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I. EFFECTIVE MASS MODEL FOR PION
CONDENSATION

We use a quasiparticle (effective mass) approach to
describe interacting pions with a pion-condensed phase.
Outside of the pion condensed phase, the pressure of a
single pion species in the effective mass model reads [1]

pEM
π (T, µπ;m∗) = pidπ (T, µπ;m∗) + pf (m∗). (1)

Here π ∈ π+, π−, π0. The rearrangement term pf (m∗)
is a consequence of interactions. It ensures a proper
counting of the interaction energy and preserves the ther-
modynamic consistency in the quasiparticle model. For
instance, it ensures that the quasiparticle pion num-
ber density, nEM

π = nidπ (T, µπ;m∗), satisfies a thermo-
dynamic relation nEM

π = (∂pEM
π /∂µπ)T , correctly tak-

ing into account the medium dependence of the effective
mass, m∗(T, µ). The specific form of pf (m∗) defines the
quasiparticle model. Here we take pf (m∗) in the form

pf (m∗) =
(m∗)2f2π

4

[
1− m2

π

(m∗)2

]2
, (2)

chosen to match the model to chiral perturbation theory
and lattice QCD results in the pion-condensed phase at
T = 0 (see below). The pressure at a given T and µπ has
to be maximized with respect to m∗, resulting in a gap
equation (∂pEM

π /∂m∗)T,µ = 0:

p′f (m∗) = nidσ (T, µπ;m∗) . (3)

Here nidσ (T, µπ;m∗) ≡ −∂pidπ /∂m∗ is the scalar density of
an ideal gas of pions with mass m∗. A numerical solution
to the gap equation determines m∗ at given T and µπ,
allowing to calculate all other thermodynamic quantities
through Eq. (2).

The transition to the pion-condensed phase takes place
when the effective pion mass becomes equal to the chem-
ical potential, m∗ = µπ. The equation determining the
transition line in the µπ-T plane reads [1]

p′f (µπ) = nidσ (T, µπ;m∗ = µπ) . (4)
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Figure 1. The dependence of the normalized trace anomaly
(ε − 3p)/m4

π on the normalized pion chemical potential
µπ/mπ, evaluated in the effective mass model at T = 0. The
yellow band depicts lattice QCD results from Ref. [2].

The effective mass equals the chemical potential in the
phase diagram region with a pion condensate, m∗ = µπ
for µπ ≥ µcond, as a consequence of interactions be-
tween thermal and condensed pions [3]. Here µcond is
the pion chemical potential at pion condensation bound-
ary. Therefore, the pressure in this phase reads reads

pEM
π (T, µπ) = pid(T, µπ;m∗ = µπ) + pf (µπ). (5)

At T = 0, the pion number density nEM
π = (∂pEM

π /∂µπ)T
reads

nEM
π (T = 0, µπ) = p′f (µ) θ(µ−mπ)

=
µπ f

2
π

2

[
1− m4

π

µ4
π

]
θ(µ−mπ). (6)

Equation (6) matches the result of leading-order chiral
perturbation theory [4], which for fπ = 133 MeV de-
scribes well the available lattice QCD data on isospin
density at T = 0 [2]. Recently, these chiral perturba-
tion theory predictions have been backed up by next-to-
leading-order calculations, both for the density and for
the equation of state [5–8].
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II. LATTICE SIMULATIONS

Here we describe the details of our first-principles lat-
tice QCD simulations at nonzero isospin density. On the
one hand, the lattice results at (approximately) zero tem-
perature are used to guide the construction of the effec-
tive mass model described above. Here we use our data at
a single lattice spacing from Ref. [2]. On the other hand,
the finite-temperature results serve to test the validity
range of the model at nonzero isospin and zero baryon
density. To this end we employ our data from Refs. [9, 10]
on four lattice spacings.

To simulate the path integral Z we take the tree-level
Symanzik-improved gauge action and 2 + 1 flavors of
rooted staggered quarks with physical masses [11]. The
isospin chemical potential µI enters the Dirac operator1

via the quark chemical potentials µu = −µd = µI/2,
while µs = 0. Comparing to the standard basis with
baryon and charge chemical potentials, one can read off
µQ = µI , µB = −µI/2. The simulations therefore corre-
spond to a situation with a specific linear combination of
baryon and charge chemical potentials, which only cou-
ples to hadron species containing an unequal number of
up and down quarks (predominantly charged pions).2 To
be able to perform the simulations, we further need to in-
troduce an auxiliary pionic source λ > 0 that is extrapo-
lated to zero at the end of the analysis. The role of the λ
parameter is twofold. First, it triggers the spontaneous
symmetry breaking corresponding to pion condensation
in a finite volume. Second, it serves to stabilize the the-
ory in the infrared by making the Goldstone boson of the
pion condensed phase slightly massive [9].

To calculate the equation of state, our primary observ-
able is the isospin density

nI(T, µI) =
T

V

∂ logZ
∂µI

. (7)

The details of the λ → 0 extrapolation of this observ-
able are explained in Ref. [10] and in the following we
work with the so extrapolated quantity. From nI , we
can calculate ∆O(T, µI) ≡ O(T, µI) − O(T, 0) for any
observable O. In particular, the pressure difference and

1 This convention, for which pion condensation sets in at µI =
mπ at zero temperature, differs from that used in our earlier
works [9, 10] by a factor of two.

2 Note that the baryon density still vanishes in our simulations:
it is obtained in terms of derivatives with respect to the quark
chemical potentials as nB = nu/3 + nd/3 + ns/3 = 0 at pure
isospin chemical potential, where nu = −nd and ns = 0.

the trace anomaly difference can be constructed as

∆p(T, µI) =

∫ µI

0

dµ′I nI(T, µ
′
I) , (8)

∆I(T, µI) = µInI(T, µI)+

∫ µI

0

dµ′I

(
T
∂

∂T
− 4

)
nI(T, µ

′
I) .

(9)

The zero-temperature results for nI near µI = mπ

are well-described by the chiral perturbation theory for-
mula (6) with fπ = 133(4) MeV [2, 5–8]. This is
smoothly matched by a spline interpolation for nI(µI)
at higher values of the chemical potential. The interac-
tion measure is determined via Eq. (9) – note that at zero
temperature ∆I = I and, moreover, the first contribu-
tion to the integral in ∆I of Eq. (9) vanishes, simplifying
this expression considerably. The so obtained curve is
plotted in Fig. 1 as the yellow band.

For testing the effective mass model at T > 0 we con-
centrate on ∆I because compared to other observables
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Figure 2. The trace anomaly difference as a function of µI
at two different temperatures on our Nt = 10 (green) and
Nt = 12 (blue) lattice ensembles, compared to the effective
mass model (red curve).
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it is found to contain the least amount of lattice dis-
cretization errors3. The integrals and the derivatives in
Eq. (9) need to be evaluated numerically. To this end we
fit nI(T, µI) via a two-dimensional spline surface. The
spline nodepoints are drawn from a Monte-Carlo proce-
dure with the goodness of the fit playing the role of the
action, providing a direct estimate of systematic errors
(see Ref. [12] for more details). The µI -dependence of
∆I is plotted for two representative values of the tem-
perature in Fig. 2. Here we include the results for our
two finest lattice spacings, Nt = 10 and Nt = 12. (The
continuum limit at constant T corresponds to Nt → ∞,
but we do not carry out this extrapolation here.) The
model is found to capture the notable features of the
lattice data qualitatively. A quantitative description is
obtained if neither T nor µI are too large. In particular,
sizeable deviations are visible above the chiral restoration
temperature, because the effective mass model does not
contain the details of the physics of this phase transition.

To make the comparison between the Nt = 12 lattice
results and the model more systematic, in Fig. 3 we show
the deviation between the two in the form of a heat plot.
Here we normalize by the error σ of the lattice results –
therefore a value of n indicates a difference by n standard
deviations. The plot shows substantial differences for
µI > mπ at high temperatures as well as slight deviations
near the boundary of the pion condensed phase. We take
the contour line at 3 standard deviations as a marker and
consider the model reliable in the parameter range where

|∆I −∆IEM|
σ(∆I)

≤ 3 , (10)

with ∆IEM being the subtracted interaction measure in
the effective mass model. This range is indicated by the
solid line sections of the cosmic trajectories in Fig. 1 of
the main text.

The above comparisons were performed at nonzero
isospin chemical potential µI , where lattice results are
available. For the analysis of the cosmic trajectory, the
model is employed instead at nonzero charge chemical
potential µQ (as well as low baryon chemical potential
µB). At zero temperature, µI and µQ can be identified
as long as the only charged states that contribute to the
equation of state have zero strangeness and zero baryon
number. This is the case for µI < mK (even in this case,
kaon condensation is not expected to occur if a pion con-
densate is already present [13]) and sufficiently low µB as
is the case for the parameters considered in this paper.

3 Note that this choice allows to discuss the µI -dependence of the
model but not its reliablility at µI = 0. However, for the effect of
pion condensation on the cosmic trajectory, we expect the latter
to be less important.
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Figure 3. Heat plot of the deviation between the effective
mass model and the lattice results for the trace anomaly dif-
ference ∆I. For the latter our finest, Nt = 12 ensembles are
used. The deviation is normalized by the error of the lattice
data. The solid black line indicates the lattice result for the
pion condensation boundary, while the dashed line denotes
the contour of 3.

Contrary to the identification µI = µQ at zero tem-
perature, for T > 0 the different couplings of the two
chemical potentials to hadronic states becomes relevant
and the equation of state differs in the two cases. Never-
theless, in the effective mass model the pion condensation
boundary expressed in µI or in µQ remains the same, be-
cause interactions between pions and other hadrons are
neglected in the model. The difference between the crit-
ical lines, µcrit

Q (T ) and µcrit
I (T ) can be estimated using

lattice results for the estimators of the convergence radii
of the corresponding Taylor series around µQ = µI = 0.
In particular, we consider the expansions of the pressure,

p

T 4
=
cI,Q2

2

(µI,Q
T

)2
+
cI,Q4

24

(µI,Q
T

)4
+ . . . (11)

and the estimators for the convergence radius for the sus-
ceptibilities χI,Q = ∂2p/∂µ2

I,Q. We use the Taylor coef-
ficients determined in Ref. [14] for our action and lattice
spacings. The leading estimator

r2(χI,Q)

T
=

√
2cI,Q2

cI,Q4

, (12)

for the isospin direction was found to give a remarkably
good approximation to the true critical line, µcrit

I [10].
We assume this is also the case for the expansion in
µQ. Thus we approximate the critical line in the elec-
tric charge direction by

µcrit
Q ≈ µcrit

I · r2(χQ)

r2(χI)
. (13)

For the second factor we use the lattice results [14] above
and ideal HRG with quantum statistics below a matching
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Figure 4. The critical lines µcrit
Q and µcrit

I as obtained on
Nt = 12 lattices from the approximation in Eq. (13) and
from direct simulations, respectively. The critical line from
the effective mass model is included for comparison.

temperature of 105 MeV. The Nt = 12 results for this
approximation, together with the corresponding directly
determined isospin critical line µcrit

I [9, 10], are plotted
in Fig. 4.

Comparing to the effective mass model, quantitative
differences are observed for T & 80 MeV. While this
bound is comparable to recent results in chiral perturba-
tion theory to next-to-leading order [8], where the agree-
ment persists up to about T & 40 MeV, other models,
such as the Nambu-Jona-Lasinio [15] or the Polyakov
loop-extended quark meson model [16, 17], for instance,
show better agreement, both qualitatively and quanti-
tatively, with the lattice phase diagram (see also Fig. 9
of Ref. [13]). In particular, both models reproduce the
steep rise in combination with the leveling-off of the BEC
phase boundary at large µI . Nonetheless, the qualitative
agreement between the effective mass model and the lat-
tice data together with the fact that the lattice results for
µcrit
I and µcrit

Q do not differ by more than a few percents
again confirms that our model represents a reasonable
approximation to the phase diagram at nonzero isospin
(charge) densities. In addition, the inclusion of further
hadrons and resonances in the effective mass model is
straightforward.

III. PRIMORDIAL BLACK HOLES
FORMATION

At the time of PBH formation a region of the Universe
within the Hubble horizon starts to collapse due to local
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Figure 5. Threshold of primordial black hole formation ver-
sus horizon crossing temperature for different values of the
lepton asymmetry.

inhomogeneities amounting to

β(M) =
Meq

M
βeq . (14)

The relation between the amplitude of the density per-
turbation δ, the PBH mass MBH and the horizon mass
Mh can be defined as [18, 19]

δ =

(
MBH

KMh

) 1
γ

+ δc . (15)

The parameters in Eq. (15) are obtained from numerical
simulations to be K = 3.3 and γ = 0.36 [18–23]. The
parameter δc is the threshold for PBH formation where
different estimates for it exist in the literature [18, 19, 22–
26]. Here we assume that this threshold in a cosmological
background slightly deviates from the one of a purely
radiation dominated Universe (ω = p/ε = 1/3) which is
estimated to be δc ' 0.41 [25, 26]. Variation of δc due to
different lepton asymmetry values is shown in Fig. 5.

The fraction of PBHs ΩPBH with respect to the total
cold dark matter (CDM) abundance ΩCDM reads [27]

fPBH(MBH) =
1

ΩCDM

∫ ∞
0

2dMh√
2πσ(Mh)2

MBH

γMh
× (16)

exp

[
− δ2(Mh)

2σ2(Mh)

](
MBH

KMh

) 1
γ
√
Meq

Mh
.

The mass or scale dependence of the density perturba-
tion width can be assumed to be [27]

σ2(Mh) = 0.003

(
Mh

10M�

)nM
. (17)

The density spectral index nM can be related to the
scalar spectral index nS − 1 ' −2nM , where nS ' 0.96
[28, 29]. We choose the benchmark value of nM = 0 to
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compute the fraction of PBH from Eq. (16). The pa-
rameter fPBH for masses smaller than M� increases (de-
creases) when nM is negative (positive). However, fPBH

increases (decreases) for larger masses, respectively. For
a fixed nM as lepton asymmetry increases the value of
fPBH will change depending on the behavior of ω or δc
and the energy and pressure density. When δc increases
(decreases) the fraction of PBH decreases (increases).
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