be a pair consisting of an isomorphism class of a tropical
curve I with an effective pluri-canonical divisor D = kKr + (f). The pair is realizable if

any only if there exists a realizable tropical normalized cover T — T with tgt([f —TI]) =
(I}, D).

ProOF. This is simply the triangle in Diagram commuting. O

REMARK 4.14. Note that contrary to the situation of twisted differentials, a tropical
curve with pluri-canonical divisor does not admit a unique normalized cover. Indeed, when
asking for realizability of a tropical normalized cover where a vertex v is covered with d,
preimages we are asking for a realization by a twisted differential where 7, is precisely a
d,-th power of a primitive k/d,-differential.

5. The realizability locus

We now turn to the remaining problem of realizability of tropical normalized cov-
ers. Let 7: I — T'" be a tropical normalized cover with associated enhancements (see
Lemma . This data contains already most of the information of a boundary point
of PEEM, ,(1,...,1). In fact, only the (k-)residues of the twisted differentials are not
yet determined. Realizing the tropical datum amounts to choosing a “valid” combination
of (k-)residues. Obstructions arise by the k-residue map being non-surjective for some
types (this leads to the notion of inconvenient vertex, see Definition and by global
compatibility conditions (we tackle this by assigning residues along certain cycles in f*,
see Definitions and . Once notation is established, we state and proof our main
theorem (Theorem [5.11)).



22 I. REALIZABILITY OF TROPICAL PLURI-CANONICAL DIVISORS

5.1. Special vertices. As we have seen in Section [3.6] the k-residue map
R‘eslg(“red) : Qk-/\/lg(,Ured)prim — CP x ((CX)S

is not surjective in general. Vertices with a reduced type for which the residue map is not
surjective are a major obstruction to realizability. In the abelian case treated in [MUW21],
those vertices were called inconvenient. We will extend the notion of inconvenience to
k-differentials and additionally introduce a short list of illegal vertices — a concept which
did not appear in the abelian case.

Let us fix some k& > 1. We will formulate the definitions in the language of normalized
covers of enhanced level graphs m : GT — G*. Let v € V(G) be a vertex, let dy, =
|7~1(v)| be the number of preimages and let k, := k/d,. Recall the notation introduced
in Definition [3:21] where we denoted the reduced type of v by

fred (V) = (a1, ... a3 =br, ..., =bp;—c1, ..o, —cpy —k%).
We want to realize 77! (v) — v as a normalized cover. In particular v has to be realized
as a d,-th power of a primitive k,-differential of type
1
freg (V) = T prea(v) = (ay, ... a4 b, ..., —b;; —cy = —kD).
(%

For k, = 1 we have r = 0, as in this case the ¢; would be divisible by d,, = k, but the
¢; are not divisible by k by definition. Following [MUW21| we call a vertex v inconvenient
if the k,-residue map Res’g“(v) (Hhod) : PO M ) (1o )P™ — CP x (CX)* is not surjective.
More precisely:

DEFINITION 5.1. A vertex v is called inconvenient of type I if 1!, is one of the types
in Proposition with k, substituted for k. It is called inconvenient of type II if pi! 4 is
one of the types in Propositions [3.23] [3.24] or [3.25] again with &, instead of k. Summarizing,
we call v inconvenient if it is inconvenient of type I or II.

Type I inconvenience means that only the origin is missing from the image of the k-
residue map, whereas type II means that a finite number of lines or at most 2-dimensional
subvarieties is missing.

Recall from Theorem that for some strata the primitive part QF M, (p)P™™ is
empty. Consequently, vertices that ask to be realized by an element of such an empty
primitive part of a stratum are not realizable at all.

DEFINITION 5.2. The vertex v is called illegal in the following cases.

i) If g = (~1,1).
(ii) If ky =2 and pl 4 = (1,3).

(iii) If g(v) = 0 and ged(ploq, ko) # 1.
(iv) If ky > 2 and pl 4 = 0.

(v)

v) If ky =2 and pl 4 = (4).

REMARK 5.3. Being illegal is not an intrinsic property of a vertex. Rather it depends
on the context of the given normalized cover. For example a vertex of type jireq = 0 is not
illegal if it is covered by precisely k preimages, i.e. it may be realizable as a k-th power of
an abelian differential.

5.2. Special cycles. When assigning (k-)residues to our given enhanced combinato-
rial data 7 : G — GT we have to ensure some global compatibility conditions. These
conditions are compatibility with the deck transformation 7 as well as the matching residue
condition, global residue conditions, and the residue theorem on G+, Compatibility with
7 means in particular, that the choice of residues on Gt determines k-residues on G¥.
Hence we will focus on G+.

Let v be a simple oriented cycle in GT and let L., denote the lowest level v passes
through. We want to use such a cycle to modify the residues of T similar to the course of
action in the proof of [MUW21, Theorem 6.3]. There the authors chose a complex number
r € C* and added to each half-edge h of G on level L. the value r (resp. —r) to the
residue at the half-edge h if v leaves (resp. enters) the vertex incident to h along this half-
edge. This operation maintains the residue theorem at each vertex, the matching residue



5. THE REALIZABILITY LOCUS 23

condition, and the global residue condition, i.e. if each of those conditions was true before
modifying the residues of @*, the conditions still hold for the modified residues.

Recall that compatibility with the deck transformation 7 : G — G means that the
assigned residue at a half-edge 7(h) has to be ¢ times the residue at h. After adding
the residues along the cycle v as described above, this is no longer the case in general.
We address this problem by not only considering the cycle =y, but the entire 7-orbit of ~
consisting of

vi = TH(7) fori=0,...,k—1.
We provide each of the cycles ; with the induced orientation and add +¢*r to the residues
as described above. We will refer to this operation as assigning the residue r along the
orbit of v. The total change to the residues under this operation can be easily expressed
with the following shorthand notation.

DEFINITION 5.4. Let v be a simple closed cycle in Gt with fixed orientation. Given
a vertex ¥ in GT, let H '(0) denote the set of half-edges incident to ¥ with o-value < —1.
Then we define a vector R, (9) = (R (0)n)nen € CH'1 as follows. Set it to be 0 if T does
not lie on the lowest level that v passes though and otherwise

k—1 1 if 7% enters v through h
(11) R, (V) := Z e’ where ¢ := ¢ —1 if 7i7 leaves ¥ through h
=0 0  if 7iy does not pass though h.

Now let v be the image of ¥ under 7 : G+ — G and denote tred the reduced type of v
as in Definition We define a vector R§ (v) € CP*5 to be 0 if R,(v) is 0 and otherwise

Rs(v)h = (R,(0);)" for h € 7~ 1(h) arbitrary.

When assigning the residue r along the orbit of v the residues at a vertex ¥ change
precisely by adding r times R, (V) to the vector of residues. The residues obtained in
this way obviously still preserve the residue theorem, the matching residue condition, and
the global residue condition. Additionally, we have maintained compatibility with the
deck-transformation. This means that the residues we assigned on G induce well-defined
k-residues on GT. By Lemmathe change to the k-residues at a vertex v of G is precisely
r* times R,’j(v). Observe that a given simple closed cycle v can only be used to change the
k-residues at a vertex v by a C-multiple of Rﬁ(v). This means that some cycles will be
more useful for our purpose then others. We illustrate two notable phenomena in Examples
and

REMARK 5.5. The choice of an orientation in Definition [5.4] merely fixes the sign of
R (v). For the rest of this article only the C-span of R,'j(v) will be of relevance (see
Definitions and below), hence this choice never really matters.

G+

4

FIGURE 3. A cover of graphs with the action of the deck-transformation 7.

EXAMPLE 5.6. Consider the cover of enhanced level graphs G+ — G* for k = 2
depicted in Figure . Let ;1 be the simple cycle in GT that uses the two topmost edges,
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considered with the orientation indicated in the picture. When we compute R, (v) for

either of the vertices in G we see that the vector is zero. To see this, consider the top left
half-edge. Along 7, we add 1. The oriented cycle 7,1 agrees with =, and thus we add
at the same half-edge the value ( = —1 when distributing the residues for 7,y;. In total
we have added 1 — 1 = 0 to the residue. This means that v; cannot be used to assign any
nonzero residues at all. R

Let v2 be the simple cycle in G that uses the two outermost edges, again considered
with the orientation indicated in the picture. Computing R., (V) for either of the vertices
in G we see that the vector now is (—=1,—1,1,1). But this vector is not in the image of the
l-residue map for a vertex of type (—1%,2) by Proposition These two observations
motivate the following definition.

DEFINITION 5.7. Let v be a simple closed cycle in Gt and let v be a vertex in GT.
Choose and fix an orientation of v. We say that v is effective for a half-edge h incident to
v if R',j (v)p, is nonzero. If v is inconvenient of type I, we say that « is admissible for v if
is effective for at least one vertical half-edge h incident to v. If v is inconvenient of type
II, we say that v is admissible for v if R,’j“ (v) lies in the image of Reslg“” (Uoq(v))-

G+

5 7

FIGURE 4. An inconvenient vertex which cannot be redeemed with a single
cycle.

EXAMPLE 5.8. Contrary to the abelian case in [MUW21| there are situations, where
using only one cycle will not be sufficient to achieve valid residues. To see this, consider the
graph in Figure[d The vertex on lowest level is inconvenient of type II. More specifically,
the image of the residue map is missing any tuples where two entries agree while the
other two are zero. The depicted cover G is the only valid choice — covering a genus 1
vertex of type (0,0) with only one preimage would be illegal. Notice that each of the four
simple cycles in G is effective but induces a tuple of k-residues on the base which is not
contained in the image of the residue map. Hence none of the available cycles is sufficient
to redeem the inconvenient vertex, however using two cycles will work. A converse to this
phenomenon is illustrated in Example [5.21} there we have an inconvenient vertex which
can only be redeemed with an admissible cycle but no pair of cycles.

DEFINITION 5.9. Let v be a vertex in G and let ~ and 7 be oriented cycles which are
effective for v. We call (v,~') an independent pair for v if the induced vectors R,];“ (v) and

Rf;’f (v) are not contained in the same linear subspace of the complement of Res’;“ (Mg ().

REMARK 5.10. The upshot behind Definition [5.9] is that linear combinations of the
vectors R,’j” (v) and RS? (v) will generically lie in the image of the k,-residue map. This
is trivially true for inconvenient vertices of type I as the cycles of an independent pair
are necessarily admissible, i.e. effective. In fact, the notion of independent pair is not
interesting for type I vertices. For inconvenient vertices of type II this is easily seen to
be true for all cases where the complement of Res’;“ (il oq(v)) consists of a finite union of
lines or planes, i.e. for all cases except those considered in Proposition Part . This
is the only case where a finite union of 2 dimensional cones — none of which contains a 2
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dimensional plane — is missing. Here a pair of cycles may still be independent even if both
RFv_vectors lie in the same irreducible component of the complement of Im Reslg“” (e oq(v)).

5.3. Realizability of covers.

THEOREM 5.11. Fiz an algebraically closed base field of characteristic 0. Let g > 2 and
fix an integer k > 1. Let 7 : [t 5Tt bea tropical normalized cover with enhancements
associated by Lemma[{.10 Denote the effective pluri-canonical divisor marked by the legs
of T' by D = kKp + (f). Then (7 : T — I, D) is realizable if and only if the following
conditions hold.

(i) There is no illegal vertex in 7.
(ii) For every horizontal edge € in T'" there is an effective cycle in T'" through €.

(iii) For every inconvenient vertex v in I'V there is an admissible cycle in T+ through one
of the preimages U or there is an independent pair of cycles.

REMARK 5.12. Let us explain, how to recover [MUW21| Theorem 6.3| from Theo-
rem for k = 1. Recall that [MUW21, Theorem 6.3] states the following: the pair
(I, D) for D as above is realizable if and only if

(i) For every inconvenient vertex (in the sense of [MUW21| Definition 6.2|) v in '
there is a simple cycle in I' through v that does not pass through any node on a
level below v.

(ii’) For every horizontal edge e in I' there is a simple cycle passing through e which
does not pass through any node on a level below e.

To see that these conditions are equivalent to ours, note that for £k = 1 the identity on I’
is the only tropical normalized cover. Now assume (id : I' — I', D) satisfies the conditions
(i), (ii), and (iii) of Theorem Every inconvenient vertex in the sense of [MUW21] is
inconvenient in our sense as well. Furthermore, every effective or admissible cycle does not
pass through any lower level. Hence (I', D) satisfies (i’) and (ii’) as well.

Conversely, suppose (i’) and (ii’) hold. First note that the only type of illegal vertex
for k = 11is (—1,1) and such a vertex does not admit a simple cycle “at or above level”
through the incident horizontal edge. Thus (ii’) ensures that there are no illegal vertices.
The next observation is that for k = 1 a cycle « is effective for every half-edge at lowest
level that « passes though. In particular, (ii) holds. Furthermore, there are only two kinds
of inconvenient vertices: the ones in Proposition (i) and the ones in Proposition
The former is inconvenient in the sense of [MUW21| as well. Hence, (i’) provides the
necessary effective cycles. The other kind of inconvenient vertex is not an issue for k = 1:
all simple cycles use precisely two half-edges incident to each vertex they pass through, and
thus the residues at > 3 horizontal half-edges may always be chosen sufficiently generic.
In other words, the cycles provided by (ii’) contain an independent pair.

We split the proof of Theorem [5.11] in three parts. First we prove that the condi-
tions in the theorem are sufficient (resp. necessary) for realizability over the base field C.
Afterwards we generalize the result to arbitrary algebraically closed base fields of charac-
teristic 0.

PROPOSITION 5.13. The conditions in Theorem|5.11| are sufficient for realizability over
the base field C.

PRrROOF. First, we reduce to tropical curves with integer edge lengths. Indeed, the set of
tropical curves with rational edge lengths and pluri-canonical divisor is dense in }P’EkMgmp.
Furthermore, the locus in IP)EkM;mp described by the conditions in Theorem is closed.
By Lemma trop=k is continuous and closed. Hence it suffices to consider tropical
curves with rational edge lengths. But then again if 7 is realizable then so is the cover
obtained by rescaling the edge lengths with a global constant.

Now assume that the conditions of Theorem hold. Ultimately we want to realize
7 by a normalized cover 7 : X — X of smooth curves over a non-Archimedean field with
residue field C, such that the k-differential on the base is of type (1,...,1). To do so, we
want to choose for every half-edge in [ with o-value < —1 and every half-edge in I'" with
o-value < —Fk a (k-)residue (i.e. a complex number) such that all of the following hold.
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For every vertex v € I'" there exists a smooth curve X, with meromorphic k-differential
1y realizing v. More precisely, X, is supposed to be of genus g(v) with distinguished points
zn, € X, for every half edge h incident to v such that ord,, n, = o(h) and Res LT 18
the value chosen in the beginning and 7, is holomorphic and nonzero outside of {zh}h
Furthermore, 7, is supposed to be the d,-th power of a primitive k,-differential of type
Poq(v). Yet again further, we require each of the connected components )?@ of the (uniquely
determined) normalized cover of X, to realize one of the vertices v € m~!(v), again such
that orders of the meromorphic abelian differentials w; match the o-values on It and
the residues coincide with the chosen values from the beginning. Finally, we need to do
all of this such that the normalized covers H)?@ — X, glue into a normalized cover of
nodal curves X — X with dual graphs given precisely by [ and I'. Once this is achieved,
we obtain the desired normalized cover of smooth curves with deformation parameters
corresponding to the edge-lengths of Cand T by means of Theorem

We note some dependencies among these requirements. Specifying residues on r+
that satisfy the condition imposed by the residue theorem and that are compatible with
the deck transformation 7 already determines the k-residues on I'". This ensures the
realizability of v in the above sense if the induced k,-residues are contained in the image
of the ky-residue map Resgfv)(uicd (v)). In this case realizability of all of the v € 7~ !(v) is
immediate. When it comes to global compatibility note first that compatibility with the
level structure is already built into the definition of enhanced level graphs. Beyond that,
we only need to ensure MRC and GRC for the cover 7 : [t — I't. To summarize, our
goal is to choose residues on [ such that:

e For each © € 't the condition imposed by the residue theorem is satisfied. More-
over, MRC and GRC are satisfied.

e Residues on 't are compatible with 7, i.e. the residue of 7(h) is precisely ¢ times
the residue at h.

e The k-residues which are given on 7(h) as the k-th power of the residue at h make
every vertex of I realizable.

Let us now argue that a suitable choice of such residues exists. We start by initializing
all residues with 0. Let 71, ...,y be all the simple cycles in T that exist by assumption,
i.e. the cycles containing the horizontal edges and all kinds of inconvenient vertices. For
each v; we choose and fix an orientation. Note that at this point the first two items of
our list of requirements are already satisfied. By construction of the process of “assigning
a residue 7; along the 7-orbit of ~;”, these conditions continue to hold after doing so.

Let us now pick numbers r1,...,7y € C to be assigned along the orbits of the ~;
such that the third and final condition is met. This amounts to choosing the r; sufficiently
generic such that no undesirable cancellation happens. More precisely, after all the residues
have been assigned, the resulting k,-residues at a vertex v € I'" are

Zfr ”Rk

and this has to lie in the image of the k,-residue map. At every vertex this amounts to
avoiding a locus of positive codimension in CP**. At the same time, the values that can
be achieved using the given ; form a vector space V,. By assumption we have for every
deficit in surjectivity of the residue map an admissible cycle or an independent pair of
cycles, i.e. V,, is not fully contained in the complement of the image of the residue map.
Hence a suitable choice for each r; is possible and we are done. U

Let X be a smooth complex curve, and denote by PD : H(}R()?;]R) — Hy(X;R) the
map given by Poincaré duality. By abuse of notation, we denote the induced map

PD : Q'(X) — Hy(X;C)
w — PD(Re(w)) @i - PD(Im(w))
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by the same symbol. By naturality of PD there is a commutative diagram
ONX) 25 Hi(X;C)

(12) E T-

QY(X) 25 Hi(X;C).

PROPOSITION 5.14. The conditions in Theorem[5.11] are necessary for realizability over
the base field C.

PROOF. Let [ — T] = tropzi(m : X — X,s,w) be given. We want to show that
the tropical normalized cover satisfies the conditions of Theorem [5.11] By continuity of
tropzx (Lemma D it suffices to show this for any tropz (7 : XX ) for m taken from a
dense subset of PQ* M, ,,(1,...,1)*". In particular, we may assume that 7 is defined over
a finite extension of C(t). This allows us to take the equivalent C-analytic point of view
and consider this data as a family of normalized covers (7 : X’t — X¢); over the punctured
unit disc A*. In particular, each )?t and X; is a smooth curve over C.

Let Xo — X denote the admissible cover obtained as the limit of the family within
P:k/\/lgn( ,1) for ¢ — 0. By assumption, the dual graphs of Xo and X are the
underlying unmetrized graphs of T and T respectively. Furthermore, the enhanced level
graph structures induced by Xy and X, are precisely I't and T'* respectively (see the
argument in the proof of Lemma . We check that the conditions of Theorem
hold for these.

There cannot be any illegal vertex v in I'. Otherwise the restriction Hﬁerl(v) )A(O,g —
Xo,, of the central fiber would provide an element in a stratum that is empty by Theo-
rem [3.19] a clear contradiction.

Next, we show the existence of effective cycles for horizontal edges and admissible
cycles or independent pairs of cycles for all inconvenient vertices. Fix such an edge or
vertex and let L denote its level in I'". Recall that we are only interested in cycles
at or above level L. To ensure that any cycle we find during this proof satisfies this
condition, we use the following trick. Take the truncated cover )?0,>L — Xo,>1 at or
above level L. After restricting to the connected component that contains the_edge or
vertex under consideration, we obtain a twisted differential from some holomorphic stratum
PEF My o (11/). Tt can be written as limit of a family (7 : X! — X}); of smooth normalized
covers. Moreover, any cycle in the dual graph of )ACO,Z 1, is also a cycle in the dual graph
of Xo at or above level L that inherits the property of being effective (resp. admissible).
Thus it suffices to find suitable cycles in )?072 1. Hence we will implicitly work with the
family 7r; and assume all our cycles to be at or above level L.

Let w; be the abelian differential on )/(\'t and let v := PD(w¢). By the commutativity

of Diagram we have
v = PD(w;) = 7PD(7%wy) = i PD(Cwy) = (T

Repeating the argument with 7 being replaced by a power 7¢ for i = 0,...,k — 1 and
summing the resulting equations we obtain

(13) ky = Z ¢

Now consider a vertex v € I'* and let hq, ..., hyts be the half-edges incident to v with
o-value < —k and divisible by k. Let ¥ be a preimage of v and let /le, . ,EPJFS be half-edges
incident to v such that /HL is a preimage of h,. Let agl),. agp *9) be families of simple
closed cycles in X, which get pinched into the corresponding nodes qi, ..., gp+s. Observe
that f () Wy converges for t — 0 to the residue rg of the limiting twisted differential at g,.

By Pomcare duahty and equation (13| . this implies

(14) hmZ(l *%ﬁat —%i_l)l(l)k’}/tﬁagb):qu: forv=1,...,p+s.
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Next we want to make a consistent choice of a basis of H; ()?t; C). In general, such a
choice is not possible across the entire family. Hence we restrict our family to a real ray in
A* i.e. from now on only consider t € (0,1). Recall that there is a surjective map

®: H\(X0;Z) — Hy(G;Z)

into the homol/(\)gy of the dual graph G of the special fiber X. }et (ﬂ;rop)j‘e{l,...,bl(é)} be
a basis of Hy(G;Z) consisting of simple cycles and let B; € H1(Xo;Z) be preimages of the
B;mpA. Let J:={1,...,29(X)}. We can complete the/(\ﬁg‘)je{l,...,bl(@)}Ato a basis (3}) je of
H1(Xo;Z) in such a way that 38} € ker® for i € {b1(G) +1,...,29(Xo)}. In other words,
the new ﬂ; have a representative with support in a single irreducible component )?071} of
X’o. Chose cycles 5; on a nearby surface X’t along the real ray such that 8; converges to
B; for t — 0. The (5;);jes form a basis of H1(Xy;Z) and Hq(Xy; C) for all t in the real ray.

With our chosen basis we may write 7, = > jeJ cgj )5j for uniquely determined complex

coefficients cgj ) varying continuously for ¢ € (0,1). Equation implies

k—1

(15) 711]0[(1)23 Zé”g%j@ N agb) = krg, forve=1,...,p+s.

e
i=0 jeJ

We claim that for all : = 1,...,p+ s we have

k—1 o~ . A

.. R trop (V)5 fOI' :1,...,b G

lim E C'iB N aEL) ) » (), J 1@
=0 otherwise

for Rgexop (0); asin (LI). For the first claim observe that for j € {1,... ,bl(@)} the limit
J L

lim;_,0 f3; ﬁagL) agrees with the coefficient of B;

the node q, € )?0. Thus the claim follows by comparing equation with equation (|11)).
Here the sign appearing in is encoded in the intersection product of the implicitly
oriented cycles 3; and agL). For the second claim observe that for j € {by(G)+1,...,2g(X)}

the cycle 3; is chosen such that is does not intersect aﬁb). Thus we may rewrite equation
as

TP in front of the edge € € G corresponding to

Q)

b1(G)
(16) C(j)Rﬁprop (@)E = krg, forv=1,...,p+s,

J

Il
N

J

where () .= lim;_,q cgj

Now assume that h,, belongs to a horizontal edge. In this case, rg, is nonzero. Hence

by equation ([16)), there is a jo € J such that Rguop (D)5, # 0. In particular ﬁ]t-;()p is effective
Jo ‘0

for h,,.
Now assume that v is inconvenient of type I. In this case, the origin is not in the image
of the residue map. Thus there is an ¢g such that rg, 1s nonzero. By the same argument

as above, there is an jg such that R/B;(r)op ODEO # 0 by equation and thus 5;;010 is

admissible for v.
Now assume that v is inconvenient of type II. In this case, the powers (rqﬁz’)b are

—

contained in the image of the residue map. Recall that the complement of the image of
the residue map is an union of at most 2-dimensional subvarieties | J,, W/, € CP**. Thus
the residues (73, ), may not be contained in an union of at most 2-dimensional subvarieties
U, W, € CPT*  too: Each subvariety W’ in the image of the residue map gives rise to
multiple subvarieties W corresponding to choices of the k-th root. If there is an admissible
cycle ﬂ;mp we are done. So assume that there is none. Moreover, assume for a contradiction

that all vectors (Rgeron(V);; ), are contained in a single linear subspace V' of a subvariety
J L

Ws,. Then by equation , the vector (rg ), is contained in the same linear subspace
V. But then the vector (rg ), is not contained in the image of the residue map, which is a

contradiction. Thus there is an independent pair of cycles (ﬁ;:ep, ﬂjt-;[)p). O
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So far we have shown the claim to hold over C. We now generalize to any algebraically
closed base field of characteristic 0.

PROPOSITION 5.15. If Theorem [5.11) is true over the base field C, it is true over any
algebraically closed base field of characteristic 0.

ProoF. If K C L is a valued field extension of such fields, then there is a surjective map
(PO M, (1, ..., l)L)an — (PQ*My(1,. .., I)K)an and the following diagram commutes by
|Gub13, Proposition 3.7]

(PQFMy(1,...,1))™

(PREM(L,. . i)™ oo PEFM™

Hence, the image of tropzx does not depend on the base field (whether larger or smaller
than C). O

5.4. Dimensions. In the abelian case [MUW21, Theorem 6.6] shows that the re-
alizability locus is a pure dimensional generalized cone complex of dimension equal to
4g — 4 = dimPQM,(1,...,1). From |Ulil5, Theorem 1.1] we know that the realizability
locus for £ > 2 must be a generalized cone complex of dimension < dim ]P’Qk/\/lg(l, o) =
(2+42k)(g — 1) — 1 (see the discussion in Section [2.6)). Let us now prove Theorem [L.5] from
the introduction and show that this bound is in fact attained and all maximal cones have
the same dimension. To do so we need two preparational statements. The proof for the
following lemma is the same as [MUW21, Lemma 6.8|.

LEMMA 5.16. For every realizable tropical normalized cover  : [t — I et Fg be
the level graph obtained by successively contracting edges in T'" that have an (n+ 1)-valent
genus zero node with n > 1 marked points at one of its ends. The dimension of the cone in
the realizability locus with associated normalized cover 7 is 1 less than the number of levels
plus the number of horizontal edges of Fg.

PROPOSITION 5.17. Let k > 2 and let 7 : TT — T'F be a realizable tropical normalized
cover. Then 7 is contained in a cone of dimension (24 2k)(g —1) — 1.

PROOF. Let ¢(m) denote the number of levels minus 1 plus the number of horizontal
edges of I'". As 7 is realizable, the underlying cover of enhanced level graphs cuts out a
boundary stratum D, C PEFM, ,,(1,...,1) of codimension c¢(7), i.e. for all multi-scale k-
differentials (X' — X,s,w, Gt — GT) € D, the underlying cover of enhanced level graphs
G+t — G* agrees with m, see [CMZ19, Proposition 1.3]. We will prove that the closure
D, intersects a boundary stratum of maximal codimension, i.e. that there is a multi-scale
k-differential (7' : X’ — X') € Dy with c(n') = (24 2k)(g — 1) — 1.

Assume that we have found such a 7/. We want to use Lemma [5.16] to see that the
tropicalization of 7/ gives rise to a degeneration of 7 that spans a cone of the claimed
dimension. To apply Lemma [5.16] we need to rearrange any occurring trees of marked
points in 7’ as depicted in Figure [5] where the level structure on the graph on the right
may be different depending on the order on the half-edges ¢;. This is always possible: First
note that all irreducible components of X’ need to have genus zero. Second note that the
“contracted” vertex in the middle of Figure [5| must be realized by a primitive k-differential.
But for a stratum of primitive k-differentials of genus zero, the forgetful map to My, is
surjective. Thus the degeneration is contained in the closure.

We will prove the existence of the degeneration 7’ by induction on ¢(7). Assume that
c(m) is not maximal, i.e. that c¢(m) < (2 + 2k)(g — 1) — 1. Let us prove that D, intersects
a boundary stratum of higher codimension. To this end, let for a level L of I'"

or: Dy — (]_[ Qk/\/lg(v)(u(v))> /(CX

veL

be the map that cuts out level L. (Note that projectivization of strata of multi-scale
differentials is done with respect to the diagonal C*-action, and not with respect to the
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FIGURE 5. Rearranging a rational tail

C* action on each irreducible component.) Since ¢(7) was assumed to not be maximal,
there exists a level L such that dimoy,(D;) > 1. We need to argue that such a level L can
always be degenerated.

If o1,(Dy) consists of multiple connected components that may be rescaled indepen-
dently, then we obtain an additional level by taking the limit of this rescaling, i.e. by
distributing the vertices of level L to two levels according to the rescaling. If o, (D;) does
not consist of multiple connected components (or those cannot be rescaled independently),
then there must be an irreducible component of positive (projective) dimension in o, (D).
For ease of notation we assume that o, (D) consists of only one such component, i.e.

(17) UL(DW) - PQkMg(v’)(M(UI))'

The map o7, can be extended to the closure D, using an appropriate moduli space of
multi-scale k-differentials as codomain for the extended map. If o (D) contains a point
from the boundary of IP’QkMg(vr)(,u(v’)), then this point gives rise to a degeneration of
the level L. Such a point always exists: The image o7(D;) is a complete variety and the
stratum ]P’Qk/\/lg(v/)(u(v’ )) on the right hand side of does not contain any complete

variety by |[Gen20, Théoréme 1 and Corollaire 2|. This concludes the proof. O

PROOF OF THEOREM [[.5l The dimension of the realizability locus is bounded from
above by the dimension of the domain of the tropicalization map, i.e. by dim ]P’Ekﬂg,n(l, 1) =
(2+2k)(g — 1) — 1. That this bound is actually obtained and all maximal cones are of the
expected dimension follows from the previous proposition. O

REMARK 5.18. We emphasize that for £ = 1 the above formula does not give the
correct dimension for the maximal cones. This is due to the formula for the dimension of
the principal stratum being different in the abelian case.

5.5. Obstructions to realizability. The following are two simple criteria which can
be used to recognize non-realizable tropical normalized covers. An application is illustrated
in Section [6l below.

COROLLARY 5.19. Let m: 't = TF be a tropical normalized cover with enhancements
associated by Lemma [{.10 Let e be a horizontal edge in T and denote by m/{e} the
tropical normalized cover obtain from m by contracting e in the base and every € € 71 (e).
If 7 is realizable, then so is w/{e}.

PROOF. Let X — X be a realization of . Smoothing of a horizontal edge of XX
is always possible, see [CMZ19, Section 3.1], and produces a realization of 7/{e}. O

With the same proof, we get

COROLLARY 5.20. In the situation of Corollary[5.19 let E' be the set of all edges in
't connecting two neighboring levels. If 7 is realizable, then so is w/E'.

EXAMPLE 5.21. We emphasize that in the situation of Corollary only complete
level passages may be smoothed. We give an example for this in terms of enhanced level
graphs that can easily be imagined as the top most levels of enhanced level graphs as-
sociated to a tropical normalized cover by Lemma [£.10] Consider the cover of graphs
CA}T — Gf on the left of Figure |§| We assume that the o-value at the top end of all edges
is 0. Both vertices on bottom level of Gf are inconvenient. In @f, there is precisely
one effective cycle (up to the 7-action) and this cycle is admissible for both inconvenient
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FIGURE 6. A realizable graph and a non-realizable undegeneration

vertices. Therefore, this cover is realizable by Theorem [5.11] After smoothing only some
of the edges between top and bottom level, we obtain the cover @; — G;“ on the right.
This is no longer realizable: There is no effective cycle (and hence no admissible cycle or
independent pair of cycles) for the inconvenient vertex on bottom level. And besides that,
the vertex of genus 2 is illegal.

This example also highlights another aspect. As we have seen in Example there
are inconvenient vertices of type II for which there is no admissible cycle, but a pair of
independent cycles. The inconvenient vertex of genus zero on the left of Gf is inconvenient
of type II, but in this case there exists only an admissible cycle and no independent pair
of cycles. Thus in fact both situations may occur.

6. Examples

6.1. kKt is always realizable. Consider a stable tropical curve I with divisor kKt
for some k > 2. We show that the pair (I, kKr) is realizableﬁ. Note that stability implies
that every vertex is in the support of the divisor. Hence the construction from Lemma 4.1
produces for every vertex at least one incident leg with enhancement value 1. Thus when
constructing a tropical normalized cover I' — I', every vertex of I' has necessarily only
a single preimage. Furthermore, all edges in I'"™ are horizontal. Hence the only possible
choice for T is to replace each edge of I' with k£ parallel edges. But now the conditions of
Theorem [5.11] are easy to check: the necessary cycles are provided by the parallel edges.

6.2. Dumbbell graph. Let £ = 2 and consider the dumbbell graph T' consisting of
two vertices of genus 0, connected with a bridge edge and having a self-loop at each vertex,
see Figure []] We claim that Figure [9] shows all maximal cones in the realizability locus
over the dumbbell graph. Note that each of them is of dimension 5 as was expected by

Theorem [L.Hl

FIGURE 7. Dumbbell graph.

To verify our claim let us start with the divisor 2Kr. We focus on one of the trivalent
vertices v: notice that the divisor produces two legs at v. How can we move these to arrive
at a combinatorial type with more degrees of freedom? The first option is to move both legs
onto the incident self-loop. Necessarily they will be symmetric on the loop. Performing
this move on both sides of the graph produces the configuration from Figure [9a] This is
realizable by the same argument as in the previous Section [6.1} we may simply cover every

3The authors are very grateful to D. Maclagan who raised this question during a discussion at the
2021 edition of the conference “Effective Methods in Algebraic Geometry”.
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vertex by a unique preimage, producing cycles above every horizontal edge. In this case
there are no inconvenient vertices.

The second option would be to move a single leg onto the bridge and leave the other
one at v. Assume the resulting situation was realizable. Contract the self-loop at v and
obtain a vertex of genus 1 and type (—1,1). This is an illegal vertex and by Corollary
we obtain a contradiction. Hence, we cannot leave a single leg behind.

So the third an final option is to move both legs onto the bridge. This will leave a
part of the graph that is depicted in Figure [ behind. Note that any cover of this part of
the graph must be disconnected. This can been seen directly with Corollary again.
Alternatively, observe that the vertex has to have two preimages (otherwise it would be
illegal). Connecting these two copies with two parallel horizontal edges fails to provide an
effective cycle above the (horizontal) self-loop on the base (see Example . Hence, each
of the two instances of the vertex must have a self-loop attached.

p

0

FiGURE 8. Part of an enhanced dumbbell graph. This is only realizable
when provided with a disconnected cover.

With this observation in mind, we may choose to keep the pair of legs that we just
moved onto the bridge together or separate them. In the former case, we arrive at situations
from Figure or In each case there is a unique tropical normalized cover [ and it can
be checked to satisfy the conditions from Theorem[5.11] Hence, both of these configurations
are realizable. The other option does however produce an inconvenient vertex of type
(1, —1; —4). This vertex does not have any simple closed cycle above it, which violates the
conditions of Theorem [F.11]

Finally, we may push three or four of the legs onto the same self-loop. The first option
does not produce a realizable configuration: Similar to the cases discussed above, the leg
left behind always produces an inconvenient vertex that is not redeemed by an appropriate
cycle. So let us consider the case that all four legs have been pushed to the same self-
loop. This gives a realizable configuration if and only if the vertices are pairwise at the
same level, as depicted in Figure @ We check this by providing a realizable cover I in
Figure In fact, taking into consideration what we discussed about Figure [§] this is the
only possible normalized cover without illegal vertices. Notice that there are again two
inconvenient vertices of type (—1,1; —4) on the base. But the cover does admit a simple
closed cycle above them which can be checked to be effective. We emphasize that this
cycle passes through both vertices of type (—1,1; —4). Thus if those vertices were not on
the same level, then there would not exist a simple cycle “at or above level” for the higher
of the two. By Theorem this would contradict realizability.

7. Appendix: Nonemptiness of boundary strata

While the boundary strata of the moduli space PEkﬁgm(u) of multi-scale k-differentials
of type p are indexed by normalized covers of enhanced level graphs w : Gt = G, not
every such cover in fact corresponds to a nonempty boundary stratum D,. Theorem
implicitly solves the problem to determine if a boundary stratum D, is in fact nonempty
for the moduli space IP’Ekmg,n(l, ..., 1), that is: Given a cover of enhanced level graphs
7+ Gt — GT where all legs of G+ have o-value 1, is there a corresponding normalized
cover of twisted k-differentials X — X in }P’Ekﬂgm(l, ...,1)? In fact our methods can
be applied to all strata of k-differentials. We will make this explicit in the slightly more
general setting of so-called generalized strata.

To motivate the definition of generalized strata, fix a type p and consider a boundary
stratum D, of PEkﬂg,n(u) given by a cover of enhanced level graphs 7 : Gt — GT.
Now consider the space B given by the family corresponding to the projection of D to
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FIGURE 9. Realizability locus over the dumbbell graph. Vertices of I'"
connected by dashed lines lie on the same level.

FIGURE 10. A realizable cover for the configuration in Figure

some level L of GT. In general B fails to be a honest stratum for two reasons: The level
Gt ; may have several connected components, and the k-residues at the poles connecting
Gt ;, to higher levels may be restricted by the GRC. In other words, B is a subspace of
a product of strata. The definition of a generalized stratum models this kind of spaces.
Our definition is a generalization to the setting of k-differentials of the definition given in
[CMZ22] for the abelian case.

Let Q%M (1) denote the connected components of Q¥M, (1) which parametrize
d-th powers of primitive k/d-differentials. Let

Mg n H Qk gl,nI Nz)

be a disconnected stratum and let

R
H Gj:7; MJ

be the product of the strata that contain the canonical covers. Here the bold letters on the
left denote the tuples of the corresponding letters on the right, i.e. d = (dy,...,ds). Let
i = (Mj1,..., Mz ) and let Hy == {(j,1) | m;; < —1} be the set of marked non-simple
poles in the cover. Let A be a partition of H, with parts denoted by A and let Ay be a
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subset of the parts of A such that Ag is 7-invariant as a set. Let

R=<r= (rj7l)(j,l)€Hp S (C'Hp| Z Tl = 0 for all /\(a) € A\
(G.HeE

Denote by Q./\/lgﬁ(ﬁ) the subspace with residues in & and denote by Qﬁ./\/l?n(u) the
corresponding subspace of k-differentials. Note that this is well-defined, as we have chosen
Apz to be T-invariant.

DEFINITION 7.1. We call a stratum of the form Qﬁ/\/l?n(u) a generalized stratum and

denote by PEﬁﬂin(u) the corresponding projectivized generalized stratum of multi-scale
k-differentials.

Let GT — G* be a cover of enhanced level graphs. Here and in the following we allow
for Gt to be disconnected. Picking up an idea from |[CMZ23|, we construct the cover
of auziliary enhanced level graphs (A?jo — G in the following way. For each NOND
we add a vertex ﬁ(a) to G+ and think of these new vertices as being at level oo, i.e. all

new vertices are on a new level above all other levels. As the legs of G+ correspond to
the marked points of the stratum with orders m;;, we may think of the legs of G* as
beeing indexed by the tuples (j,1). In particular the leg (4,1) has o-value m;;. For each

(4,1) € M9, we add an edge to G+ connecting the leg (j,1) to the new vertex v(,) and we
take the o-value at the upper half-edge of the new edge to be —m;; — 2k. If the sum of
the o-values of the legs incident to 5(,1) is odd we add an additional leg with o-value 1 to
U(a)- Then the genus of 94) is determined by the o-values of the incident legs. Finally, the
action of 7 on the new edges, vertices and legs is determined by the action of 7 on the legs
(7,1). We call this new graph @jo and we add edges, vertices and legs to GT to complete
G to the quotient G, := GI /7. We emphasis that the new vertices added to G, are
never inconvenient, as they do not contain any poles.

We call the marked poles of QMg 7(1t) that are not contained in Ay the free poles.

When we assign residues to the graph Gt as in the proof of our main theorem, we may
alter the residues at free poles at will (while maintaining the residue theorem at each
component), as the GRC does not restrict the residues at components containing a free
pole in any way, see Definition We reflect this in the following definition.

DEFINITION 7.2. A free pole path is a simple path in G+ starting and ending in a
(different) free pole. A generalized cycle is a free pole path or a simple cycle.

The definitions of an effective (resp. admissible) cycle and of an independent pair of
cycles can by adapted for generalized cycles in the obvious way. By applying the methods
of our proof to the enveloping stratum of the cover of auxiliary enhanced level graphs
GL — GZL, it is not hard to check that the proof of Theorem in fact proves

o)

THEOREM 7.3. A normalized cover of enhanced level graphs m: Gt = G+ corresponds

to a nonempty boundary stratum of a generalized stratum PEﬁﬂzn(u) if and only if the
following conditions hold.
(i) There is no illegal vertex in 7.
(ii) For every horizontal edge € in G there is an effective generalized cycle in @jo through
e.
(iii) For every inconvenient vertex v in G there is an admissible generalized cycle in é;
through one of the preimages U or there is an independent pair of generalized cycles.

REMARK 7.4. For k = 1, Theorem recovers |[CMZ23, Proposition 3.2] in the same
way as Theorem recovered [MUW?21, Theorem 6.3, see Remark



CHAPTER II

Chern classes of linear submanifolds with applications to
spaces of k-differentials and ball quotients

1. Introduction

Linear submanifolds are the most interesting and well-studied subvarieties of moduli
spaces of abelian differentials QM (1) and their classification seems far from complete at
present. They are defined as the normalization of algebraic substacks of QM ,, (1) that are
locally a union of linear subspaces in period coordinates. In the holomorphic case, linear
submanifolds defined by real linear equations are precisely the closures of GLQIr (R)-orbits by
the fundamental theorems of Eskin-Mirzakhani-Mohammadi (JEM18|, [EMM15]). These
orbit closures are automatically algebraic subvarieties by Filip’s theorem (|Fill6]). Our
results require algebraicity, but they work as well for meromorphic differentials and for
subvarieties whose equations are only C-linear.

Linear submanifolds include

spaces of quadratic differentials,

Teichmiiller curves,

eigenform loci and Prym loci,

the recent sporadic examples from [MMW17| and [EMMW20], but also
spaces defined by covering constructions, and

in the meromorphic case, spaces defined by residue conditions.

These examples are R-linear. Spaces of k-differentials for £ > 2 and in particular the ball
quotients in Section [8] are prominent examples that are only C-linear.

Our primary goal is a formula for the Chern classes of the cotangent bundle of any
linear submanifold or rather of its compactification. The Euler characteristic is an intrinsic
compactification-independent application. Knowing the Chern classes is a prerequisite for
understanding the birational geometry of linear submanifolds, such as computations of the
Kodaira dimension, see [CCM22].

This goal was achieved in [CMZ22| for the full projectivized strata of Abelian differen-
tials PQM, (1) themselves, taking the modular smooth normal crossing compactification
PEM,, (1) of multi-scale differentials from [BCGGM19b| as point of departure. In the
inextricable zoo of linear manifolds we are not aware of any intrinsic way to construct a
smooth compactification with modular properties. Working with the normalization of the
closure in some ambient compactification is usually unsuitable for intersection theory com-
putations. Here, however, thanks to the work of Benirschke-Dozier-Grushevsky (|[BDG22|)
and some minor upgrades we are able to work with this closure.

We now introduce more notation to state the general results and then apply them to
specific linear submanifolds. Let QH — QMg ,, (1) be a linear submanifold. Let moreover
H — PQMgn(p) be its projectivization and let H — PEM, (1) denote the normaliza-
tion of its closure into the space of multi-scale differentials. The boundary strata Dr of
PEM,, (1) are indexed by level graphs I' as we recall in By |[BDG22, The-
orem 1.5] the boundary of H is divisorial and consists two types of divisors: First there
are the divisors Dﬂ" of curves whose level graphs have only horizontal edges (i.e. join-
ing vertices of the same level). Second there are the divisors fo parameterized by level
graphs I' € LGy (H) that have one level below the zero level and no horizontal edges and
such that the intersection of H with the interior of the boundary divisor Dr is non-empty.
Those boundary divisors D%‘ come with the integer ¢r, the least common multiple of the
prongs k. along the edges. We let & = ¢1(O(—1)) be the first Chern class of the tautological
bundle on H.

35
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THEOREM 1.1. The first Chern class of the logarithmic cotangent bundle of a projec-
tivized compactified linear submanifold H is

(18)  a(Rb(ogdH)) = N-¢+ > (N-ND&[DY]  eCH'(H),
TeLGq(H)

where N := dim(QH) and where Np := dim(DZj’T) + 1 is the dimension of the unprojec-
tivized top level stratum in D%{.

To state a formula for the full Chern character we need to recall a procedure that
also determines adjacency of boundary strata. It is given by undegeneration maps J; that
contract all the edges except those that cross from level —i + 1 to level —i, see
This construction can obviously be generalized so that a larger subset of levels remains.
For example the undegeneration map 5E contracts only the edges crossing from level —i+1
to level —i. We can now define for any graph I' € LG (H) with L levels below zero and
without horizontal edges the boundary component fo of codimension L and the quantity

or =TT s,y

THEOREM 1.2. The Chern character of the logarithmic cotangent bundle is

—1
ch(QL(logoH)) = ¢ - Z Z er (N Ny ¢ >1p*(th( lfisf‘;“) )

L=0TeLGy,

where N T/58(r) denotes the normal bundle of Dlz" mn D?Sé(F)’ where td is the Todd class and

ip: fo — H is the inclusion map.

So far the results have been stated to parallel exactly those in [CMZ22|. We start
explaining the difference in evaluating this along with the next result, a closed formula for
the Euler characteristic.

THEOREM 1.3. Let H — PQM (1) be a projectivized linear submanifold. The orbifold
Euler characteristic of H is given by

d K- NT
X(H) = (_1)d Z Z |Aut7.[ H/ g3;_[[%]’

L=0TeLGp,

where the integrals are over the normalization of the closure H — IP’EHWL(M) inside the
moduli space of multi-scale differentials and similar integrals over boundary strata, where

° 7-[[] are the linear submanifolds at level i of I as defined in

o dp = dim(?—lp) is the projectivized dimension,

° K%{ is the product of the number of prong-matchings on each edge of I' that are
actually contained in the linear submanifold H,

o Auty(T") is the set of automorphism of the graph T' whose induced action on a
neighborhood of DH preserves H,

o d:=dim(H) is the projectivized dimension.

The number of reachable prong matchings K{* and the number | Auty (T)| as defined
[i]

in the theorem are in general non-trivial to determine. Also the description of H[' requires
specific investigation. For example, for strata of k-differentials, these Hp are again some
strata of k-differentials, but the markings of the edges have to be counted correctly.

The most important obstacle to evaluate this formula however is to compute the fun-
damental classes of linear submanifolds, or to use tricks to avoid this. For strata of abelian
differentials, this step was provided by the recent advances in relating fundamental classes
to Pixton’s formula (|[HS21], [BHPSS20]). Whenever we have the fundamental classes at
our disposal, we can evaluate expressions in the tautological ring, as we briefly summarize
in Section 41
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Applications: Teichmiiller curves in genus two. As an example where fundamen-
tal class considerations can be avoided, we give an alternative quick proof of one of the first
computations of Euler characteristics of Teichmiiller curves, initially proven in |Bai07], see
also [MZ16| for a proof via theta derivatives. We assume familiarity with the notation for
linear submanifolds in genus two strata, as recalled in

THEOREM 1.4 (Bainbridge). The Euler characteristic of the Teichmiiller curve Wp in

the eigenform locus for real multiplication by a non-square discriminant D is x(Wp) =
—9¢(—1) where ¢ = C@(\/ﬁ) is the Dedekind zeta function.

ProoOF. The Hilbert modular surface Xp is the disjoint union of the symmetrization
of the eigenform locus Ep C QMg (1,1), the product locus Pp of reducible Jacobians
and the Teichmiiller curve Wp. This gives

X(Pp) + X(Wb) + 5x(Ep) = x(Xp).

Now we apply to Ep. The top-&-integral in the L = O-term of vanishes by
since Ep is a linear submanifold with REL non-zero. The codimension-one
boundary strata are Pp and Wp. They don’t intersect, so there are no codimension-two
boundary strata without horizontal nodes and we get

(19) x(Ep) = —x(Pp) —3x(Wbp)

where the factor 3 stems from the number of prong-matchings. Since Siegel computed
X(Xp) = 2¢(—1) and viewing Pp as the vanishing locus of the product of odd theta
functions gives x(Pp) = —5((—1), the theorem follows from the two equations. O

Strata of k-differentials. The space of quadratic differentials is the cotangent space
to moduli space of curves and thus fundamental in Teichmiiller dynamics. We give formulas
for Chern classes, Euler characteristics and for the intersection theory in these spaces. In
fact, our formulas work uniformly for spaces of k-differentials for all £ > 1. Having the qua-
dratic case in mind, we write @ = PEFM,, ,,(11) for the space of multi-scale k-differentials
defined in [CMZ19|, which coincides (up to explicit isotropy groups, see with
the compactification as above of the associated linear submanifold obtained via the canon-
ical covering construction.

The formulas in apply to Q viewed as a linear submanifold in some
higher genus stratum Mg 5(fi). However the fundamental class of these submanifolds is
not known, conceivably it is not even a tautological class. The main challenge here is to
convert these formulas into formulas that can be evaluated on Q viewed as a submanifold
in Mg,n where the fundamental class is given by Pixton’s formula.

While the boundary strata of the moduli space IP’EMWL(M) are indexed by level graphs,
the boundary strata of the moduli space of multi-scale k-differentials Q are indexed by
coverings of k-level graphs  : fmp — I', where the legs of fmp are marked only partially,
see or also [CMZ19, Section 2| for the definitions of these objects and the labeling
conventions of those covers. Each edge e € ' has an associated k-enhancement k. given
by |orde w + k|, where w is the k-differential on a generic point of the associated boundary
stratum D, . We let { = ¢1(O(—1)) be the first Chern class of the tautological bundle on
Q. Via the canonical cover construction, implies the following formula for
the Euler characteristic of strata of k-differentials.

COROLLARY 1.5. The orbifold Fuler characteristic of a projectivized stratum of k-
differentials IPQkMgm(u) is given by

X(PQ* Mg (p)) =

O 3, e e

L=0 (7:Fp—T)ELGL(Q)

where S(m ) zs the normalized size of a stabilizer of a totally labeled version of the graph
Fmp and QTr are the strata of k-differentials of Dy at level i.
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The full definition of S(7) is presented in (65)). It equals one for many 7, e.g. if all
e

vertices in I" have only one preimage in I'y,p. See|Remark 7.6|for values of this combinatorial
constant.

k 1 3 4 5 6 7 8 9

X(PQF My 1 (2K)) —%

N
o2
Ne)

18 | 30 | 51

Wl

TABLE 1. Euler characteristics of some minimal strata of k-differentials

Table[T] gives the Euler characteristics of some strata of quadratic differentials, for more
examples and cross-checks see

All the formulas for evaluations in the tautological ring of strata of k-differentials have
been coded in an extension of the sage program diffstrata (an extension of admcycles
by [DSZ21]) that initially had this functionality for abelian differentials only (see [CMZ22],
[CMZ23|). See for generalities on tautological ring computations and in particular
for the application to k-differentials. The program diffstrata has been used
to verify the Hodge-DR-conjecture from [CGHMS22| in low genus. Moreover, diffstrata
confirms that the values of the tables in |[Goul6| can be obtained via intersection theory
computations:

PROPOSITION 1.6. The Conjecture 1.1 in [CMS19] expressing Masur-Veech volumes for
strata of quadratic differentials as intersection numbers holds true for strata of projectivized
dimension up to siz, e.g. Q(12) = 5614/6075 - 7°.

Ball quotients. Deligne-Mostow (|[DM86|) and Thurston |Thu98| constructed com-
pactifications of strata of k-differentials on My, for very specific choices of ;¢ and showed
that these compactified strata are quotients of the complex (n — 3)-ball. These results
were celebrated as they give a list of non-arithmetic ball quotients, of which there today
are still only finitely many sporadic examples, see [DPP16| and |[Der20| for recent progress.
The compactifications are given as GIT quotients (in ([DMS86]) or in the language of cone
manifolds (in [Thu98|) and the proof of the discreteness of the monodromy representation
requires delicate arguments for extension of the period at the boundary, resp. surgeries for
the cone manifold completion.

As application of our Chern class formulas we give a purely algebraic proof that
these compactifications are ball quotients, based on the fact that the equality case in the
Bogomolov-Miyaoka-Yau inequality implies a ball quotient structure, see |Proposition 8.1}
Since this is a proof of concept, we restrict to the case n = 5, i.e. to quotients of the complex
two-ball, and to the condition INT in , leaving the analog for Mostow’s generalized
YINT-condition [Mos86| for the reader.

The computation of the hyperbolic volume of these ball quotients had been open for a
long time. A solution has been given by McMullen [McM17| and Koziarz-Nguyen |[KN18],
see also [KM16|. Since computing the hyperbolic volume is equivalent to computing the
Euler characteristic by Gauss-Bonnet, our results provide alternative approach to this
question, too.

There are only four kinds of boundary divisors of Q:

e The divisors I';; where two points with a; + a; < k collide.

e The divisors L;; where two points with a; 4+ a; > k collide.

e The ’horizontal’ boundary divisor Dy, consisting of all components where two
points with a; 4+ a; = k collide.

e The ’cherry’ boundary divisors ;;Ay;.

THEOREM 1.7. Suppose that p = (—aq,...,—as) is a tuple with a; > 0 and with the
condition
a; 7 -1 .
(20) ( -2 ?> €z if aj +ap < k (INT)
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for all i # j. Then there exists a birational contraction morphism Q — B onto a smooth
proper DM-stack B that contracts precisely all the divisors L;j and ;jAy;. The target ‘B
satisfies the Bogomolov-Miyaoka-Yau equality for Q%(log Dyor)-

As a consequence B = B \ Dyo, is a ball quotient.

The signature of the intersection form on the eigenspace that k-differentials are modeled
on has been computed by Veech |Vee93|. The only other case where the signature is (1, 2)
are strata in My 3. As observed by Ghazouani-Pirio in [GP17], (see also [GP20]) there are
only few cases where the metric completion of the strata can be a ball quotient. However
they also find additional cases where the monodromy of the stratum is discrete. This
implies that the period map descends to a map from the compactified stratum to a ball
quotient. It would be interesting to investigate if there are more such cases, possibly with
non-arithmetic monodromy.

2. Logarithmic differential forms and toric varieties

This section connects the Euler characteristic to integrals of characteristic classes of
the sheaf of logarithmic differential forms. We work on a possibly singular but normal and
irreducible variety H of dimension d, whose singularities are toric and contained in some
boundary divisor 9H. We are interested in the Euler characteristic of a (Zariski) open
subvariety H with divisorial complement, such that that the inclusion H < H is a toroidal
embedding. In particular the boundary divisor 9% = H \ H is locally on open subsets U,
a torus-invariant divisor.

In this situation we define locally Q%]a (log) to be the sheaf of (C*)%invariant mero-
morphic differential forms. These glue to sheaf Qlﬂ(log OHM), that is called logarithmic
differential sheaf. This terminology is justified by the following idea from [Mum?77, Sec-
tion 4], the details and definitions being given in [KKMS73|. For any ’allowable’ smooth
modification p : W — H that maps a normal crossing boundary divisor 9W C W onto OH
we have p*Qlﬁ(log OH) = Qlw(log OW) for the usual definition of the logarithmic sheaf on

W. Moreover, such an ’allowable’ smooth modification always exists.
PROPOSITION 2.1. For H < H as above the Euler characteristic of H can be computed
as integral

(21) X(#H) = (~1) / ca(O (log OH))

H
over the top Chern class of the logarithmic cotangent bundle.

PROOF. If H is smooth, this is well known, a self-contained proof was given in |[CMZ22,
Proposition 2.1|. In general we use an allowable modification. By definition this restricts
to an isomorphism W — H, hence does not change the left hand side. The right hand
side also stays the same by push-pull and the pullback formula along an allowable smooth
modification. g

In all our applications, H will be a proper Deligne-Mumford stack with toroidal sin-
gularities. We work throughout with orbifold Euler characteristics, and since then both
sides of are multiplicative in the degree of a covering, we can apply Proposition
verbatim.

3. The closure of linear submanifolds

The compactification of a linear submanifold we work with has (currently) no intrinsic
definition. Rather we consider the normalization of the closure of a linear submanifold
inside the moduli space of multi-scale differentials =M, ,, (). We recall from [BDG22| the
basic properties of such closures. The goal of this section is to make precise and to explain
the following two slogans:

e Near boundary points without horizontal edges, the closure is determined as for
the ambient abelian stratum by the combinatorics of the level graph and it is
smooth. The ghost automorphisms, the stack structure at the boundary that
stems from twist groups, agrees with the ghost automorphisms of the ambient
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stratum and the intersection pattern is essentially determined by the profiles of
the level graph, a subset of the profiles of the ambient stratum.

e In the presence of horizontal edges there are toric singularities. Working with the
appropriate definition of the logarithmic cotangent sheaf these singularities don’t
matter. This sheaf decomposes into summands from horizontal nodes, from the
level structure, and the deformation of the differentials at the various levels, just
as in the ambient stratum.

3.1. Linear submanifolds in generalized strata. Let QM (1) denote the mod-
uli space of Abelian differential of possibly meromorphic signature p. Despite calling them
‘moduli space’ or ’strata’ we always think of them as quotient stacks or orbifolds and in-
tersection numbers etc. are always understood in that sense. These strata come with a
linear structure given by period coordinates (e.g. |Zor06| for an introduction). A linear
submanifold QYH of QMg (1) is an algebraic stack with a map QH — QM ,(p) which is
the normalization of its image and whose image is locally given as a finite union of linear
subspaces in period coordinate charts. See |Fil20, Example 4.1.10] for an example that
illustrates why we need to pass to the normalization for QH to be a smooth stack. In the
context of holomorphic signatures and GLg(R)-orbit closures, the linear manifolds obtained
in this way can locally be defined by equations with R-coefficients (JEM18|, [EMM15]). We
refer to them as R-linear submanifolds. In this context, the algebraicity follows from being
closed by the result of Filip (|[Fil16]), but in general algebraicity is an extra hypothesis.

To set up for clutching morphisms and a recursive description of the boundary of
compactified linear submanifolds, we now define generalized strata, compare |[CMZ22, Sec-
tion 4]. For a tuple g = (g1, ..., gr) of genera and a tuple n = (n1,...,nk) together with a
collection of types p = (u1, ..., pr) with |u;| = n; we first define the disconnected stratum
OMgn(p) = Hle QMg, n;(1i) . Then, for a linear subspace R inside the space of the
residues at all poles of p we define the generalized stratum Q./\/lgn(u) to be the subvariety
with residues lying in 9R. Generalized strata obviously come with period coordinates and
we thus define a generalized linear submanifold QQH to be an algebraic stack together with
a map to QM?H(M) whose image is locally linear in period coordinates and where QH is
the normalization of its image.

Rescaling the differential gives an action of C* on strata an the quotient are projec-
tivized strata PQMg,,(1). The image of a linear submanifold in PQM, ,(p) is called
projectivized linear manifold H, but we usually omit the 'projectivized’.

We refer with an index B to quantities of the ambient projectivized stratum, such as its
dimension dp and the unprojectivized dimension Np = dp + 1. The same letters without
additional index are used for the linear submanifold, e.g. N = d+ 1, and we write dy and
Ny only if ambiguities may arise.

3.2. Multi-scale differentials: boundary combinatorics. We will work inside
the moduli stack of multi-scale differentials, that is the compactification B := PEM,, (1)
of a stratum B := PQM, ,,(u) defined in [BCGGM19b| and recall some of its properties,
see also |CMZ22, Section 3|. Everything carries over with obvious modifications to the
compactification PEM?H(M) of generalized strata, see |[CMZ22, Proposition 4.1].

Each boundary stratum of PEﬂg’n(u) has its associated level graph I, a stable graph of
the underlying pointed stable curve together with a weak total order on the vertices, usually
given by a a level function normalized to have top level zero, and an enhancement k. > 0
associated to the edges. Edges are called horizontal, if they start and end at the same
level, and wvertical otherwise. Moreover k. = 0 if and only if the edge is horizontal. We
denote the closure of the boundary stratum of points with level graph I" by DI’? and denote
in general the complement of more degenerate boundary strata by an extra o, i.e., here by
D? °. These D1§ are in general not connected, and might be empty (e.g. for unsuitably
large k).

We let LG, (B) be the set of all enhanced (L4 1)-level graphs without horizontal edges.
The structure of the normal crossing boundary of PEﬂgm(,u,) is encoded by undegenera-
tions. For any subset I = {i1,...,i,} C {1,..., L} there are undegeneration map

51'17.“’@”: LGL(B) — LGn(B) s
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that preserves the level passage given as a horizontal line just above level —i and contracts
the remaining level passages. We define 5? =0c.
The boundary strata DE for I' € LGy (B) are commensurable to a product of general-

ized strata BI@ = PEM?;HZ_ (p;) defined via the following diagram.
cpl(Ur) —S— DE*

an

(22) pr Us er

Mo, B = Br «2— Bra Ur —— Df

=

Here g;,n; and p; are the tuples of the genera, marked points and signatures of the
components at level i of the level graph and fR; is the global residue condition induced
by the levels above. The covering space Dll? * and the moduli stack U} of simple multi-

scale differentials compatible with an undegeneration of A were constructed in |[CMZ22,
Section 4.2].

3.3. Multi-scale differentials: Prong-matchings and stack structure. The no-
tion of a multi-scale differential is based on the following construction. Given a pointed
stable curve (X,z), a twisted differential is a collection of differentials 7, on each com-
ponent X, of X, that is compatible with a level structure on the dual graph I' of X, i.e.
vanishes as prescribed by p at the marked points z, satisfies the matching order condition
at vertical nodes, the matching residue condition at horizontal nodes and global residue
condition of [BCGGM18|. A multi-scale differential of type p on a stable curve (X, z)
consists of an enhanced level structure (I', ¢, {k.}) on the dual graph I" of X, a twisted dif-
ferential w of type pu compatible with the enhanced level structure, and a prong-matching
for each node of X joining components of non-equal level. Here a prong-matching o is an
identification of the (outgoing resp. incoming) real tangent vectors at a zero resp. a pole
corresponding to each vertical edge of I'. Multi-scale differentials are equivalences classes
of (X,z,T', ) up to the action of the level rotation torus that rescales differentials on lower
levels and rotates prong-matchings at the same time.

To an enhanced two-level graph we associate the quantity

(23) lr = lem(ke: e € E(I)).
which appears in several important place of the construction of IP’EMWL (1):

i) It is the size of the orbit of prong-matchings when rotating the lower level differ-
ential. Closely related:

ii) The local equations of a node are zy = t?/ "¢ where t; is a local parameter (a level
parameter) transverse to the boundary. As a consequence a family of differential
forms that tends to a generator on top level scales with t? on the bottom level

of I.
For graphs with L level passages we define ¢; = {p; = {s,r) to be the lem of the edges
crossing the i-th level passage and {r = Hle lr;.

There are two sources of automorphisms of multi-scale differentials: on the one hand,
there are automorphism of pointed stable curves that respect the additional structure (dif-
ferential, prong-matching). On the other hand, there are ghost automorphisms, whose
group we denote by Ghr = Twr/Twy{, that stem from the toric geometry of the compact-
ification. We emphasize that the twist group Twr and the simple twist Tw{, hence also
the ghost group Ghr, depend only on the data of the enhanced level graph and will be
inherited by linear submanifolds below. The local isotropy group of Emg,n(,u) sits in a
exact sequence

0 — Ghr — Iso(X,w) — Aut(X,w) — 0
and locally near (X,z,I',0) the stack of multi-scale differentials is the quotient stack
[U/Iso(X,w)] for some open U C CVB. The same holds for PEM,, (1) where the auto-
morphism group is potentially larger since w is only required to be fixed projectively.
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3.4. Decomposition of the logarithmic tangent bundle. We now define a I'-
adapted basis, combining [BDG22| and [CMZ22| with the goal of giving a decomposition of
the logarithmic tangent bundle that is inherited by a linear submanifold, if the I'-adapted
basis is suitably chosen.

We work on a neighborhood U of a point p = (X, [w],2) € Dﬁ , where I is an arbitrary
level graph with L levels below zero. We let a[] for i =0,...,—L be the vanishing cycles

around the horizontal nodes at level i. Let ﬁj[] be a dual horizontal-crossing cycle, i.e. ¢ is

the top level (in the sense of [BDG22|) of this cycle, (o 4 B[Z]> =1 and B][»Z] does not cross
any other horizontal node at level i. Let h(i) be the number of those horizontal nodes at
level 1. ' '

We complement the cycles B]m by a collection of relative cycles ’yj[-l] such that for any
fixed level ¢ their top level restrictions form a basis of the cohomology at level i relative
to the poles and zeros of w and holes at horizontal nodes quotiented by the subspace of

(4] (7]

global residue conditions. In particular the span of the 7; contains the o , and moreover

the union

U {87 By iy dsabasisof Hi(X\ P.Z,0).
j=—L

Next, we define the w-periods of these cycles and exponentiate to kill the monodromy
around the vanishing cycles. The functions

il _ [l _ il _ [ ; il il _
a; = /[i] w, by = /[i] w, ¢ = exp(27Tij /aj ), ¢ = /[i] w.
& Bi v

are however still not defined on U (only on sectors of the boundary complement) due to
monodromy around the vertical nodes.

Coordinates on U are given by perturbed period coordinates (JBCGGM19b|), which are
related to the periods above as follows. For each level passage there is a level parameter t;
that stem from the construction of the moduli space via plumbing. On the bottom level
passage L we may take t; = c[l_L] as a period. For the higher level passage, the t; are
closely related to the periods of a cycle with top level —i, but the latter are in general not
monodromy invariant. It will be convenient to write

(24) tm = H tﬁj, 1€N
j=1

There are perturbed periods E{{i] obtained by integrating w/tf; against a cycle with top
level —i over the part of level —i to points nearby the nodes, cutting off the lower level

part. By construction, on each sector of the boundary complement we have

: . t
~f—1] [—i] _ [s] 7al—s]
(25) G ¢ It = Z - Eji
§>1
for some linear (’error’) forms EJ[ s i depending on the variables cg *! on the lower level —s.
Similarly, we can exponentiate the ratio over ag T of the similarly perturbed b[ 1 and
obtain perturbed exponentiated periods ai i such that on each sector
i t _
(26) logc}ﬁ 7 logq[ 1= ZFE;[Z <l
s>1 [4]

]

for some linear forms E;[;S .
t; = 0. If we let

In these coordinates the boundary is given by Z]yi] =0 and

Q% (log) = (day /@, dayy [T, Uh(log) = (di—ift )
h = <d5{5]/?3{5],-~-ad4l] @)/ EN@)-nii))
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with Q%)e‘jg (log) = 0 by convention, we thus obtain a decomposition

0
(27) QL (0g0B)ly = @ (2 (log) ® Q% (log) @ A ) -
i=—L

3.5. The closure of linear submanifolds. For a linear submanifold H we denote
by H the normalization of the closure of the image of 7 as a substack of EM,, ,(1). We
denote by Dr = DIZ{ the preimage of the boundary divisor DIﬂB in H. Again, a o denotes
the complement of more degenerate boundary strata, i.e., Dp is the preimage of DI]? " in
H.

We will now give several propositions that explain that H is a compactification of H
almost as nice as the compactification PEﬂgyn(u) of strata. The first statement explains
the 'almost’.

ProprosITION 3.1. Let T' be a level graph with only horizontal nodes, i.e., with one
level only. Fach point in D{?’o has a neighborhood where the image of H has at worst toric
singularities.

More precisely, the linear submanifold is cut out by linear and binomial equations,

see below.

Second, the intersection with non-horizontal boundary components is transversal in
the strong sense that each level actually causes dimension drop.

PROPOSITION 3.2. Let I' € LGL(B) be a level graph without horizontal nodes. Each
point in DI]?’O has a neighborhood where each branch of H mapping to that neighborhood is

smooth and the boundary OH = H \ H is a normal crossing divisor, the intersection of L

different divisors D?S-f(r)'

In particular the image of ij has codimension L in Df?.

The previous proposition allows to show, via the same argument as the proof of
|[CMZ22, Proposition 5.1], the key result in order to argue inductively.
COROLLARY 3.3. If ﬂleD%{_ is not empty, there is a unique ordering o € Symy on
ij
the set I = {iy,...,ip} of indices such that

L
_ H
Doy = () PE, -
j=1

Moreover if iy, = iy for a pair of indices k # k', then Dy, i, = 0.

The next statement is crucial to inductively apply the formulas in this paper. Recall
that pr and cr are the projection and clutching morphisms of the diagram .

PROPOSITION 3.4. There are generalized linear submanifolds QH@ — Q/\/l?;’,ni(ui) of

dimension d; with projectivization 7—[?}’0, such that

> di=dy—1L

i=—

and such that the normalizations 7—[?] — Bl[f] of closures of H{f]’o together give a product
decomposition Hr = ngfL 7—[@ of the normalization of the pr-image of the cr-preimage
of Im(D}) c PEM,, ,, ().

We will call ’Hg] — BlLi] the i-th level linear manifold. Our ultimate goal here is to
show the following decomposition. The terminology is explained along with the definition
of coordinates.

PROPOSITION 3.5. Let I' be an arbitrary level graph with L levels below zero. In a small
neighborhood U of a point in D%’l there is a direct sum decomposition
0

(28) Qlﬁ(log OH)|ly = @ (Q?Or(log) @ Q1 (log) @ Q?E’l)
i=—L
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for certain subsheaves such that the natural restriction map induces surjections
QB log)ly — 2 (log).  OLhllog)lyy = A (log) and bl — .

Moreover the statements in items i) and i) of |Section 3.5 hold verbatim for the linear
submanifold with the same fr.

As a consequence we may use the symbols {1 and ¢r, ambiguously for strata and their
linear submanifolds.

We summarize the relevant parts of [BDG22|. Equations of H are interpreted as ho-
mology classes and we say that a horizontal node is crossed by an equation, if the corre-
sponding vanishing cycles has non-trivial intersection with the equation. The horizontal
nodes are partitioned into H-cross-equivalence classes by simultaneous appearance in equa-
tions for H. A main observation is that w-periods of the vanishing cycles in an H-cross-
equivalence class are proportional. Similarly, for each equation and for any level passage
the intersection numbers of the equation with the nodes crossing that level add up to zero
when weighted appropriately with the residue times ¢r/k. (|[BDG22, Proposition 3.11]).

Next, in [BDG22| they sort the equations by level and then write them in reduced

row echelon from. One may order the periods so that the distinguished c[li] (whose period
is close to the level parameter t_;) is among the pivots of the echelon form for each i.
The second main observation is that each defining equation of H can be split into a sum

of defining equations, denoted by F,Li], with the following properties. The upper index ¢

indicate the highest level, whose periods are involved in the equation. Moreover, either F, ,£Z]
has non-trivial intersection with some (vanishing cycles of a) horizontal node at level i and
then no intersection with a horizontal node at lower level, or else no intersection with a
horizontal node at all.

As a result H is cut out by two sets of equations, see [BDG22, Equations (4.2), (4.3),

(4.4)]. First, there are the equations Gg] that are t[_;-rescalings of linear functions

(29) G = L)@ g )

in the periods at level i. (To get this form from the version in [BDG22| absorb the terms

from lower level periods into the function 1 where j = j(k,1) is the pivot of the equation

J
Fk[f]. This does not effect the truth of (27))).

Second, there are multiplicative monomial equations among the exponentiated periods,
that can be written as bi-monomial equations with positive exponents

where ql! is the tuple of the variables &i-i]
(In the multiplicative part [BDG22| already incorporated the lower level blurring into the
pivot variable.)

Proor oF [PROPOSITION 3.1l This follows directly from the form of the binomial
equations , see [BDG22, Theorem 1.6]. O

PROOF OF [PROPOSITION 3.21 Smoothness and normal crossing is contained in [BDG22,
Corollary 1.8]. The transversality claimed there contains the dimension drop claimed in
the proposition. The more precise statement in [BDG22, Theorem 1.5] says that after each
intersection of H with a vertical boundary divisor the result is empty or contained in the
open boundary divisor Dlji? “. O

and Jy i, Jo i are tuples of non-negative integers.

PRrROOF OF [PROPOSITION 3.4l This is the main result of [Ben20| or the restatement in
IBDG22, Proposition 3.3] and this together with the Proposition implies the dimension
statement. ]

PROOF OF [PROPOSITION 3.5l Immediate from and , which are equations
among the respective set of generators of the decomposition in (27). The additional claim
item ii) follows from the isomorphism of level parameters and transversality. Item i) is a
consequence of this. O
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3.6. Push-pull comparison for linear submanifolds. For recursive computations,
we will transfer classes from ’Hk], which were defined via |Proposition 3.4|, to D%" essen-
tially via ppr-pullback and cp-pushforward. More precisely, taking the normalizations into
account, we have to use the maps cry and pr defined on the normalization Hy. of the
cr-preimage of the image of D%{ in Df? . To compute degrees we use the analog of the inner
triangle in and give a concrete description of Hy.

Recall from the introduction that Kf:l is the number of prong-matchings of I' that are

reachable from within H.

(g e
(31) Priu U o
Pr cr
Q'H% > H% > BF,F Upr «—— D#’o
Consider QHp = HQ”H,p as a moduli space of differentials subject to some (lin-

ear) conditions imposed on its periods. Consider now the moduli space (QHp)P™ :=
(11 QHp)pm where we add the additional datum of one of the K7 prong-matchings reach-
able from the interior. The torus (C*)I*! acts on QHP with quotient HS = HH%LO.
On the other hand, if we take the quotient of (QH2)P™ by (C*)L+l = (C*) x (CF/Tw?)
we obtain a space H?O which is naturally the normalization of a subspace of Uf, since it
covers Dﬁ ° with marked (legs and) edges and whose generic isotropy group does not stem
from Ghr (it might be non-trivial, e.g. if a level of I consists of a hyperelliptic stratum),
while the generic isotropy group of Dzj *° is an extension of Ghr by possibly some group of
graph automorphisms and possibly isotropy groups of the level strata.

LEMMA 3.6. The ratio of the degrees the maps m on Hp s
deg(pr,z) Kt

deg(erp) | Autw(T)[er

where Auty(T) is the subgroup of Aut(T') whose induced action on a neighborhood of D
preserves H.

Proor. We claim that the degree of pr 3 is the number of prong-matchings equivalence
classes, i.e., deg(pry) = K#/[Rr : Twr] where Rr = ZF C CL is the level rotation group.
In fact this follows since Twi C Twr and ’Hf"o is given by taking the quotient by the action
of the level rotation group, which has Twr as its stabilizer subgroup.

On the other side cr 3 factors through the quotient by Ghr = [Twr : Twy)] acting by
fixing every point. In the remaining quotient map cg of the ambient stratum two points
have the same image only if they differ by an automorphism of I'. However only the
subgroup Auty(I') C Aut(I') acts on Im(H7) and its normalization and contributes to
the local isotropy group of the normalization. Thus only this subgroup contributes to the
degree of cr 7. The claimed equality now follows because [Rr : Tw{] = p. O

Consider a graph A € LGl(’H%ﬂ) defining a divisor in ’H[Fi]. We aim to compute its
pullback to Dy, and the push forward to Dr and to H. For this purpose we need extend
the commensurability diagram to include degenerations of the boundary strata. This
works by copying verbatim the construction that lead in [CMZ22] to the commensurability
diagram . We will indicate with subscripts H to the morphisms that we work in this
adapted setting. Recall from this construction that in Df * (and hence in D§) the edges
of T have been labeled once and for all (we write ' for this labeled graph) and that the
(7]
r

level strata Hi' inherit these labels. Consequently, there is unique graph A which is a

degeneration of I'! and such that extracting the levels ¢ and ¢ — 1 of At equals A. The
resulting unlabeled graph will simply be denoted by A. For a fixed labeled graph I't we
denote by J(T'f, A) the set of A € LGl(Hp) such that A is the result of that procedure.
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Obviously the graphs in J(T'T, 5) differ only by the labeling of their half-edges and the
following lemma computes its cardinality.

LEMMA 3.7. The cardinality of J(T't, ﬁ) is determined by
|J(TF, A)] - | Auty (A)] = | Auty i (A)] - | Auty ()]

PROOF. The proof is analogous to the one of [CMZ22, Lemma 4.6], where one considers
the kernel and cokernel of the map ¢ : Auty(A) — Auty(T") given by undegeneration. [

We now determine the multiplicities of the push-pull procedure. Recall from
the definition of p; = €5 (1 for j € Z>1.

PROPOSITION 3.8. For a fized A € LGl(’H[Z]) the divisor classes ofD% and the clutch-
g of DA are related by

Autw(B)
Aty (B)] Auty (D] T

¢ i
[D¥] = ;= prulDL].
A,—i+1

(32)

n CHI(Dli) and consequently by

| Auty(A)] gy - | Auty i (A)] s+ enpn (B21DT))
[ty ()] AT Cdaglepgy) 8T TS
m CHl(DF)

Here (32)) is used later for the proofs of the main theorems while ([33)) is implemented in
diffstrata for the special case of k-differentials to compute the pull-back of tautological
H H B
classes from D} to DZ’ see also [Section 7,

(33)

PROOF. The proof is similar to the one of |[CMZ22, Proposition 4.7] and works by

comparing the ramification orders of the maps cﬁH and pﬁH. The main difference to the
original proof is only that the automorphism factors appearing in the clutching morphisms
are the ones fixing H. O

The final part of this section is to compare various natural vector bundles under pull-
back along the maps cr 3 and pr 3. The first of this is El:r , a vector bundle of rank Nl:r -1
on D%{ that should be thought of as the top level version of the logarithmic cotangent
bundle. Formally, let U C D%“ be an open set centered at a degeneration of the top level
of ' into k level passages. Then we define

(34) &y = @Q (log) ;y ® U (log)y & X4 s
i=—k

Let moreover fl[ﬂH be the first Chern class of the line bundle on fo generated by the
G

multi-scale component at level ¢ and and [T] be the line bundle whose divisor is given by
the degenerations of the i-th level of I', as defined more formally in below.
We have the following compatibilities.

LEMMA 3.9. The first Chern classes of the tautological bundles on the levels of a bound-
ary divisor are related by

(35) Fabtn = Pinby  in CH'(DR).

It is also true that

(36) ppHﬁH[] = Cl*ﬂ’fHﬁp where ﬁﬂp = OH@( Z ‘ KADA).
AeLG (1)

Similarly for the logarithmic cotangent bundles we have

0],* *
(37) ey o (log D) = b E -
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PRrROOF. The first claim is just the global compatibility of the definitions of the bundles
O(—1) on various spaces, compare [CMZ22, Proposition 4.9].

The second claim is a formal consequence of [Lemma 3.7| and [Proposition 3.8, just as
in [CMZ22, Lemma 7.4].

The last claim follows as in [CMZ22, Lemma 9.6] by considering local generators, which
are given in and have for linear submanifolds the same shape as for strata. O

In the final formulas we will use these compatibilities together with the following re-

statement of [Lemma 3.6

LEMMA 3.10. Suppose that ar € CHO(D%{) is a top degree class and that ¢} 5 ar =

H;L()(F)pp a; for some ;. Then

/;11-[0411 = |Aut/H |€F 7H /[1]

4. Evaluation of tautological classes

This section serves two purposes. First, we briefly sketch a definition of the tautological
ring of linear submanifolds and how the results of the previous section can be used to
evaluate expressions in the tautological ring, provided the classes of the linear manifold
are known. Second, we provide formulas to compute the first Chern class of the normal
bundle le{ =N, DH to a boundary divisor fo of a projectivized linear submanifold H.
This is needed both for the evaluation algorithm and as an ingredient to prove our main
theorems.

4.1. Vertical tautological ring. We denote by 1; € CH'(H) the pull-backs of the
classes ; € CHI(Mg,n) to a linear submanifold H. The clutching maps are defined as
clry = ir ocr ., where ip 3 : DH — H is the inclusion map of the boundary divisor. We
define the (vertical) tautological ring RS(H) of H to be the ring with additive generators

(38) clr ( H pg’;}ai )
i=0

where I' runs over all level graphs without horizontal edges for all boundary strata of H,
including the trivial graph, and where «; is a monomial in the -classes supported on
level ¢ of the graph I'. That this is indeed a ring follows from the excess intersection
formula |[CMZ22, Proposition 8.1] that works exactly the same for linear submanifolds,
and the normal bundle formula|Proposition 4.4 which allows together with [Proposition 4.1|
to rewrite products in terms of our standard generators. We do not claim that pushfoward
R$(H) — CH®*(M,,,) maps to the tautological ring R®*(M,,,), since the fundamental
classes of linear submanifolds, e.g. loci of double covers of elliptic curves, may be non-
tautological in M, ,, (see e.g. [GP03]).

To evaluate a top-degree class of the form « := " ---yh" - [DH] € CHy(H) there are
(at least) two possible ways to proceed: If one knows the class [H] € CHgip(3) (PEM g (11))
and this class happens to be tautological, one may evaluate

La= [ utur @
H PEMgn ()

using the methods described in |[CMZ22|. Alternatively one may apply [Lemma 3.6| to
obtain

(39) /HO‘ \Autq.[ \EFH /

where [(i) denotes the set of legs on level i of I'. To evaluate this expression, one needs
to determine the fundamental classes of the level linear submanifolds 7—[%] in their corre-
sponding generalized strata, which is in general a non-trivial task.
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4.2. Evaluation of {3. If we want to evaluate a top-degree class in CHy(H) that is
not just a product of 1-classes and a boundary stratum, but also involves the £3-class, we
can reduce to the previous case by applying the following proposition.

PROPOSITION 4.1. The class &3 on the closure of a projectivized linear submanifold H
can be expressed as

(40) &y = (mi+ i — Y to[DH
re ,LG(H)
where ;LG (H) are two-level graphs with the leg i on lower level.

PROOF. The formula is obtained by pulling-back the formula in [CMZ22, Proposi-
tion 8.1] to H and thereby using the transversality statement from [Proposition 3.2| O

We remark here that in some cases it is possible to directly evaluate the top &£3-powers
by using that we can represent the powers of the £x-class via an explicit closed current.

Let PQM, (1) be a holomorphic stratum, i.e. a stratum of flat surfaces of finite area
or equivalently all the entries of y are non-negative. Then there is a canonical hermitian
metric on the tautological bundle Opg ngn(u)(—l) given by the flat area form

(41) hX,w,z) = areax(w) = ;/)(wAw

which extends to an hermitian metric of the tautological bundle on PEﬂg,n(,u). IfH —

PEﬂgm(u) is the compactification of a linear submanifold of such a holomorphic stratum,
then the area metric induces an hermitian metric, which we denote again by h, on the
pull-back Oz;(—1) of the tautological bundle to 7. Recall from [Proposition 3.1| (combined

with the level-wise decomposition in [Proposition 3.4)) that the singularities of #H are toric.

Let H'™ — H be a resolution of singularities which is locally toric.

PROPOSITION 4.2. Let H'" — PEﬂgm(,u) be a resolution of a compactified linear sub-

manifold of a holomorphic stratum. The curvature form ﬁ[Fh] of the pull metric h to H

is a closed current that represents the first Chern class ¢1(Ozpor(=1)). More generally, the

d-th wedge power of the curvature form represents Cl(oﬂtor(—l))d for any d > 1.

PROOF. In [CMZ19, Proposition 4.3] it was shown that on the neighborhood U of a
boundary point of PEM, . (1) in the interior of the stratum Dr the metric h has the form

L
(42) BXq) = 3 Jtral® (R + ety + i)
i=0
where hE‘iki) (coming from the ’thick’ part) are smooth positive functions bounded away

from zero and

. Eh
4 (=1)
ver .__ ver hor .__ hor (4]
(43) (== DR plogltel, h(%) == Y R%) jloglg’,
p=1 j=1

where RZ’ErZ.) v is a smooth non-negative function and R?f‘;) ; is a smooth positive function

bounded away from zero, both involving only perturbed period coordinates on levels —i
and below.

The statement of the proposition in loc. cit. follows by formal computations from the
shape of and the properties of its coefficients, see |[CMZ19, Proposition 4.4 and 4.5].

We thus only need to show that in local coordinates of a point in H" (mapping to the
given stratum Dr) the metric has the same shape (42)). For this purpose, recall that by
[Proposition 3.4] the level parameters t; are among the coordinates. On the other hand,
a toric resolution of the toric singularities arising from is given by fan subdivision

and thus by a collection of variables yjm for each level i, each of which is a product of

integral powers of the qj[.i] at that level ¢. Conversely the map H PEﬂg,n(,u) is given

locally by ¢/ = [T, (yi)¥s+ for some by j. € Zzo, not all of the b; ;4 = 0 for fixed (i, 7).

Plugging this into and gives an expression of the same shape and with coefficients
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satisfying the same smoothness and positivity properties. Mimicking the proof in loc. cit.
thus implies the claim. O

For a linear submanifold H consider the vector space given in local period coordinates
by the intersection of the tangent space of the unprojectivized linear submanifold with the
span of relative periods. We call this space the REL space of H and we denote by Ry its
dimension.

Using [Proposition 4.2| we can now generalize the result about vanishing of top &-
powers on non-minimal strata of differentials to linear submanifolds with non-zero REL
(see |[Saul8| Proposition 3.3| for the holomorphic abelian strata case).

COROLLARY 4.3. Let H — PEM,, (1) be a linear submanifold of a holomorphic stra-
tum. Then

/ﬁ;a =0 fori>dy—Ry—+1,
H

where dy is the dimension of H and Ry is the dimension of the REL space and where o
18 any class of dimension dy — 1.

PROOF. Since the area is given by an expression in absolute periods, the pullback of £

to H'" is represented by |Proposition 4.2| by a (1,1)-form involving only absolute periods
(see |[Saul8, Lemma 2.1| for the explicit expression in the case of strata). Taking a wedge
power that exceeds the dimension of the space of absolute periods gives zero. O

4.3. Normal bundles. Finally we state the normal bundle formula, which is neces-
sary to evaluate self-intersections, which is for example needed to evaluate powers of .
More generally, we provide formulas for the normal bundle of an inclusion jr r: D%“ — Df-[{
between non-horizontal boundary strata of relative codimension one, say defined by the
L-level graph II and one of its (L + 1)-level graph degenerations I'. This generalization
is needed for recursive evaluations. Such an inclusion is obtained by splitting one of the

levels of II, say the level i € {0, —1,...,—L}. We define
(44) il = OD#(Z E&ﬂ.HD%) for any i€ {0,-1,...,~L},
[1] x
A

where the sum is over all graphs A € LG r+2(H) that yield divisors in D%“ by splitting the

i-th level, which in terms of undegenerations means 5Ei 4+1(A) =T'. The following result
contains the formula for the normal bundle as the special case where 11 is the trivial graph.

PROPOSITION 4.4. For 11 il T (or equivalently for 5Ei+1(1“) = I1) the Chern class of
the normal bundle NFH = NDEJ‘/D}} s given by

1 i i i .
(45) c1 (-N?‘-,[H) = M(—&LJH —c (E%],H) + gl[ﬂﬂl]) m CHl(Dlﬂ) .

PROOF. We use the transversality statement |Proposition 3.2| of H with a boundary
stratum DIﬂB in order to have that the transversal parameter is given by ¢;. Then the proof
is as the same as the one in the case of abelian strata, see [CMZ22, Proposition 7.5]. O

Since in we will need to compute the normal bundle to horizontal divisors
for strata of k-differentials, we provide here the general formula for the case of smooth
horizontal degenerations of linear submanifolds.

PROPOSITION 4.5. Let DhH C D™ be a divisor in a boundary component D™ obtained
by horizontal degeneration. Suppose that the linear submanifold is smooth along DZL" and
let e be one of the new horizontal edges in the level graph of DhH. Then the first Chern
class of the normal bundle ./\/73'[]1 s given by

a(NF,) = —ter — - € CH'(D™)

where e and e~ are the half-edges associated to the two ends of e.
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PROOF. Similarly to the proof of [CMZ22, Proposition 7.2], consider the divisor D, in
My, corresponding to the single edge e and denote by A, its normal bundle. The forgetful
map f : Dy — D, induces an isomorphism N, fjlh — f*Np, (compare local generators!) and
the formula follows from the well-known expression of Np, in terms of 1-classes. O

We will need the following result about pullbacks of normal bundles to apply the same
arguments as in |[CMZ22| recursively over inclusions of boundary divisors. The proof is
the same as in [CMZ22, Corollary 7.7|, since it follows from [Proposition 4.4| that we can

j-pullback properties of £ and ﬁg] that hold on the whole stratum and hence on linear
submanifolds.

LEMMA 4.6. Let I' € LGL(H) and let A be a codimension one degeneration of the
(—i 4 1)-th level of T, i.e., such that T = 5E( A), for some i€ {1,...,L+1}. Then

o AH B tz; @ <N§/5G(5)> ’ for j <i
i | el F/éE(F)) ), AH therwi
A,j-f—l Z/é(J+1)(£) otherwise.

5. Chern classes of the cotangent bundle via the Euler sequence

The core of the computation of the Chern classes is given by two exact sequences that
are the direct counterparts of the corresponding theorems for abelian strata. The proof
should be read in parallel with |[CMZ22, Section 6 and 9] and we mainly highlight the
differences and where the structure theorems of the compactification from are
needed.

THEOREM 5.1. There is a vector bundle K on H that fits into an exact sequence
(46) 0— K -2 (ALY ® 05(—1) <5 05y — 0,

where ﬁiel is the Deligne extension of the local subsystem that defines the tangent space
to QH inside the relative cohomology ﬁ}ﬁel’Bh, such that the restriction of KC to the inte-
rior H 1is the cotangent bundle Ql and for U as in|Proposition 3.5 we have

Kly = @t (Qhor (log) @ QﬁeV(log)@Qgel).
i=—1L

The definition of the evaluation map and the notion of Deligne extension on a stack
with toric singularities requires justification given in the proof. For the next result we
define the abbreviations

(47) En = QL(logdH) and Ly = O—( 3 EFDF>
reLG1(B)
that are consistent with the level-wise definitions in (34)) and .

THEOREM 5.2. There is a short exact sequence of quasi-coherent Oz-modules
(48) 0—Eu®Ly - K—C—0

where C = ®F€LG1(H) Cr is a coherent sheaf supported on the non-horizontal boundary
divisors, whose precise form is given in|Proposition 5.4| below.

PROOF OF [THEOREM 5.1} We start with the definition of the maps in the Euler se-
quence for the ambient stratum, see the middle row in the commutative diagram below.
It uses the evaluation map

(49) evp: (ﬁiel,B)v ®O0p(-1) = 05, YQuwr /w
;

restricted to H. The first map in the sequence is

(50) dciH(vi—ﬁak)wa, i=1,....k...,N,
Ck
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as usual in the Euler sequence, on a chart of H where ¢ is non-zero. The exactness of the
middle row is the content of [CMZ22, Theorem 6.1].

We next define the sheaf Eq. In the interior, Eq is the local system of equations cutting
out QH, and thus the quotient (H.,)V = (’HrleLB)v/Eq is the relative homology local

rel
system, by definition of a linear manifold. The proof in [CMZ22| Section 6.1] concerning
the restriction of the sequence to the interior H uses that H has a linear structure with
tangent space modeled on the local system Hiel. In particular it gives the claim about KC|4.
As an interlude, we introduce notation for the Deligne extension of (”HrleL )" For each

fyj[.i] we let ﬁjm be it extension, the sum of the original cycles and vanishing cycles times

logarithms of the coordinates of the boundary divisors to kill monodromies. The functions

; 1
A= [
br-in J30
are called log periods in |[BDG22|.
We now define Eq at the boundary, say locally near a point p € Dr, to be the subsheaf of

(ﬁiel’ )V generated by the defining equations F, ,Ll] constructed in|Section 3.5, but with each

variable replaced by its Deligne extension. It requires justification that this definition near
the boundary agrees with the previous definition in the interior. We can verify this for the

distinguished basis consisting of the F} k[:i]' Equations that do not intersect horizontal nodes
agree with their Deligne extension. This cancellation of the compensation terms is [BDG22,

Proposition 3.11| ( see also the expression for F]E] after |[BDG22, Proposition 4.1|) which
displays the w-integrals of the terms to be compared. For equations F,El] that do intersect
horizontal nodes (thus only at level ¢ by construction) the difference Fy (cg-s], all (4,s)) —
F lg] (/c\g.s], all (4, s)) vanishes thanks to the proportionality of the periods of horizontal nodes

in an H-equivalence class and since on H the equation H ,[;] holds.

By the very definition of defining equation its periods evaluate to zero, explaining the
right arrow in the top row of the following diagram and showing that ev is well-defined on
the quotient.

0 Kiqg ——— BEq® Og(~1) —— 0
T 0 v gl v
0—> q%t[_ﬂ ) QB |ﬁ — (/Hrel,B) ® Oﬁ(*l) > Oﬁ s 0
J’qﬂ
L ' . ~ 1

i=0
Here we used the abbreviations
OF = Q% (log) ® A(log) & AH, 0 = 2 (log) & QU (log) & 17

The surjectivity of gqq follows from the definition of the summands in . It requires
justification that the image is not larger, since the derivatives of the local equations of H
do not respect the direct sum decomposition More precisely we claim that Kgq is
generated by two kinds of equations. Before analyzing them, note that the log periods
satisfy by construction an estimate of the form

. . t ~
61) A gl _ oy Ul gl

J J X
= i

with some error term E\J[:k] depending on the variables cg-_s] on the lower level —s as in (25)).
For each of the equations the corresponding linear function Lg} in the variables cg-i]
is an element in Eq. We use the comparisons and to compute its ¥-preimage

in Kgq via . It is ¢[_; times the corresponding expression in the 'c\g-l] plus a linear
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combination of the terms ¢_g EJ[SZ] The quotient by such a relation does not yield any
quotient class beyond those in @gzot(—ﬂ - QU
We write the other equations as (ql)71x=/2k = 1 since we are interested in torus-

invariant differential forms and can compute on the boundary complement. Consider dlog
of this equation. Under the first map ¥ of the Euler sequence

il 0 5\ 2w b
(52) dq’ /g = dlog(q)) = d|2nl-L | — —.(5- — Lo ) Qw

304 J Y G4\ gd7

j J j
Recall from summary of [BDG22| in [Section 3.5/ that the functions agﬂ for all j where
(v1, -+, UN@)—n@)) = J1,k — J2 1S non-zero are rational multiples of each other. Note
. [ . . . . .

moreover that ﬁjm — %aéﬂ = ﬁj[.’] — 27%] log(qj[.l])ag.l] is the Deligne extension of B][-Z] across

all the boundary divisZ)rs that stem from horizontal nodes at level i. For the full Deligne

extension BJM the correction terms for the lower level nodes have to be added. Together
with we deduce that the i-image of

h(i) ~Ji] h(7) i)
vmaﬂ dqim = ’ch[.i(] ) dqm
m=1 (A].{ﬂzl} m=1 ! a{nﬂ

differs from the element in Eq responsible for the equation H g] only by terms from lower
[4] (4]

level s, which come with a factor ¢[_g). In this equation used that am = Ci(m) for an
appropriate j(m). Since cg.”m) is close to t[_; Eg.z(]m), compare with this element indeed
belongs to the kernel of 1 as claimed in the commutative diagram. The quotient by such
a relation does not yield any quotient class beyond those above either. Since the
and correspond to a basis (in fact: in reduced row echelon form) of Eq, this completes
the proof. 0

PRrROOF OF [THEOREM 5.2 Uses that the summands of K|y are, up to t-powers, the
decomposition of the logarithmic tangent sheaf by [Proposition 3.5

0

COROLLARY 5.3. The Chern character and the Chern polynomial of the kernel IC of
the Euler sequence are given by

ch(K) = Net* —1  and c(K) = NZ_:I (N )giﬂ.

?
i=0

PROOF. As a Deligne extension of a local system, (ﬁiel’ B)" |57 has trivial Chern classes
except for cg. By construction, the pullback of the sheaf Eq to an allowable modification
(toric resolution with normal crossing boundary, see the proof of [Proposition 2.1)) is the
Deligne extension of a local system. It follows that all Chern classes but c¢q of this pullback
vanish and by push-full this holds for Eq, too. The Chern class vanishing for (#!,)¥ and

rel

the corollary follows. O

To start with the computation of C, we will also need an infinitesimal thickening the
of the boundary divisor Dfl‘, namely we define D%‘f, to be its fp-th thickening, the non-
reduced substack of H defined by the ideal Igﬂ. We will factor the above inclusion using

r
the notation
. . . H jl",. H iF,. J—
I =1e O Jle: DF — DF:' — H.
We will denote by ETv. = (jr.e)«(Ly) and SFT. = (jr.e)«(&f) the push-forward to the
thickening of the vector bundles defined in and .

PropoSITION 5.4. The cokernel of s given by

(53) C = @ Cr where Cr = (iRo)*(gI—‘r,o@(E;,o)_l)‘
PeLG1(B)



6. EXAMPLE: EULER CHARACTERISTIC OF THE EIGENFORM LOCUS 53

Moreover, there is an equality of Chern characters
lr—1

ch((ire)(&he @ (£1)71) = en((ir) GBN@f@er (eh) ™)

PROOF. The second part of the statement is justiﬁed by the original argument in
[CMZ19, Lemma 9.3].
The first part of the statement follows since, from we know that

Kl = @ TT# - (9 (tog) & 00 tog) & )

i=—L j=1

and from [Proposition 3.5 we also know that

(54) (En® L5 @ H £% (Qhor log) @ Q1 (log) ® Qrel)

i=—L j=1
where I is an arbitrary level graph with L levels below zero and U is a small neighborhood
of a point in fo’o. O
We can finally compute

ProprosITION 5.5. The Chern character of the twisted logarithmic cotangent bun-
dle &y ® E;{l can be expressed in terms of the twisted logarithmic cotangent bundles of
the top levels of non-horizontal divisors as

—1 3 . T T (1 — et
ch(Ep@Ly') = Neft =1 — > ir, | ch(&l)-ch(Lf) ™" V) .

I'eLG1(B)

PROOF. The proof [CMZ19, Prop. 9.5| works in the same way, since the only tool that
was used is the Grothendieck-Riemann-Roch Theorem applied to the map f = ip, which
is still a regular embedding. O

PROOF OF THEOREM [[.1] AND THEOREM [[.2l The final formulas of the full twisted
Chern character, Chern polynomials and Euler characteristic follow from the arguments
used for Abelian strata in [CMZ19, Section 9|, since they were purely formal starting from

the previous proposition. The relevant inputs needed are the compatibility statement of
the formula for pulling back normal bundles given in [Lemma 4.6| and [Corol

O

PROOF OF THEOREM [I.3] A formal consequence of Theorem and the rewriting
in |[CMZ22, Theorem 9.10| (with the reference to |[CMZ22, Proposition 4.9] replaced by

Lemma is

d
[ ]
(55) )= (DT S Nt /
L=0T€eLGp(H) Dyt z——L
We now use to convert integrals on a boundary component into the product
of integrals of its the level strata. O

6. Example: Euler characteristic of the eigenform locus
For a non-square D € N with D =0 or 1 (mod 4) let
QFp(1,1) C QMas(1,1)  and  QWp C QMo y(2)

be the eigenform loci for real multiplication by Op in the given stratum, see [McMO03|,
[Cal04], [McMOT7a| for the first proofs that these loci are linear submanifolds and some
background. We define Ep := PQFEp(1,1) as the projectivized eigenform locus. Associ-
ating with the curve its Jacobian, the projectivized eigenform locus maps to the Hilbert
modular surface

Xp = HxH/SL(Op @ OF).
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Inside Xp let Pp C Xp denote the product locus, i.e. the curve consisting of those surfaces
which are polarized products of elliptic curves. The Weierstrass curve Wp is defined to be
the image of QWp. It is contained in the complement Xp \ Pp.

The goal of this section is to provide references and details for the proof of [Theorem 1.4]
and in particular . The numerical input is

X(Xp) =2¢(~1) and  x(Pb) = —ox(Xp) = ~5¢(~1),

where ( = CQ( VD) is the Dedekind zeta function. The first formula is due to Siegel [Sie36],
see also |Gee88, Theorem IV.1.1], the second is given in |[Bai07, Theorem 2.22]

I'p %f{? T'w %2)
_92 _92 _
A
1 1

A
1 1

FIGURE 1. The boundary divisors of the eigenform locus F.

To apply Theorem to the linear manifold Fp we need to list the boundary strata
without horizontal curves. This list consists of two divisorial strata only, given in Figure
namely the product locus and the Weierstrass locus. To justify the coefficients in we
need:

LEMMA 6.1. The top-powers of & on the respective level strata evaluate to

/52:0, / 1=1, and/ 1=1.
E Dy, D

Fw
PROOF. The first integral is an application of For the second note that

there is unique differential up to scale of type (1,1, —2, —2) on a P! with vanishing residues,
the third is obvious. g

The proof is completed by noticing that that automorphism groups in Theorem [I.3] are
trivial and that all three prong-matchings for 'y are reachable since they belong to one
orbit of the prong rotation group.

7. Strata of k-differentials

Our goal here is to prove that gives a formula for the Euler characteristic
of strata PQ* M, (1) of k-differentials. Those strata can be viewed as linear submanifolds
of strata of Abelian differentials PQQMg 5 (1) via the canonical covering construction and
thus applies. This is however of little practical use as we do not know the
classes of k-differential strata in PQQMg(1). However, we do know their classes in Mg,
via Pixton’s formulas for the DR-cycle (|JHS21|, |[BHPSS20|). As a consequence the formula
in can be implemented, and the diffstrata package does provide such an
implementation. In this section we thus recall the basic definitions of the compactification
and collect all the statements to perform evaluation of expressions in the tautological rings
on strata of k-differentials.

7.1. Compactification of strata of k-differentials. We want to work on the multi-
scale compactification Q := Qy, := IP’Ekmg,n(,u) of the space of k-differentials. As topologi-
cal space this compactification was given in [CMZ19|, reviewing the plumbing construction
from [BCGGM19b|, but without giving the stack structure. Here we consider a priori the
compactification of [Section 3] We give some details, describing auxiliary stacks usually by
giving C-valued points and morphisms, from which the reader can easily deduce the no-
tion of families following the procedure in [BCGGMI19b|. From this description it should
become clear that the two compactifications, the one of and |[CMZ19|, agree
up to explicit isotropy groups (see . In particular the compactification Q is
smooth. This follows also directly from the definition of since the only potential
singularities are at the horizontal nodes. There however the local equations simply
compare monomials (with exponent one), the various g-parameters of the k preimages of
a horizontal node.
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We start by recalling notation for the canonical k-cover in the primitive case. Let X
be a Riemann surface of genus g and let ¢ be a primitive meromorphic k-differential of
type p = (ma,...,my), i.e. not the d-th power of a k/d-differential for any d > 1. This
datum defines (see e.g. [ BCGGM19al Section 2.1]) a connected k-fold cover : X =X
such that 7*¢ = w” is the k-power of an abelian differential. This differential w is of type

woi= (mlj,_wml, mo,...,My,..., mn,...,mn>,

g1:=gcd(k,m1) g2:=ged(k,m2) gn:=gecd(k,mn)

where 7; 1= &t y — L. (Here and throughout marked points of order zero may occur.)

ged(k,m;
We let g = g()?) and 7 = ), gcd(k,m;). The type of the covering determines a natural
subgroup S; C S of the symmetric group that allows only the permutations of each the
ged(k, m;) points corresponding to a preimage of the i-th point. In the group S; we fix
the element

n—1 n
50 = (o) a2 te) (15 Y ).
=1 i=1

i.e. the product of cycles shifting the g; points in the w-preimage of each point in z. We
fix a primitive k-th root of unity (; throughout.
We consider the stack QHj, := QH (1) whose points are

(57) {(X,Z,w,7): 7€ Aut(X), ord(r) = k, T'w = Gw, Tlz=10}.

Families are defined in the obvious way. Morphisms are morphisms of the underlying
pointed curves that commute with 7. Since the marked points determine the differential
up to scale, the differentials are identified by the pullback of morphisms up to scale. Com-
muting with 7 guarantees that morphisms descend to the quotient curves by () (for a
morphism f to descend, a priori f7f~! = 7¢ for some a would be sufficient, but the action
on w implies that in fact @ = 1). It will be convenient to label the tuple of points z by
tuples (i,7) with ¢ =1,...,n and j = 1,...,gcd(k,m;). There is a natural forgetful map
OHj, — QMg 5 and period coordinates (say, after providing both sides locally with a Te-
ichmiiller marking) show that this map is the normalization of its image and the image is
cut out by linear equations, i.e. that QH}, is a linear submanifold as defined in
The subgroup

(58) G = <<12~--gl>,(g1+1 g1+2~--gl+gg>,---,<1+7§gi~--ign>> C S
i=1 i=1

generated by the cycles that 7y is made from acts on QH; and on the projectivization
Hy. We denote the quotient of the latter by H,* := H;,/G, where the upper index is an
abbreviation of marked (only) partially.

Since 7 has w as eigendifferential, its k-th power naturally descends to (projectivized)
k-differential [¢] on the quotient X = X /(r), which is decorated by the marked points z,
the images of z.

We denote by Q the stack with the same underlying set as 7", but where morphisms
are given by the morphisms of (X/(7),z,[q]) in PQ* M, ,,(1). Written out on curves, a
morphism in Q is a map f : X/(r) — )/(\’/<7">, such that there exists a commutative
diagram

(59) l £

If two such maps g exist, they differ by pre- or postcomposition with an automorphism of X
resp. X'. Via the canonical cover construction, the stack Q is isomorphic to PQ* Mg, (u).
The non-uniqueness of g exhibits H;'* = Q/(7) as the quotient stack by a group of order k,
acting trivially.
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Asin we denote by QHj, := QHj. (1) the normalization of the closure of QH,,
in EMj5(p) an let Hy, := Hy (1) be the corresponding projectivizations. We next describe
the boundary strata of 7. These are indexed by enhanced level graphs r together with an
(t)-action on them. We will leave the group action implicit in our notation. The following
lemma describes the objects parametrized by the boundary components D%{’“ (using the

notation from [Section 3)) of the compactification #j.

LEMMA 7.1. A point in the interior of the boundary stratum D%{k is given by a tuple
(X,T,Z,[w],0,7) : T € Aut(X), ord(r) = k, T'w=CGuw, 7lz=1}

where (X,T,2,[w],0) € PEM; (1) is a multi-scale differential and where moreover the
prong-matching o is equivariant with respect to the action of (T).

The equivariance of prong-matching requires an explanation: Suppose z; and y; are
standard coordinates near the node corresponding to an edge e of I', so that the prong-
matching at e is given by o, = B%i ® _6%1' (compare |[BCGGM19b, Section 5| for the
relevant definitions). Then 7*z; and 7*y; are standard coordinates near 7(e). We say that

a global prong-matching o = {UE}eeE(f) is equivariant if o) = oz © —07_‘2%_ for each

edge e.

PROOF. The necessity of the conditions on the boundary points is obvious from the
definition in , except for the prong-matching equivariance. This follows from the
construction of the induced prong-matching in a degenerating family in [BCGGM19b)
Proposition 8.4| and applying 7 to it.

Conversely, given ()/(> ,f,ﬁ, [w], o, (7)) as above with equivariant prong-matchings, we
need to show that it is in the boundary of Hj. This is achieved precisely by the equivariant
plumbing construction given in [BCGGM19a]. O

The group G still acts on the compactification QH;, and on its projectivization Hy.
As above we denote the quotient by ﬁznp = H;,/G to indicate that the points z are now
marked only partially. By we may construct Q just as in the uncompactified
case.

The map ﬁrknp — @ is in general non-representable due to the existence of additional
automorphisms of objects in ﬁ?p. This resembles the situation common for Hurwitz
spaces, where the target map is in general non-representable, too. We denote by d : Hj, —
ﬂznp — @ the composition of the maps.

7.2. Generalized strata of k-differentials. Our notion of generalized strata is de-
signed for recursion purposes so that the extraction of levels of a boundary stratum of
Q is an instance of a generalized stratum (of k-differentials). This involves incorporating
disconnected strata, differentials that are non-primitive on some components, and residue
conditions. Moreover, we aim for a definition of a space of k-fold covers on which the
group G acts, to match with the previous setup. The key is to record which of the marked
points is adjacent to which component, an information that is obviously trivial in the case
of primitive k-differentials.

A map A:z — 770()? ) that records which marked point is adjacent to which com-
ponent of X is called an adjacency datum. (Such an adjacency datum is equivalent to
specifying a one-level graph of a generalized stratum, which is indeed the information we
get when we extract level strata.) The subgroup G from (58)) acts on the triples ()? .z, A)
of pointed stable curves with adjacency map by acting simultaneously on;z\ and on A by
precomposition. For a fixed adjacency datum A we consider the stack QHy (1, A) whose
points are

{()?,/z\,w, T) : ()?,E) have adjacency A, T € Aut()?),

ord(r) = k, T'w =(w, Tlz="70,}-

We denote by QHy (7, [A]) := G - QHy (7, A) the G-orbit of this space.
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A residue condition is given by a 7-invariant partition Ay of a subset of the set H), C
{1,...,n} of marked points such that m; < —1. We often also call the associated linear
subspace

R = {(ri)ing e CHr . Zri =0 for all A € )\m} .
1EA

the residue condition. This space will typically not be G-invariant. We denote by QH3: (i, A) C
QM (i, A) the subset where for each R € R the residues of @ at all the points z; € R add
up to zero. If (X',E,w, 7) is contained in QH}(fi, A), then g - ()?,i,w, 7) is contained in
Q’Hzm(ﬁ, g-A) for any g € G. That is, the G-action simultaneously changes the residue
condition and the adjacency datum. We denote by [RR, A] the G-orbit of this pair and use
the abbreviation

(60) on™A = q.onl@, A)

for the G-orbit of the spaces, i being tacitly fixed throughout.

As above, we denote by ’HER’A] the projectivization of QHER’A] and by Hkm’mp =
’HER’A}/ G the G-quotient, dropping the information about adjacency and the connected
components to ease notation. Finally, we denote by Q™ the stack with the same underly-
ing set as ”Hz{’mp and with morphisms defined in the same way as above for Q. Recall that
the curves in Q% may be disconnected. We call such a stratum with possibly disconnected
curves and residue conditions a generalized stratum of k-differentials. Since HER’A] is a
linear submanifold, we can still compactify them as before and a version of
with adjacency data still holds.

We will now compute the degree of the map d from the linear submanifolds to the
strata of k-differential. Our definition of generalized strata of k-differentials makes the
degree of this map the same in the usual and in the generalized case.

LEMMA 7.2. The map d : ﬁf"f‘] — @m is proper, quasi-finite, unramified and of degree

dea(d) = 1 ] sed(mi, k).
mi;Ep
PROOF. The degree is a consequence of being composed of a quotient by a group of
order |G| =] ged(m;, k) and the non-representable inverse of a quotient by a group
of order k.
The map is unramified as both quotient maps are unramified. ]

m; €N

7.3. Decomposing boundary strata. Having constructed strata of k-differentials,
we now want to decompose their boundary strata again as a product of generalized strata
of k-differentials and argue recursively. In fact, the initial stratum should be a generalized
stratum @m’ thus coming with its own residue condition, but we suppress this in our
notation, focusing on the new residue condition that arise when decomposing boundary
strata. Here ’decomposition’ of the boundary strata should be read as a construction of a
space finitely covering both of them, as given by the following diagram,

D;,Hk,s
2N
(61) Hi(7) == Hi_:Lo Hi (7)) = Im(py) D2
ol e
Q(r) = [1;% Q) D,

whose notation we now start to explain. Note that the diagram is for the open bound-
ary strata throughout, since we mainly need the degree all these maps as in
(the existence of a similar diagram over the completions follows as at the beginning of

Section 3.2).
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We denote by T the level graphs indexing the boundary strata of IP’Emgﬁ(ﬂ) and thus
of Hy,. Following our general convention for strata their legs are labeled, but not the edges.
In ﬁ;np the leg-marking is only well-defined up to the action of G. A graph with such a
marking is said to be marked (only) partially and denoted by fmp. Even though curves
in H}, are marked (and not only marked up to the action of G), the boundary strata of
H;. are naturally indexed by partially marked graphs as well: If T is the dual graph of
one stable curve in the boundary of Hy, then for all ¢ € G the graph g - T is the dual
graph of another stable curve in the boundary of H;,. The existence of 7 implies that level
graphs [ at the boundary of Hj come with the quotient map by this action. To each
boundary stratum of Q we may thus associate a k-cyclic covering of graphs 7 : fmp —T
(see |CMZ19, Section 2| for the definitions of such covers). We denote the corresponding
(open) boundary strata by D2 c Q and the (open) boundary strata corresponding to
such a G-orbit of graphs by D?{H’“ C Hp. The map d : Df{H’“ — DfT’Q is the restriction of
the map d : H;, — Q.

Next we construct the commensurability roof just as in , though for each T in the
G-orbit separately, so that D2 i the disjoint union of a G-orbit of the roofs in .

Next we define the spaces H(m;)). Consider the linear submanifolds of generalized
strata of k-differentials with signature and adjacency datum given by the i-th level of
one marked representative T of fmp (the resulting strata are independent of the choice
of a representative). Their product defines the image Im(p;). For every level i, consider
the orbit under G(H(m;))), where G(Hi(m;))) is the group as in for the i-th level,
of the linear submanifolds we extracted from the levels. We define H(7;)) to be these
orbits, which in particular are then linear submanifolds associated to generalized strata
of k-differentials as we defined them above. We can hence consider, for every level, the
morphism given by the quotient by G(Hj(7[;)) composed with the non-representable map
that kills the (7)-isotropy groups at each level and denote by Q(m;)) its image, which is
called the generalized stratum of k-differentials at level . The map d, in diagram [61] is
just a product of maps like the map d above, thus immediately implies:

LEMMA 7.3. The degree of the map dr in the above diagram is

1 n
deg(dr) = WHng(mi’k) H ged(re, k)?
1=1 ecE(T)

where ke 1s the k-enhancement of the edge e.
We recall and compute explicitly the coefficients appearing in our setting

here. Note that the factor | Auty(I")| there should be called | Auty, (I')| in the notation
used in this section.

LEMMA 7.4. The ratio of the degrees of the topmost maps in is

H
deg(pr) &

deg(er) | Auty, (T)] - 65
where the number of reachable prong-matchings is given by

(RN |
r
b B9

and Autyy, (f) 1s the subgroup of automorphisms off commuting with T.

We remark that the quantity ¢4 is intrinsic to I', for a two-level graph it is given by
by = lcm(m for e € E(I)).

PROOF. The first statement is exactly the one of since the topmost maps
in are given by a disjoint union of the topmost maps in (31)).

For the second statement, consider an edge e € E(T"). The edge e has ged(ke, k) preim-
ages, each with an enhancement m. The prong-matching at one of the preimages
determines the prong-matching at the other preimages by as they are related
by the action of the automorphism.
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~

For the third statement, we need to prove that the subgroup of Aut(I') fixing setwise
the linear subvariety Hj, is precisely the subgroup commuting with 7. If p € Aut(f) com-
mutes with 7, then it descends to a graph automorphism of I' and gives an automorphism
of families of admissible covers of stable curves, thus preserving Hj. Conversely, if p
fixes Hy, it induces an automorphism of families of admissible covers of stable curves,
thus of coverings of graphs. A priori this implies only that p normalizes the subgroup
generated by 7. Note however that on #; the automorphism 7 acts by a fixed root of
unity (. If prp~! is a non-trivial power of 7, this leads to another (though isomorphic)
linear subvariety. We conclude that p indeed commutes with 7. ([l

The aim of the following paragraphs is to rewrite the evaluation in our
context in order to find the shape of the formula in We elaborate on basic
definitions to distinguish notions of isomorphisms and automorphisms. The underlying
graph of an enhanced (k-)level graph can be written as a tuple I' = (V, H,L,a: HU L —
Vi : H — H), where V, H and L are the sets of vertices, half-edges and legs, a is
the attachment map and ¢ is the fixpoint free involution that specifies the edges. An
isomorphism of graphs o : I' — I" is a pair of bijections ¢ = (oy : V = V' oy : H — H')
that preserve the attachment of the half-edges and legs and the the identification of the
half-edges to edges, i.e. the diagrams

HUL —*>V H——H
(62) laHUidL lav laH laH
HUL %>V H

commute. If the graph is an enhanced level graph, we additionally ask that o preserves the
enhancements and level structure. In the presence of a deck transformation 7, we moreover
ask that o commutes with 7.

In the sequel we will encounter isomorphisms of graphs with the same underlying
sets of vertices and half-edges. We emphasize that in this case an isomorphism o is an
automorphism if and only if it preserves the maps a and ¢, i.e. if

(63) O";loao(UHUidL):a and Ulgloioo'H:i‘

We now define the group of level-wise half-edge permutations compatible with the
cycles of 7, i.e., we let

—L
G = G, = [[G(Hw(my),

i=0
where G(Hj,(mp;))) is the group G from applied to the i-th level stratum. An element
of the group G is a permutation g : H UL — H U L and acts on a graph T via g- T =
(V,H,L,a0g,1).

There is a natural action of the group G on the set of all (possibly disconnected) graphs

with the same set of underlying vertices as I',p,. We denote by

(64) Stabg(T') := {g € G: gT =T}

the stabilizer. Note that this is in general not a group, as it is not the stabilizer of an
element but of an isomorphism class. We also denote by Stabg (H (7)) the set of elements
of G which fix the adjacency data (or equivalently the 1-level graphs) of the level-wise
linear manifolds ?-[(77[1-]), i.e., elements which permute vertices with the same signature and
permute legs of the same order on the same vertex.

LEMMA 7.5. We have
| Autgy, (T)] - | Stabg (T)] = | Aut(T)| II scd(se, k) - | Staba (H())|
)

ecE(T
PROOF. Fixa cover ' — I'. We may assume that the vertices of I" are {1,...,vr}, the
legs are {1,...,n} and the half-edges are {1F,..., h} with the convention that i(h*) =
h¥. For I', we may assume that the preimages of vertex v are (v,1),..., (v, p,) such that

7((v,q)) = (v,q + 1), where equality in the second entry is to be read mod p,. Similarly,
we index the legs of " by tuples (m, 1),..., (m,py) form = 1,...,n, and the half-edges by
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tuples (h*,1),..., (h%, ppz) for KT =1,.. ., hljf, again such that (h™,q) and (h™,q) form
an edge.

We consider the group P of pairs of permutations o = (o, o) of the vertices and
half-edges of T' that are of the following form: There exists a v = (vw,vm) € Aut(l),
integers \, € Z/p,Z for any v € V(T') and integers u+ € Z/p,+7Z for any h* € E(T) such
that

ov={(v,9) = (w),q+X )} and oy ={(h* q) — (va(h®),q+ m=)}.

We let this group act on T via o -T' = (V, H, L Loy oao (o UidL),i). An element o € P
acts always as an isomorphism since the diagrams (62) commute. If we denote by e the
edge given by h™, we have py+ = gcd(/{e, k). Hence the group P has cardinality

|P| = |Aut(T H ged(Ke, k H pv

ecE(T) veV (T

Recall that the group G is a product cyclic groups and thus abelian. The stabilizer
Stabg (H (7)) has a subgroup Stab’ where only half-edges and legs attached to the same
vertex are permuted (the superscript f is for fized), i.e. the elements g € Stab’ are exactly
those for which a o g = a. The quotient Stab? := Stabg(Hj(7))/ Stab’ can be identified
with those elements of G that permute legs and half-edges in such a way that whenever a
leg or half-edge attached to a vertex v; is moved to another vertex v, then all the legs and
half-edges attached to vy are moved to ve. So we may alternatively identify Stab? with
T-invariant permutations of the vertices of r (hence the superscript p for permutation).
This yields | Stab” | = [T ey (r) Po-

The group P comes with a commutative triangle

AutH (F
\ i
Aut(T

where the vertical map is the forgetful map, the diagonal map is the quotient by G-map and
the horizontal map is natural injection. Since we computed above |P|, we know that the
kernel of the surjective map P — Aut(I") has cardinality HeeE(F) ged(ke, k) - HveV( ) Po-

Note now that the group Stab’ acts on the set Stabg (I') and we denote by Stabg (I')/ Stab’
the space of orbits. We are done if we can identify elements of Stab(;( )/ Stab’ with ele-
ments of the cosets in P/ Auty/(T).

For this identification, first consider g € Stabg( ). By definition, there exists an
isomorphism o(g) : g-T — T such that g-T' = =0(yg )(T'). This induces a map o : Stabg (I') —
P. Note that Stab’ is a subgroup of Auty( ). If we had chosen a different representative
¢ in the orbit ¢ - Stab?, the resulting element a(q) € P would differ by an_ element of
Auty(T). Hence o induces a well-defined map Stabg (I')/ Stab’ — P/ Auty (T'). We now
construct an inverse map for o. For any p € P, we need to find an element g € G such
that o(g) = p, i.e. such that g - r= p(F) This implies that g must satisfy the equation

aog = py'oao(pgUidy),
which determines the element ¢ up to the action of Stab’. The resulting g does not depend

on the choice of a representative of the coset p/ Autq.[(f) because of , 0
We let now
G| |Stabg(T Stabg (T
(65) S(n) = 1G] [Sta G(A)’ _ | c/al )|2
Gl [Stabg(D)] Tl ged(re, k)

where the stabilizers are defined in a way analogous to (64]).

REMARK 7.6. The ratio S(mw) = 1 for many coverings of graphs 7 : T — I', e.g. when
all vertices of T' have exactly one preimage in I'. In this case G/G only permutes half-

edges adjacent to one vertex, and this always stabilizes the graph. Thus S(w) = 1, as
|G/G| =11, ged(ke, k). More generally S(m) = 1 if each edge of T is adjacent to at least
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FIGURE 2. A covering of graphs 7 : [' — T in E2Ms3,(8) with non-
trivial S(m).

one vertex which has exactly one preimage in T. In this case it is stratghtforward to verify
that the obvious generators of G/G are stabilizing the graph.
If there are vertices of I' with more than one pre-image in I', then S(m) is in general

non-trivial. Consider for example the covering of graphs m depicted in Figure[d, for which
S(m) = 3.

As a consequence of the degree computation in[Lemma 7.4]and [Lemma 7.5 we can write
an evaluation lemma for k-differentials analogous to We give two versions,
for Hy and Q respectively.

LEMMA 7.7. Let (7 : fmp —T) e LGL(H,®) and T a marked version of fmp. Suppose
that oy € CHo(DM*) and B, € CHo(DE) are top degree classes and that

—L —L
C;kraw = p;kr H (&7} and C;krd;kr/@ﬂ = p;krd;kr H Bz
i=0 =0

for some a; and B;. Then

-L
/ ar = S(r) - e re ' H / i
DIk | Aut(I)] - HeeE(F) ged(ke, k)2 - Z/1"\ i=0 Y Hr(mp)

and
HeeE(F) Ke =
BW = S(m)- . / 5
Do () EL -] Aut(T)| - 45 E) Q) z

PROOF. In order to show the first statement, we first apply and note that
the map p; is not surjective in general. It is now enough to check that the number of of

adjacency data appearing in Hy(m) is |G|/| Stabg (Hg(7))|, while the one appearing in
the image of p, is |G|/| Stabg T'|. We finally use to rewrite the prefactor. For

the second statement, we additionally apply [Lemma 7.2] and [Lemma 7.9} ]

We are finally ready to prove |[Corollary 1.5

PROOF OF [COROLLARY 1.5l The orbifold Euler characteristics of Q = PQ¥ M, (1)
and Hj, are related by
1
PO* M n(p) = — - .

We apply the general Euler characteristic formula in the form to Hy and group the

level graphs I' € LG (Hy) by those with the same graph I'y,, that is marked partially.
Since the integrals do not depend on the marking, we obtain

d

k 0 [i] [4]
NOREETED VD DS IR

L=0 (Wlfmp—)F)ELGL (HZ?)

where we used the notation that T is a fully marked representative of fmp. Thanks to

we can apply and convert the integral over D’ into a &-integral
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over the product of Hy(m[;). We hence obtain

(]P’QkMgn( )
d

HeGE( )He ) 7" ]
Y > S Rt ()] - I ged(re, H/W

L=0 (7:Tpp—T)ELG L (H}P)

:<::>di R T

L=0 (7T pp—T)ELGL(Q)

For the second equality, we used that

deg(d
(66) d*¢ = k¢, and hence dif = egk( )¢
for any level stratum, together with the dimension statement of [Proposition 3.4l The final
result is what we claimed in [Corollary 1.5 O

7.4. Evaluating tautological classes. In this section we explain how to evaluate
any top degree class of the form

(67) B = ¢yt gpe - [DF] -+ [DZ,] € CHo(Q)

for any generalized stratum Q of k-differentials. First, we show how to transform the
previous class into the form

quu” qanQ]

Then by we can write every summand of § as a product of ¢)-classes evaluated
on generalized strata of k-differentials. We finally will explain how to evaluate such classes.

Let us start with the first task. The relations in the Chow ring of a general linear
submanifold we obtained in immediately apply to the covering H}, and we want
to restate them in the Chow ring of the generalized stratum Q of k-differentials. Let i be
the index of a marked point in @ and (i,5) be the index of a preimage of this point in
Hj.. Moreover, let m; denote the order of the k-differential at the i-th marked point, and
let m; ; denote the order of the abelian covering at the (7, 7)-th marked point. Then the

relation
cd(mg, k) .
(63) vy = EXD gy,

holds, see for example |SZ20, Lemma 3.9|. Using the relation
Mmij + 1= (m; +k)/ ged(my, k)
and applying push-pull we obtain
~ deg(d
(69) (Mij + 1)dutpi; = k:( )(mi + k)i

We can now write the analogue of [Proposition 4.1|for the first Chern class ¢ € CH(Q)
of the tautological line bundle on the stratum of k-differentials.

COROLLARY 7.8. The class { can be expressed as
— (1 _ - Q
(= (mz + k)dﬁ R Z kgr‘mp [Dw]
(w:FmpaF)eiLGl(@)

= (mi+ kY=Y s<7r>1}A€j§(}’)| clr prd[Q()]

(m:Tmp—T)€,LG1(Q)
where ;LG1(Q) are covers of two-level graphs with the leg i on lower level and cly =

ir ody ocy is the clutching morphism analogous to .

PROOF. The first equation is obtained by pushing forward the equation in [P
along d and using the relations (| and ( . The second equation is obtained

from the first by [Lemma 7.7} O
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REMARK 7.9. The expression given by the second line of [Corollary 7.8 reproves the
formula of [Sau2l, Theorem 3.12] and computes explicitly the coefficients appearing in

loc.cit., which were computed only for special two-level graphs.

To state the formula for the normal bundle, let

T _ 2 : H
[’7r - OD%( gﬁ,lDU)
(0:Amp—A)ELG2(Q)
d2(o)=m
denote the top level correction bundle.

COROLLARY 7.10. Suppose that D, is a divisor in Q corresponding to a covering of
graphs (7 : Tp — T') € LG1(Q). Then the first Chern class of the normal bundle is given
by

1 L T Ly 1,12
CI(NW) = Z(_ %Cﬂ' _Cl(‘cﬂ) + %Cﬂ') € CH (Dw)a
r
where C;, resp. (-, is the first Chern class of the line bundle generated by the top, resp.
bottom, level multi-scale component.

PRrROOF. We can pull-back the right and left hand sides of the relation via d. Using the
expression , we see that the pulled-back relation holds since it agrees with the one of
[Proposition 4.4 Since d is a quasi-finite proper unramified map, we are done. The same
argument, together with [Proposition 4.5 works for the second statement about horizontal
divisors. 0

Using the same arguments as [CMZ22, Proposition 8.1], it is possible to show an excess
intersection formula in this context of k-differentials. We will not explicitly do this here
since the methods and the result are exactly parallel to the original ones for Abelian
differentials. Using the previous ingredients we can then reduce the computation of the
class 8 in to the computation of a top-degree product of -classes

a =yt P € CHy(Q)
on a generalized stratum. If we can describe the class of a generalized stratum in its
corresponding moduli space of pointed curves, then we are done since it is possible to
compute top-degree tautological classes on the moduli space of curves, e.g. with the sage
package admcycles, see [DSZ21].

One of the advantages in comparison to the situation with general linear submani-
folds (as explained in is that the fundamental classes of strata of primitive
k-differentials PE* M, ,, (1) are known in My ,,, see [BHPSS20].

More generally, if Q parameterizes k-differentials, on a curve with connected T-quotient,
which are d-th powers of primitive k¥’ := k/d-differentials, we can compare -classes on Q
to 1-classes on the stratum of primitive &’ differentials PEk'ﬂgm(u/ d) via the diagram

HEP (1) —s HEP (u)d)

bl

Q PEN M, (1/d)

where the map ¢ sends the disconnected curve (Uf.l:1 )?Z-, U?Zl Z;, Ule wi, T) to ()/517 Z1, W1, Td|)?1).
The map ¢ has degree deg(¢) = d™ !, since up to the action of 7 there are such many ways
to distribute the marked points z onto the connected components of X. Using deg(d;) = %

and deg(ds) = & we can evaluate o as

Q =M Mg (1/d)

If Q parameterizes primitive differentials on disconnected curves, then |, o @ = 0 since
we go down in dimension by looking at the image of the projection to the moduli spaces
of curves.
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It remains to explain how to evaluate intersection numbers in the presence of residue
conditions. In addition to the space R defined starting from a 7-invariant partition Ay we
consider the linear subspace

R: {(r) . 2ieamy(x T =0 forall X' € mo(X) }
= i)ieH, :

r; = (,;17;(1') for all « € H,

cut out by the residue theorem on each component and the deck transformation. Recall
that Ay is 7-invariant. Let g, denote a subset of Ak obtained by removing one element,
and let Ry denote the new set of residue conditions. For ease of notation let for now
H} = PQ”H,[C%’A] and HZ% = PQ?—[,[C%’A}. If RNR = RN MRy then HY = Hk%. So assume
that RNR # RNMRy, in which case H} ¢ 7—[?0 is a divisor since removing one element from

R R
Ay forces to remove its 7-orbit. For a divisor DZT{ kC H?, we denote by R the residue
conditions induced by R on the top-level stratum Hy, (71‘[0]). It can be simply computed by

R
discarding from the parts of Ag; all indices of legs that go to lower level in D:L k. Moreover,
we denote be RT the linear subspace belonging to the top-level stratum of 7 that is cut
out by the residue theorem and the deck transformation.

PROPOSITION 7.11. The class of ﬁ? compares inside the Chow ring of ﬁ?o to the
class € by the formula

7R HmO ,Hi)lﬁo
[(Hy] = —€— > la[Dx* | — > tx[Dr* ],
(7:Trmp—T) LG (H0) (r:Trmp—T)ELGy ot (H0)
where LG?(ﬁ?O) are the two-level graphs with RTNRT = RTNMRY, i.e., where the GRC on

top level induced by R does no longer introduce an extra condition, and where LGL%(W?O)
are the two-level graphs where all the legs involved in the condition forming R\ Ry go to
lower level.

PROOF. The formula is obtained by intersecting the formula in [CMZ22, Proposi-

tion 8.3] with gfo and thereby using the transversality statement from |Proposition 3.2|. O

By pushing down this relation along d and applying relation we obtain a similar
relation for a generalized stratum of k-differentials O™ with residue conditions fR.

COROLLARY 7.12. The class of@% compares inside the Chow ring of@% to the class
¢ by the formula

Q= —- Y G- > G,

(m:Tmp—T)ELGR (D7) (7T mp—T)ELGy 02(20)

where LG%{(@%) are the two-level graphs with RTNRT = RTNNR], i.e. where the GRC on

top level induced by R does no longer introduce an extra condition and where LGl’m(@mO)

are the two-level graphs where all the legs involved in the condition forming R\ Ry go to
lower level.

The last expression allows us, in the presence of residue conditions, to reduce to the
previous situations without residue conditions when we want to evaluate a.

7.5. Values and cross-checks. In this section we provide in Table [ and Table [3]
some Euler characteristics for strata of k-differentials. We abbreviate xx(p) := x(PQ¥ M, (12)).
Moreover we provide several cross-checks for our values.

The second power of the projectivized Hodge bundle over My is the union of the
strata of quadratic differentials of type (4), (2,2), (2,1?) and (1), if all of them are taken
with unmarked zeros. (Note that there are no quadratic differentials of type (3,1).) All
quadratic differentials of type (4) are second powers of abelian differentials of type (2).
The stratum (2,2) contains both primitive quadratic differentials and second powers of
abelian differentials of type (1,1). From Table [2| and [CMZ22, Table 1] we read off that

1

1 1 1 9 1 4 _ 5
x1(2) + §X2(272) + §X1(1, 1)+ §X2(27 1%) + aXQ(l ) = 30 " X(P*)x(Ma).
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1% (27 2) (2a 12) (14) (57 _1) (47 17 _1)
x2(1) —% % -1 _T75 %
1% (3)2771) (37 12771) (22717 1) (27 13771) (15771)
x2(1) 5 -5 —6 26 —147

TABLE 2. Euler characteristics of the strata of quadratic differentials in
genus 2 with at most one simple pole

Similarly, one checks for the third power of the projectivized Hodge bundle over Ms that
the numbers in provided in Table 3 add up to —g5 = x(P*)x(Ma).

po | 6) | (5,1) | (4.2) | (3.3) | (4,12 | (3,2,1)
aw) | & 4] -2 | 4| It 4
po | @] 6| @1 | @1 ] (1)

xs(w) | 4| —16 | =2 | 90 | —567

TABLE 3. Euler characteristics of the strata of holomorphic 3-differentials
in genus 2

Now consider the second power of the projectivized Hodge bundle twisted by the uni-
versal section over My ;1. It decomposes into the unordered strata (4), (5, —1), (4,1,—1),
(3,2,-1),(2,12), (3,12, -1), (22,1, 1), (2,13, -1), (1%, 1), (4,0), (22,0), (2,12,0), (1%,0),
the ordered stratum (22), (2, 1?) (since the zero at the unique marked point is distinguished)
and the partially ordered stratum (14). The stratum (2, 12) appears two times in the list:
the first time the unique marked point is the zero of order 2, the second time it is one of
the simple zeros. On the stratum (1%) one of the simple zeros is distinguished, while the
others may be interchanged. Note that xx(mq,...,m,,0) = (2 =29 — n)xr(ma, ..., my,).
The contributions in Table 2/ and [CMZ22, Table 1] add up to 5 = x(P*)x(Ma,1).

8. Ball quotients

The goal of this section is to prove Theorem [1.7] which gives an independent proof of
the Deligne-Mostow-Thurston construction ([DM86], [Thu98|) of ball quotients via cyclic
coverings. For this proof of concept we consider the special case of surfaces, i.e. lattices in
PU(1,2).

We first prove a criterion for showing that a two dimensional smooth Deligne-Mumford
stack is a ball quotient via the Bogomolov-Miyaoka-Yau equality. Even though such a
criterion exists in many contexts, typically pairs of a variety and a Q-divisor with various
hypothesis on the singularities a priori allowed, see for example |[GKPT19|; |[GT22b|, we
found no criterion for stacks in the literature. Only the inequality was proven in |[CT20)|
and only in the compact case.

We then investigate the special two dimensional strata of k-differentials of genus zero
considered in Deligne-Mostow-Thurston, compute all the relevant intersection numbers and
construct, via a contraction of some specific divisor, the smooth surface stack which we
finally show to be a ball quotient.

8.1. Ball quotient criterion. We provide a version of the Bogomolov-Miyaoka-Yau
inequality for stacks in the surface case, based on |[KNS89|. Singularity terminology and
basics about the minimal model program can be found e.g. in [KM9§|.
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PROPOSITION 8.1. Suppose that B is a smooth Deligne-Mumford stack of dimension
2 with trivial isotropy group at the generic point and let D1 be a normal crossing divisor.
Moreover, suppose that Kg(logl)l)2 > 0 and that Kg(logD1) intersects positively any
curve not contained in Dy. Then the Miyaoka-Yau inequality

(70) }(Kg(log Dy)) < 3ca(Kg(log D1))

holds, with equality if and only if B = B \ Dy is a ball quotient, i.e. there is a cofinite
lattice T € PU(1,n) such that B = [B2/T| as quotient stack, where B* = {(z1,2) € C?:
|21)? + |22]? < 1} is the 2-ball.

PROOF. Let D be the divisor defined as D; together with the sum Ds of the divisors
D} with non-trivial isotropy groups of order b;. Let m : B — B be the map to the coarse
space and let D1 = 7(Dy), D = > (1 — 1/b;)7(D}) and D = Dy + Ds.

We start by assuming that the pair (B, D) is log-canonical and the pair (B, Ds) is
log-terminal. We will show that this assumptions holds in our situation at the end of the
proof.

Let B be a log-minimal model given by contracting all the log-exceptional curves
in Dy, i.e., contracting all irreducible curves C C D; with the properties C? < 0 and
(c1(Kg) + [D1] + [D2]) - C <0, and let D} be the image of D;, for i =1,2. Then

Kg(log D1) + Dy = 7*(Kg (log Dy) 4 D3).
Moreover the log-canonical bundle satisfies
(71) Kg(log Dl) = 7* (Kg(log Dl) + DQ) .

The fact that the support of the log-exceptional curves is in D1, together with , implies
that Kz + D} + Dj is numerically ample. By the assumption above on the singularities

we know that (B, D) is log-canonical. Hence we are in the situation of applying [KNS89,
Theorem 12].
As a consequence of we know that ¢?(Kg(logD;)) coincides with the left hand

side of the Miyaoka-Yau inequality of [KNS89, Theorem 12| applied to B’ with boundary
divisor D} + Dj,.

Moreover, by the Gauss-Bonnet theorem for DM-stacks (see e.g. |CMZ22, Proposi-
tion 2.1]) we can also identify ca2(Kg(logD1)) with the right hand side of the inequality of

[KNS89, Theorem 12] applied to B’ with boundary divisor D' + D}, up to non-log-terminal
singularities (similarly as it was done in |[CT20, Section 3.2|). By the assumption above,
the pair (B, D3) is log-terminal and so the previous identification of the right hand side of
[KNS89, Theorem 12| with co(Kg(log D)) is true without corrections.

This shows inequality and that in the case of equality B \ Dy 2 B\ Dy is a ball
quotient, i.e. B\ D; = B2?/T. Moreover, in this case, the divisors D} are the branch loci
of m with branch indices b;.

Since B\ D1 is the coarse space associated both to B\ D; and to [B?/T'], this implies that
these two DM stacks have to differ by a composition of root constructions along divisors
(see e.g. |[CT20, Section 3.1]). But since the branch indices of D} can be identified with the
isotropy groups of the corresponding divisors in [B?/I'], and since they coincide with the
isotropy groups of the corresponding divisor B\ Dy, we can identify B\ D; with [B?/T],
as non-trivial root constructions would have changed the size of such isotropy groups.

We are finally left to show the assumption on the singularities. First, there exists a
resolution B of B where the proper transform D of D is a normal crossing divisor and the
exceptional divisors &; are log-exceptional, i.e. €2 < 0 and (c; (Kg)+ [D1])- & < 0. Indeed
such a resolution can be obtained by blowing-up smooth points of the DM stack, where
the numerical conditions can be checked on an étale chart just as for the usual blow-up of
a smooth point of a variety.

In this situation the corresponding exceptional divisors F; for the coarse space resolu-
tion B of B are also log-exceptional, i.e., (c1(Kp)+ [D1]+[Ds])- E; < 0 and E? <0. Since
contracting log-exceptional divisors does not change the singularity type, this implies that
to show that (B, Dy + D3) is log-canonical and (B, D) is log-terminal, it is enough to
show that (B, Dy + IA);) is log-canonical and (B, D) is log-terminal.
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—a —a9 —a —ag —a
DF45 Dy, a D12A45 )
—a4 —0as —a4 —as —a1 —a2—a4 —as
FIGURE 3. Level graphs of boundary divisors for strata QMo s(aq, ..., as)

In order to do this, we observe that in general since (%,25) is a smooth DM stack
with normal crossing divisor, then (E , Dy + > 55) is log-canonical. Details are given in
|CCM22, Theorem 5.1], using [HHO09, Proposition A.13] . Then we can use that B has
at worst klt singularities (since it is a surface with quotient singularities and by [KM98,
Prop. 4.18]). It is easy to show that this implies that (B, D + > tzf)%) has log-canonical
singularities and (E,Zl tlf)%) has log-terminal singularities, for any 0 < ¢; < 1. The
desired statement follows then by setting ¢; = 1 — 1/b;. O

8.2. Strata of genus zero satisfying (INT). Let (a1,...,a5) be positive integers
such that ged(aq,...,as, k) =1 with

5
. -\ —1
S a; =2k, and for all i # j ( —%—%) €7 ifai+a; <k
=1
The first condition states that u = (—aq,..., —as) is a type of a stratum of k-differentials

on 5-pointed rational lines and that the intersection form on eigenspace giving period co-
ordinates has the desired signature (1,2). Imposing the ged-condition lets us work without
loss of generality with primitive k-differentials. The last condition is the condition (INT)
of [DM86|. For Deligne-Mostow this condition is key to ensure that the period map ex-
tends as an étale map over all boundary divisors. Thurston |[Thu98| uses this condition
to show that his cone manifolds are indeed orbifolds. Mostow completed in [Mos88| the
g = 0 picture by showing that up to the variant XINT from [Mos86| these are the only ball
quotient surfaces uniformized by the VHS of a cyclic cover of 5-punctured projective line.
We recall from [DM86, Section 14] that there are exactly 27 five-tuples satisfying INT, and
all of them satisfy in fact the integrality condition INT for all i # j with a; + ap # k.

For us the condition INT has the most important consequence that the enhancements
ke of the abelian covers of the level graphs are all one. This implies that ghost groups of
all strata in this section are trivial. However the condition INT also enters at other places
of the following computations of automorphism groups and intersection numbers.

In the sequel we will use the notation @ = Qk/\/lo,5(a1, ...,a5). We now list the
boundary divisors without horizontal edges. A short case inspection shows that the only
possibilities are the level graphs I' = I';;, see Figureleft, and L = L;;, see Figuremiddle,
that yield the 'dumbbell’ divisors with two or three legs on bottom level under the condition
that that the a;’s on lower level add up to less than k, and the level graphs A = ; ;A,, ;, that
yield 'cherry’ divisors, see Figure |3| right (V-shaped graphs are ruled out by > a; = 2k).
We define k; j := k — (a; + a;), which is both the k-enhancement of the single edge of I'; ;
and the negative of the k-enhancement of the single edge of L; ;.

LEMMA 8.2. Each of the graphs 1'; j, L;; and ; jAp 4 is the codomain of an unique

covering of graphs m € LG1(Q) and for each such covering S(m) = 1.

Proor. We will give the argument for I'; 2, the argument for the other graphs is
similar. The number of preimages of the vertices of I'y 5 is ged(k, a1, ag) for the bottom
level and ged(k, a3, as, as) for the top level, while the edge has k1 2 preimages.

We claim that for any cover of graphs 7 : fmp — I'1 2 the domain is connected. In fact,
suppose there are k' components. This subdivides the top level and the bottom level into
subset of equal size. This implies k' | ged(k, a1,a2) and k' | ged(k, as, a4, as), and hence
k" =1 because of ged(k, a1, ...,a5) = 1.

To construct such a cover of graphs it suffices to prescribe one edge of fmp, the other
edges are then forced, since 7-acts transitively on edges. Since the vertices on top and
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bottom level are indistinguishable (forming each one orbit 7-orbit) the resulting graph is
independent of the choice of the first edge. In particular I'y,p is unique and S(w) =1. O

Next we compute (self)-intersection numbers of boundary divisors.

LEMMA 8.3. The self-intersection numbers of the boundary divisors of Q are

2
DRz = -ty Mt
2 2
g p<q,ap+aq<k k
p,q¢{i,j}
2
DR = — kg] and [DY]? = _%

The mutual intersection numbers are

|Hi,j’€p,tI| ZfFﬂL#@

[DP] - [D2] = k2
0 otherwise
Kijkpg .
—) P4 TNA#0
Db = ¢ w  TE0A7
0 otherwise.

PRrROOF. For the self-intersection numbers consider the formula in Corollary As
remarked above, the condition (INT) implies that all enhancements of the abelian coverings
are 1 and hence the same is true for the /~factor in the corollary. Let AP ]q denote the

slanted cherry with points 7,7 on bottom level and points p,¢q on middle level Together
with Corollary [7.8 and Corollary [7.10] we obtain

2
—1 K.
DR = ¢ —allh) = =553 | o= 3, (Dl
Mo, p<q,aptaq<k
p.ag{i.g}
The degree of the slanted cherry is
9 1 _ hijfpg
(72 D81 = T
by applying the second formula in [Lemma 7.7] and [Lemma 8.20 The other numbers are
obtained similarly. O

8.3. The contracted spaces. We want to construct the compactified ball quotient
candidate B from Q by contracting the all the divisors DI? and D/%. This is in fact possible:

LEMMA 8.4. The divisors DI? and D/% ofé are contractible. The DM-stack B obtained
from Q by contracting those divisors is smooth. If D% and D% denote the points in B

obtained by contracting the corresponding divisors in Q then
2

B _ Mg By _ Kijhlpg

PROOF. For each of the two types of boundary divisors D% and DY, we will write a

neighborhood U as quotient stack [U/G] with U smooth, and show that the preimage of
the boundary divisor in U is a P! with self-intersection number —1. Castelnuovo’s criterion
then implies that this curve is smoothly contractible. The order of G will be ,f; for DQ

for DQ After contracting the covering P!, the quotient is a point with isotropy

and
grougz ]C,; and the claim on the degrees follows.

We first consider a cherry divisor D%. Let Dj\{]’?p denote its preimage in ’H;gnp. As all
the abelian enhancements of the cover of ; jA, , are one, the divisor Dj\{;“np is irreducible, in
fact isomorphic to P! with coordinates the scales of the differential forms on the cherries.

We Compute the order of the automorphism group of any p01nt (X W) in DH’“ Sup-
pose first that (X w) is generic. The irreducible components of X group into three T-orbits:
The components X XT corresponding to the top-level vertex of ; jA, 4, the components XZL]
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corresponding to the vertex with marked points 7, j, and the components )A(p%q correspond-
ing to the vertex with marked points p,q. Observe that there are x;; edges between X7
and )A(ZLJ and rp 4 edges between XT and X Lq. The restriction of 7 to each of the three
(not necessarily connected) curves X7 le], X;q has order k. Given an automorphism
of the complete curve X its restrictions to X and )?ZJ& need to agree on the r;; nodes,

and the analogue argument applies to X;q. Hence after fixing the automorphism on the

lki : possible choices for the automorphism on the two

top-level curve X T there are -
bottom-level curves left. Together with the k choices for the top-level automorphism, we
obtain

k3

| Aut(X,0)| = .
Ki,jkp,q

As the non-representable map Hglp — Q has degree %, this yields that the generic point

k? . . faq
AT Exactly the same argument also applies

to the two boundary points of D/% corresponding to the slanted cherries.
The automorphism group is thus generated by multiplying the transversal t-parameter

(compare W by an r-th root of unity in local charts covering all of ; jA,, ;. We r2nay
k
Ki,jkp,q

Comparing with the degree of the normal bundle in shows that preimage of D%
in U is a (—1)-curve.
We now consider a dumbbell divisor Dg. As above one checks that the isotropy group

of D[% has an isotropy group of size r :=

thus take for U any tubular neighborhood of D and take a global cover U of degree

at the generic point of Dg is of order ﬁ and that the isotropy groups of the boundary
points of the divisor have a quotient group of that order. Consider a tubular neighborhood
of DQ and a degree il k —] cover that trivializes the isotropy group at the generic point. Let
D% be the preimage of the boundary divisor in this cover.

Let p,q,r denote the three marked points on the bottom level of a point in L; ;.
By applying the above line of arguments again the three boundary points of ]_N)I? have

cyclic isotropy groups of sizes —f— and -~ respectively. The triangle group T' =

Kp,q’ "””;D r
k k k : . .
T(Tp,q’ oy Tw) is always spherical, because al + a; > k implies a, + a, + a, < k and

hence

K K K ap+ag+a
2_(1=— P,q —(1 = p,r — (1= q,r :2_2p q T
(1- "2y o ey g Moy <

This implies that the T-cover of ﬁg ramified to order k/xk, 4 along the divisor where {p, ¢}

> 0.

have come together etc, trivializes the isotropy groups on the boundary divisor 58 and

the preimage of 151? is a P1. More precisely, the isotropy groups of order k/k, , do not fix
isolated points on the boundary divisor but have one-dimensional stabilizer, the boundary
divisors intersecting DI?. This implies that the above T-cover actually provides a chart of
a full tubular neighborhood.

It remains to show that |T'| = k/|k; ;| in order to conclude with the normal bun-
dle degree from that this P! is a (—1)-curve. To show this, recall that as

T is spherical, there are only the cases (£, £ £ ) = (2.2 n) for n € N>o and

9 )
Kp,q’ Kp,r’ Kq,r

(A E k) —(23n) for n € {3,4 5} to consider. In the first case the order of

bl )
Kp,q’ Kp,r’ Kq,r

T(2,2,n) is 2n, and assuming that kq = = 2, one easily checks that 2" ko — |H | by
i,

using > ; a; = 2k. In the second case the order of T(2,3,n) is 2lem(6, n), and the claimed

equality follows with a similar argument. [l

We will now compute the Chern classes of B. Let ¢: @ — B denote the contraction
map. Let

I''={(,j) : i<j,ai+a; <k} and L:={(,j) : i <j,a; +a; >k}

be the pairs of integers appearing as indices of the I'; ; and L; ;. Let I = Iqu denote the
common degeneration of I';; and Ly, i.e. the three-level graph with points p, ¢ on bottom
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level, i, j on top level and the remaining point on the middle level. Accordingly, we write

A:={(4,pq) + i<ji<p<qj&{p,a},ai+a; <kap+aqg <k} and

I:= {(lajapaQ) 1< 357’ <P < Q7J ¢ {p)Q}7ai +CL]' > kaap+aq < k:}
for the quadruples of possible indices. Recall that Dy, is the union of all boundary
divisors Dy,; whose level graph has a horizontal edge, i.e. corresponding to pairs (i, j)
with a; +a; = k. We write

H:={(i,j) : i<j,a+aj =k}
We summarize the intersections of the boundary divisors: The cherry Din A intersects

precisely DF%j and FI%. The divisor Dy, intersects precisely the three divisors Dl%b for

any pair (a,b) disjoint from {i, j}. For the divisor Dl%j consider any pair (p, q) of the three

remaining points as {p, q,r}. This gives an intersection with a cherry if a, + a4 < k, with
a horizontal divisor if a, + a4 = k and with an L-divisor if a), + a4, > k. Consequently, the
divisor Dl%-j intersects precisely the three divisors DFQab for any pair (a,b) disjoint from

{i,4}-

LEMMA 8.5. The self-intersection numbers of the boundary divisors of B are

w2 Fig Kig B 12
[Dri,j] = k2 + Z ﬁ and [DHi,j] = —1.
p<q,ap+taq>k
p,a¢{i.j}
The mutual intersection numbers are for {i,j} N{p,q} = O given by
B B RijhFp, B B Ri,j
[Drml : [Drp,q] = % and [Drml : [DHp,q] = ;gj

and for [{i,7,p}| =3 by

k2

KijRip .

BB ifai+aj+ap < k

[DF]-[DE)) = _
0 otherwise.

PROOF. We claim that the pull back of [D?i j] is given by

* Ki g
CDE ) =D+ Y LIDE 1+ > D2,

|Fpg
p<q,aptaq>k ’ p<q, ap+aq<k
p.a¢{i.g} pa¢{i.g}
To determine the coefficients in the above expression, one may intersect the equation
% _ . . .
c*[DE ] = [DQ 20 pq[DQ JT 2 /\pq[DQAM] with unknown coefficients with

each of the d1V1sors [DQ ] and [DQ ] in turn. The left hand side vanishes by push-pull,

and the intersection numbers on the rlght hand side are given by [Lemma 8.3] The claimed
intersection numbers involving only I'-divisors follow again by
The pull back of the horizontal divisor is given by ¢* [Dﬁ, j] = [Dy, 7,]. The intersection

number [D"B ] [D(’B J= [DQ ] . [DQ ] follows from [Lemma 7.7|and [Lemma 8.2| Finally

by |Prop051t10n 4. 5| and ( . the normal bundle of [DQ ] is given by —, in CH(DQ ]),

where 1), 1s the 1-class supported on the half edge of HZ ,;j that is adjacent to the vertex
with three adjacent marked points. ([l

PROPOSITION 8.6. The log canonical bundle on B has first Chern class

(73)  (Qh(ogDhr)) = 3 (-0

Py
ijer T W

1 .
~DIDE )+ 5DR,] inCHi(B)

Its square and the second Chern class are given by

’%,J “p q

’fm
74 QL (log D = 6— E g
( ) ( (Og hor =6—3 +3 k
i,j€r i,j€EL 1,,P,gEA
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and
Ki Ki ik
(75) c2(Q(log Dyor)) = 2— D =2+ Z Fithe.
i,jer JGL i,j,p,gEA
respectively.

Proor. To derive from [Theorem 1.1| we insert into

(@b (108 D) = 2 ¢+ 3D+ D)
L A

that 5§ — > (m; + k)1); is a sum of boundary terms by the relation (7.8]). Consider Keel’s

relation
= = j{: ZScd_i_ jg:lﬁu17

c<d
ig{e.d) =

where A;; is the boundary divisor in My 5 where the points (i, 5) have come together. We
pull back this relation via the forgetful map 7 : PE* ./\/lo 5(1) — Mo 5. Since this map is a
root-stack construction and the isotropy groups of the divisors were computed in th proof

of [Lemma 8.4] we obtain

o DE,] ifa+b<—k
T Agy = [ll?Hab]Q - ifatb=—k
%[Drab] + Z’i<j, ai+aj<k a[Di,jAa,b] lf a + b > *k

i.j¢{a.b}

Putting everything together we find in CH;(Q) that

¢1(Qh(log Dyor) = L 1pg )+ > G - - DIDE ]

“~ 2K; 5 24 = ‘/i‘ |
Jer J ,JEL bJ
(76) 1,)€ 1,)€

k
Y G A e, v ingy
2K Kp,q e
4,J,p,q€A
and since the divisors DQ L., and DQ A o are smoothly contractible we deduce

To derive we first note that — 30|+ 3|A|+ 2|H|+ 2|L| = 5 and that for (z j)eL
the relation
2 2
Kp,g 1 Kpr Kpglipr | Bar | _ ,Fij
1+ Z N <_ L +2 k2 +k2)_4k2
p€{17"'75}\{l’]}
{grt={1,...5}\{i.5,p}

holds because of ) ", a; = 2k. Using those relations and the intersection numbers in
squaring yields

1 2 _ "w ,JK“P(I
c1(Qs(log Dnor))® = 5= Y (2 p >+2 > +4 Z k

i,jer 1,3,P,q€EA i,jEL

and follows because ), a; = 2k implies

2 2
Ki,jkp, Rij
(77) 1+ < ’”>+ ) ;{2”— k; = 0.

i,J€T ,5,P,qEA ,j€L
The second Chern class can be computed as

e2(Q5(10g Dor)) = X(Mos) + D x(DR9)+ Y x(DF )+ Y x(D®; ),

i,jer i,jeL ,5,P,q€A

where X(D%i j) X(DE°) = 1 be [Lemma 7.7/ and |[Lemma 8.2 and the Euler character-

74]

istics of the points are given in [Lemma 8.4 (|
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8.4. The ball quotient certificate. We can finally put together the previous inter-
section numbers and use our ball quotient criterion to show that the contracted spaces are
ball quotients.

PROOF OF [THEOREM 1.7} We apply [Proposition 8.1]and check that first that the only
log—exceptional curves for cl(ng(log Dyor)) are the components of Dy,. In fact since the

expression (73)) is an effective divisor and since B \ D = My 5 is affine, we only have to
check p081t1V1ty of ¢4 and the intersection with Dy, and D% For the D% ,—mtersectlons
this follows from the intersection numbers in m In fact, the self-intersection
number of D%i ~ is negative only if a, + a4 < k for any pair {p, } disjoint from {3, j}.
Using we compute in this case that
% 1 Kij (2ap + 2a4 + 20, — a; — a;
[DFi,j] : Cl(Qg(log Dhor)) = ];] ( L 4 L - L — 1) 3

where {a1, as, a3, a4, a5} = {ai, a;, ap, aq, aq}. Since a; +a; < k, this expression is positive.
Moreover, one directly computes

[Di,.,) - e1(25(log Dior)) = 0.

That 01(Q1 (log Dyor))? > 0 is a consequence of the above, as cl(Q%(log Dyor)) is by

Equation (73)) a linear combination of the divisors D% ~and Dhor with positive coefficients.
" O



CHAPTER III

The multi-scale boundary of the gothic locus

1. Introduction

Let p = (m1,...,my,) € N such that ) . m; = 2g — 2. We denote by PQM, (1)
the projectivized stratum of abelian differentials (X, w), where X is a Riemann surface of
genus g and w is an one-form with zeros as prescribed by p. Affine invariant subvarieties of
QMg (), or equivalently GLa(R)T-orbit closures, are locally given by R-linear equations
in period coordinates. One orbit closures of special interest is the gothic locus QG C
QM 6(03,23), first described in [MMW17]. The gothic locus QG was the first known
example of a primitive rank two R-linear submanifold and counterexamples to an earlier
conjecture of Mirzakhani. The interest in this locus stems moreover from the fact that it
contains a dense set of formerly unknown primitive Teichmiiller curves. The name gothic
locus origins from [MMW17|, as a translation surface in the locus resembles the outline of
a gothic cathedral.

Even after projectivization, the moduli spaces PQQM,,, (1), and in particular orbit
closures, are in general non-compact. A well-behaved compactification of PQM, (1),
the so called moduli space of multi-scale differentials }P’Eﬂgﬂn(u), has been constructed
by Bainbridge-Chen-Gendron-Grushevsky-Moller [BCGGM19b|. By a recent result of
Benirschke |[Ben20|, the boundary of a GLg2(R)"-orbit closure in the moduli space of
multi-scale differentials is locally given by R-linear equations, but few non-trivial exam-
ples of such boundaries appear in the literature. In this article, which is still work in
progress, we will highlight some aspects of the boundary of the closure of the gothic locus
P=G = PQG C PEM,6(03,2%). The long term goal of this project is to compute the
fundamental class of the gothic locus PEG, the Euler characteristic of PQG by using the
results in Chapter , a complete description of the boundary of PEG, and the number of
ends of QG.

Our first statement is about the intersection of the gothic locus with non-horizontal
boundary divisors.

PROPOSITION 1.1 (Proposition . The gothic locus PEG intersects the non-horizontal
boundary divisors Dr,, ..., Dry whose dual graphs are listed in Figure ]

Iy I's Ig
0.0 090 09,0
2 2
U\ of \o if \n
3 3 2\ [-2 -3\ |3
0 A
292 2 2 202
I'7 I's Iy

2 2200
F1GURE 1. Vertical divisors intersected by the gothic locus

REMARK 1.2. The gothic locus PEG might intersect additional non-horizontal boundary
diwisor. Those divisors are listed in Section [{)

73
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The intersection of the gothic locus with a non-horizontal boundary divisor consists of
a R-linear submanifold on every level. For the non-horizontal strata Dr,, ..., Dr, we will
see in Section [5] that the top-levels of the intersection with the gothic locus are well-known
R-linear submanifolds.

Recall that a Teichmiiller curve is an immersed algebraic curve C' — M, which is the
image under the forgetful map of a 2-dimensional variety M — QM ,, (1) which is locally
cut out by R-linear equations in period coordinates. In strata of holomorphic differentials
several equivalent characterisations of Teichmiiller curves exist. However, in strata of
meromorphic differentials those characterizations do no longer agree, and we are using the
above as our definition. If 7 is a Teichmiiller curve and (X,w) € T is a differential, then in
the abelian case the GLg(R)-orbit of (X,w) will agree with 7. In the meromorphic case
this is no longer true: in fact the GL2(R)™-orbit is never equal to 7. Instead it sweeps out
only one of the chambers of 7 bounded by loci of parallel saddle connections; see [MM23]
for details. Following [MM23|, we say that the differential (X,w) € T generates T if its
GLy(R) T -orbit is equal to 7 on an open subset of T.

A Teichmiiller curve in a stratum of meromorphic differentials is called obuvious if it is
the intersection of a Hurwitz space above another stratum of abelian differentials and a
locus prescribed by residue conditions. By analyzing the bottom levels of the intersection of
the gothic locus with Dr, in Section [6| we obtain an example of a non-obvious Teichmiiller
curve.

THEOREM 1.3. Let (X,w) C QM ¢(—32,23) be the canonical cover of the 6-differential
of type (—10,—5,3). The differential (X,w) generates a non-obvious Teichmiiller curve.
In the chart in Figure[d this Teichmiller curve is given by the equations

w; = —wips  fori=1,2,3 and w1 + wg + ws = 0.
\ \
\ A\ fU6
Ve
w A w
5 4 3 wy
V4
- - v
,U4 // // 2 w4
W5 w3

/ We w2
U1 /
vs ) -- -- w1
U1 vs
w4 wa We
U3

\
\

\
\

v3

FIGURE 2. A surface of infinite area generating a non-obvious Teichmiiller
curve in the stratum QM 6(—32,23)

The fact that the generating differential in Theorem is the canonical cover of a 6-
differential is a shadow of the fact that the gothic locus is the GLy(R) ™ -orbit closure of the
locus of unfoldings of quadrilaterals with angles %, &, &, 37”, or equivalently the GLy(R)™-
orbit closure of the canonical covers of the stratum of 6-differentials QMg 4(—53,3). The
6-differential of type (—10, —5, 3) corresponds to the bottom level of the (up to permutation
of the marked points) unique boundary divisor of PE M 4(—52, 3). The other rank 2 orbit
closures constructed in [EMMW20]| arise similarly to the gothic locus as the orbit closures
of canonical covers of strata of k-differentials in genus zero. We expect that an analysis of
the boundary divisors of those strata will yield more non-obvious Teichmiiller curves which
are generated by canonical covers of k-differentials.

For the horizontal boundary divisors, we can provide a list of all boundary strata that
might possibly intersect the gothic locus.
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PROPOSITION 1.4 (Proposition |7.1)). The gothic locus PEG only intersects the horizon-
tal strata listed in Figure[3

FS
0 09,0
o O
0 2922

Iy
2
2

18]

O ) 0 0 0 0
;./\?/\ .( ?@é/\.( ;. /.\ .(
2 2 0 2 2 0 2

F1GURE 3. The purely horizontal boundary strata in the gothic locus

In some sense the intersections with the horizontal boundary divisors is a bit more sub-
tle. For example it is not straight forward to calculate the dimension of those intersections.
In Section [7] we will prove partial results that back the following expectation.

EXPECTATION 1.5 (Expectation . We expect the following:

e The gothic locus intersects the three strata Dr,, Dr, and Dr,, (depicted in the
top row of Figure @) n a divisor.

e The gothic locus intersects the three strata Dr,, Dr,, and Dr,, (depicted in the
middle row of Figure @) i codimension 2.

e The gothic locus intersects the two strata Dr,, and Dr,, (depicted in the bottom
row of Figure @) i codimension 3.

o The gothic locus does not intersect the two strata Dy, and Dr,, .

Recall from above that the gothic locus contains a dense set of Teichmiiller curves.
Those curves are non-compact, and the points in the boundary are called cups.

PROPOSITION 1.6 (Proposition . The interior of each of the four horizontal strata
Dlgl, D%’;, Dl% and D%O contains cusps of a primitive Teichmiiller curve contained in
the gothic locus QG. The interior of the stratum Dlglg contains cusps of a non-primitive
Teichmaiiller curve.

To obtain the information about the boundary we proceed as follows. As we will recall
in Section [2] the gothic locus can be defined, following [EMMW20|, via a certain Hurwitz
space H of dihedral covers. There is a subspace D C H of codimension 1 corresponding
to the gothic locus. Let H denote the admissible covers compactification and D C H the
closure of D therein. Then there are two natural forgetful maps

PEG D
\ /

./\/l475

whose images agree. In Section [3| we will analyze which of the boundary divisors of H
are intersected by D. In Section [4] we will relate this to the boundary of the gothic locus
P=G and obtain a list of all strata of the ambient moduli space that can possibly contain
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a boundary divisor of the gothic locus. The results in Section [4]rely heavily on a computer
program written in Sage that will be made available separately.

In the last Section [§] we outline a possible approach to compute the fundamental class
of the gothic locus. This would allow for the computation of its Euler characteristic via

Theorem [MNIT3l

2. The gothic locus

We will recall the different definitions of the gothic locus QG from [MMW17| and
[EMMW?20|, and collect some facts that will be useful in the sequel.

2.1. Quadrilaterals and period coordinates. We begin be giving a geometric def-
inition of the gothic locus and recalling its equation in local period coordinates. We denote
by QZg the family of curves in QM (0%,23) that is obtained by unfolding the quadri-

laterals with angles %, &, G, 3777 We will revere to 0Zg as the cyclic locus. Via cutting

and gluing of the unfolded polygon one will eventually arrive at the polygons depicted in
Figure [4

Us U3 Ws w3

FIGURE 4. A curve in the locus of cyclic forms Q274

DEFINITION 2.1 (Gothic locus). We define the gothic locus QG as the orbit closure
QG := GLe(R)* - QZg C QM4 4(03,2%).

REMARK 2.2. In contrast to [MMW17] and [EMMW?20], we explicitly mark the three
fized points of the cyclic deck transformation.

Let J denote the involution of the surface depicted in Figure[d that is given by rotating
the polygons by 7. Observe that this involution must exist on all curves in the GLy(R)™"-
orbit, hence for every curve in gothic locus QG. Let ¥ := Z(w) U Fix(J). We regard
the vectors v;, w;, o, 3,7 in Figure 4] as period coordinates in H'(X;X). We choose the
orientation of v;, w; as counterclockwise in the hexagons and the orientation of «, 8 and ~
from left to right. This 15 vectors span H'(X;X) = C!3 with the two relations

Zvi :Zwi:O.

In these coordinates the gothic locus QG is locally defined by the equations
V; = —Uj43, W; = —W;i4+3 for i = 1, 2, 3,
(78) v1 +v3 +v5 = w1 + wg +ws =0,
at+vy=B+ws=a+B—-v=0.
The first two lines of equations can be found in [MMW17, Equation 9.2]. For the third
line notice that the action of J implies o’ = «, 3/ = B and 7/ = v. We can use this to
simplify the obvious relations o/ + a +v3 + vy +v5 =0, 8/ + B+ w3 + wyg + w5 = 0 and
Y +y—ws —v5 —ws —vg —ws —v3=0.
The cyclic forms QZg C QG are cut out by the additional non-linear equations
[vi| = |vj] for 1 <4, <6
(79) lw;| = |wj| for1<4,5<6

v = A\ wy for some A € R+g.
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2.2. Dihedral triples. We will now recall from [EMMW20| the relation of the gothic
locus to a certain Hurwitz space of dihedral covers. Let

Dig=(r,f|r°=f>=(rf)*=¢)
denote the dihedral group of order 12. Let Y — P! be a normal Dqs-cover with monodromy
datum
(f?f?f?rf7’rf77"f7r3)7

let X :=Y/f denote the quotient, and let 7: X — P! be the induced (non-Galois) cover.

We denote by H the Hurwitz space of those covers m: X — P!. Moreover, we denote
the fiber above the branch point with ramification associated to 73 by X* C X and refer
to it as the special fiber of w. One checks that | X*| =3 and ¢g(X) = 4.

We denote by D C H the locus of covers (7: X — P!) € H such that X admits an
one-form w € Q(X) subject to
(80) (W =2-X" and (r+r)'w =G+ w,
where (g = e2™/6 We call the triples (X, w, ) satisfying dihedral triples, and we call
D the dihedral locus. As fr3 = r3f, the action of 73 on Y commutes with the action of f.
Thus the action of % descends to an involution on X = Y/f. We will denote this involution
by J. The involution J has 3 fixed points, one in each fiber above the ramification points
corresponding to rf.

We denote by Ss13 := 5123} X Sfa,5,6) € S6 the indicated subgroup of the symmetric
group. The Hurwitz space H comes with a map

(81) ¢:H— Mye/S343

where the three fixed points of J are mapped to the points 1,2,3 and the three points in
the special fiber are mapped to the points 4,5, 6. If we denote by QD the set of all dihedral
triples, we have a map
QD — QMy6(0%,2%) /8343
and we denote by
QD C QM476(03, 23)

the preimage of QD under the quotient map by Ss3.3.

Recall that we defined the gothic locus QG in Definition as the GLa(R)™-orbit
closure of certain cyclic forms. The locus 2D gives us another description.

THEOREM 2.3 (JEMMW?20, Theorem 5.3|). The gothic locus is the closure
OG =0QD C QM476(03, 23)
of the dihedral locus.

Note that the cyclic forms 2Z; are not contained in QD (the corresponding covers
7: X — P! would need to be Galois), but are in fact contained in the closure QG = QD
by [EMMW20, Theorem 4.2]. Using the fact that Y — P! is a Dja-cover, we can form the
commutative diagram

Observe that the map 7 is of degree 2 and thus Galois. The genera of the quotient curves
is g(A) =¢g(B) = 1.

The Hurwitz space H comes with the target morphisms 6: H — Mg 7. The image of
the dihedral locus D under this morphism will be the main object of our interest in the
next section.
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DEFINITION 2.4 (Moduli space of critical values). Let
Ve :=90(D) € Moy
denote the image of the dihedral locus. We call Vg the moduli space of critical values.
The dimension of the moduli space Vi has been computed in [EMMW?20].

THEOREM 2.5 (JEMMW20, Theorem 4.4|). The moduli space of critical values is of
dimension dim(Vg) = 3. In particular is Vg a divisor in Mo 7 and dim(QG) = 4.

2.3. Original definition. We obtained the maps in Diagram as a consequence
of the construction of the gothic locus QG via the Hurwitz space H. To complete the
picture, we recall that the maps in the diagram can in fact be used to define the gothic
locus in the first place. In fact, this was the first published description.

To this end, let QM (22,0%)~ denote the subvariety of QMy6(23,03) where on the
curves (X, w) there exists an involution J: X — X that fixes all the marked points and such
that w is J-antiinvariant. For such a curve X we say that a holomorphic map p: X — B
is odd, if there exists an involution j: B — B such that po J = jop. In [MMW17|, the
gothic locus was defined as

Ja curve B € M; and an odd,
0G =< (X,w) € QM 46(23,0%)7 | degree three rational map p: X — B
such that |p(Z(w))| = 1.

This definition agrees with our previous definitions as was shown in [EMMW20)].

2.4. The quadratic quotients. For an abelian differential (X,w) € QG the differ-
ential w is J-antiinvariant by (80). Therefore, the quotient (X,w?)/J gives a well-defined
quadratic differential. We denote the quotient map by

7: QG — Q1,6(—13, 13).

and refer to the image QG := j(QG) as the quadratic gothic locus

The stratum Q176(—13, 13) has a natural forgetful map to M 3 by forgetting the mark-
ings at the zeros and only remembering the markings at the simple poles. The image of
OG under this map is the so-called flex locus F'. It is of dimension 2 and was the first
known example of a totally geodesic surface, see [MMW17| for details. Its fundamental
class has been computed by Chen.

THEOREM 2.6 (|Che22, Theorem 1.1]). The fundamental class of the flex locus is
4 _
[F] = 30+ A(8o. (1,21 + B0:g1,3) + dog2.3)) + 400123y € R (M 3).

3. The moduli space of critical values

To understand the compactification of the gothic locus QG, it will be useful to an-
alyze the closure of the moduli space of critical values Vi inside the Deligne-Mumford
compactification Mo 7. This will help us later on to understand the admissible covers
compactification D C H. The main goal of this section is to prove Corollary .

REMARK 3.1. In theory it should be possible to push the techniques in this section
further to directly determine the complete list of boundary strata of the gothic locus PZG.
However this is a very tedious and error-prone task. Instead we hope to determine the
complete list of boundary strata a posteriori from the fundamental class, see Remark[8.4)

By a result of [EMMW20|, the dihedral triples QD can be parametrized by certain tu-
ples of polynomials Pg C (C[z])?. We will reformulate this result in terms of triples of poly-

nomials Bg C (C[xz])3/C* that parametrize the projectivization PQD. Our parametriza-
tion has the advantage that the polynomials do depend more directly on the branch points
of the cover 7: X — P! and allows us to show:

PROPOSITION 3.2. The point (by,...,bg,00) € Mo belongs to the subvariety Vi if
and only if there exist a,b € C and ¢; € C*, such that

(z — by)(z — bs)(x — bg) — c1(z — by)(x — by)(x — b3) = (azx + b)>.
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Observe that the expression is symmetric in b1, ba, b3 and by, bs, bg as expected. To
describe which boundary divisors of M7 are intersected by the gothic locus QG it is
therefore natural to work on the quotient Mg 7/S543, where S35 := S{1,2,3) XSqa5,6) € S7.
We denote by A;; C Mo,7/S3+3 the reducible boundary divisor where i of the marked
points 1,2, 3 and j of the marked points 4, 5,6 lie on one irreducible component.

COROLLARY 3.3. The variety Vg /Ssy3 does not intersect the boundary divisors Ao
and A271.

PrOOF. We will discuss the case Aj 1, the case Aj s follow by essentially the same
argument. In Proposition [3.10] we will see that we may assume that by = by = by = 0,
which implies b = 0. After dividing by = we are left with the equation

(.T — b5)(a: — b@) — clx(az — bg) = a3x2.
Hence b5 = 0 or bg = 0, a contradiction. ]

REMARK 3.4. By considering the equation in Proposition [3-3, one can check that the
variety V g /S343 intersects all other boundary divisors, that is Ao 2, Aoz, A1, A1 3, Agyp,
Ag 2, Ag3, Azp, Az and Aszps.

We begin to prepare for the proof of Proposition [3.2] by recalling some facts and notation
from [EMMW20, §4].

Let C[z]; denote the space of polynomials of degree k or less. For (p, q) € C[z]3 x C[x];
we have a factorization

(83) P’ —44° = (0~ 2¢°)(p + 2¢°) = (dis1)(das3),
where the d; € C[z] are square free polynomials. We define the subvariety
(84) Pg :={(p,q) | d = dids is separable of degree 6 and deg(d;) = 3} C C[z]3 x Clx];.

Let T} and Uy denote the Chebyshev polynomials of the first and second kind, respectively.
The space of pairs Pg can be used to parametrize the dihedral locus:

THEOREM 3.5 (JEMMW?20, Theorem 4.3]). There is a surjective algebraic map
Pe—QD, (p,q) — (X,w,m).
The Dya-cover Y — P! is defined in Clz,y] by the equation
(85) y'? = p(@)y’ +g(x)° = 0,

the covering is given by (z,y) — y and the action of D12 is given by
q(z
reen) = G ad £ = (5 22),
Let w:= (y+q/y)/2. The curve X =Y/ f is defined in Clx,u| by the equation
2q(2)*Ts(q(x) ~"/?u) = p(=)

and the map m: X — P! is given by 7(x,u) = x. The one-form w is given by
dx

= € Q(X).
T @ P Usal) ) < )
Moreover, w is the pushforward of the one-form
dx
86 vi=y —— € QY
(86) 2y% —p(x) &)

by the quotient map ¥ — X.

The special fiber of the dihedral map 7: X — P! is the fiber above co. The other
branch points of the dihedral map 7 are precisely the 6 zeros of the separable polynomial
dids in . More precisely, the 3 zeros of dy are the ramification points with monodromy
associated to [f], while the 3 zeros of ds are the ramification points with monodromy
associated to [rf]. In order to understand the variety Viz we need to understand which
polynomials dy,d> can appear in .
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We first observe that the set Pg is in some sense “to large”. The group of units C*
acts on Pg by
Z - (pv Q) = (23p> ZQ)
Note that this in particular implies a group action of the subgroup of the 3th roots of unity
ps € C* by
¢ (p,q) = (p.C)-

COROLLARY 3.6. There is a commutative diagram

P ——— % POD

NS

Pg/C*
where all maps are surjective.
PROOF. Let (p,q) € Pg and let
T Po— PQD

denote the surjective map from the previous Theorem. We need to show that this map
factors through Pg/C*, i.e. that for all z € C* it is 7((p, q)) = 7((23p, 2q)). It suffices to
prove this for Y and v, as X, w and 7 are determined by those two. The equation for
the curve Y7 corresponding to 7((p, q)) is

y'2 — p(x)y’ + q(2)® =0,

the equation for the curve Y, corresponding to 7((23p, zq)) is
0

y'? — 2p(z)y’ + 2Oq(2)° =

and an isomorphism between both curves is given by
c: Y1 —>Y,
(,9) = (z,2'/%y).
The equations for the corresponding one-forms are
dz dz

v i=y and v,:=vy-

245 — p(a) 2y — 23p(x)
and the pull-back is
dz
* _ 1/2 _1/6
UVZ—Z/y‘m—Z/Vl.
Thus 7((p,q)) = 7((3p, 2q)) agree in the projectivization PQD. O

We gather some more or less obvious facts about all the polynomials floating around.

LEMMA 3.7. For (p,q) € Pg and dy,da, s1, 82 as in , we have
(i) p = 5(d2s3 + dis1), ¢* = §(d2s3 — dis1),
(it) deg(q) <1,
(iii) deg(da) = 3,
(iv) deg(s1) =0 and
(v) deg(s2) = 0.
In particular, we can choose s1 = so = 1 and hence

1 1
(87) p= §(d2 +dy), ¢¢ = Z(dz —dy).

PROOF. Recall that (p,q) € Clz]3 x C[z]; in particular deg(¢®) < 3 (implying ().
Thus all the inequalities in

3 =deg(dy) < deg(dls%) = deg(p — 2q3) <3

need to be in fact equalities, implying . Claim (fi)) is seen by solving for p and gq.
Claim follows from deg(di1d2) = 6 and deg(d;) = 3, and we finally see claim by

3 =deg(ds) < deg(dgsg) = deg(p + 2q3) < 3.
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The relations obtained in the previous lemma motivate the definition of the subvariety

deg(dl) = deg(dg) =3
(88) Bg := < (d1,d2) € (Clx])? dyds separable /(C><

do —dy € ((C[l’]l)3
where C* acts ob Bg by rescaling the polynomials. The locus Bg provides an alternative
parametrization of the dihedral triples:

PROPOSITION 3.8. There is a surjective map Bg — V. If by, ..., bs are the roots of
di and by, ..., bg are the roots of do the map is given by

(dl,dg) — (bl, ce ,b6,00).

Proor. By Corollary we have a surjective map Pg/C* — PQD — Va. Thus it
suffices to give a surjective map Bg — PQD. Consider the map

BG — F’G/(C><
1 1 13
) o (g, (G =) ).
This map is well-defined and surjective by Lemma [3.7] O
PROOF OF PROPOSITION [3.2] This is a direct consequence of Proposition O

We let PGL2(C) act on the polynomials C[z] by Mobius transformation of the roots:
for a polynomial f :=c(z —a1)---(z — an) € C[z] and a matrix A € PGLy(C) we define

A-fi=clx—A-a1) - (x—A-ay).

The group action of the stabilizer subgroup PGL2(C) is partially compatible with the
ring structure on C[z].

LEMMA 3.9. For all A € PGLo(C) and all f, g € C[x] the formal distributivity

(A-f)-(A-g)=A-(fg).
holds. If moreover deg(f) = deg(g) and A € PGL2(C)w, then there exists a A € C* such

that
(A-f)+(A-g)=A-(\[f+9)).

PRrOOF. The distributivity with multiplication is immediate and the second equation
can be checked on the generators

) 1 =z _(z 0 x
TZ.—<0 1) for € C and DZ'_<O 1) for z € C*,

by checking that (A - f) 4 (A - g) vanishes on all the zeros of A - (f + g). O

PROPOSITION 3.10. The group action of the stabilizer subgroup PGLa(C)s on Bg
defined by
A-(dy,d2) = (A-dy, A-ds)

1s well-defined and there is a commutative diagram

\ /PQD

Be/PGLy(C

where all maps are surjective.

PRroOOF. If the group action is well-defined, the existence of the diagram is immediate,
as the action of PGL(C)s on Bg is obviously compatible with the group action on P!.
We need to prove that the action is indeed well-defined. Let (dy,d2) € Bg. The degree
and separability conditions in the definition of Bg (see (88])) are invariant under the group
action. Assume that dy —d; = f3 for some f € C[z];. By the previous lemma there exists
an A € C* such that

(A-dy) —(A-di)=A-(A(da—dy)) = AA- f2= (AN A f)>%
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Thus A - (dq,d2) € Bg as claimed. O
This completes the proof of Corollary

4. The boundary superset

We denote by P=2G .= POG C ]P’E2M1,6(—13, 13) the closure of the quadratic gothic
locus inside the moduli space of multi-scale differentials. The goal of this section is to
determine a superset of the boundary divisors of P22 M (—13,13) which are intersected
by the quadratic gothic locus PZ2G. For this, it is more convenient to work with the
unordered quadratic gothic locus

P=2G/ S35 C P2 My 6(—1%,1) /5343,

as this allows for a more concise listing of the relevant enhanced level graphs. For an
enhanced quadratic level graph I'S we denote by Dl% - IP’EQ./\/ng(—lg', 13) the bound-
ary stratum parametrized by FE| Our goal in this section is to obtain a list of all the
boundary strata Dl% whose intersection with the gothic locus might be boundary divisor
of the gothic locus. By work of Benirschke-Dozier-Grushevsky (see Theorem for the
precise statement) such strata might either be vertical divisors, or horizontal strata with
an arbitrary number of horizontal edges. Relying on the results of a computer program,
in this section we will prove:

PROPOSITION 4.1. The boundary of the quadratic gothic locus OP=2G /S5, 3 is contained
in the subspace

OPE2G/S543 C UDE%_Q

where the union is taken over all graphs in Figure [3 More precisely, each generic point of
the boundary OPZ2G is contained in the interior of one of the listed boundary strata DI?Q.

k3

For each covering (X — P!) € H we may consider the intermediate covering X/J =
A — P'. Let Hg denote the Hurwitz space parametrizing those coverings and let Hg
denote the compactification with admissible covers. As for H (see (81])) there is a forgetful
map ¢ : Ho — ﬂ176/53+3, where the marked points are the three points in the special
fiber and the images of the three fixed points of J.

Recall that there is the dihedral locus D C ‘H. Denote by Dg C Hg its image and by
Do C Hg the closure. It follows from the discussion in Sectionthat

¢(Dg) = m(PE*G)/S3+s,
where 7 : PEﬂl,g(—lg', 13) — M ¢ is the natural forgetful map. We will make use of this
equality to prove Proposition B
For a boundary stratum D5 we denote by D?QG = DIQQ NP=2G its intersection with
the quadratic gothic locus. Our intermediate goal is to prove:

PROPOSITION 4.2. Assume that D?QG C P=2Q is a divisor. Then there exists a bound-
ary stratum AMe C Hg such that w(DFQQG)/Sg+3 C ¢(AMQ) and dim A*e > 1.

The forgetful map 7 : PE2M; 6(—13,1%) — M may have positive fiber dimension
when restricted to a boundary divisor. An upper bound for this fiber dimension is given
as follows.

LEMMA 4.3. If Dl% C PE2M, 6(—13,13) is a divisor, then the fiber dimension of
7r|DFgQ above a generic point of W(DIQQ) s at most 1.

PRrROOF. The fiber dimension can only by greater than one if there exists a boundary
divisor with either at least three vertices on one level or two vertices on top- and bottom
level. By listing all the boundary strata (for example with diffstrata) one checks that
there is only one two-level graph with more than three vertices on one level, the one

n Chapter [I| and [ll we indexed the boundary strata of quadratic strata PE>M, (1) by coverings of
enhanced level graphs. Here we only index them by “the lower half” of the covering, i.e. by the quadratic
level graph. A priori this gives a coarser indexing, but as we will see it doesn’t matter here as all the
coverings are uniquely determined by the quadratic level graphs.
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FIGURE 5. The boundary strata of PE2M; ¢(—13,13)/S5, 3 that might by
intersected by the quadratic gothic locus PE2G /S35

depicted in Figure [6] Because of the GRC, the vertices on bottom level can not be scaled
independently, hence the fiber dimension of 7 restricted to this boundary divisor is 1. [

-4

/\ /\ /\
1 -11 -11 -1

FIGURE 6. A graph with three vertices on bottom level

PROOF OF PROPOSITION [4.2] Let DIQQG C P=%G be a divisor. By Lemma the
dimension of its image is 1 < dim W(Dlgg ) < 2. Hence there must be a boundary stratum

A%e C 74 such that ¢(A*e NDgy) contains W(DIQQG )/S3+3 and is of dimension at least
one. U
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We want to proceed by listing all the boundary divisors of Hg and check whether
or not their image under ¢ admits a level graph structure. As we are, at least for now,
only interested in divisors of the gothic locus, we do not need to consider all level graph
structures by the following theorem.

THEOREM 4.4 (|[BDG22, Theorem 1.5]). Let DSQG C P=2G be a divisor. Then T'9 has
either
e two level and no horizontal edge or
e one level and at least one horizontal edge.

We prove Proposition [£.1] by relying on the output of a computer program written in
Sage that does the following:

List all boundary strata A*e C Ho/S5,3 of dimension at least 1.

Throw away all strata that intersect the divisors A9 and A 1.

For each remaining stratum, consider its image under the forgetful map to MLG /S3+3.
For each stratum in the image check if it admits the structure of an enhanced
level graph as in Theorem [£.4] otherwise discard it.

The enhanced level graphs obtained in this way are exactly those listed in Figure [5]

REMARK 4.5. Note that Figure [J] includes all horizontal level graphs that appear as
images of boundary strata of Ho up to codimension 3. By also listing the boundary strata
of codimension 4 of the Hurwitz space Ho one can check that there are no additional
horizontal level graphs.

5. Non-horizontal divisors

In Proposition [£.I] we have determined a superset for the boundary divisors of the
quadratic gothic locus PZ2G. Note that for all the quadratic enhanced level graphs I‘iQ
listed there the covering abelian enhanced level graph, which we denote by I';, is uniquely
determined, see Section [[3] for details on the construction of the coverings. Hence this also
determines a superset for the boundary divisors of the gothic locus PEG. In this section,
we will provide explicit families of flat surfaces converging to some of the non-horizontal
divisors, and thus prove that those divisors are in fact intersected by the gothic locus. For
those divisors we list the dual graphs of the double covers in Figure [/} The intersection
Dﬁ- := Dp, N PEG on each level is a R-linear submanifold. On the left of each level we
indicate either the dimension of the respective linear submanifold, or the linear subman-
ifold itself if it is a locus of double covers: For a given stratum of quadratic differentials
P=2M, (1) on can define a linear submanifold in a stratum of abelian differentials via the

double cover construction. We will denote this linear submanifold by ]P@Zﬂg,n(,u). For
details of the definition see Section [I7A

In this section we will mostly be concerned with the top-level of each stratum. We
remark that the dimension of the top-level determines the dimension of the bottom-level.
In the next Section [6l we will have a closer look at some of the bottom-levels. We will treat
the horizontal divisors in Section [l

PROPOSITION 5.1. The gothic locus P=G intersects the boundary divisors Dr,, . .., Dr,.

REMARK 5.2. We are currently unable to decide whether or not the gothic locus inter-
sects the vertical divisors that are listed in Proposition [{.1] but not in Proposition [5.1]

To prove Proposition [5.1] we will handle each of the boundary strata listed there sep-
arately. For each stratum, we will show that it is intersected by the gothic locus P=G by
giving an explicit degeneration of the surface in Figure 4| along the Equations .

REMARK 5.3. To see that the limiting surface is actually contained in the claimed
boundary stratum, one should work with the conformal topology on the moduli space: A
sequence (X, wy) converges to a twisted differential (X,w) if there exists an exhaustion
K; of X \ {nodes of X} and a sequence of conformal maps g, : K; — X; such that gfw,
converges to w uniformly on compact sets, see [BCGGM19b, Section 3.3] for details. This

2The linear submanifolds are denote by H, in loc. cit.
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FiGure 7. Divisors intersected by the gothic locus

convergence can be verified in the flat pictures by choosing an appropriate exhaustion. In
the following we will suppress this technicality.

5.1. The stratum Dr,. The stratum Dg contains a point of the closure of the cyclic
forms PEZ; C PEG (and is in fact the only stratum that does so). By letting w; — 0 with
equal speed, one gets to the polygons depicted in Figure [§] The boundary of the gothic
locus is cut out by the equations

Zviz(), v; = —Vit3, v1+v3+vs=0, B+wve=0 and a—p=0,
3

thus dim DI%’T = 1. This implies dim Dg’L = 1. We remark that the torsion equations
B = B = us still exists, but no longer relates the two zeros of order 3. Instead it relates
the two nodes at top-level.

The two hexagons in Figure |8 can be identified by translation. (We emphasize that
this is not the action of the involution J, which rotates the polygons). This identification
exhibits the top-level as a two-fold covering of the Teichmiiller curve in QM;j(0?) with
marked points P, @, which is given by the condition that [P — @] is 3-torsion.

vy v

vs f v3 vy f U6

O O

6\, ) U3\, s
vy vy

FI1GURE 8. The top-level of the cyclic curve in DI%

5.2. The stratum Dr,. The top-level component of the stratum Dlg'; is again a
Teichmiiller curve. The flat picture can be obtained by pinching the two small hexagons
in Figure [ in different directions. The result of pinching the left hexagon vertically and
the right hexagon orthogonally to ws is depicted on the left of Figure 0] This polygon can
be re-glued to the L-shaped surface on the right of the same figure. The top-level Dlgs is
cut out be the equations

a1 =ag9 and a3 =y

and is thus a threefold cover of an elliptic curve where the three 2-torsion points are marked.
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FIGURE 9. The top-level component of D& and a re-gluing

5.3. The stratum Dr,. A flat picture of the top-level component of the stratum Dgﬁ
can be obtained by pinching only one of the small hexagons in Figure ] The resulting
flat picture is given in Figure [I0] In the figure, we highlight in gray the part of the
surface that is coming from the large hexagon. This component has the property that for
Vg = vg = w1 /2 = we = w5 = & = « (note that this is only one additional condition) the
depicted polygon is an origami and thus gives rise to a Teichmiiller curve.
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F1GURE 10. The top-level component of Dlgﬁ

We want to give a more precise description of the top-level D?;’T. Let T C QM (03) be
the two-dimensional subspace, where the marked points P, @), Z are subject to the relation
P+ Q = Z. If we choose Z as zero, this is equivalent to P + @) being 1-torsion. We claim
that the top-level of the stratum DIGG is a sixfold covering of 7 as follows. Consider the
covering that is ramified exactly above P, @, Z. More precisely, let the ramification profile
above Z be (3,1%) and the ramification profiles above P and @ by (2,1%). The double zero
(marked with a black square) is the ramification point of order three above Z, the two
simple zeros (marked with black and white circles) are the two ramification points of order
two above P and @), respectively. The three unramified points in the fiber above Z are the
three marked regular points (marked with a cross). In Figure|11|we depict the tessellation
of a generic curve in the stratum with the preimages of the torus.

FIGURE 11. A generic curve in the top-level component of D%’; and the
covered torus

5.4. The stratum Dr,. The flat picture of the stratum Dg can be obtained by
letting wy,ws — 0 in Figure [4] the resulting polygon is depicted in Figure [12]
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FIGURE 12. The top-level component of Dlg’;

We claim that the top-level component D?;T is a covering of a Hilbert modular surface
for a square discriminant Q(\/cﬁ) in Ms. We can cut and re-glue the polygons to the
polygon in Figure and by forgetting the marked regular points we obtain the image
under the forgetful map 7: QM3 (04, 12) — QMo (12). The image of D%T is locally given
by the equations

a1 =as and ag = ay.
The forgetful map = is locally injective on D%T: The periods v;, wy and ws in Figure
are completely determined by the «;. For example it is iy = v1 +v9, ag = 3 + 8 = —2uv1,
and similar equations hold for the other periods. By construction, the component D%T
is GLa(R)"-invariant and so is its image under the forgetful map 7. The GLy(R)"-orbit
closures in genus two have been classified by McMullen [McMO7b|. As the dimension of

the image is two, its projection to Ms needs to be a Hilbert modular surface by [McMO7b),
Theorem 1.2].

F1GURE 13. Image of the top-level component of Dlg’; in QMo (12)

5.5. The stratum Dr,. A surface in this stratum can be obtained by letting not
only wy and w4 converge to zero as for DFG77 but letting also vs and vg converge to zero,
all with equal speed. The resulting locus is 1-dimensional and coincides with the double
cover of the stratum P=? Mg 4(—1%) for dimensional reasons.

5.6. The stratum Dr,. After rotating the right hexagon in Figure [4] by 30 degrees
we can find two pairs of simply crossing geodesics, see Figure[I4l After cutting along these
geodesics and re-gluing the surface as depicted in Figure [L5]| the surface converges to the
top-level of Dlgg by letting all the labeled periods converge to zero.

6. Non-obvious Teichmiiller curves

In this section we will prove Theorem by exhibiting D%L as a non-obvious Teich-
miiller curve. As we have seen in Section |5 the top-level of Dﬁl has dimension 1. Hence
the bottom level has dimension 1, too. In particular is DE’J‘ a Teichmiiller curve. We can
regard this either as a curve in Q./\/ll,@(—?)z, 0,23), or, after forgetting the marked regular

point, in the stratum QM1,5(—32, 23). Before we prove the theorem, we recall some general
fact about coverings of flat surfaces.
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FIGURE 15. The same curve as in Figure (14| after re-gluing

LEMMA 6.1. Let f: (X,w) — (Y,n) be a covering of flat surfaces and ¢ € Y. Then n
has a poles at q if and only if w has a pole at every point in the fiber above q.

PROOF. Let p € X be a preimage of ¢g. Assume that ord,(n) = a for some p € X and
that f is ramified to order k at p. Then ord,(w) = (a + 1)k — 1, and thus

ordp(w) >a ifa> -1
ordp(w) <a ifa < —1.

In particular we see that 1 has a pole at ¢ if and only if w has a pole at every point in the
fiber above gq. U

PROOF OF THEOREM [[.3] We begin by showing that Dg’l is not obvious. First note
that the condition on the residues is trivial, i.e. the only condition is the one imposed by
the residue theorem. Hence we need to check that Dﬁl’L does not coincide with a Hurwitz
space above a 1-dimensional stratum of abelian differentials. By the Riemann-Hurwitz
formula, any such stratum would necessarily parametrize curves in genus 0. We want to
rule out the existence of such a map Dg’l — QMo a(my, ..., my).

For a contradiction assume that a map Dg’J‘ — QMg a(mi,...,myq) exists and let
f: (X,w) — (Y,n) be a corresponding covering. Let p1,ps € X be the two points where w
vanishes to order —3. In the notation of Lemma observe that

-3 =ordy,(w) = (a+ 1)k —1,
hence k € {1,2}. By Lemma there are two possibilities for the points p;:

(1) They might lie in different fibers, and then necessarily are total ramification points
of f. In particular is deg(f) = 2 (because of k € {1,2}). In this case f must
be totally ramified above all four marked points of Y. On the other hand, two
of the points where w vanishes to order 2 must lie in the same fiber (as all three
of those points must lie in the fibers above the two remaining marked points), a
contradiction.

(2) They might lie in the same fiber. Then deg(f) € {2,4} (because of k € {1,2}).
For deg(f) = 2 we arrive at the same contradiction as in Case (|1): in this case
f would need to be totally ramified above all four marked points again. For
deg(f) = 4 one checks with the Riemann-Hurwitz formula that it is not possible
for two of the marked double zeros to lie in one fiber. Hence the ramification
profiles in the other three fibers must by (3,1), and 7 of type (—=2,0?). But then

DICJ;’L would have REL while the gothic locus Q2G has REL zero, a contradiction.
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The cyclic locus QZg C QG agrees with the locus of unfoldings of quadrilaterals of
type (1,1,1,9), or equivalently with the locus of canonical covers of the 6-differentials of
type (—52,3). Hence the canonical cover of the (up to permutation of the marked points)
unique boundary point of the stratum PE6MO74(—53, 3) must be contained in P=G. One
easily checks that this canonical cover is actually contained in Dr,. The bottom level of the
canonical cover is precisely the 6-differential of type (—10, —5, 3), hence the GLa(R)*-orbit

closure of this differential is contained in Dﬁl’L and generates a non-obvious Teichmiiller

curveF]
To obtain the flat picture in Figure 2] and the equations one traces the degeneration
discussed in Section [5.1] on the bottom level. O

We end this section with some remarks on the definition of obvious. The definition
we recalled in the introduction is the one introduced in [MM23]|. Recall that strata of
meromorphic abelian differentials are in general not connected. The connected components
have been classified in |Boilb|. One of the components is the hyperelliptic component.
With their definition of obvious Méller-Mullane proved:

THEOREM 6.2 ([MM23, Theorem 1.1]). The only Teichmiiller curves in the hyperelliptic
connected component of a stratum of meromorphic differentials are obvious Teichmiiller
curves.

As we have seen in Theorem [1.3] this theorem does not hold in the other components of
strata. The hope is that there aren’t “too many” non-obvious Teichmiiller curves to allow
for a possible classification. However there is a large class of easily constructed non-obvious
Teichmiiller curves: given a (projectively) 1-dimensional stratum of quadratic differentials,
for example QQM0,4(m1,m2,m3,m4), the canonical cover §2M0,4(m1,m2,m3,m4) will
be a Teichmiiller curve in a stratum of meromorphic differentials, and in general this
Teichmiiller curve will not be obvious. For example it follows from our discussion in
Section [B] that

DS 2 PEP M 4(—3%,1%),
5

and, using similar arguments to the ones in the proof of Theorem [I.3] one can check that
Dlgs’L is in fact non-obvious.

7. Horizontal strata, cylinders, and cusps of Teichmiiller curves

We are now turning our attention towards the horizontal boundary strata. Our first
observation is that Proposition and Remark imply that we know all horizontal
strata that might possibly be intersected by the gothic locus.

PROPOSITION 7.1. The gothic locus PEG only intersects the horizontal strata listed in
Figure [3

In contrast to the non-horizontal strata, it is not obvious what the dimension of the
intersection of the gothic locus with a horizontal stratum is (even if we know that the
intersection is non-empty) as a consequence of Theorem We arranged the graphs in
Figure [3| to match our expectation about the horizontal boundary.

EXPECTATION 7.2. We expect the following:

o The gothic locus intersects the three strata Dr,, Dr, and Dr,, (depicted in the
top row of Figure @ mn a divisor.

o The gothic locus intersects the three strata Dr,, Dr,, and Dr,, (depicted in the
middle row of Figure @) in codimension 2.

o The gothic locus intersects the two strata Dr,, and Dr,, (depicted in the bottom
row of Figure @ in codimension 3.

o The gothic locus does not intersect the two strata Dr,, and Dr,, .

We are currently unable to prove all of the above expectations, but we will provide
partial results and evidence in the following.

3The Teichmiiller curve generated by the canonical cover of the 6-differential might not agree with
DI%’L, but might be an irreducible component.
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PROPOSITION 7.3. The intersection of the gothic locus PEG with the two horizontal
strata Dr, and Dy, is a diwvisor.

Before proving Proposition [7.3] we need to recall a technical tool we will use throughout
this section. Given a flat surface (X,w), a cylinder decomposition C is the collection of
all cylinders in X in a given direction. We can go from (X,w) to a nearby surface in the
moduli space by stretching all the cylinders in the decomposition C by the same speed. If
(X,w) was contained in a GLy(R)"-orbit closure QH, then all those nearby surfaces will
also be contained in QH as a consequence of the cylinder deformation theorem |[Wril5,
Theorem 1.1]. Hence if we start with a surface in the gothic locus, choose a cylinder
deformation and stretch all the cylinders at the same speed in the direction orthogonal
to their core curve to infinity, we will obtain a surface in the boundary of the gothic
locus PZG. As noted in Remark this should be verified in the conformal topology.
The necessary exhaustion can be obtained by cutting smaller and smaller pieces from the
infinite cylinders of the limiting surface.

PROOF OF PROPOSITION [7.3l By stretching all cylinders in the direction orthogonal
to their core curves, the horizontal cylinder decomposition in Figure [I6] gives rise to a
generic curve in the stratum Dr,. Similarly, the vertical cylinder decomposition in Fig-
ure @ gives rise to a generic curve in the stratum Dr,.

For Dr, and Dr, the intersection with the gothic locus must be a divisor, as DFQ2Q and

DI?Q are divisors. t
3

FIGURE 16. Four vertical and two horizontal geodesics in a curve in the
gothic locus

V4 Ws
U5 | U3 We | W4
| |
x| x|
Ve : V2 w1 : w3
U1 w2

FI1GURE 17. Two geodesics in a curve in the gothic locus

PROPOSITION 7.4. The gothic locus PEG intersects the two horizontal strata Dr, and
Dr,,. Moreover, the intersection with each of those strata has an irreducible component
which is of codimension 2 in the gothic locus.

PROOF. To prove that the stratum Dr,, is intersected consider the curve in Figure[I8a]
which is the same curve as in Figure after some re-gluing. In the coordinates in Fig-
ure the gothic locus is cut out by the equations

Ty =x43 fori=1,23,
(89)

1
yizg(w1+962+373) fori=1,...,6.
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Hence the curve in Figure is contained in Dlgz. Stretching the cylinders of the cylinder
decomposition given by the two finite geodesics depicted in the figure gives rise to a curve
in Dlglg. Moreover, around this curve the intersection is of codimension 2.

To obtain a curve in Dr, one can stretch the vertical cylinder decomposition in Fig-

ure [I6] The claim about the codimension follows as for Dr,. O
N \
T6| 1w Y2 \a
[ ] : Ye6 T4
| z1 21
| -————9 o—---
Ts : Y1 [ )
| Te Ye Y1
Y5 o||xs5
T4l e 4
| y 5 Ys Y2 T2
o Y4 Te : ° 0
T3 | ! ys| | e ‘ (7 Y3 T3
| Ty
VY3 o| | T1
I T4
T : o Y6 T3 Y3 Y4 :
: o o :
' SRR T2 ‘
: x2 Y2 Ys Ts
x| Ys| | @
3 v '\ 3 Y1 Y6 L6
\ .
A1 > 2’2\) -—-—e o— -
21 Z1

(A) A regluing of the curve in Fig-

ure |T_7|

(B) A curve in DE with two finite geodesic

F1GURE 18. Degenerations toward Dlglg

REMARK 7.5. Our guess is that the strata Dr,. and Dr,, are not intersected by the
gothic locus. To see why, consider the surface in Figure[I18 Note that there can not be a
horizontal degeneration of the irreducible component that contains the three marked points
x: As all y; agree by there can not be a finite geodesic that is disjoint from the already
infinite cylinder. Hence the connected component of Dlgz to which this surface belongs can
not intersect Dr,, or Dr,,.

Note that this argument alone is not sufficient to prove that the gothic locus does not
intersect Dr,, and Dr,,, as the intersection Dl% = Dr, NP=G might have multiple irre-
ducible components.

Recall that the gothic locus €2G contains a dense set of primitive Teichmiiller curves,
see [EMMW20, Theorem 1.4|. Let 7 C QG be such a Teichmiiller curve. Teichmiiller
curves are never compact, and hence we may consider the closure PT C PZG. The
boundary OPT consists of a finite number of points, the cusps of the curve.

PROPOSITION 7.6. The interior of each of the four horizontal strata Dﬁ, Dl%, DI%
and Dl%o contains cusps of a primitive Teichmiiller curve contained in the gothic locus QG.
The interior of the stratum Dlglg contains cusps of a non-primitive Teichmiiller curve.

PROOF. The surface depicted in Figure generates, for the “correct” choice of side
length, a primitive Teichmiiller curve, as it is the unfolding of the quadrilateral in|[EMMW 20,
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Theorem 1.4]. As we have seen in the proof of Proposition the horizontal and vertical
cylinder decompositions give rise to curves in the strata DFI’O and D%’O.

We claim that the surface depicted in Figure generates, again for the “correct”
choice of side length, a primitive Teichmiiller curve. To see this, note that the moduli of
the vertical and horizontal cylinder decompositions agree with the moduli of the cylinders
in Figure [I6] and hence are commensurable. Moreover, the curve needs to be defined
over some number field Q(v/d) and hence is primitive. As we have seen in the proof of
Pré)position the vertical cylinder decomposition gives rise to curves in the stratum
Dy °.

1“QThe horizontal cylinder decomposition of the surface depicted in Figure [14] gives rise to
a point in DIGQO. This surface is in fact the so-called duck-shaped surface depicted in [MT20,
Figure 3|. By |[MT20, Proposition 2.3| this surface generates, again for the “correct* choice
of side length, a Teichmiiller curve. The cylinder decomposition of the cathedral-shaped
surface depicted in [MT20, Figure 2| gives rise to a cusp in Dl%o, tooﬂ

The curve in Figure [18a] can be chosen such that it is square tiled and has a vertical
cylinder decomposition that gives rise to a point in the stratum Dlglg: In complex coor-
dinates choose z; = 21 = —1, 2 = i and x3 = 1 (recall that those suffices to specify the
surface because of the Equations (89)). O

COROLLARY 7.7. The gothic locus intersects the stratum Dr,,.

8. Towards the fundamental class

In this section we give an outline of a possible approach to compute the fundamental
class of the image of the quadratic gothic locus PZ2G in My . We denote this class by

[P=2G) € H (M 6).
We work with P=2@G instead of P=G for two main reasons:
e By [Pet14] all cohomology H®(M;g) is tautological, in particular is [PE2G] €
R3(Myg) a tautological class.
e We want to work with the Sage package admcyles |[DSZ21|. Admcycles is barely
able to compute a generating set for the tautological ring R> (M) on a typical

computer. The tautological ring R3(M,g) is currently out of reach (at least
without special hardware).

8.1. Why this class is of interest. Let H C PEM,, (1) be an arbitrary linear
submanifold. If one knows the fundamental class of H in the Chow ring of PEMy ,,(11) one
can compute the Euler characteristic of this submanifold by using Equation . Actually
it suffices to know the fundamental class of the image of H in M, ,,: instead of intersecting
the &-classes in with the fundamental class in PEM, ,, (1), one can as well push those

&-classes to R*(M,,,) and intersect with the class of the image of H there.

Hence knowing the fundamental class of the gothic locus [P=ZG] would allow to compute
its Euler characteristic. However, if we can determine [P=2G], the work done in Section
allows to pull this class back from PE* M g(—1%,1%) to PEMy6(0°%, 2°) to obtain [PEG].

As we recalled in Section the class of the flex locus [F] € RY(M;3) has been
computed in [Che22|. Even though the flex locus is the image of the quadratic gothic
locus under the forgetful map = : My ¢ — M 3 there is unfortunately no way to directly
compare those classes. This is because the fiber dimension of 7 above a generic point is 3,

while the fiber dimension of the restriction 7|gq is 1.

8.2. Our setup. By applying the Faber-Zagier-Pixton relations |[PP21], one checks
(using admcycles) that the vector space R3(Mig) is generated by 756 elements. Let
Qi,...,0756 € R3(ﬂ176) be a generating set. Then there exist rational numbers \; such

that
756

(90) Z Nia; = [PEG).

4The reader should be warned that in the picture in loc. cit. there are two cylinders with the same
color (black).
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In the rest of the section we will outline possible approaches to obtain linear equations for

the )\Z

8.3. Homogeneous equations. In a first step, we want to use our results from
Section [] to obtain a list of homogeneous equations for the ;. In the previous sections
we have been slightly sloppy with notation and we need to be more precise now. The
underlying stable graphs of the graphs FiQ listed in Figure [5|index a priori boundary strata
of the quotient MLG /S343. For such a graph F? we denote by I‘ZQ the set of all possible
marked versions of FiQ. Our first observation is the following corollary.

COROLLARY 8.1. Let Ma C ﬂlﬁ be a boundary stratum of codimension d < 3. If Ma
has empty intersection with all the strata Mpo for T € U, I‘iQ for FZ-Q m Proposition

then
756

Z Ai(ai-y - [Mal]) =7 - [Ma] - [PEG] = 0

for all tautological classes v € R*=4(My).
PROOF. This is a direct consequence of Proposition [4.1] a

To check whether or not Ma and Mpo have empty intersection is a combinatorial
question about the existence of a common degeneration of the two graphs A and I'C.
Unfortunately, using admcycles one checks that Corollary [8.1] is completely useless: In
the notation of the corollary there is not a single boundary stratum Mathat has empty
intersection with all the strata Mpo.

We can drastically improve the situation by using the fact that the quadratic gothic
locus PZ2(G is an irreducible subvariety of the moduli space PE2M; ¢(—13,13). We state
the following proposition in a more general context as it might be useful elsewhere.

PROPOSITION 8.2. Let H C PEFM, (1) be a closed irreducible subvariety, and let
O1,...,0; be the enhanced level graphs corresponding to the zero dimensional boundary
strata Dg‘i of H. Let Ma C M, be a boundary stratum. Then MaNw(H) is non-empty
if and only if there is an i € {1,...,l} such that ©; is a degeneration of A.

PROOF. Assume that O; is a degeneration of A, then W(Dgi) C Mann(H) £ 0.
For the converse implication, assume that MaNT(H) # 0. Then there is a degeneration
O of A that admits the structure of an enhanced level graph such that Dg is non-empty. If

6= ©, for some 7 we are done. So let us assume that 6 # 0, for all . Then dim Dg >1

by assumption. We claim that one of the ©; must be a degeneration of ©. This follows
from the fact that a stratum of k-differentials never contains a complete curve and hence
every boundary stratum must degenerate further if it is of positive dimension, compare
the proof of Proposition [[[5.17} In particular is this ©; a degeneration of A. a

We do not know the precise list of zero dimensional boundary strata of the gothic locus
at the moment, but we can obtain a list that certainly contains all the zero dimensional
boundary strata by choosing an approach similar to the one in Proposition 4.1

List all boundary strata A*e C Hg/S3,3 (in all codimensions)
Throw away all strata that intersect the divisors Ay and Ag .
For each remaining stratum, consider its image under the forgetful map to My /S5 3.
For each stratum in the image check if it admits the structure of an enhanced
level graph such that
— the number of levels plus the number of levels with horizontal edges is between
1 and 3,
— if the above number is smaller than 3 then there is a level with multiple
horizontal edges,
— after contracting all horizontal edges the graph is an intersection of a number
of vertical divisors listed in Proposition [4.1]

The conditions on the number of levels and the number of horizontal edges stems from
Theorem [4.4) and the fact that every stratum of codimension 3 must be the intersection of
precisely three divisors. With this list of graphs at hand we can apply:
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COROLLARY 8.3. Let H C PEkﬂg,n(,u) be a closed irreducible subvariety, and let
O1,...,0L be a sel of enhanced level graphs that contains all enhanced level graphs cor-
responding to the zero dimensional boundary strata Dgi of H. Let Ma C Mgy, be a

boundary stratum. Then Ma Nw(H) is empty if non of the ©; is a degeneration of A.

If A is the list of all stable graph such that for all A € A the stratum Ma C MLG
has codimension da < 3 and M fulfills the condition of the above corollary for our list
of possible zero-dimensional strata, then the same idea as in Corollary [8.1] gives us linear
equations

756
> Xilai -y [Ma]) =0 forall A€ A forall y € R¥ (M g).
i=1
Let Apom be the rational matrix corresponding to this linear system. Using sage we check
that
dim(ker(Apom)) = 79.

REMARK 8.4. Knowing the fundamental class [PZ2G] would allow us to a posteriori
determine which of the possible zero dimensional strata are actually intersected by the gothic
locus: A zero dimensional stratum DGQ) is intersected if and only if [W(Dg)] - [PZ2G] # 0.

8.4. Towards inhomogeneous equations from M; g-divisors. We would like to
use the information we obtained in Section [l about the non-horizontal divisors to obtain
more relations. However, as we will see in the following, there are several obstructions on
our way.

Let us first consider the divisor D?QG . For the ambient divisor we have the maps

6

.
Q _« —

Dreg e MFGQ
D

Mo,g

where the two rightmost arrows are the projections to the irreducible components at the
top and bottom level. Up to a rational factor ¢ that can be worked out explicitly it is

1) - [M(DS)] = [Mre] - [PE°G]

because ./\/lrﬁg is a divisor. Assuming that we know the class [W(DFQQ)] we could evaluate
6

756
Z/\i(ai -y - [Mpe]) =7 - [Mpe]- [P=*Cl=c-v- [W(DFQGQ)]
=1

for any class v € R?(M;6) and obtain new relations for the );. The class of W(DI%)Q)

is determined by the two classes T’(W(DI?GQ)). The image of TL(TI'(D?GQ)) is conveniently
given by a point. From the picture in Figure [11]it is not hard to see that the component
of DI?GQG 'T to which the depicted surface belongs is a locus of covers of P! branched above 5
points: one simply divides both depicted curves by the involution J (which acts by rotation
by 7). The class of this locus in R?(Mj ) can be computed with the methods described

in |Lia21|. However, we are currently unable to prove that this is all of DI?QG T
6

PROBLEM 8.5. Is DI?QG’T irreducible?
6

Let us given an estimate of how useful this approach can be. There are five non-
horizontal graphs with one edge listed in Figure [5, namely F]-Q for j € J:={4,6,9,10,11}.
We denote by I‘VQd =U e I‘]-Q the set of all marked versions of those vertical divisors. Let
B be a basis of R?(M; ) and consider the matrix

— BJ-|T2|x756
Avd = (OZ'L cY [MFQ])(’Y,FQ)GBXFVQd S Q' I Vd‘ .
1=1,...,756
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Then there is a vector b € QIE Rt given by the intersection products on the right hand
side of such that
Ava - (Ni)i =b.
While we are currently unable to compute b we can easily compute A with admcycles and
check that
dim(ker(Ayq)) = 148.

In our opinion this is surprisingly small given that our generating set a; has 756 elements
and we only considered 5 of the divisors listed in Figure [f]

More importantly we may consider the stacked matrix

A= (ﬁfﬁ)
where Apom is the matrix from the previous Section [8.3] and check that
dim(ker(A)) = 0.
Hence determining the vector b would yield the class of the quadratic gothic locus [PZ2G].

8.5. Towards inhomogeneous equations from other strata. Let us now consider
DQG, and let m and 7° be the analogue of the above maps. From our discussion in

Sectlon it follows that 7" (W(Dgg )) is a locus of pillowcase covers. The class of this
4

locus in R?(Mj 3) can again be computed with the methods described in [Lia21|. For the
bottom-level we are not aware of any such description. Hence the following problem is
currently unsolved.

PROBLEM 8.6. Compute the class of TL(W(DI?g)).
4

The situation is slightly different for DFQQG . Again following our discussion in Section
5

one can check that DI?QG T is a locus of pillowcase covers. Hence the class of its images
5

under the analog of 7' o7 can again be computed with the methods described in [Lia21].
The bottom level DI?QG ~ is a stratum of quadratic differentials, and the fundamental

5
classes of such strata are known by [BHPSS20| and can be computed using admcycles.
However, MFQ is not a divisor, hence the analogue of Equatlon 91)) does not hold. There

is a possible way forward. One could pull back Equation (90) to the tautological Ring of
P=2M; 6(—13,13) in the hope to intersect with the class of the divisor DQ . There are

the following two problems. In theory this pullback can be computed w1th diffstrata.
But because diffstrata does currently not support graphs with horizontal edges it is
not possible to pull back all classes a;. The other problem is that 7*[PZ2G] is a class
of codimension 3, while the gothic locus itself is of codimension 2 in PEZM; ¢(—13,13).
Hence 7*[P=2G] is actually the intersection of the gothic locus with a class of codimension
1 in the Chow ring of PE2M; ¢(—13,13).

PROBLEM 8.7. Determine this codimension 1 class and extend diffstrata to support
horizontal edges.

All the other non-horizontal divisors have at least one of the above problems. One can
hope to obtain the fundamental class of the gothic locus if one solves those problems for a
sufficient number of divisors.






CHAPTER IV

Visible Lagrangians for Hitchin systems and pillowcase covers

1. Introduction

Mirror symmetry questions about Higgs bundle moduli spaces have been intensively
studied in recent years. The work of Hausel and Thaddeus [HT03] initiated the direction of
research by observing the SYZ mirror symmetry of the SL(n,C)- and PGL(n, C)-Hitchin
system and proving topological mirror symmetry for n = 2,3. Later Donagi and Pantev
[DP12| established the duality between Hitchin systems associated to a complex reductive
Lie group G and its Langlands dual group G*. To a complex reductive group G, we
associate a moduli space of G-Higgs bundles Mg with a Hitchin map Hit : Mg — Bg
to a half-dimensional vector space. Then Donagi and Pantev showed that there is an
isomorphism Bg = Bgr, such that the generic fibers over corresponding points under
this isomorphism are torsors over dual abelian varieties. Furthermore, the Fourier-Mukai
transform yields an equivalence of derived categories of the regular loci of the G and G-
Hitchin system.

About the same time the work of Kapustin and Witten [KWO07| raised the question
about mirror symmetry of special subvarieties referred to as branes in the physical litera-
ture. A brane is a pair (N, F') of a subvariety A/ and a sheaf F' supported on N/ with special
geometric properties. This initiated plenty of mathematical research to find examples of
branes or their supports for G-Hitchin system [BS16|; [Hit16|; |Hit17]; [HS18|; [BS19];
[FJ22]; [HH22|; [FP23]. However, [KWO07] also propose a correspondence between branes
under mirror symmetry. This seems to be less considered in the mathematical literature
(see [Hit16]; [FJ22]; [HH22|; |[FP23] for exceptions).

In this paper, we consider so-called (B, A, A)-branes, that is pairs (N, F'), where N/
is a complex Lagrangian subvariety and F is a flat bundle on A/. We also describe the
subvarieties and sheaves related to these (B, A, A)-branes by the Fourier-Mukai transform.
The work of Kapustin and Witten [KWO07] suggests that these are (B, B, B)-branes, i.e.
hyperholomorphic subvarieties with a hyperholomorphic sheaf. We give indication for this
conjecture for our main example.

More specifically, we are interested in complex Lagrangians £ such that the restriction
of the Hitchin map factors through a proper subvariety B’ = Hit(£) C B. Such Lagrangians
are called visible in the symplectic geometry literature [Eva23|. This is complementary to
the recent work of Hausel and Hitchin [HH22|, who studied the upward flow to certain
points in the nilpotent cone.

We first abstractly consider visible Lagrangians in the G = GL(n, C) and G = SL(n, C)-
Hitchin system and describe their proposed mirror dual by computing the Fourier-Mukai
transform of flat sheaves on them. The first main result is

THEOREM 1.1 (Theorem [3.2). Let £L C Mg be a visible Lagrangian, such that B’ =
Hit(£) € Bg and B' N BSE # @. Let s : B — L be a section of Hit|z. The fiber-
wise Fourier-Mukai transform of the structure sheaf Op is supported on a holomorphic
symplectic subvariety Iy s C Mgr, such that Hit|z : Zp s — B’ is an algebraically completely
integrable system.

Note that every hyperholomorphic subvariety is holomorphic symplectic. Hence, this
observation fits well with the mirror symmetry proposal in [KW07].

On the question of existence, we mention three situations under which we expect visible
Lagrangians, examples of which appeared in the literature. The first is Lie-theoretic. An
inclusion of a semisimple Lie group G into a reductive Lie group G2 defines a morphism
of Higgs bundle moduli spaces Mg, = Mg,. Its image is a hyperholomorphic subvariety.
We expect the mirror dual to this hyperholomorphic subvarieties to be visible Lagrangians.
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We consider the example of SL(n,C) C GL(n,C) in Section Another example where
G1 = Sp(2n,C) and G2 = GL(2n,C) was considered by Hitchin in |[Hit16]. Other than
that, we hope to return to this type of visible Lagrangians in a subsequent work and will
mainly focus on G = SL(2,C) in the remainder of the paper. The second type of visible
Lagrangians appeared in the work of [FGOP21|; [FP23|; [FHHO23|. They are completely
contained in the singular locus of the Hitchin map and substantially use the geometry of
the singular Hitchin fibers. In particular, they do not fall within the scope of this work.

The focus of this work is a third type of visible Lagrangians related to the symmetries
of the underlying Riemann surface. The general fiber of the Hitchin system is a torsor
over an abelian variety. A necessary condition for the existence of a visible Lagrangian
L — B’ is that the Hitchin fibers over B’ correspond to reducible (i.e. non-simple) abelian
varieties. Comparing the dimension of the SL(2, C)-Hitchin base and the reducible locus
in the corresponding moduli space of abelian varieties suggests that there are finitely many
directions in the Hitchin base, where the Hitchin fiber is isomorphic to a reducible abelian
variety. Hence, it is natural to look for visible Lagrangians £ — B’ over lines Ca C Bg in
the Hitchin base. We have the following second main theorem, of which a SL(n, C)-version
is proven in Theorem

THEOREM 1.2 (Corollary . Let ¢ € H°(X,K%) be a quadratic differential with
simple zeros only. Then there exists a visible Lagrangian

LB = {tq ’ te (C} C BSL(2,C)(X)
if and only if (X, q) is a pillowcase cover.

The notion of pillowcase cover stems from the theory of flat surfaces. It means that
there is a covering X — P!, such that the quadratic differential ¢ is the pullback of
a quadratic differential on P! with four simple poles. The later should be figured as a
pillowcase, see Figure[2l We give a short introduction to the idea of flat surfaces in Section
[l

Motivated by the above considerations on the moduli space of abelian varieties, in
Section [5], we study examples of Riemann surfaces, where there exist several lines in the
SL(2, C)-Hitchin base associated to visible Lagrangians. We prove the following result,
which might be of independent interest from the point of view of flat surfaces.

THEOREM 1.3 (Proposition . There exist infinitely many genera g, such that there
exists a Riemann surface X of genus g with two quadratic differentials qq, g2 with simple
zeros only, such that (X,q;) are pillowcase covers and qi1,qa are not related by pullback
along an automorphism of X.

Finally, we consider the subintegrable system Z C Mpgre,c) of Theorem asso-
ciated to the visible Lagrangian £ of Theorem We observe that 7 is birational to
Hausel’s toy model |[Hau98|. Under the natural extra condition on the pillowcase cover to
be uniform, we prove the following theorem that confirms the Kapustin-Witten picture for
visible Lagrangians of this kind. All the pillowcase covers of Theorem are uniform.

THEOREM 1.4 (Corollary . Let (X,q) be a uniform pillowcase cover with simple
zeros only and L — Cq the visible Lagrangian of Theorem[I.3. Then the associated subin-
tegrable system T C Mpgr,2,c) of Theorem s a hyperholomorphic subvariety.

2. Symplectic geometry
2.1. Completely integrable systems.

DEFINITION 2.1. A completely integrable system is a holomorphic symplectic manifold
(M, Q) together with a proper flat morphism H : M — B to a complex manifold B, such
that on the complement B \ S of some proper closed subvariety S the fibers of H are
complex Lagrangian tori. It is called algebraically completely integrable, if the Lagrangian
tori are endowed with continuously varying polarizations p, € HUD (M) N H?(My, Z), i.e.
they are abelian varieties.

We will refer to B™8 = B\ S as the regular locus and to S as the singular locus of a
completely integrable system.
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DEFINITION 2.2. An integral affine structure on a smooth manifold B is a torsion-free
flat connection on the tangent bundle T'B.

For completely integrable systems there is a natural identification of the cotangent
bundle to the base with the torus-invariant vector fields along to the fibers of H given as
follows. Let o € T’ B be a (holomorphic) one-form then there exists an invariant vector
field X on My, such that Q(X,-) = H*«. Denoting by VM the bundle of invariant vector
fields along to the fibers over B"€ we obtain an identification TV B"€ = VV M. Locally over
U C B'™ we can choose a section of H : M — B and identify H Y(U) = ViyM/A for a
family of lattices A C ViyM. This yields a family of lattices A C TV B™8. The dual family
of lattices AV C T'B"™8 defines a torsion-free flat connection on T'B™8, where a section is
flat if and only if it is constant with respect to lattice coordinates (see |[Fre99, §3| for more
details).

2.2. Visible Lagrangians. This idea goes back to lecture notes of Jonathan David
Evans |[Eva23, Chapt. 5] in the context of real completely integrable systems.

DEFINITION 2.3 (Visible Lagrangians). Let H : M — B be a completely integrable
system. A Lagrangian subvariety £ C M is called wisible, if H |z : L — B factors as
H|; = fog, where f : B' — B is an embedding of a proper subvariety B’, such that
glens : L]pns — B\ S is a smooth fiber bundle on the complement of some proper
subvariety S’ C B'.

The simplest example of a visible Lagrangian is a complex torus fiber M, with B" = {b}.
On the other hand, a Lagrangian section s : B — M is an example of a Lagrangian that
is not visible. We denote B8 = B’\ S’. For the visible Lagrangians considered in the
present work we will mostly have B’ = B’ N B"&,

THEOREM 2.4. Let H : M — B be a completely integrable system and L — B’ C B a
visible Lagrangian with B8 C B'8. Then at each smooth point b € B¢ the base locus
B’ is rational with respect to the integral affine structure on B and for b € B'™8 the fiber
Ly is a union of complex tori generated by the invariant vector fields T,B'* C V,M.

PROOF. Locally at a smooth point b € B’™€ the subvariety B’ C B is cut out by
k = codimB’ many functions fi,..., fr € Op. We can associate invariant vector fields
X; € VM |pr along the torus fibers so that Q(X;,-) = H*df; fori =1,...,k. Let m € L
and Y € T,, M, such that DH(Y') € T,B’, then

(92) O(X;,Y) = H*df;Y = dfy(DH(Y)) = 0.

Therefore, the connected components of the fiber of £ over b € B'™8 are integral subman-
ifolds of the distribution V£ = span(Xy,..., X}). Hence the connected components of
the fibers of £, — B'™€ are complex subtori. In particular, the subspace V,£ C V,M is
rational with respect to the lattice Ay. By definition this is equivalent to H,TL = TB’
being rational with respect to the integral affine structure on B. Finally, by we have
VL C (TB"8)+ c TVB™ = VM. The first inclusion is an equality both being of rank
k. O

3. Hitchin systems

In this section, we will briefly review Hitchin systems - the algebraically completely
integrable systems of interest in this work. Then we will give an example of a visible
Lagrangian of Mg, c) that stems from the embedding of SL(n,C) C GL(n,C). In the
remainder of the paper we will focus on visible Lagrangians that do not come from Lie
theory.

3.1. Preliminaries about the GL(n,C) and SL(n,C)-Hitchin systems. Let G
be a complex reductive Lie group and X a Riemann surface, then there is a moduli space
of stable G-Higgs bundles. More precisely, we denote by M (X) the neutral component
of the moduli space of stable G-Higgs bundles. It is a hyperkdhler manifold, in particular,
holomorphic symplectic. There is the Hitchin map Hit : Mg(X) — Bg(X) to a half-
dimensional vector space Bg(X), which is an algebraically completely integrable system in
the sense of Definition 2.1} So it is sensible to ask for the existence of visible Lagrangians.
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Let us be more concrete about the cases G = GL(n,C) and G = SL(n,C). A GL(n,C)-
Higgs bundles is a pair (E,®) of a holomorphic vector bundle E together with a section
® € H°X,End(E) ® Kx), where Ky is the canonical bundle of X. Considering the
neutral component of the GL(n, C)-moduli space means to fix the degree of E to be 0. For
(E,®) to be a SL(n,C)-Higgs bundle we add the condition of the determinant bundle of
E and trace of @ to be trivial. In the GL(n, C)-case the Hitchin map is given by

n
Hit : MGL(n,(C) - BGL(n,(C) = @HO(Xa Kz)a (E, (I)) = Q((I)) = (al(q))’ s van(q)))’
i=1
where a; € Clgl(n, C)]““™C) is the i-th coefficient of the characteristic polynomial. In the
SL(n, C)-case it is given by

Hit : Msp(n.c) = Bstinc) = EBHOXK’ (B, ®) — a(®) = (ag(®), ..., an(P)).

Fixing a point a € B¢ in the Hltchln base the eigenvalues of ® define a branched n-sheeted
cover T : X, — X - the so-called spectral curve. The discriminant of the characteristic
polynomial defines a map discg : Bg — H°(X, K T(T*I)). The discriminant locus Ag C Bg
is the preimage of the sections of H°(X, K T(T*U) with higher order zeros under discg. Its
complement Br = Bg \ Ag is referred to as the regular locus. In particular, for a € Breg
the spectral curve ¥, is smooth. For G = SL(2,C) the regular locus BSL(2 c) 1s the locus
of quadratic differentials with simple zeros only.

The fibers of the GL(n,C)-Hitchin map over B GL(n,C) - the so-called regular fibers -

are torsors over Jac(X,) via the spectral correspondence. The branched cover 7 : ¥, — X
defines a norm map Nmy, x : Jac(X,) — Jac(X). The kernel of this morphism defines
the Prym variety Prym(X,). A regular fiber of the SL(n,C)-Hitchin system is a torsor
over Prym(3,). The neutral component of the Higgs bundles moduli space allows for the
existence of a section sy : Bg — Mg of the Hitchin map - the so-called Hitchin section.
For GL(n,C) it is given by

ar as an
SH(Q): KnT_l@@K_nT_l’ Lo

a2

1 ay

The tangent space to Jac(¥,) at the identity is H'(X,, Os,) by the exponential se-
quence. The inclusion of the Hitchin fiber into Mqy,m,c) yields an exact sequence of
tangent spaces

0— Hl(EQ, Ozi) — T(E,CD)MGL(n,(C) — HD(EQ, Kzi) —0

(see [Mar94) Prop. 8.2|). The holomorphic symplectic form identifies the vertical tangent
vectors with the dual of the tangent space to the Hitchin base. Combining this with Serre
duality yields the following identification of the tangent space to base with differentials on
Ya

PRrROPOSITION 3.1 (|Barl6l Proposition 3.4]). Let a € Bgi(mc). The identification of

the tangent space ToBay,in,c) with the dual of the tangent space to the fiber Ty Jac(%,)
HY(%,, Kx) is given by

n
t: P HOX, Ky) = H(S4, Ks,,)
=1

n
ZaiXi — Zaz )\n l—i—ﬂ' aos\"” 2= ’+---+7r*an_i),

where sp = dn € H°(X, W*K;L{l) is supported at the branch divisor.

PROOF. The original statement gives the isomorphism with values in H(3,, T KY).
We have the isomorphism of sheaves Ky, — 7*KY% given by ¢ — ¢sp|y for ¢ € Ky, |v.
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This is well-defined by the following: Let (U, w) a coordinate disc centered at y € ¥, such
that 7 : U — 7(U), w = z = w® with b > 1. Then sg|y = w’ }(x*dz)""!. Hence,
¢ -sg(U) = fdw - w1 (7*dz)""! = f(n*dz)", where we used that 7*dz = w’ ldw.
Composing Baraglia’s isomorphism with the inverse of the above defines the asserted iso-
morphism ¢. (|

In the following proposition, we take a algebro-geometric point of view and will consider
the family of smooth curves ¥ — B5E. The GL(n, C)-Hitchin system is a torsor over the
abelian scheme defined by the relative Jacobian Jac(X/Bg®).

PROPOSITION 3.2. A subvariety L C Mgyn,c) over a proper subvariety B' C Barm,c)
with B8 C B8 and connected fibers is a visible Lagrangian if and only if

i) There exists an abelian subscheme A C Jac(X/B5E)|pres over B8, such that L

is an A-torsor.
ii) The relative tangent bundle Ty /gres C Tyac(s)/Bres s the kernel of the map

3 /reg
TJaC(E)/B/reg = Rlﬁ*OZ — CdlmB

defined by evaluating on the image of
TB"¢ — R'1,Ks, X — t(X)
using the Serre pairing on ¥. Here t was defined in Proposition [3.1]

PrOOF. By Theorem fibers of £ — B'™€ are complex subtori in the Hitchin fiber.
Hence, using a local section s : U — £ on an open U C B'™8, we can identify the fibers
with an abelian subscheme of A — Jac(X/B™8). Condition ii) is the family version of
Theorem [2.4] reformulated by using the observations about the holomorphic symplectic
form on Mqr,,,c) in the previous paragraph. Conversely, condition ii) is equivalent to
the restriction of the symplectic form of Mqr(,,c) to be zero on the tangent bundle to L.
Hence, £ is a Lagrangian. O

In general, a visible Lagrangian might not have connected fibers. We will give an ex-
ample in Theorem [3.5]

To obtain an analogous statement in the SL(n, C)-case we have to identify the image

of TBéeLg(mC) - TBS%WC) through the isomorphism ¢ of Proposition The pullback

™ HY(X,Kx) — H°(Z4, Kx,) defines an inclusion of the differentials on X into the
differentials on ¥,. We define the linear map

pry : H'(Sq, Kx,) = H'(X,Kx), A,

where 7 is define as follows: Let U C X be a trivially covered open, i.e. 7=1(U) = | |I_, U;.
Define n(U) = 25" A(U;). Then 7 extends to an abelian differential on X by the

Riemann extensign theorem. Clearly pry o 7* = id. Denote by H(%,, Ky,)~ the kernel
of pry. Then this induces a splitting H(3q, Kx,) = H*(X, Kx) ® H(Zq, K3, ).

The Prym variety is the kernel of the Norm map Nmy,x : Jac(3,) — Jac(X) in-
duced by the Norm map on structure sheaves Nmy,/ x : m.0s, — Ox, mf — det(mf).
Tangentially, we have a splitting of m.Oys, = Ox © m.Oy_, where 7, Oy, is the kernel of
nmyy/x : TO0s, = Ox, T f = tr(m f). This yields a splitting of the tangent space to the
GL(n, C)-Hitchin fiber over a

T Jac(E,) = H' (S, 0x,) = H'(X,0x) ® H'(X, 7,05, )
=Tr* Jac(X) ® TPrym(%,).

Let a € H(X,Kx) and 8 € HY(Z,, Os,) = HOV(Z,), then

/Eaﬂ*a/\ﬁz/xa/\nmz/x(ﬁ).
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\ - _/

Prym(2/B5®) Prym(Z/BgE)/m* Jac(X)[n]
\ ng - BrGe% /

FIGURE 1. Langland’s duality between SL(n,C)-Hitchin system and
PGL(n, C)-Hitchin system

Therefore, the Serre pairing on ¥, restricts to a non-degenerate pairing between H O(Eg Ks,)~”
and H(X,, Os,)~. Consequently, the isomorphism ¢ of Proposition restricts to

n
t: @PHX,KY) = H(S4, Kyx,)~
i=2 -
by the same formula.

Now Proposition [3.2] readily translates to a characterization of visible Lagrangians in
Msi(n,c)-

3.2. Langland’s duality for Hitchin systems. In this section, we will review the
Langland’s duality of Hitchin system as considered in [DP12]. We will fix G = SL(n,C)
and G = PGL(n, C) (cf. Remark|3.3)). Recall that we consider the neutral components of
the moduli spaces. The situation is visualized in Figure [I} First there is an isomorphism
of the Hitchin bases for G and G¥, which maps the G-discriminant locus to the G-
discriminant locus. In the cases under consideration, this isomorphism is the identity.
The SL(n,C)-Hitchin system restricted to BéeLg(nm is a torsor over the abelian scheme
Prym(E/BéeLg(n’C)). On the other hand, the (neutral component of the) moduli space of
PSL(n, C)-Higgs bundles is the quotient

Mpsin,c) = Msin,c)/ Jac(X)[n]
under the action of Jac(X)[n] on the moduli spaces of SL(n,C)-Higgs bundles by ten-

sor product. The PGL(n,C)-Hitchin system restricted to B;?gL(n ¢y 18 a torsor for the
dual abelian scheme Prym(E/BgeLg(n’C))V = Prym(E/Bgef(nyc))/ﬂ* Jac(X)[n]. In the case of

SL(n,C) and PGL(n, C) the quotient map d : Mg — Mgz = Mg/ Jac(X)[n] extends the
polarization to a finite morphism between the moduli spaces. This morphism is holomor-
phic symplectic, i.e. it induces an symplectic isomorphism of tangent spaces at the points
with non-trivial stabilizer.

THEOREM 3.1. Let L — B’ C Bg be a visible Lagrangian in Mg with B8 C B¢,
connected fibers and a section s : B8 — L|gres. Then there exists a holomorphic symplectic
subvariety T C Mgr, such that T — B' C Bgr is an algebraically completely integrable
system and s' = 6 o s defines a section s' : B8 — T |pgrres.

PROOF. Using the section s we can identify the Hitchin system over B8 with the
abelian scheme Prym(X/B"*¢) — B’"¢. By Theorem the fiber £, for b € B¢ is
complex subtorus that by assumption contains s(b). Hence, £ defines an abelian subscheme
A C Prym(X/B'™8). We obtain an exact sequence of abelian schemes over B'"8

(93) 0— A— Prym(X/B"™8) — Q — 0,

where the quotient @ is again an abelian scheme over B'"8. Dually, we obtain an exact
sequence of abelian schemes

(94) 0— QY — Prym(X/B"8)Y — AY — 0.
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We can define a section s’ = §os : B — Hitai(B’reg) C Mgr. Acting by QY on
s' 1 B8 - M1 defines a submanifold I C Hit™!(B8) € M. We define Z = 1. We
want to show that this is subintegrable system with regular locus I, i.e. the holomorphic
symplectic form restricts to a non-degenerate form on I and Hit|z : Z — B8 is an
integrable system. First note that for all b € B/"8

1
dim 7, = dim(Prym(%y)) — dim £, = 5 dim M(X, G) — dim £, = dim B"&.

Hence, the restricted Hitchin map will lead the correct number of commuting Hamil-
tonian functions and the fibers are complex tori by definition. To show that it forms a
subintegrable system it suffices to show that the tangent space of Z at the section s is a
symplectic vector space with the restriction of the symplectic form. The argument at a
general point follows by a translation along the fibers of Z. We identify the tangent spaces
TipyMa = Typ)Mee using §. Then the vertical tangent spaces to £ and Z are comple-
mentary by definition. The tangent vectors in Ds'(TB™8) pair to zero with the tangent
vectors to £ being Lagrangian. One the other hand, the symplectic form on Ty Mgr is
non-degenerate. Hence, it restricts to a non-degenerate symplectic form on TyZ. ([l

THEOREM 3.2. Let L — B' C Bg be a visible Lagrangian in Mg with B8 C B"€,
connected fibers and a section s : B8 — L. We identify the G- (respectively G*-) Hitchin
system over B8 with the abelian schemes using the section s (respectively s' = §os). Then
the fiber-wise Fourier-Mukai transform of the structure sheaf Oy over B8 is the structure
sheaf of the holomorphic symplectic subvariety T C Mgw defined in Theorem [3.1]

PROOF. Let a € B8 and denote by P = Prym(X,). As in the previous proof we use
the section s to obtain the exact sequences of abelian varieties

0>A—=P—->Q—0 and 0—QV— P —AY =0 (94).

We use the symmetric Fourier-Mukai transform introduced in [Sch22|. More precisely, we
are going to use Proposition 1.6 therein. We denote by P — P x PV the Poincaré bundle.
Then the symmetric Fourier-Mukai transform is defined by

SFMp : D°(P) — D*(PY), FMpoAp,
where Ap = Hom(-,wp[dim P]) is the Serre duality functor. First we have to show that
O, is a GV-sheaf. Let € € PY. We have
H'(P,1.04 @ P ') = H'(A, P a).

It is zero for ¢ > dim A. For i < dim A it is non-zero if and only if 735—1 |4 is trivial. Hence,
if and only if € € QV. Hence, the support loci

{¢e PV | H'(P,..0A @ P; ') # 0}

have codimension > ¢ for all ¢. Therefore, .04 is GV on P. In particular, it is WIT -
that is SFMp(O4) is a sheaf - by [PP11} Proposition 3.2].
The symmetric Fourier-Mukai transform on A has the property

(95) SFM4(O4) = Co  SFMuv(Co) = O,

where Cq is the skyscraper sheaf of length 1 at 0 € PV. Now [Sch22, Proposition 1.6 says
that if a sheaf F is GV on A and ¢, F is GV on P then

SFMp (1. F) = (¢¥)* SEM4(F).
By this yields SFMp(O4) = Ogv. O

REMARK 3.3. The above arguments similarly work for the case of G = G* = GL(n, C).
Here the Hitchin system restricted to Bgi(n o) is a torsor over the abelian scheme Jac(X) —

Bgi(n,(:)’ which is self-dual due to the principal polarization of the Jacobians. Hence,
again given a visible Lagrangian with connected fibers together with a section we obtain
a holomorphic symplectic submanifold Z by the arguments of the proof of Theorem
Furthermore, the arguments in the proof of Theorem work for the structure sheaf of

any abelian subvariety of an abelian variety.
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3.3. Visible Lagrangians in Hitchin systems. In this section, we will give the
first examples of visible Lagrangians in Hitchin systems. These examples are independent
of the choice of the Riemann surface. The first one is associated to the embedding of the
complex Lie groups SL(n,C) C GL(n,C). The second example appeared in the work of
[FGOP21| and is a subvariety of the singular fibers of the Hitchin map. The remainder of
the paper will deal with visible Lagrangians defined on special Riemann surfaces.

Visible Lagrangian associated to the subgroup SL(n,C) C GL(n,C):
Consider the embedding Bsr,cy C Barn,c)- In this section, we will define a visible
Lagrangian over B’ = Bgp,m,c)-

THEOREM 3.4. Let B' = Bgpm,c)(X) C Barn,c) with B8 = Béef(n’(c). Then we can
act by the trivial torsor Jac(X) x B’ on the Hitchin section by tensoring the underlying
bundle. The orbit defines a wisible Lagrangian £ — B'. The fiber-wise Fourier-Mukai

transform of Op over B8 is supported on the moduli space of SL(n,C)-Higgs bundles
Msrn,c) C MaLm,c)-

PrOOF. Tensoring with a line bundle preserves stability. Hence L is well-defined. The
Hitchin fiber over a € B8 reflects the splitting of the differentials on ¥ by the isomorphism

Jac(X,) = 7" Jac(X) x Prym(%,) /7" Jac(X)[n],

where 7* Jac(X)[n] acts diagonally (see Mumford [Mum?74]). In particular, we have an
exact sequence of abelian schemes over 13"
(96) 0 — Jac(X) x B"& & Jac(X/B"€) — Prym(X/B"8) /n* Jac(X)[n] — 0.
As explained in Sectionthe holomorphic symplectic form on Hit™? (Bgi(n,C)) C Marn,c)
restricts to the Serre pairing between the tangent space of the base identified with H(3,, Kx,,)
by Proposition and the tangent space to the fibers H 1(22, Os, ). With respect to this
pairing we have
HI(X> (QX)L = HO(Ega KEa)_

The subtorsor £ C Hit™!(B"8) that is defined by the action of Jac(X ) x B€ on the Hitchin
section has vertical tangent bundle H'(X,Ox) and the tangent space to the SL(n,C)
Hitchin base are identified with H%(X,, K, ). Therefore, £ is a visible Lagrangian.

By Theorem [B.2] the fiber-wise Fourier-Mukai transform of the structure sheaf of £ over
B'*& is supported on torsor over the abelian scheme that is dual to quotient in the exact
sequence 1@} That is the abelian scheme Prym(3/ Béef(n’c)). The closure of this locus is

the moduli space of SL(n, C)-Higgs bundles. O

We expect that every embedding of complex reductive Lie groups G; C G, such that
center of GG; is mapped to the center of Gy defines a visible Lagrangian £ — Bg, C Bg,
Fourier-Mukai dual to image of the induced morphism of moduli spaces Mg, — Mg,.

By definition, the visible Lagrangian of Theorem has connected fibers. We provide
an example with disconnected fibers by acting on a multi-section of the SL(2, C)-Hitchin
map instead of a section. Consider the moduli space of SL(2, R)-Higgs bundles Mgy, 2 r)-
The Hitchin map restricts to a 26976-covering

Hit| : Mgp,2,r) N Hit*lBgef(m) = B o)

THEOREM 3.5. Let B = Bsv2,c) C Bare,c) with B'ee = BgeLg(z,C)‘ We can act by
the trivial torsor Jac(X) x B' on Mgy, r) — B’ by tensoring. The orbit defines a visible
Lagrangian £ — B'. For a € B8 the fiber-wise Fourier-Mukai transform of O, is
supported on Mgp,c) C Mare,c) and given by a flat vector bundle of rank 6g — 6 on

Prym(%,).

PROOF. Let U C BgeLg(Q c) open, such that there exist sections

$1=SH,82,...,569-6 : U = Mgp2,0),
such that Hitil(U)mMSL(Q’R) = ?116 $;(U). Then the orbit of each s;(U) under tensoring

with line bundles in Jac(X) is Lagrangian by the previous proof. Hence, £ defines a visible
Lagrangians.
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We identify the Hitchin fibers with the abelian scheme Jac(X) using the Hitchin section
s1. Fix a € U and define I; = (s1 — s;)(a) € Jac(X,). Recall the exact sequence of abelian

schemes . We have
6g—6

Oﬁg = @ t?iL*OJaC(Xb
=1

where t;, denotes the translation by I; on Jac(3,). Let J = Jac(¥,) and P — J x J

the Poincaré bundle. Using the relation between tensor product and translations under
Fourier-Mukai transform (see [Sch22|) we obtain

SFMJ(t?;L*OJaC(X)) =P, ® SFMJ(L*OJaC(X)) =P, ® (LV)*(CQ =P, ® OPrym(EE)‘

The right hand side defines a flat line bundle on Prym(X,). The Fourier-Mukai of the
structure sheaf O, is the direct sum of all these flat line bundles. ]

Visible Lagrangians over the singular locus of the Hitchin base:
Other examples of visible Lagrangians were considered in [FGOP21]. Here B8 C Barn,c)
is the locus of spectral curves with the maximal number of n(n — 1)(g — 1) nodes as their
only singularities and B’ = B'™&. In particular, these Lagrangians are completely contained
in the singular locus of the Hitchin map and hence Theorem and do not apply. The
compactified Jacobians over B8 contain subvarieties isomorphic to (P1)*»=D¢=1) which
can be interpreted as parameters for Hecke modifications of the Higgs bundles at the node
by [Hor22|. Applying these Hecke modifications to the Hitchin section yields a visible
Lagrangian over B’. Interestingly, in this work the authors considered Arinkin’s Fourier-
Mukai transform for compactified Jacobians and found that the support of the fiber-wise
Fourier-Mukai transform is supported on a hyperholomorphic subvariety - the so-called
Narasimhan-Ramanan BBB-brane. In the subsequent work [FHHO23|, together with the
first author this construction will be generalized to visible Lagrangians £ — B’ over the
closure of the locus of spectral curves with any number of nodes as their only singularities.

Lagrangians that are not visible: The upward flow of a very stable Higgs bundle
considered in |[HH22|; [PP19| defines a complex Lagrangian that is supported over the
whole Hitchin base and hence is not visible.

4. Parallelogram-tiled surfaces and pillowcase covers

In this section we will briefly review the interpretation of abelian and quadratic differ-
entials in terms of flat geometry. Then we will discuss certain types of these flat geometries
on a Riemann surface that will play a special role in the following section.

An abelian differential A € H(3, Kx,) on a Riemann surface ¥ determines a singular
flat metric, such that all transition functions are translation. A coordinate of the flat
metric at y € X\ Z(\) is a holomorphic coordinate z at y, such that A = dz. In this way,
one obtains a flat metric on ¥\ Z(\), such that coordinate transitions are translation. It
extends to a singular flat metric on ¥ by cone points of cone angle (k + 1) at a zero of A
of order k. This is a so-called translation surface.

Similarly, we can associate a singular flat metric to a quadratic differential (X, q),
where X is a Riemann surfaces and ¢ € H%(X, K% ). A flat coordinate at z € X \ Z(q) is a
holomorphic coordinate z at x, such that ¢ = dz®2. In this case, the coordinate functions
are compositions of translations and reflections. It extends to a singular flat metric on X
by cone points of cone angle (k + 2)m at a zero of g of order k. This is a so-called half-
translation surface. When ¢ has simple zeros only, the spectral curve defined in section
is referred to as the canonical cover of (X, q) from this point of view. It is the universal
cover X, such that the pullback of ¢ has a square-root. (Here we consider A as a section
of Ky instead of 7*Kx as in section [3l We have 7*Kx = Kx(—R). Hence, if ¢ has simple
zeros, then the abelian differential A has double zeros at all branch points.)

We say that a quadratic differential (X, ) is of type u(q) = (ma,...,my) if the orders
of the zeros of the differential are my, ..., m,. We will use exponential notation if multiple
m; agree, i.e. we write (149(X)=4) for (1,...,1).

In the following, particularly symmetric (half-)translation surfaces play a special role:
Parallelogram-tiled surfaces and pillowcase covers. We obtain coordinates on the moduli
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\ <
4 N
\ <
4 N

FIGURE 2. Pillowcase with canonical cover: Opposite sides identified, when
not indicated otherwise. The involution on the cover acts as central sym-
metry in the two-torsion points.

space of abelian differentials by recording periods. The periods of (£, A) in H'(%, Z()\), C)
are given by

H{(%,Z(\),C) — C, c»—>//\

and local coordinates, the so called period coordinates, are given by the image of a basis
of relative homology under this map. The coordinate changes of period coordinates are
induced by diffeomorphisms of (3, Z(\)) and hence preserve the lattice

HY (%, Z(\),Z®iZ) ¢ H'(%, Z()\),C).

These integral points correspond to square-tiled surfaces: One obtains a cover of an
elliptic curve by
Yy
p: 2 —=>C/Z®iZ, yw~— A
Yo
for a choice of base point yg € 3. This cover is branched over one point 0 € E with ram-
ification points z; € Z(A) and ramification profile (ord, (A),...,ord;, ()A)). In particular,
this is a cover of flat surfaces, i.e. A = p*w for some abelian differential w on E. By scaling
the area of the flat torus (X, ) we obtain a dense subset of translation surfaces, that are
square-tilde in the above sense. We use a slight generalization.

DEFINITION 4.1. A translation surface (3, A) is parallelogram-tiled if and only if there
exists a branched cover p : ¥ — F branched over one point, such that A\ = p*w for some
abelian differential w on FE.

Given a parallelogram-tiled surface we can act by GL*(2,R) on the representing poly-
gon and obtain a family of parallelogram-tiled surfaces over the j-line of elliptic curves. For
j = 1728 we recover a square-tiled surface. The analogue of parallelogram-tiled surfaces
for quadratic differentials are pillowcase covers. A pillowcase is a half-translation surface
(P!, 7), where 1 has four simple poles 0, 1, 0o, x, see Figure .

DEFINITION 4.2. A half-translation surface (X, q) is called pillowcase cover if there
exists a cover p : X — P! branched over (0,1, 00, x), such that ¢ = p*n for a quadratic
differential 1 on P! with simple poles at (0,1, 0o, ).

The canonical cover of (P!, n) is the elliptic differential (E,w), where E = C/(Z + 7Z)
with A\(7) = x and the involution is given by multiplication with —1. Here A is the modular
lambda function. For a given x, the number 7 can be computed explicitly. Let K denote
the complete elliptic integral of the first kind

(97)

3 do
K(k):/ —_—
0 +/1—k2sin*#

Then t(x) = ZKI((i 2\1[;)@ is a section of A\. There is the following well-known relation between

parallelogram-tiled surfaces and pillowcase covers.

LEMMA 4.3. Let (X,q) be a half-translation surface. The canonical cover (3,\) is a
parallelogram-tiled surface if and only if the quadratic differential is a pillowcase cover.
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PROOF. Starting from a pillowcase cover as above we have the following diagram

‘ (2, )

%dJ \\IZ
S
X,q) (B w
D
2:1
(P',n)

and want to show that there exist the dashed arrow p : ¥ — FE, such that the diagram
commutes. Away from the singularities of the flat structure associated with (X, ¢) a point
on X corresponds to a choice of a (local) square of ¢q. This corresponds to a choice of
a local square root of 1 under the covering map to P'. Hence there is a induced map
p:X\Z(\) = E\ Z(w) such that p*w = X\. The map p uniquely extends to a map of
Riemann surfaces ¥ — E. A zero x € X of g of order k£ > 0 corresponds to a (k + 2) : 1-
branch point of p. Hence, the map can be extended to p : ¥ — E by gluing in a k : 1-
ramification point, if k is odd and a % : I-ramification point, if k is even, at y € 7 1(z).
By construction the relation of the differentials persists under this extension. Taking the
quotient of E by two-torison points we obtain a map (X, \) — E/E[2], branched over one
point such that A is the pullback of a differential on E. Hence, it is a parallelogram-tiled
surface.
For the converse, we start with the configuration

(A

)
%dJ x
) (E,w).

The differential A is anti-symmetric with respect to an involution J. In particular, J sends
singularities of the flat structure to singularities of the same type, saddle connections to
saddle connections and hence squares to squares. Hence it descends to the elliptic curve
(E,w) to the reflection in the two torsion points of E. The quotient is the pillowcase surface
as illustrated in Figure . In particular, there is an induced map p: ¥/J = X — P!, such
that ¢ = p*n. ]

( )

(X,q

REMARK 4.4. The proof of the previous lemma shows that one can always assume
the pillowcase cover to be non-simply branched over only one point on P!. This can be
achieved by taking the quotient by the order four automorphism of P! that permutes the
four marked points preserving the cross-ratio.

In the following, a special kind of pillowcase cover will be important.

DEFINITION 4.5. We call a pillowcase cover (X, q) uniform if every fiber of p: X — P!
over y € D consists of ramification points of the same ramification index .

5. Multifold pillowcase covers

Motivated by the connection to visible Lagrangians in Theorem[6.1] we are interested in
Riemann surfaces X which admit multiple quadratic differentials qi, ..., ¢, € H°(X, K?),
such that

e the vanishing loci Z(q1), ..., Z(g,) are pairwise different,
e the half-translation surfaces (X, ¢;) are pillowcase covers.

DEFINITION 5.1. We call a Riemann surface X with quadratic differentials q1, ..., q,
as above a n-fold pillowcase cover. We call a n-fold pillowcase cover a multifold pillowcase
cover if n > 2.

Apart from being uniform, we want the pillowcase covers to have simple zeros only.

Two quadratic differentials g1, g2 on X are called isomorphic if there exists an auto-
morphism ¢ of X such that ¢*q; = g2. We remark that from the point of view of flat
geometry isomorphic differentials are usually not distinguished. However two isomorphic
differentials might still have different vanishing loci and therefore correspond to different
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points in the SL(2,C)-Hitchin base. Hence, we will treat these differentials as different
from each other in the following. In this section we will prove

THEOREM 5.2. For infinitely many genera g there exist multifold uniform pillowcase
covers with simple zeros only.

PROOF. Assume that we know a single multifold uniform pillowcase cover X with
simple zeros only of some genus g > 2. Let ¢1,...,q, be the corresponding quadratic
differentials. Then we can obtain examples in infinitely many genera by taking unramified
coverings f : X — X in different degrees and the differentials q; = f*g;.

We will provide explicit examples in the following. O

The following examples have been found by a computer search using [GAP22|. There
are many more examples to be found, but we will restrict our discussion to three examples
in low genus. While the claimed properties of the examples can be checked by hand, it is
much more convenient to use a computer algebra system.

EXAMPLE 5.3 (Genus 2). Consider the group GL(2, F3) of order 48 and let f : X — P!
be the GL(2, F3)-cover branched above three points with monodromy datum

(2) G (o)

The orders of the matrices are 8, 2 and 6, and the genus of X is 2. The group GL(2, F}3)
has 12 subgroups of order 6 which we denote by Hjy, ..., His. For each such subgroup the
quotient X/H; is of genus 0, and the quotient map g; : X — X/H; is branched above
four points with ramification orders 2 and 3. Let 7; denote the quadratic differential on
X/H; of type (—1%) whose simple poles are supported at the branch points of g;. The
pullback ¢; := g;n; is a uniform pillowcase cover with simple zeros only on X. We claim
that the vanishing loci of the differentials ¢; are pairwise different. This is a very explicit
but lengthy computation which is left to the reader. In particular, X is a 12-fold uniform
pillowcase cover with simple zeros only.

EXAMPLE 5.4 (Genus 3). Consider the group SL(3, F) of order 168 and let f : X — P!
be the SL(3, F)-cover branched above three points with monodromy datum

100 010 101
0o10|,[{oo01],[1 00
101 100 010

The orders of the matrices are 2, 3 and 7. The Riemann surface X is the Klein quartic
and has genus 3. The group SL(3, F3) has 14 subgroups of order 24, and as in the previous
example each of those subgroups gives rise to a uniform pillowcase covers with simple zeros
only. In particular, X is a 14-fold uniform pillowcase cover with simple zeros only.

ExXAMPLE 5.5 (Non-isomorphic differentials). Let G := Ay x Z/3Z. We choose gen-
erators (a := (123),b := (12)(34)) = A4 and (¢) = Z/3Z. Consider the subgroups
Hy = (a,¢) = (Z/3Z)* and Hy := {a,b) = Ay. Let f: X — P! be the G-cover branched
above three points with monodromy datum (be, a®c?, ab). The genus of X is 4.

Consider the two intermediate covers Ay := X/H; and Ay := X/Hs, both of genus 0.
We define the two differentials ¢; and g2 on X as in the previous examples.

In this example it is relatively easy to see that the differentials ¢; and ¢y are non-
isomorphic. For this it is convenient to consider the respective canonical covers (3;, \;) of

(X7 Qi)'

PROPOSITION 5.1. The canonical covers 31 and ¥o are non-isomorphic. In particular,
(X,q1) % (X, q2), i.e. there doesn’t exist an automorphism ¢ : X — X, such that ¢*q1 = qo.

PROOF. The curves ¥; and ¥y are covers of P! via ¥; — X i> P!, branched over
three points. Both covers ¥; — P! have a monodromy representation with elements in the
symmetric group Sy|g|- The covers X; and X9 are isomorphic if and only if the elements
of the monodromy representation are conjugated in Sy, which is easily checked not to
be the case. ]
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In the rest of this section we will produce explicit flat pictures of the two quadratic
differentials (X, q1) and (X, ¢2) of Example Recall that ¥; is a square tiled surface by
Lemma We thus have the diagram

21 Z:2
X
Eq / \ Es
i ) ) o

1 2
N

First we determine the tori F;, which also determine the pillowcases A;. We start with
the torus Ey. The map Ay — P! is cyclic of degree 3 and totally ramified over two points,
and unramified otherwise. One of the branch points of Fo — A agrees with a ramification
point of Ay — P!, while the three other branch points of Ey — As lie in one fiber of
As — PL. Hence we may assume that the branch points of Ey — Ay are 0,1,(3 and (3.
Those four points have the cross-ratio D(0,1;(3,¢3) = (3, and A((3) = (§, where A is the
modular lambda function. Hence up to isomorphism

By = C/(Z & GZ) = C/(Z & GT).

The cross-ratio of the four branch points 0,1, z,00 € P! of E; — A; is again uniquely
determined by the ramification profile of the maps E; — A; — P! and is given by

D(0,00;1,2) = 15v/3 — 26.

One numerically computes 7 := ¢(15v/3—26) ~ 1+2.1431826989157, where ¢ is the function
from , and for this 7 we have

E1 2 C/(Z®TL).

To obtain pictures of the pillowcase covers X — A;, we need to determine how to glue
the copies of the pillowcase A;. We describe how to obtain this information for a general
pillowcase cover which is a G-cover. The idea is to compare two G-actions on the |G|-many
copies of A;.

Given a G-cover X — P! of degree d = |G| with monodromy datum (gi,...,g4), the
bijective map

mg: G — G, h — gh

induces a map p : G — Sy when we identify o : G — {1,...,d}. If p € P! is a point (which
is not a branch point), and we identify the fiber of X — P! above p with {1,...,d} via o,
then the lift of a simple loop with basepoint p around the i-th ramification point starting
ing C{1,...,d} will end in a point p(g;)(q).

b d b
b ki
1 ﬁ 1
hy by
a c a

FiGURE 3. A pillowcase

On the other hand X consists of d copies of the pillowcase P! as depicted in Figure We
can again label those copies with {1,..., d}. After choosing an orientation on the vertical
and horizontal cylinder, X is uniquely determined by the permutations hi, ho,v € Sy,
which indicate which copy of the pillowcase we reach when we leave a given copy in the
direction indicated in the figure.
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We label the four branch points by a, b, ¢, d as in Figure [3| Lifting a small clockwise
cycle around point @ will act on the copies as hg o v, around b as hy ov™!, around ¢ as hgl
and around d as hl_l.

Hence hq, ha, v are given (up to the choice of o and hence p) by

hi = p(go) ™" ha = p(g1) ™", v =hy" o p(gz) = p(ga) " o hu.
Now we come back to the cases we are interested in. For X — A; we can choose o
such that

for X — Ay we can choose o such that
hi=(14)(23)(57)(68)(9 10)(11 12)
ho=v=(1712)(2811)(3510)(469).

Combined with the information about the tori E; this gives rise to the pictures in
Figure Ml where the horizontal edges are glued by half-translation as indicated by the
labeling.

6. Visible Lagrangians over lines in the Hitchin base

In this section, we study visible Lagrangians over a line B = Ca C Bsr(n,c)- In the first
part, we give an existence criterion using Proposition In second part, for G = SL(2, C)
and a = ¢ a quadratic differential, we study the holomorphic symplectic subvariety Z,,
which is the proposed mirror dual by Theorem . If (X, q) is a uniform pillowcase cover
we will show that Z, is a hyperholomorphic subvariety birational to Hausel’s toy model.

THEOREM 6.1. Leta = (0,...,0,ay) € Breg( ). Then there exists a visible Lagrangian

over Ca, if and only if the spectml curve with its abelian differential (3, \) is parallelogram-

tiled.

PROOF. First assume there exists a visible Lagrangian over Ca. Let (X,\) be the
spectral curve to a. Then by Proposition [3.2] there is an exact sequence of abelian varieties

0= A — Prym(S,) % E — 0.

Here A is of codimension 1 and E is an elliptic curve. Under the assumption on a the
spectral curve is Z,-Galois and s = A""! (up to a constant). Hence, the map ¢ of
Proposition [3.1] becomes

t: @HOXKX)—>H (2, Ky), ZalX r—)Zal l.f
=2

In particular, the tangent vector X,, = a, is mapped to ”t\‘f" = A. Hence, the differential
of the map 1 can explicitly be written as

(98) dy: HY(X,0x)” = ToE, a+— c/ a A
b

Therefore, v is given by D = > a;y; — Y. fy’yol A up to the choice of a point yg € 3. Denote
by o a generator of the Z,, action on 3. We want show that the composition 1 o AP with
the Abel-Prym map
AP : ¥ — Prym(X2), y— Oy —oy)

is a branched covering p : ¥ — FE. Clearly, AP identifies all ramification points of 7
> — X. If ¥ is not hyperelliptic it is easy to see, that these are the only points on X
that are identified. The spectral curve ¥ is never hyperelliptic by |[Barl6, Lemma 4.1].
By definition ¢*A = £, A for some primitive n-th root of unity &,. This implies that the
differential of the composition 1) o AP is (1 —&)\. Hence the differential of the composition
is injective away from the ramification points of 3 — X. In particular, p = o AP : ¥ — F
is a proper holomorphic map ramified at Z(\) over 0 € E. Furthermore, A considered as
abelian differential has an order n zero at each branch point and hence the points in Z(\)
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(A) The pillowcase cover X — A;

12

11

11

12

10

10

(B) The pillowcase cover X — Ag

FIGURE 4. Two non-isomorphic pillowcase covers on the same curve X
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are n + 1 : 1l-ramifications. In particular, the pullback of an abelian differential w on E
has the same divisor as A and we can find a specific w with p*w = X\. Therefore, (X, \) is
parallelogram-tiled.

For the converse, let a = (0,...,0,a,) € Béef(n,((:)v such that (X, \) is parallelogram-
tiled, i.e. there is a covering p : ¥ — FE, such that A = p*w for some abelian differential w
on E. The covering p induces a Norm map

Yi
N Jac(S) + B, D= Y agirs 3o [ A
Yo

The restriction to Prym(X) defines the desired map
Y = Nmg|prym : Prym(X) — E.

Let D= (n—1)y —oy—---— 0" 'y. Then D € Prym(X) and Nmg(D) = nNmg(y).
Hence, v surjects onto E being a divisible group. Its differential is the map . As ¥
does not change, when multiplying ¢ with a scalar, we can define an abelian subscheme
ker(y) C Prym(X/C*q) that satisfies the criterion of Proposition To obtain a visible
Lagrangian over Cq we can act with the abelian scheme ker(¢)) on any section of Hit|c,.

To obtain a concrete example we may choose the Hitchin section. O
COROLLARY 6.2. Let q € Béef@,(c) be a quadratic differential with simple zeros only.

Then there exists a visible Lagrangian over Cq if and only if (X,q) is a pillowcase cover.
PROOF. This is immediate from Theorem [6.1] and Lemma [4.3] O

6.1. The Fourier-Mukai dual. Now, we consider the Fourier-Mukai dual of the
visible Lagrangian defined above in the case of G = SL(2,C). Let (X, q) be a pillowcase
cover and £, — B’ = Cq the visible Lagrangian defined as the closure of the orbit of the
abelian subscheme A C Prym(3/C*g) on the Hitchin section. In particular, B8 = C*q.
The fibers of £ — B'™8 are of codimension 1 in the SL(2, C)-Hitchin fibers over B'"&.
Hence, by Theorem [3.2] the fiber-wise Fourier-Mukai transformation of the structure sheaf
of £ is supported on an elliptic surface I, — C*¢ obtained by acting with the abelian
scheme E C Prym(X/C*q)" on the Hitchin section of Mpgr2,c). Its closure Z, = 1, is
the proposed mirror dual. We have the following proposition.

PROPOSITION 6.1. The subvariety T, C Mpsp(n,c) 1 birational to Hausel’s toy model
Moy [Hau9§].

PRrROOF. Hausel’s toy model is constructed as an elliptic surface as follows. Take
(P!, p1,p2,p3,p4) and consider the elliptic curve £ — P!, which is the canonical cover
of the pillowcase with involution 7. Let further M = 7 be the involution —1 : C — C.
Consider E x C/(r x 7'). This orbifold has 4 Zs-points p; x 0. The projection to the
second factor induces the map M — C, (z,y) ~ y? with generic fiber E. Blowing up the
4 orbifold points we obtain a smooth surface - the toy model Myo,. The subintegrable
system Z, associated to B’ = Cq for a pillowcase cover (X, q) is an elliptic fibration over
C*q c B'. The modulus of the elliptic curve is constant and determined by the four points
P1,...,p4 on the pillowcase. As for Hausel’s toy model the monodromy around 0 € Cq is
given by —1. In fact if we scale our quadratic differential with e’ the abelian differential

is multiplied by €2 O

For uniform pillowcase covers (X, q) we can indeed prove that Z, C Mgpo,c)(X) is
a hyperholomorphic subvariety. This will be achieved by defining a morphism © from a
moduli space of semi-stable parabolic SL(2,C)-Higgs bundles to Mgp,,c)(X), such that
the image of © is Z,. Denote by M, = M, (P, D) the moduli space of semi-stable strongly
parabolic SL(2, C)-Higgs bundle (E, ®) on P! with D = 0-+1+o00+y with parabolic weights
a = ((ay,1,0y2)yep). Here E is a rank 2 bundle of determinant det(£) = O(—4) together
with complete flag {0} C E,1 C Ey2 = E, at each y € D. By our convention flags are
ascending and weights descending, i.e. ay 1 > 2. The Higgs field ® € HY(P!, Endy(F) ®
K (D)) must preserve these flags, in the sense that Res(®)(E,) C E, 1. The Higgs bundle
(E, ®) is called semi-stable if and only if for each sub-Higgs bundle (L,v) C (E,®) we
have pardeg(L,v) < pardeg(E,®). On (P!, D) this condition is automatically satisfied
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for all Higgs bundles that are not nilpotent. M, (P!, D) carries a hyperkihler metric
defined by interpreting it as the moduli space of flat logarithmic connections with certain
fix monodromy at D via non-abelian Hodge theory. See |[FMSW22| for more details.
For generic weights, the moduli space M, is isomorphic to the smooth surface Moy,
constructed above.

Recall from Definition that for a uniform pillowcase cover (X, q) every fiber of
p: X — P! over one of the four marked points on P! has a well-defined ramification index.

THEOREM 6.3. Let (X,q) be a uniform pillowcase cover with simple zeros only. We
define so-called compatible parabolic weights at y € D of ramification index i by (ap =
%,Ozl = ZJ%Q) Let My (P, D) be the moduli space of strongly parabolic Higgs bundles on
(P, D) with compatible parabolic weights. Then there exists a holomorphic map

0 : My (P', D) = Mgp.0)(X),
such that

i) it maps the Hitchin section of My, to the Hitchin section of Mgy,a,c)(X) restricted
to Cq.
ii) for all c € C*, it makes the following diagram commute

E—7 Prym(3,)

T

Hit ™ (cn) —2— Hit™!(cq)

where we used the Hitchin section to identify the corresponding Hitchin fibers with
abelian varieties.

iii) © can be promoted to a morphism of hermitian Higgs bundles, such that solutions
to the Hitchin equation on (P, D) are mapped to solutions to the Hitchin equation
on X.

PROOF. Recall the square of coverings of Figure The morphism © is given by a
Hecke modified pullback along p. Let (E, ®) € M,. First define

(E', ') = <p*(E ® 0(3)) ® K%,p*i') )

This is a meromorphic Higgs bundle on X with tr(®’) = 0. By assumption of ¢ having
simple zeros only all points in p~!(D) are ramification points of p, which are 2: 1 or 3 : 1.
Let R; € Divt(X) be the divisor that has weight 1 at the branch points that are (i +1) : 1
and R = R; + Ry. The pullback of the quasi-parabolic structure defines a quasi-parabolic
structure on E at R given by Ej ; := p*Ej; 1 C E;. Now we define a Hecke modification
0—(E,®) — (B, ®)~ P E,/E,, —0.
zesupp R
Then the map © is defined as
O:(E,®)— (E,).

(3,4)
/ K
(X.q) (B,w)
x /
(P, n)
FIGURE 5. Square of coverings associated to a pillowcase.

Well-definedness: First, we have to show that © is well-defined. We have
P Op1(—2) = p*Kp1 = Kx(—R1 — 2R»)
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and div(q) = Ra. Hence, the determinant of E’ computes to
det(E") = p*O(2) ® Ky' = K *(R1 + 2Rs) = O(R; + Ry).

Therefore, the determinant of E is det(E) = det(E')(—Ry — Ry) = Ox.
To show that the Higgs field @ is holomorphic we do a local computation. Locally at
each y € D we can find a frame s;, s of ¥ adapted to the parabolic structure such that

(oo(2)dz ()
(99) ‘D‘(é(z)dz —$O<z>dz>'

and E, 1 = (s1]y). Hence, at all ramification points x € p~ 1D the pullback has the form

e [(o(wh)wt dw 1 (wh) 9L
(100) pre= <¢2(wk)wk1dw _¢0<wk)wk1dw) ;

where w is a coordinate centered at x, such that p : w — z = w*. By assumption k = 2, 3.
The pullback quasi-parabolic structure is given by Eg’ml = (p*s1|y). Now, it is an easy
computation to see that the Hecke modification modifies the Higgs field to

T\ o2 (WM wF2dw  —go(wF)whtdw

Hence, indeed (E, @) defines a SL(2,C)-Higgs bundle. Its poly-stability will follow from
the existence of a solution to Hitchin’s equation at the end of the proof.

Hitchin sections: Now, we want to apply this morphism to a point in the Hitchin
section. We identify the Hitchin base of M, as {cn | ¢ € C} for a fixed quadratic differential
n with simple poles at D. Denote by ¢ = p*n its pullback. Then a point (E,®) in the
Hitchin section of M, is given by

(E,d) = (0(—1) ©0(=3), (2 8)) €M,

After pullback and tensoring we obtain
1 _1 0 ¢p*l
E &)= (K2(Ri +Ro) & K %< ))
( ) ( (R1 + R2) im0

Here p*1 € p*O(2) ® p*Kp1 has a zero of order 1 at each 2 : 1 ramification point and a
zero of order 2 at each 3 : 1 ramification point. The pullback quasi-parabolic structure at
p~ 1D is given by the second coordinate with respect to the splitting. Hence, the Hecke
modification yields

o.0) = (k3o x4 (] ) = sute

as asserted.

Compatibility with pullback by p: We show that this map extends the spectral
correspondence on the regular locus. First we showed above that the Hitchin section of
M, is mapped on the Hitchin section of Mgr,o ¢)(X). It is easy to see that the eigen line
bundle on E of the Hitchin section of M, is 7*O(—3). Similarly, the eigen line bundle on

3 of the Hitchin section of Mgy 9,c)(X) is W*K)_(% We use these two Hitchin sections to
identify the fibers with the corresponding abelian varieties. Then (E, ®) € M, corresponds
to an element L; € Jac(E). Similarly, (E’, @) corresponds to an element Ly € Prym(%,).
We need to show that Ly = p*Lq. From the spectral correspondence we have an exact

sequence
T*d—w idﬁ.* E

0— L @7 0(-3) - 7*E
Tensoring with O(3) and pulling back we obtain

#(E®0(2).

1 *®—Nidzx
O_>p*L1_>7T*<E/®K)2(>7F dxz* g

1
" <E’ ® K)%) ® (7 op)*O(2).
_1
Here we used the commutativity of diagram Finally, twisting by K we see that the
line bundle associated to 7*(E’, ®') through the spectral correspondence is p*L;. The
(pullback of the) Hecke modification £ — E can potentially change this line bundle by
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twisting it with a divisor supported at 7! R. However, on the regular locus of M, the
quasi-parabolic structure is uniquely determined through the Higgs field at each p € D
(see [FMSW22, Prop. 8.1|). Hence, we can compute the eigen line bundle and the quasi-
parabolic structure of 7*(E’, ®') with respect to the pullback of the local frame of .

1
Then it is easy to see that the eigen line bundle p*L; ® K, 2 descends to a subbundle of
7*(E,®). Hence p*Ly = Ls.

Solutions to Hitchin equation: Finally, we will show that a hermitian metric h on
(E,®) € M, that solves the Hitchin equation is transformed to a solution to the Hitchin
equation for (E,®) € Mg 2,c)(X). First there is a section of O(4) with divisors D.
Promoting this section to have norm 1 defines a singular hermitian metric on O(4) locally
given by |z|72 at y € D. This induces a singular hermitian metric on O(1) and hence

on O(3). The latter is given by \z|_% at y € D and will be denoted by hpz). Similarly,
_1
q € H°(X, K%) induces a singular hermitian metric h_1,  on K2 that is smooth away
s X
(

from Z(q) and given by |w]% locally at « € Z(q). It is easy to see that singular hermitian
metrics defined in this way are automatically flat.

We need to extend the morphism © to hermitian Higgs bundles (E, ®, k). In the first
step we use the singular hermitian metrics defined above to obtain a hermitian metric on
E' by

1
(E,a h,) =" ((Ev h) ® (0(3)7 h(’)(3))) X (KX2>h_%KX)'

This hermitian metric is holomorphic on X \ R. The hermitian metric A’ pulls back to a
hermitian metric h on E through the Hecke modification E—>Ea priori holomorphic only
on X \ R.

Now, we start with a poly-stable Higgs bundle (F, ®) € M, and let h be a solution to
Hitchin’s equation. By the flatness of the hermitian metrics hos) and h_ 1Ky the resulting
hermitian metric A’ on E will still be a solution to Hitchin’s equation wherever it is smooth.
By definition the Hecke modification E — Eis an isomorphism on X \ R and hence the
induced metric h is a solution to Hitchin’s equation on this locus. To show that it defines
a solution to Hitchin’s equation on X we are left with showing that it extends smoothly
over R. R

To do so we compute the local description of A at € R. The metric h is adapted to
the parabolic structure. Hence, at y € D we can find a local frame s1, s9 of F, such that

firstly
a2
h = ( ’2‘2042) s

secondly the Higgs field is given by and thirdly the quasi-parabolic structure is the
ascending flag (s1) C (s1, s2). We have to consider two cases depending on the ramification
index of the fiber over y € D. We will only give the details for y € D of ramification index
2, i.e. p~ly is made up from 3 : 1-ramification points.
In this case, the compatible parabolic weight are o, = (3,1),sothat h = diag(|z|%, |z|%)
1

Tensoring with (O(3), ho(s)), pulling back and then tensoring with (K2, h_%K) we obtain

a local description for b/ at x € Z(q) with respect to the induced frame
W = p" ding(|2]372, 21572 |w]> = diag(1, [w| ).
Here w is local coordinate at @ € p~ 'y, such that p : w — w? = 2. Finally, with respect

to the frame s, s the Hecke modification E — E' is given by diag(1l,w) and hence the
induced metric on E is indeed smooth at z € R of ramification index 2. The case of
ramification index 1 follows along the same lines. Hence, h defines a smooth solution to
the Hitchin equation for the Higgs bundle (E, </I;)

In particular, for a poly-stable Higgs bundle (E, ®) € M, the image ©(E, ®) is poly-
stable and hence indeed © defines a map of moduli spaces

0 : My — Mgpe,c)(X).
This finishes the proof. (|



116 IV. VISIBLE LAGRANGIANS FOR HITCHIN SYSTEMS AND PILLOWCASE COVERS

REMARK 6.4. If (X, ¢) is an uniform pillowcase cover, such that there is an odd number
of y € D of ramification index 1, then the compatible weights are generic in the sense that
semi-stability implies stability. In particular, M, is the elliptic surface referred to as
Hausel’s toy model with the nilpotent cone being of Kodaira type Ij.

COROLLARY 6.5. Let (X, q) be a uniform pillowcase cover. Then I, C Mpgar2,c)(X)
1 a hyperholomorphic subvariety.

PROOF. By Theorem [6.3] © maps solutions to the Hitchin equation on (P!, D) to
solutions to the Hitchin equation on X. Hence, it is holomorphic not only with respect
to the holomorphic structure I, but also with respect to the holomorphic structure .J
and K on the moduli spaces Mg (P, D) and Mgy c)(X). In particular, its image is a
hyperholomorphic subvariety. However, Theorem i) and ii) shows that © restricts to
an isomorphism from the regular locus of M, to the torsor Z' C Mgp,2,c)(X) obtained
by acting with the abelian scheme E C Prym(X/C*q) over C*¢ on the Hitchin section.
Hence, 7' the image of © is a hyperholomorphic subvariety. In particular, its image Z,
under the quotient map ¢ : Mgy, 2,0)(X) = Mpar2,c)(X) is hyperholomorphic. O
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Zusammenfassung

1. R-lineare Untermannigfaltigkeiten

Wenn Sie einen rechteckigen Billardtisch haben und eine Kugel in einer der FEcken
starten, fragen Sie sich moglicherweise: ,Wird diese Kugel jemals wieder in einer Ecke an-
kommen?“. Lassen Sie uns fiir den Moment annehmen, dass Thr Billardtisch ganzzahlige
Seitenlangen hat. Die Bahn der Kugel entlang aller Reflexionen im Rechteck nachzuver-
folgen wird schnell miithsam. Statt jedes Mal die Kugel zu reflektieren, wenn sie eine Seite
des Tischen beriihrt, ist es sehr viel angenehmer, stattdessen den Tisch zu reflektieren wie
in Abbildung [6] Jetzt spannen die Ecken des Tischen ein Gitter in der Euklidischen Ebene
auf. In diesem Setting iibersetzt sich die Frage ,Wird die Kugel jemals wieder in einer
Ecke ankommen?“ zur Frage ,Wird die Kugel jemals wieder einen Gitterpunkt treffen?*.
Letztere Frage kann man sofort beantworten: Die Kugel wird einen Gitterpunkt treffen
genau dann, wenn der Winkel zwischen der Trajektorie und einer Seite des Polygons ein
rationales Vielfaches von 7 ist.

(A) Wir konnen die Kugel reflek-
tieren. . . (B) ...oder den Tisch.

ABBILDUNG 6. Ein rechteckiger Billardtisch

Aber was passiert, wenn die Kugel keine Ecke trifft? In diesem Fall wird die Trajektorie
offensichtlich unendlich sein. Wir kénnen aber noch mehr sagen: Die Trajektorie wird dicht
im Tisch liegen als Konsequenz des Dirichletschen Approximationssatz. Das motiviert die
folgende Definition.

DEFINITION 1.1. FEin Billardtisch in dem jede Trajektorie entweder geschlossen oder
dicht ist hat optimale Dynamik.

Wie wir oben gesehen haben, haben rechteckige Billardtische mit ganzzahligen (oder
allgemeiner rationalen) Seitenlédngen optimale Dynamik. Fiir einen komplizierteren Billard-
tisch wird unser Ansatz mit Gittern nicht mehr funktionieren. Stattdessen koénnen wir die
folgende Beobachtung benutzen. Den Tisch einmal zu reflektieren produziert einen Tisch
mit einer anderen Orientierung im Vergleich zum urspriinglichem Tisch. Den neuen Tisch
noch einmal in die gleiche Richtung zu reflektieren produziert einen Tisch mit der gleichen
Orientierung wie der urspriingliche Tisch. Anstatt also schon wieder einen neuen Tisch zu
produzieren (wie wir es getan haben um das Gitter zu erhalten), konnen wir den zweiten
Tisch mir dem ersten verkleben, um eine Mannigfaltigkeit zu erhalten. Wenn wir die ur-
spriingliche Fléache eingebettet in die Gaufischen Ebene denken, dann hat die so erhaltene
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Mannigfaltigkeit in natiirlicher Weise die Struktur einer Riemannschen Flache X. Indem
man die Differentialform dz von der Ebene auf die Fliche zuriick zieht, erhilt man eine
Differentialform w auf X. Dieser Prozess, um (X,w) aus einem Polygon zu erhalten, heifst
Entfaltung und wird uns in Kapitel wieder begegnen. Das Paar (X,w) heifst flache
Flache, da w auf X eine flache Metrik induziert.

Umgekehrt kann jede flache Fliche (X,w) mit Polygonen dargestellt werden: Wenn
1, -,V eine Basis der relativen Homologie H; (X, Z(w)) ist, dann sind die Seiten der
Polygone gegeben durch

(101) / w.

Lassen Sie uns zu unserem Billardtisch zuriickkehren. Die Trajektorien der Kugel kor-
respondieren zu Geodéten in X beziiglich der durch w gegebenen Metrik. Der Begriff der
optimalen Dynamik iibertragt sich dadurch in eine Frage tiber die Geodéten auf (X,w).
Das Hodgebiindel QM, — M, iiber dem Modulraum der kompakten Riemannschen Fl&-
chen in Geschlecht g ist ein Modulraum der flachen Flichen. Die Gruppe GLa(R)™ operiert
auf diesem Modulraum vermége der Operation auf den Polygondarstellungen der Flichen.
Veech [Vee89] |[Vee91| hat beobachtet, dass die flache Fliache (X,w) optimale Dynamik hat
genau dann, wenn ihr GL(R)"-Orbit abgeschlossen ist.

DEFINITION 1.2. Falls der GLa(R)™"-Orbit von (X,w) € QM, abgeschlossen ist, dann
heift (X,w) Veechfldche. Das Bild von GLa(R)T - (X,w) in M, heifst Teichmiillerkurve.

Wir haben oben das einfachste Beispiel einer Veechfldche gesehen: Die Entfaltung un-
seres rechteckigen Billardtisches (X,w). Seit Veechs Beobachtung ist viel Arbeit in die
Klassifikation von Teichmiillerkurven geflossen. Da man leicht neue Veechflichen aus be-
kannten mittels Uberlagerungen konstruiert, ist man hauptséchlich an solchen Veechflichen
interessiert, die nicht via Uberlagerungen aus bekannten hervorgehen. Die zugehorigen
Teichmiillerkurven heifsen primitiv. In Geschlecht 2, 3 und 4 kennen wir unendlich viele
primitive Teichmiillerkurven, die von Veech [Vee89|, Ward [War98|, Bouw-Moller [BM10],
McMullen [McMO03| [McMO06|, Calta |Cal04], Vorobets [HS01] und Kenyon-Smillie [KSO00]
entdeckt wurden. In jedem Geschlecht grofler 4 kennen wir nur endlich viele primitive
Teichmiillerkurven, die alle zur Bouw-Moller-Serie gehoren. Die Existenz unendlich vieler
primitiver Teichmiillerkurven in jedem Geschlecht ist eine offene Frage.

Fiir ein festes Geschlecht g sei u = (myq, ..., m,) eine ganzzahlige Partition von 2¢g — 2.
Fiir eine flache Fliache (X,w) vom Geschlecht g sagen wir dass w vom Typ p ist, falls w
genau n Nullstellen mit Ordnungen my, ..., m, hat. Der Modulraum der flachen Fléchen
QMy, auch bekannt als der Modulraum der abelschen Differentiale, besitzt eine natiirliche
Stratifikation beziiglich der Typen der Differentiale, und wir bezeichnen mit QM. ,, (1) das
Stratum der Differentiale vom Typ p. Die Integrale in (101f) sind lokale Koordinaten auf
dem Stratum, genannt Periodenkoordinaten.

DEFINITION 1.3. Ein Unterraum QH C QMg (1) heifit K-lineare Untermannigfaltig-
keit, wenn er von linearen Gleichungen in Periodenkoordinaten mit Koeffizienten in einem
Korper K ausgeschnitten wird.

Da die GL2(R)"-Operation Gleichungen mit Koeffizienten in R erhélt, ist jede R-
lineare Untermannigfaltigkeit der Abschluss einer Vereinigung von GLy(R)*-Orbits. Nach
dem bahnbrechenden Resultat von Eskin-Mirzakhani-Mohammadi ist auch die Umkehrung
wahr.

THEOREM 1.4 (JEMM15]). Jeder GLa(R)™-Bahnabschluss ist eine R-lineare Unter-
mannigfaltigkeit.

Eine wichtige Invariante einer linearen Untermannigfaltigkeit ist ihr Rang, der wie
folgt definiert werden kann. Uber QH betrachten wir das Biindel H!, dessen Faser iiber
(X,w) durch H'(X,C) gegen ist und das Biindel H], dessen Faser iiber (X,w) durch
HY(X,Z(w),C) gegeben ist. Sei p : HL, — H' die natiirliche Abbildung. Nach Avila-
Eskin-Moller [AEM17] ist der Raum p(T(Q#)) symplektisch, insbesondere von gerader

Dimension, und wir definieren den Rang von Q¥ als 3 dim p(T(QH)).
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Teichmiillerkurven (oder genauer die Bahnabschliisse der zugehorigen Veechfldchen)
sind R-lineare Untermannigfaltigkeiten vom Rang 1. Es war eine Uberraschung als McMullen-
Mukamel-Wright [MMW17] die erste primitive R-lineare Untermannigfaltigkeit vom Rang 2
gefunden haben, den sogenannten gotischen Lokus. Bis jetzt wurden nur 6 weitere primi-
tive R-lineare Untermannigfaltigkeiten vom Rang 2 von Eskin-McMullen-Mukamel-Wright
[EMMW20| gefunden. Es gibt rechnerische Hinweise auf die Existenz mindestens einer
weiteren solchen Untermannigfaltigkeit [DR23|. Die Existenz einer R-linearen Unterman-
nigfaltigkeit vom Rang mindestens 3 ist ein vollsténdig offenes Problem.

2. Die Chernklassen linearer Untermannigfaltigkeiten

Um mathematische Objekte (wie z.B. R-lineare Untermannigfaltigkeiten, die wieder-
um komplexe Orbifaltigkeiten sind) zu klassifizieren, ist es oft eine gute Idee, Invarianten
dieser Objekte zu bestimmen. Eine wichtige Invariante einer komplexen Orbifaltigkeit sind
die Chernklassen. Hier gibt es ein kleines Problem: Auf einer linearen Untermannigfaltig-
keit QH operiert die Gruppe C* via Skalierung des Differentials, so dass QH eine triviales
C*-Biindel ist und damit alle Chernklassen 0 sind. Wenn wir niitzliche Resultate erwar-
ten wollen, sollten wir statt Q#H die Projektifizierung H := QH/C* betrachten. In Kapi-
tel [[I} das in Zusammenarbeit mit Matteo Costantini und Martin Méller entstanden ist,
beweisen wir eine Formel fiir den vollstdndigen Cherncharakter des logarithmischen Ko-
tangentialbiindels einer linearen Untermannigfaltigkeit in Theorem Das erlaubt es
uns insbesondere, eine geschlossene Formel fiir die Eulercharakteristik einer linearen Unter-
mannigfaltigkeit anzugeben. Fiir eine lineare Untermannigfaltigkeit #H sei £ = ¢1(O(—1))
die erste Chernklasse des tautologischen Biindels.

THEOREM 2.1 (Theorem [II|1.3). Sei H — PQM, (1) eine projektifizierte lineare
Untermannigfaltigkeit. Die orbifaltige Eulercharakteristik von H ist gegen durch

d K- N
Y Y G H/ £

L=0T€eLG L (H)

wobei die Integrale iiber die Normalisierung der Abschliisse H — PEﬂgm(u) wm Modulraum
der Multiskalendifferentiale sind und dhnliche Integrale tiber Randstrata, wobei

° ’Hp die linearen Untermannigfaltigkeiten auf Level i von I wie in Abschnitt
definiert,

. dp = dim(?—[{fl) die projektifizierten Dimensionen sind,

° K;f das Produkt der Anzahl der Zackenpaarungen fiir jede Kante von I", die tat-
sdchlich in der linearen Untermannigfaltigkeit H enthalten sind, ist,

o Auty(T") die Menge der Automorphismen des Graphen T', dessen induzierte Ope-
rationen auf einer Umgebung von D%{ den Raum H erhilt, ist,

o d:=dim(H) die projektifizierte Dimension ist.

Fiir die meisten Begriffe, die in obigem Theorem benutzt werden, verweisen wir den
Leser auf Kapitel [[Il Als Einziges wollen wir an dieser Stelle hervorheben, dass das Theo-
rem den Modulraum der Multiskalendifferentiale PEMW(#) benutzt. Diese Kompaktifi-
zierung des projektifizierten Stratums PQM, ,, (1) wurde von Bainbridge-Chen-Gendron-
Grushevsky-Moller [BCGGM18| [BCGGM19b| konstruiert. Die Objekte im Rand bestehen
grob gesprochen aus nodalen Kurven mit einem Differential auf jeder irreduziblen Kompo-
nente und einer Levelstruktur auf den irreduziblen Komponenten. Fiir mehr Details verwei-
sen wir auf Abschnitt 5] Der Rand dieser Kompaktifizierung lasst seinerseits wieder eine
Stratifikation zu, wobei die Strata mit sogenannten angereicherten Levelgraphen indiziert
sind: Diese sind die dualen Graphen der zugrundeliegenden nodalen Kurven zusammen mit
einer Dekoration die Informationen iiber die Differentiale und die Levelstruktur festhalt.
Diese Kompaktifizierung wird im Folgenden mehrmals auftauchen.

3. Der gotische Lokus

Der gotische Lokus QG C QM 6(03, 23) ist der Bahnabschluss der Entfaltungsflichen

aller Vierecke mit Winkeln (677, éﬂ', éw 7). Sein Name rithrt von dem Fakt, dass er die

Fliche in Abbildung [7] enthélt, die dem Grundrlss einer gotischen Kathedrale dhnelt. Wie
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oben erwahnt, war der gotische Lokus QG die erste bekannte primitive R-lineare Unter-
mannigfaltigkeit von Rang 2. Dieser Lokus hat zusétzliche iiberraschende Eigenschaften:
Er enthélt eine dichte Teilmenge primitiver Teichmiillerkurven, und er kommt mit einer
natiirlichen Abbildung nach M 3 und sein Bild unter dieser Abbildung ist eine geodétische
Flache beziiglich der Teichmillermetrik.

ABBILDUNG 7. Die gotische Kathedrale (gegeniiberliegende Seiten sind
identifiziert soweit nicht anders angegeben)

Eine Teichmiillerkurve in einem Stratum meromorpher Differentiale heifit offensichtlich,
falls sie der Schnitt einer Uberlagerungskonstruktion mit einer Bedingung an die Residuen
ist. In Kapitel [[1I| werden wir den Rand des Abschlusses PEG = PQG C PEM,6(03,23)
analysieren. Diese Analyse ist noch nicht abgeschlossen, aber wir préasentieren im Fol-
genden einige Teilergebnisse. Als Teil des Randes finden wir ein Beispiel fiir eine nicht-
offensichtliche Teichmiillerkurve.

THEOREM 3.1 (Theorem [ITT[1.3). Sei (X,w) C QM 6(—3%,23) die kanonische Uber-
lagerung des 6-Differentials vom Typ (—10,—5,3). Das Differential (X,w) erzeugt eine
nicht-offensichtliche Teichmiillerkurve. In der Karte in Abbildung[§ ist diese Teichmiller-
kurve ausgeschnitten durch die Gleichungen

w; = —wirs  firi=1,2,3 und w1 + ws + ws = 0.
\ \
\ \ rU6
V6
ws A w w
. 3 1
V4
- - v
,U4 // // 2 w4
Ws w3
We w3

U3

/
V5 — v — / w1
1 A
W4 w2 We >
U3
\
A\

\\

ABBILDUNG 8. Eine unendliche Fléche, die eine nicht-offensichtliche Teich-
miillerkurve im Stratum QM g(—32,23)

erzeugt

Bis jetzt ist es uns nicht gelungen, genau zu bestimmen, welche Randstrata vom go-
tischen Lokus geschnitten werden, aber wir verfiigen iiber partielle Informationen in diese
Richtung. Fiir die horizontalen Strata zeigen wir:

PROPOSITION 3.2 (Proposition [[TIJ1.4). Der gotische Lokus PEG schneidet nur die
horizontalen Strata die in Abbildung 9 gelistet sind.



4. STRATA VON Ek-DIFFERENTIALEN 127

Wir erinnern daran, dass der gotische Lokus eine unendliche Zahl an primitiven Teich-
miillerkurven enthélt. Diese Kurven sind nicht kompakt. Daher schneidet der Abschluss
dieser Kurven den Rand von PZG in einigen Punkten, genannt Spitzen. Solche Spitzen
kénnen nur in rein horizontalen Randstrata enthalten sein. Fiir die Strata die zu den an-
gereicherten Levelgraphen in Abbildung [0 korrespondieren zeigen wir:

PROPOSITION 3.3 (Proposition |11 . Das Innere jedes der vier Strata Dlgl, D%,
Dl% und Dl%o enthdlt Spitzen einer im gotischen Lokus QG enthalten Teichmiillerkurve.
Das Innere des Stratums Dﬁg enthdlt Spitzen einer nicht-primitiven Teichmiillerkurve.
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ABBILDUNG 9. Die rein horizontalen Randstrata im gotischen Lokus

Man koénnte hoffen, mittels Theorem die Fulercharakteristik des gotischen Lokus
PQG zu bestimmen. Dieses Theorem kann so umformuliert werden, dass es reicht, die
Fundamentalklasse des Bildes des gotischen Lokus in My g zu kennen. In Kapitel werden
wir einen moglichen Ansatz zur Bestimmung dieser Klasse skizzieren. Momentan fehlt uns
das notige Handwerkszeug, um die Rechnung tatséchlich auszufiihren.

4. Strata von k-Differentialen

Wir betrachten eine Verallgemeinerung des obigen Settings: Anstelle von Strata von
abelschen Differentialen kénnen wir auch Strata von k-Differentialen Q¥ M, ,,(11) betrach-
ten, die Paare (X,7) parametrisieren, wobei 1) ein Schnitt von Q®*(X) ist. Hierbei ist u eine
ganzzahlige Partition von k(2g —2). Wie im abelschen Fall, gibt es eine Kompaktifizierung
dieser Strata, den Modulraum der k-Multiskalendifferentiale. Bainbridge-Chen-Gendron-
Grushevsky-Moller [ BCGGM19a] und Costantini-Moller-Zachhuber [CMZ19|] haben in die-
se Richtung gearbeitet. In Kapitel [[I] prizisieren wir die genau Struktur als Orbifaltigkeit
dieser Rédume. Diese Riume stehen, vermoge einer Uberlagerungskonstruktion, in Bezie-
hung mit mit linearen Untermannigfaltigkeiten (nicht notwendiger Weise R-linear), und
wir geben in Korollar eine geschlossene Formel fiir ihre Eulercharakteristik.

Diese Formel haben wir in einem Sage-Paket genannt diffstrata implementiert, das
Teil des Paketes admcycles [DSZ21| ist. Diffstrata wurde urspriinglich von Costantini-
Méller-Zachhuber |[CMZ23| entwickelt, um deren Formel fiir die Chernklassen von Strata
von abelschen Differentialen auszuwerten [CMZ22|. Wir haben diffstrata erweitert, so
dass es nun mit allen Strata von k-differentialen arbeitet. Als Beispiel kann die FEulercha-
rakteristik und das Masur-Veech-Volumen des Stratums PQ2Ma 5(—1, 5) mit den folgenden
Befehlen berechnet werden.
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sage: from admcycles. diffstrata import Stratum
sage: X = Stratum((—1,5), k=2)

sage: X.euler characteristic()

—7/15

sage: X.masur_ veech volume ()

28 /135%pi 4

Die Eulercharakteristiken der minimalen Strata in Geschlecht 2 sind, fiir kleine k, in
Tabelle [1] gelistet. Wie das obige Beispiel schon zeigt, kann das Paket diffstrata mehr
als nur die Eulercharakteristik auszurechnen. Zum Beispiel ist es moglich

e alle nicht-horizontalen Randstrata eines Stratums von k-Differentialen aufzulisten,

e beliebige Schnittprodukte im vertikalen tautologischen Ring (d.h. den Ring er-
zeugt von allen nicht-horizontalen Strata, ¥- und x-Klassen) zu berechnen,

e das Pushforward von Klassen im Stratum zum Modulraum der markierten stabilen
Kurven zu berechnen.

Die grofte Einschréankung der diffstrata momentan unterliegt, ist die Tatsache, dass es
nicht mit horizontalen Kanten umgehen kann. Dies wiirde deutlich allgemeinere Berechnun-
gen erlauben, wie z.B. das Pullback von beliebigen Klassen aus dem tautologischen Ring
des Modulraums der markierten stabilen Kurven zu einem Stratum von k-Differentialen.

k 1 3 4 ) 6 7 8 9

18 | 30 | 51

X(PQF M1 (2k)) | =45

Wl

N

o2
Ne)

TABELLE 1. Eulercharakteristiken einiger minimaler Strata von k-
Differentialen, berechnet mit diffstrata

Als eine Anwendung unserer Resultate tiber die Chernklassen zeigen wir, dass fiir be-
stimmte Typen p der Raum Qk/\/lgm(u) birational dquivalent zu einem Quotienten der
komplexen Einheitskugel ist.

THEOREM 4.1 (Theorem [II1.7). Angenommen p = (—ay,...,—as) ist ein Tupel mit

a; > 0 so dass
(—ﬂ—ﬁ)_lez falls a; + ax < k
Lk L % k B
fiir all i # j. Dann gibt es einen birationalen Kontraktionsmorphismus PEFK Mg 5(u) — B

auf einen glatten eigentlichen DM-stack B fiir einen Ballquotienten B.

Diese Ballquotienten wurden in fritheren Arbeiten von Deligne-Mostow |[DM86| und
Thurston [Thu98| mit anderen Methoden konstruiert.

5. Das tropische k-Hodgebiindel

Analog zum abelschen Fall ist der Rand von PEkﬂgm(u) indiziert mit angereicherten
k-Levelgraphen. Man kann hoffen, die Struktur des Randes zu verstehen, indem man die
Graphen selbst als abstrakte Objekte studiert. Um iiber stetige (Un)degenerationen von
Graphen reden zu kénnen, versehen wir jede Kante mit einer reellen Lange. Das fiihrt uns
zur Definition einer tropischen Kurve.

DEFINITION 5.1. Fine tropische Kurve ist ein zusammenhdngender Graph mit reellen
Kantenlingen und Gewichten g : V — N an jedem Knoten.

Die Levelstruktur eines angereicherten Levelgraphen konnen wir erfassen, indem wir
jeder Kante eine ganzzahlige Steigung zuweisen. Die Nullstellen des Differentials konnen
mit zusitzlichen Halbkanten erfasst werden. In Kapitel [, das in Zusammenarbeit mit Fe-
lix Rohrle entstanden ist, definieren wir das k-Hodgebiindel IP’QkM;rOp grob gesagt als
den Raum aller tropischer Kurven mit Halbkanten und ganzzahligen Steigungen an den
Kanten die bestimmte Kompatibilitdtsbedingungen erfiillen. Diese Bedingungen sollen das
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Verhalten von k-Differentialen widerspiegeln. Dieser Raum ist ein verallgemeinerter Kegel-
komplex, aber nicht dquidimensional, siche Theorem [[JT.1]

Die Kluft zwischen der klassischen Welt, sprich PQkMg, und der tropischen Welt, also
IP’Q’“M;TOP, wird tiberbriickt von einem Prozess namens Tropikalisierung: Es gibt eine stetige
Tropikalisierungsabbildung tropgx : IP’QkMZn — }P’QkM;mp. Allerdings ist diese Abbildung
nicht surjektiv. Das Bild von tropgx ist der Realisierbarkeitslokus. In Theorem geben
wir ein kombinatorisches Kriterium um zu entscheiden, ob ein Element von PQ*M,™P im
Realisierbarkeitslokus enthalten ist. Das erlaubt es uns zu zeigen, dass der Realisierbar-
keitslokus sehr viel schonere Eigenschaften hat als das tropische k-Hodgebiindel selbst.

THEOREM 5.2 (Theorem .. Fir k > 2 hat der Realisierbarkeitslokus die Struktur
eines verallgemeinerten Kegelkomplezes, dessen mazimale Kegel alle von Dimension (2 +
2k)(g—1) —1 sind. Die Faser des Realisierbarkeitslokus tiber einem mazimaldimensionalen
Kegel in M;mp st ein verallgemeinerter Kegelkomplex, dessen mazimale Kegel alle von
relativer Dimension (2k — 1)(g — 1) sind.

6. Pillowcase-Uberlagerungen und sichtbare Lagrangesche

Zu einer Uberlagerung von Riemannschen Flichen f : X — P!, die iiber hochstens vier
Punkten verzweigt ist, gibt es ein (bis auf Skalieren) eindeutiges quadratisches Differential
vom Typ (—1%) auf P!, so dass die einfachen Pole an den Verzweigungspunkten liegen. Wir
konnen diese Differential zuriickziehen, um ein Differential ¢ = f*n auf X zu erhalten. Ein
auf diese Art konstruiertes quadratisches Differential (X, ¢) heifit Pillowcase-Uberlagerung.
In Kapitel [V} welches in Zusammenarbeit mit Johannes Horn entstanden ist, untersuchen
wir Riemannsche Flichen X, die mehrere quadratische Differentiale ¢, ..., g, zulassen, so
dass

e der Verschwindungloki von q1,- -, Qn paarweise disjunkt sind,
e alle Paare (X, ¢;) Pillowcase-Uberlagerungen sind.

Wir nennen eine solche Riemannsche Fliche X eine mehrfache Pillowcase- Uberlagerung.
Wir sagen, dass eine Pillowcase-Uberlagerung f : X — P! uniform ist, wenn jede Faser
aus Verzweigungspunkten der gleichen Ordnung besteht.

THEOREM 6.1 (Theorem [IV|}5.2). Fiir unendlich viele Geschlechter g gibt es mehrfache
uniforme Pillowcase-Uberlagerungen mit nur einfachen Nullstellen.

Ein Beispiel einer mehrfachen Pillowcase-Uberlagerung ist die Kleinsche Quartik. Man
beachte, dass unserer Definition von mehrfacher Pillowcase-Uberlagerung nicht verlangt,
dass die g; nicht-isomorph sind. Nichtsdestotrotz geben wir auch ein Beispiel fiir eine mehr-
fache Pillowcase-Uberlagerung an, bei der die quadratischen Differentiale nicht alle iso-
morph sind.

Dies hat eine schone Anwendung in der Theorie von Higgs-Biindeln. Fiir eine komplexe
reduktive Gruppe G sei Mg der Modulraum der G-Higgsbiindel und Hit : Mg — Bg
die Hitchinabbildung. Eine komplexe Lagrangesche £ C Mg heilst sichtbar, wenn die
Restriktion der Hitchinabbildung tiber eine eigentliche Untervarietdt B’ = Hit(£) C B
faktorisiert. Fiir den Spezialfall G = SL(2, C) beweisen wir:

THEOREM 6.2 (Theorem [IV|[1.2). Sei ¢ € H°(X,K%) ein quadratisches Differential
mit nur einfachen Nullstellen. Dann gibt es eine sichtbare Lagrangesche
L—B = {tq ’ te (C} C BSL(2,C)(X)
genau dann, wenn (X, q) eine Pillowcase- Uberlagerung ist.

Insbesondere geben unsere Beispiele von mehrfachen Pillowcase-Uberlagerungen Bei-
spiele von Riemannschen Fléchen fiir die es mehrere Geraden in der SL(2, C)-Hitchinbasis
Bsr(2,c) gibt, die zu sichtbaren Lagrangeschen gehoren.
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