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I. SUPPLEMENTAL MATERIAL

A. Variational Principle with Mixed Boundary Conditions

In this appendix we review the variational principle in
holography with dynamical boundary conditions for the
source fields [1–3]. We will restrict to the case relevant to this
work, namely Einstein-dilaton gravity with dynamical bound-
ary conditions for the metric and the scalar field governed by
four-dimensional Einstein-inflaton equations of motion.

In the supergravity limit, the gauge/gravity duality allows to
express the partition function of a strongly coupled quantum
field theory (QFT) as a path integral of a higher dimensional
gravity action

ZQFT[γ, φ] =

∫
[Dg]γ [DΦ]φe

−Shol , (1)

where γij and φ denote the background geometry of the
dual QFT and the inflaton field on the boundary, while∫

[Dg]γ [DΦ]φ means integration over all bulk geometries and
scalar fields with fixed boundary conditions γij and φ, respec-
tively. Promoting γij and φ to dynamical fields allows one to
define an induced gravity partition function as a path integral
over all boundary fields

Zind =

∫
DγDφZQFT[γ, φ]

=

∫
DγDφ

∫
[Dg]γ [DΦ]φe

−Shol

=

∫
DgDΦe−Shol . (2)

Because the boundary fields are dynamical, the variations of
the action result, in addition to the bulk equations of motion,
also in some non-trivial boundary contributions

δgShol =

∫
M

dx5√−gEOM
(g)
bulk δg

µν

+

∫
∂M

dx4√−γ 1

2
〈TQFT
ij 〉δγij , (3)

δΦShol =

∫
dx5√−gEOM

(Φ)
bulk δΦ

µν

+

∫
∂M

dx4√−γ〈O〉δφ . (4)

Since Shol includes the counter terms, whose explicit form
is derived in the next section, the boundary contributions can

be identified with the expectation values of the renormalized
holographic stress tensor 〈TQFT

ij 〉 and the scalar field operator
〈O〉 of the boundary theory.

There are different ways to make the actions (3) and (4) sta-
tionary [1]. The simplest option is to impose Dirichlet bound-
ary conditions on gµν and Φ, i.e., demanding δγij = 0 and
δφ = 0, which makes the boundary geometry and the inflaton
field static. Another option is to impose Neuman boundary
conditions, which is demanding 〈TQFT

ij 〉 = 〈O〉 = 0. In this
case γij and φ can remain dynamical and the bulk geometry
is fixed to empty AdS5. Combinations of these two options
are of course also possible. Finally, the most general possibil-
ity is to impose mixed boundary conditions, that is to demand
1
2 〈T

QFT
ij 〉 +

δSbdry,γ

δγij = 0 and 〈O〉 +
δSbdry,φ

δφ = 0 for some
functionals of the boundary metric Sbdry,γ and the scalar field
Sbdry,φ that can be added to the bulk action. In this work we
choose these boundary functionals to be given by the Einstein-
Hilbert plus inflaton action SEH+inf [φ, γij ] and the interaction
term Sint[φ, γij ].

B. Holographic Renormalization

In this appendix we derive the explicit form of the renor-
malized expectation values of the holographic energy momen-
tum tensor and the scalar field operator [4–6]. In the following
we assume Fefferman–Graham (FG) gauge

ds2 = L2 dρ2

4ρ2
+ ḡij(ρ, x)dxidxj , (5)

where the boundary is located at ρ = 0 and is parametrized by
the coordinates xi with i = 0, . . . , 3 and L denotes the Anti-
de Sitter length scale which we set to unity. Near the boundary
the metric and the scalar field take the form

ḡij(ρ, x) =
1

ρ

[
γij(x) + ρ γ(2)ij(x) + ρ2γ(4)ij(x)

+ ρ2 log ρ h(4)ij(x) +O(ρ3)
]
, (6)

Φ(ρ, x) = ρ1/2
[
Φ(0)(x) + ρΦ(2)(x)

+ ρ log ρψ(2)(x) +O(ρ2)
]
. (7)

The first term γij(x) in the expansion of the metric is the
boundary metric and the term Φ(0)(x) plays the role of the
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inflaton field in the boundary theory. The Klein–Gordon equa-
tion for the scalar field fixes the logarithmic coefficient ψ(2)

in terms of γij and Φ(0) as

ψ(2) =
1

4

(
∇2Φ(0) −

1

6
Φ(0)R

)
. (8)

At leading order Einstein’s equations determine

γ(2)ij = −1

2

(
Rij −

1

6
Rγij

)
−

Φ2
(0)

3
γij . (9)

The logarithmic part at sub-leading order fixes

h(4)ij = hgrav

(4)ij −
1

12
RijΦ

2
(0) −

1

3
∇iΦ(0)∇jΦ(0)

+
1

12
∇iΦ(0)∇iΦ(0) γij +

1

6
Φ(0)∇i∇jΦ(0)

+
1

12
Φ(0) �γ Φ(0) γij , (10)

where the pure gravitational part is given by

hgrav

(4)ij =
1

8
RikjlR

kl − 1

48
∇i∇jR+

1

16
∇2Rij −

1

24
RRij

+

(
1

96
R2 − 1

96
∇2R− 1

32
RklR

kl

)
γij . (11)

The expectation values of the holographic energy momentum
tensor and the scalar field operator follow from variations of
the renormalized action of the holographic model

Shol = Sbulk + SGHY + Sct . (12)

The bare bulk action Sbulk is defined in Eq. (5) of the main text
and the second term is the Gibbons–Hawking–York (GHY)
boundary term

SGHY =
1

κ5

∫
d4x
√
−γK , (13)

where K = γijKij = γij∇inj denotes the trace of the ex-
trinsic curvature of a four-dimensional slice of the bulk ge-
ometry near the boundary. The last contribution in (12) is a
counter term that is defined on a constant-ρ hypersurface near
the boundary, which is necessary to render the on-shell action
Shol finite in the limit ρ→ 0

Sct =
1

κ5

∫
d4x
√
−γ

[(
−1

8
R− 3

2
− 1

2
Φ2

(0)

)

+
1

2
(log ρ)A+

(
αA+ βΦ4

(0)

)]
, (14)

where the constants α and β parametrize the residual
renomalization-scheme ambiguity of the model. The holo-
graphic conformal anomaly [7, 8] A = Ag + Aφ consists of
a gravitational part due to the curved boundary geometry

Ag =
1

16
(RijRij −

1

3
R2) , (15)

and a part due to scalar matter

AΦ(0)
= −1

2

(
∂iΦ(0)∂

iΦ(0) +
1

6
RΦ2

(0)

)
. (16)

All this together results in the following expression for the
holographic stress tensor

〈TQFT
ij 〉 =

2√
−γ

δShol

δγij

=
2

κ5

{
γ(4)ij +

1

8

[
Trγ2

(2) − (Trγ(2))
2
]
γij

− 1

2
γ2

(2) +
1

4
γ(2)ijTrγ(2) +

1

2
∂iΦ(0)∂jΦ(0)

+

(
Φ(0)Φ(2) −

1

2
Φ(0)ψ(2) −

1

4
∂kΦ(0)∂

kΦ(0)

)
γij

+ α
(
T γij + T φij

)
+

(
1

18
+ β

)
Φ4

(0)γij

}
. (17)

The anomalous contributions to the stress tensor are given by

T gij = 2h(4)ij , (18)

T φij = −1

2
Φ2

(0)Rij −
2

3
∇iΦ(0)∇jΦ(0) +

1

6
γkl∇k∇lΦ(0)γij

+
1

3
Φ(0)∇i∇jΦ(0) +

1

6
Φ(0)�Φ(0)γij

− 1

2
γij

(
Φ(0)�Φ(0) −

1

6
RΦ2

(0)

)
. (19)

The expectation value of the scalar operator in the field theory
is then given by

〈O〉 =
1√
−γ

δShol

δΦ(0)

=
2

κ5

[
(1− 4α)ψ(2) − 2Φ(2) − 4βΦ3

(0)

]
. (20)

The holographic stress tensor satisfies anomaly-corrected
Ward identities

∇i〈TQFT
ij 〉 = −〈O〉∇jΦ(0) , (21)

γij〈TQFT
ij 〉 = −Φ(0)〈O〉+

1

κ5

(
Ag +AΦ(0)

)
. (22)

The inflaton field in the main text φ = Φ(0)/λ is related to the
source of the scalar operator Φ(0) via the coupling constant λ
and all QFT expectation values are given in units of the bulk
gravitational coupling

T QFT
ij = κ5〈TQFT

ij 〉
= diag (EQFT,PQFT,PQFT,PQFT) , (23)

OQFT = κ5〈O〉 . (24)

Finally, in our setup with dynamical boundary equations, α
and β renormalize the bare gravitational coupling and the cos-
mological constant in the boundary theory [9]

1

κ4
=

1

κ4,bare
+

α

96κ5
, (25)

Λ4

κ4
=

Λ4,bare

κ4
− β

1024π
. (26)
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FIG. 1. Scalar field potential of the holographic model.

We fix α = 0 and β = 1
16 , because this choice leads to

a supersymmetric renormalisation scheme in which the full
boundary stress tensor vanishes identically if the boundary
metric is flat.

C. Properties of the holographic QFT

Here we review some basic properties of the holographic
QFT used in this work (see also [10]). This theory has a
relevant scalar operator that is dual to a bulk scalar field Φ.
For convenience, we repeat here the corresponding Einstein-
dilaton type bulk action

Sbulk =
2

κ5

∫
d5x
√
−g
(

1

4
R− 1

2
(∂Φ)2 − Vbulk(Φ)

)
,

(27)
where κ5 denotes the bulk gravitational coupling, R is the
Ricci scalar associated to the bulk metric gµν and Φ is the
bulk scalar field with potential

Vbulk(Φ) =
1

L2

(
−3− 3Φ2

2
− Φ4

3
+

11Φ6

96
− Φ8

192

)
.

(28)
The bulk potential Vbulk(Φ) has several extrema and is shown
in Fig. 1. The most interesting for us is the maximum at
Φ = 0, which corresponds to an UV fixed point, or a CFTUV.
On the two sides of this maximum are two symmetric minima
at Φ = ±2 that correspond to two copies of an IR confor-
mal theory CFTIR. As the potential has a Φ → −Φ symme-
try, the two minima correspond to the same CFTIR. Around
the maximum, the dimension of the relevant scalar operator is
∆UV = 3, while at the minima the dimension of the same
scalar operator is ∆IR = 25/6. The relevant coupling in
the CFTUV has mass dimension one, and is therefore like a
fermion mass scale. Our QFT is a RG flow between CFTUV

and CFTIR that is driven by the source of the scalar opera-
tor with mass scale m. Moreover, the QFT has the symmetry
m → −m. This QFT is therefore massless in the IR, with
the massless (and strongly coupled) degrees of freedom be-
ing those of CFTIR. Moreover, although the QFT is strongly

coupled at all scales, it is a non-confining QFT.

The thermodynamic and transport properties of the model
were analyzed in [11]. At T > 0 the theory is entering the
black-hole phase and remains in it, all the way to T →∞. In
Fig. 2 (reproduced from [10]) we show from left to right the
dimensionless entropy ratio s/T 3 as a function of the (dimen-
sionless) temperature, the ratio 3P/E of the pressure to the
energy density and ratio of the bulk viscosity to the entropy
density, ζ/s, as function of energy density. All these quan-
tities asymptote to their conformal values at small and large
temperatures or energy densities.

Finally, we comment here on the evolution of the QFT
when it is coupled to the inflaton. The inflaton field is by
construction proportional to the mass scale of the QFT. When
the inflaton slow-rolls in the potential on the left side of Fig. 2
in the main text, the mass scale of the QFT starts at large nega-
tive values and slowly increases towards zero. This represents
an inverse RG flow that is driven by the cosmological evolu-
tion of the inflaton. Once the inflaton settles at the minimum
of the potentials at Φ = 0, the mass scale becomes zero and
leaves the QFT at its UV limit, namely CFTUV .

D. Solving the Bulk Model Numerically

The action in Eq. (1) of the main text results in a cou-
pled set of equations of motion for the bulk that are the five-
dimensional Einstein–Klein–Gordon equations

Rµν −
1

2
R gµν = 2∂µΦ∂νΦ− gµν

(
2Vbulk + (∂Φ)2

)
,(29)

�gΦ =
∂Vbulk

∂Φ
. (30)

The method we use to solve the corresponding initial value
problem for fixed boundary conditions was first presented in
[12] for pure gravity and further reviewed in [13, 14]. For the
case of dynamical boundary conditions as studied here, the
method was first extended numerically in [9]. Here we give a
summary of this method.

For the numerical treatment of the initial value problem it
is convenient to use generalized Eddington–Finkelstein (EF)
coordinates rather than FG gauge to parametrize the bulk ge-
ometry and the scalar field

ds2
bulk = gµνdxµdxν (31)

= −A(r, t)dt2 + 2drdt+ S(r, t)2d~x2 , (32)
Φ = Φ(r, t) , (33)

where the asymptotic boundary is located at r = ∞. In this
gauge the coupled set of Einstein and scalar field equations
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FIG. 2. We show the thermodynamical entropy density (left), pressure (middle) and bulk viscosity (right) as a function of temperature or
energy density. This figure is reproduced from [10] (see also [11]).

result in the following nested set of ODEs

S′′ = −2

3
S (Φ′)

2
, (34)

Ṡ′ = −2ṠS′

S
− 2SV

3
, (35)

Φ̇′ =
V ′

2
− 3ṠΦ′

2S
− 3S′Φ̇

2S
, (36)

A′′ =
12ṠS′

S2
+

4V

3
− 4Φ̇Φ′ , (37)

S̈ =
ṠA′

2
− 2SΦ̇2

3
, (38)

where a prime denotes a radial derivative, f ′ ≡ ∂rf , and
an overdot is short-hand for the modified derivative ḟ ≡
∂tf + 1

2A∂rf . The beauty of the scheme of this so-called
characteristic formulation is that specifying Φ(z) leads to
∂tΦ(z) through this nested set of ODEs, which is much sim-
pler than the typical PDE system encountered in numerical
relativity. We solve the initial value problem using the pro-
cedure explained in [10] imposing the Friedmann–Lemaı̂tre–
Robertson–Walker metric

ds2 = γijdx
idxj = −dt2 + a(t)2d~x2 , (39)

which leads to the boundary condition S(r) = r a(t) +O(r0)
for Eq. (34). The boundary conditions for Eq. (35) and
Eq. (36) is fixed by demanding regularity near the boundary,
while for Eq. 37 they are fixed by the energy density E . The
energy density is evolved by using conservation of the stress-
energy tensor or alternatively by using Eq. (38).

In practice it is difficult to solve these equations directly.
For numerical efficiency it is better to switch coordinates to
z = 1/r and to perform a near-boundary (NB) expansion of
both the equations and the functions S, A and Φ. One then re-
defines Φ(r) ≡ ΦNB(r) + r−3Φ̃(r) with ΦNB(r) containing
near-boundary terms up to O(r−2) and O(r−4 log(r)) (and

analogously for S and A). When using spectral methods, it
is especially important to subtract a high number of logarith-
mic NB terms, as spectral methods rely on regularity of the
functions presented. Lastly, it is convenient to apply a gauge
transformation r → r + ξ(t) such that the apparent horizon
(AH) remains at a constant value of the r coordinate. Since
the condition for the location of the AH equals Ṡ = 0 the
equation for ξ(t) can be obtained by solving ∂tṠ = 0 on the
AH (note that in Fig. 5 of the main text we do not apply this
gauge transformation for clarity).

The methods to couple the equations with our boundary
Friedmann+inflaton equations are exactly the same as in [9]
with the only exception that we now have a dynamical source
for the scalar field as is detailed in the main text. For com-
pleteness we note that we use a pseudospectral grid with 5
domains each having 7 grid points. In the simulations we use
κ5 = 1 and rescale to the chosen κ5 only when plotting re-
sults. We use timesteps of δt = 0.0005 and filter then numer-
ical functions every 50 timesteps by interpolating back and
forth to a spectral grid with 5 points (see also [13]). We start
with a radial gauge transformation r → r+ ξ with ξ = 1.709.
This fixes the apparent horizon at z = 1/r = 0.36 and the
evolution equations for ξ(t) guarantee that the horizon stays
there (nevertheless, every 100 timesteps we perform a tiny
gauge transformation to bring it back to z = 0.36). The full
evolution then takes around 200 hours on a single core using
Mathematica 11.

For reference we note that the temperature as derived from
the surface gravity κ can be obtained from TAH = κ/2π =

− z2

4π∂zA evaluated at the location of the apparent horizon. For
the event horizon this requires solving the differential equa-
tion ∂trEH = − 1

2A with boundary condition A(t, rEH(t =
∞)) = 0. This reflects the fact that the event horizon is teleo-
logical, e.g. it depends on the future spacetime. In our simula-
tions we go to a finite time where the geometry is sufficiently
constant such that a full solution of the event horizon can be
obtained.

The full code can be downloaded at wilkevanderschee.nl.
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