
Inverse modeling of circular lattices via orbit response measurements
in the presence of degeneracy

D. Vilsmeier*

Johann Wolfgang Goethe-University Frankfurt, 60323 Frankfurt am Main, Germany

R. Singh
GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt, Planckstr. 1, Germany

M. Bai
SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

(Received 27 October 2022; accepted 10 February 2023; published 27 March 2023)

The number and location of beam position monitors (BPMs) and steerers with respect to the quadrupoles
in a circular lattice can lead to degeneracy in the context of fitting linear optics and extracting lattice
information from measured closed orbits. Furthermore, the measurement uncertainties due to the
imperfection of BPMs and steerers can be propagated by the fitting process in ways that prohibit the
successful extraction of discrepancies between lattice elements in the real machine and their description in
the corresponding model. We systematically studied the influence of the placement of BPMs and steerers
on the reconstruction of linear optics and corresponding lattice information. The derivative of orbit
response coefficients with respect to the quadrupole strengths, the Jacobian, is derived as an analytical
formula. This analytical version of the Jacobian is used to further derive the theoretical limitations of fitting
linear optics from closed orbits in terms of the placement of BPMs and steerers. It is further demonstrated
that when evaluating the Jacobian during the fitting procedure, the analytical version can be used in place of
the conventional finite-difference computation. This allows for greatly improved efficiency when
computing the Jacobian during each iteration of the fitting procedure. The approach is tested with
large-scale simulations and the findings are verified by measurement data taken on SIS18 synchrotron at
GSI Helmholtz Centre for Heavy Ion Research. The presented methods are of general nature and can be
applied to other accelerator lattices as well. The fitting procedure by using the analytical Jacobian is tested
in conjunction with various methods for mitigating quasidegeneracy and the results agree with those
obtained by using the conventional Jacobian via finite-difference approximation.
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I. INTRODUCTION

Precise knowledge of the lattice’s optics elements is
crucial for the optimal operation of any circular accelerator.
Inability to identify or counteract discrepancies between the
lattice elements in the real machine and their description in
the corresponding model, also known as model errors, in
general, can result in failure to preserve beam parameters or
hinder further improvements of the machine performance.
Since the physics properties of lattice elements such as
quadrupole gradients are rather difficult to be precisely
measured directly in the machine, techniques for deriving

those properties from measuring their effect on the beam
behavior have been employed in order to improve the
quality of the accelerator model with respect to the real
machine. The goal of deriving those properties constitutes
an inverse problem since the observed beam behavior is
used to estimate the values of the underlying lattice
parameters which gave rise to this behavior. Solving such
an inverse problem is generally referred to as inverse
modeling. In this context, extracting linear optics and
model errors from closed orbit measurements is a typical
method for solving the inverse problem in terms of the
quadrupole contributions in the lattice. This method
requires a measured orbit response matrix (ORM) as input
and then varies all relevant lattice parameters in a multi-
dimensional optimization problem to match the simulated
with the measured ORM. Based on the outcome of the
optimization procedure, model parameters are adjusted and
the adjusted model is expected to accurately represent the
actual machine. The first detailed discussion on this method
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can be found in [1] and since then the technique has been
further improved and has experienced frequent usage at
different institutes [2–5]. The method has been implemented
as aMatlab program called LOCOwhich is part of theMatlab
Middle Layer (MML) for Accelerator Control [6]. Because
measurement of the ORM typically varies one steerer at a
time, it can take a significant amount of machine time. There
have been efforts to reduce the time and impact of the
measurement, for example, by sine-wave excitation of
multiple steerers at different frequencies simultaneously
[7]. Another approach used the data obtained from closed-
orbit feedback correction to continuously update an estimate
of the ORM; for a sufficient number of iterations, this will
converge to the true ORM [8]. A recent method proposes to
use two steerers in each transverse plane to modulate the
closed orbit in an appropriate pattern which also allows for
reduced measurement times [9].
Even when the adjusted model correctly reproduces the

measured data such as ORM, the lattice element parameters
in the adjusted model may not necessarily converge to the
corresponding actual physics properties in the real machine
due to various contributing factors such as the errors of beam
position monitors (BPMs) which cast an uncertainty on the
measured ORM [10,11]. This uncertainty then propagates
through the inverse modeling process and influences the
precision of derived parameters. Dependingon the lattice and
the optics, the effect of BPM errors can be more or less
problematic for the accuracy of inverse modeling results. In
some cases, the influence of BPM errors can even hinder the
successful reconstruction of quadrupole errors. An improve-
ment of the efficiency was introduced in [10] by adding
specific constraints for the fitting parameters. A related
approach for improving the efficiency was introduced
in [11].
The property of the lattice that is responsible for the

propagation of measurement uncertainty during inverse
modeling strongly depends on the availability and location
of BPMs and steerers in the lattice as these devices produce
and determine the measured data. While synchrotron light
sources typically have many BPMs installed, the available
BPMs at hadron synchrotrons are rather limited and are
typically not dual plane BPMs. Thus, it becomes increas-
ingly important to understand this relationship. A lack of
BPMs enhances the degree to which measurement uncer-
tainty is propagated and might cause specific lattice
parameters to be especially susceptible to this effect.
This property is referred to as quasidegeneracy. In some
situations, the lack of BPMs might even cause the inverse
problem to be ill-posed in such a way that the estimated
quadrupole gradients are not uniquely determined by the
measured ORM data. Thus, it is important to study the
limitations and properties of the inverse modeling process
with regard to the placement of BPMs and steerers. The
derivatives of the ORM elements with respect to the
relevant lattice parameters, including the quadrupole gra-
dients, contain lots of information about the corresponding

minimization problem. The matrix that is obtained by
concatenating the derivatives for each lattice parameter
as column vectors is generally referred to as the Jacobian
matrix. In this contribution, we derive an analytical
version of the Jacobian relating the ORM to the quad-
rupole strength errors along with BPM and steerer gain
errors. This Jacobian matrix is used by the optimizer, e.g.
Levenberg-Marquardt, in order to improve the current best
guess of lattice parameters during an iterative process. We
have studied the properties of this analytical Jacobian with
respect to the conditioning of the inverse problem.We show
that the analytical Jacobian highlights all relevant proper-
ties of the underlying model error estimation problem.
Rank deficiency of the Jacobian implies a degeneracy of the
inverse problem while small eigenvalues of the Jacobian
suggest quasidegeneracy for some patterns of quadrupole
errors. These patterns are more susceptible to the propa-
gation of measurement uncertainty. We further use the
analytical version of the Jacobian, obtained from the
lattice’s Twiss data, during the fitting procedure and show
that it reaches convergence similar to using the numerical
Jacobian which is obtained via finite-difference approxi-
mation. The analytical Jacobian is obtained quickly since it
requires only a single Twiss computation for the lattice.
This leads to a substantial speed-up factor compared to
computing the numerical Jacobian via finite-difference
approximation. Especially for larger lattices, this greatly
improves the compute time for the Jacobian during each
iteration of the fitting procedure and, thus, reduces the time
until results are available. In this process, we also devised a
general iterative method for automatic and online correc-
tion of quadrupole errors simply based on the analytical
Jacobian and measured ORM. This method has similarities
with iterative closed orbit correction.
The presented methods are extensively tested via large-

scale simulations and they are further verified via dedicated
measurements conducted at the SIS18 heavy-ion synchro-
tron at GSI Helmholtz Centre for Heavy Ion Research. The
fitting procedure by using the analytical Jacobian has been
tested in conjunctionwith variousmethods formitigating the
influence of quasidegeneracy [11] and the results agree with
those obtained by using conventional numerical Jacobian.
In the following, the structure of the paper is described.

In Sec. II, we introduce the lattice which is used throughout
this contribution and the concept of the orbit response
matrix. Section III explains the inverse problem of esti-
mating quadrupole errors with regard to the degeneracy
of its solutions. The analytical derivation of the Jacobian
is presented. Also, the influence of BPM and steerer
placement on degeneracy and quasidegeneracy is shown.
Section IV discusses the fitting procedure by using the
Jacobian as well as discusses the convergence properties
for different approaches. This includes the usage of the
analytical Jacobian during the fitting procedure. InSec.V, the
experimental results are presented. The fitting procedure,
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including the analytical Jacobian approach, has been imple-
mented as part of a self-developed PYTHON package [12].

II. ORBIT RESPONSE MATRIX

The orbit change xb at BPM b when changing the
steerers indexed with s by a kick δs, is given by [13]:

xb ¼
X
s

δs

" ffiffiffiffiffiffiffiffiffi
βbβs

p
2 sinðπQÞ cosðπQ − jμb − μsjÞ −

DbDs�
1
γ2
− 1

γ2t

�
C

#

;ð1Þ

where βb;s and μb;s denote, respectively, the beta functions
and the phase advances at BPM and steerer position, andQ
is the betatron tune. In the second term, Db;s denotes
the dispersion at BPM and steerer position and C is the
circumference of the synchrotron; γ and γt denote, respec-
tively, the beam energy (E) and transition energy of the
lattice (γ ¼ E

E0
where E0 is the rest energy of the beam).

The energy-dependent term is only relevant for synchro-
trons operating near transition energy.
Hence, the orbit change is a linear function in the applied

kick and it encodes the optics via the lattice functions β and
μ. The orbit response rbs at BPM b reacting to a single
steerer s is defined as

rbs ¼
xb
δs

: ð2Þ

The orbit response matrix (ORM) arranges the orbit
responses for all BPM/steerer pairs in a matrix form: rbs,
where b is the row index and refers to BPMs and s is the
column index and refers to steerers.
The lattice of the rapid cycling synchrotron SIS18 at GSI

Helmholtz Centre for Heavy Ion Research is used exem-
plary throughout this contribution. In the future, SIS18 will
serve as the injector for the SIS100 synchrotron which is
part of the FAIR project [14]. This booster operation at very
high intensities puts stringent requirements on the optics
and, thus, a thorough understanding of the linear optics
builds the foundation for any further improvements [15].
The lattice of SIS18 consists of 12 sections. An overview is
presented in Fig. 1. Each section contains three quadru-
poles, labeled F, D, and T, and the placement and strength
of these quadrupoles are identical in each of the sections.
This triplet structure is utilized to increase the transverse
acceptance during beam injection. The strength of T
quadrupoles is gradually decreased by 1 order of magnitude
during the ramp, resulting in a small strength during
extraction optics. The 36 quadrupoles are connected
with five distinct power supplies, separating the quadru-
poles into the following families: (i) F quads from odd
numbered sections, (ii) F quads from even numbered
sections, (iii) D quads from odd numbered sections,

(iv) D quads from even numbered sections, and (v) T quads
from all sections.
Each section contains two bending magnets next to each

other. The horizontal steerers are placed on the first bending
magnet, except in sections 4 and 6 where they are placed on
the second bending magnet. The vertical steerers are placed
between the F and the D quadrupole identically in each of
the sections. The vertical and horizontal BPMs are placed
downstream of the T quadrupole, identically in each of the
sections.
Each individual electrode of the “shoebox” type capaci-

tive pickup structure is terminated with 50-ohm amplifiers
which is followed by direct digitization at 125 MSa=s. The
orbit is calculated by least squares fitting the oppo-
site electrode signals on a user-defined time window. A
detailed discussion of the orbit measurement scheme along
with measurement uncertainty estimates can be found
in [16].
The nominal ORM of SIS18 shows a circulant structure

in the vertical block due to the symmetric placement of
quadrupoles, vertical steerers, and BPMs within each
section. Here, circulant means that each column of the
matrix is shifted by one element compared to the previous
column. Thus, the entire information of a circulant matrix is
encoded in a single column and in the fact that the matrix is
circulant, of course. In the horizontal block, the circulant
structure is broken in the two sections 4 and 6 because, in
those sections, the horizontal steerer is placed on the second
bending magnet rather than the first.

FIG. 1. Schematic of SIS18 lattice with optics functions
showing the first of in total 12 sections. The 12 sections are
identical except that in sections 4 and 6, the horizontal steerer is
located on the second bending magnet rather than the first. Blue
(raised): focusing quadrupoles, red (lowered): defocusing quad-
rupoles, yellow (centered): bending magnets; the horizontal
steerer is shown as a black line on top of the first bending
magnet (in sections 4 and 6, it is located on the second bending
magnet); the vertical steerer is shown as a gray box between the
focusing and defocusing quadrupole; the vertical and horizontal
BPMs (in that order) are shown as gray solid boxes downstream
of the third quadrupole (since they are right next to each other,
they might appear as a single gray box).
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The SIS18 lattice will be used for explaining various
important concepts throughout this contribution. Never-
theless, these concepts are of general nature and are
applicable to any other accelerator lattice, too.

III. DEGENERACY

The goal of inverse modeling is to minimize the
disagreement between measured and simulated observ-
ables. The amount of disagreement is quantified by the
cost function. Typically, the cost function is given as the
chi-squared weighted sum of squared deviations:

χ2 ¼
X
i

ðmi − oiÞ2
σ2i

; ð3Þ

where oi and σi are, respectively, the ith observation and
measurement uncertainty and mi is the corresponding
simulated quantity obtained from the model. The vector
of residuals is defined as r≡m − o.
Any procedure with the goal of predicting a set of model

parameters P which minimize this cost function is referred
to as an estimator. The efficiency of an estimator can be
quantified by the spread of its predictions around the true
parameter values. Thus, the mean squared error (mse)
criterion serves as a measure of estimator efficiency:

mse½P� ¼ E½ðP − θÞ2� ¼ Var½P� þ ðE½P� − θÞ2 ð4Þ

Here, P denotes the predicted parameter values by the
estimator, θ is the true parameter value, and E½·� and Var½·�
denote, respectively, the expectation value and the variance
of its argument. The second term in Eq. (4) corresponds to
the bias of the estimator. Thus, regarding the efficiency of
an estimator, there is a trade-off between its variance and
bias, and an increase in the estimator’s bias might result in

an overall more efficient estimator (reducing the mean
squared error of its predictions).
The first mention of quasidegeneracy for linear optics

from closed orbits was made in [10]. The proposed solution
was to switch from an unbiased to a biased estimator in
order to improve the overall efficiency of the estimates.
This was done by augmenting the cost function with terms
that correspond to the various specific quasidegeneracy
patterns of the lattice parameters. A related approach [11]
limited the change of lattice parameters during each
iteration of the optimization by using a dedicated set of
weights in the cost function.
Regarding the terminology, we distinguish between

(pure) degeneracy and quasidegeneracy. A purely degen-
erate case is one for which there exist multiple distinct
solutions that yield the same values for the chosen set of
observables in the absence of measurement uncertainty.
This is the case if, for example, there are too few BPMs
available compared to the number of quadrupoles. A
quasidegenerate case, on the other hand, is one where
there exist multiple solutions that are plausible in view of
the measurement uncertainty, i.e., which can be plausibly
explained by the measured data, and some (combinations
of) parameters are noticeably more susceptible to the effect
of measurement uncertainty than others. The presence of
measurement uncertainty does not change the nature of the
optimization problem though, as there is still a unique
global minimum, depending on the specific data used for
fitting. Rather, the quasidegeneracy is a property of the
modeled system. Depending on the lattice and optics, some
directions in parameter space cause less increase in the cost
function than others and, thus, are more susceptible to
measurement uncertainty. This is sketched in Fig. 2 where
the orbit response of a single BPM/steerer pair is shown
in dependence on the three different types of quadrupoles
of the SIS18 lattice, F, D, and T quadrupoles. Clearly, the
change in orbit response is more flat for the T quadrupole

FIG. 2. Example for the orbit response change of a single BPM/steerer pair when varying a single quadrupole. The horizontal orange
area indicates an orbit response uncertainty of 10 μmmrad−1 and is the same for all quadrupoles. The vertical orange area indicates the
corresponding plausible region of the quadrupoles’ K1L strengths. Clearly, the plausible K1L region is different for the various
quadrupoles and it depends on the steepness of the orbit response change with K1L for each quadrupole.

D. VILSMEIER, R. SINGH, and M. BAI PHYS. REV. ACCEL. BEAMS 26, 032803 (2023)

032803-4



than for the other two. This example shows only a single
ORM element, so for the actual optimization problem, the
situation is more complex but the principle is the same: flat
directions in the parameter space are more susceptible to
measurement uncertainty. These directions are determined
by the underlying model, i.e., the lattice and optics.

A. Analytical derivative of orbit response

In order to explain the degeneracy properties of a given
lattice, we consider the orbit response formula rbs for a
single dipolar kick and calculate the derivative rkbs with
respect to a change in the kth quadrupole’s strength. In the
following, we assume that the operation is not close to
transition energy and, thus, the energy-dependent term in
Eq. (1) can be neglected.

rbs ¼
ffiffiffiffiffiffiffiffiffi
βsβb

p
2 sinðπQÞ cosðπQ − jμs − μbjÞ ð5Þ

where b and s indicate, respectively, the BPM and steerer
index. Taking the derivative with respect to the integrated
strength ðK1LÞk of the kth quadrupole, we obtain

rkbs ≡ drbs
dðK1LÞk

¼ −rbs
βk
2

�
1

2 tanðπQÞ þ
tanðπQ − jμb − μsjÞ

2

þ cosð2πQ − 2jμb − μkjÞ þ cosð2πQ − 2jμs − μkjÞ
2 sinð2πQÞ

−
tanðπQ − jμb − μsjÞ

sinð2πQÞ

×
Z

maxðμb;μsÞ

minðμb;μsÞ
cosð2πQ − jμk − ujÞdu

�
; ð6Þ

where βk and μk are, respectively, the beta function and
phase advance at the kth quadrupole. The full derivation is
given in Appendix A.

B. Pure degeneracy

A pure degeneracy exists if there is a set of quadrupoles
that can assume different strengths and this is not reflected in
the selected observables. Using the ORM as observable, this
is the case if there are specific lattice segments of quadrupoles
without BPMs nor steerers in between. By considering
Eq. (6) together with the solution for the integral term given
by Eq. (A14), one can expand the various cosine terms
which contain μk contributions by using the trigonometric
identity cosðx� yÞ ¼ cosðxÞcosðyÞ∓ sinðxÞ sinðyÞ. For the
Jacobian elements corresponding to cases μb; μs < μk
[labeled (A)] or μk < μb; μs [labeled (C)], both the
cosine terms and the integral term expand into sinð2μkÞ
and cosð2μkÞ terms. For the third case μb;s < μk < μs;b

[labeled (B)], the cosine terms still expand into
sinð2μkÞ; cosð2μkÞ while the integral term expands into
sinðμkÞ2; cosðμkÞ2; sinðμkÞ cosðμkÞ terms. By using the
trigonometric identities sinð2μkÞ ¼ 2 sinðμkÞ cosðμkÞ and
cosð2μkÞ ¼ cosðμkÞ2 − sinðμkÞ2, aswell as the trigonometric
identity 1 ¼ cosðμkÞ2 þ sinðμkÞ2 for the terms that are
independent of μk, one can rewrite the whole Eq. (6) in
terms of sinðμkÞ2; cosðμkÞ2; sinðμkÞ cosðμkÞ where the coef-
ficients for these terms only depend on μb, μs, andQ. We do
not spell out this expanded form of the Jacobian here because
it is lengthy and it varies across the three distinct cases (A, B,
C). However, an overview of the grouped coefficients is
given in the Appendix (Table III). In the following, we focus
on the following more general observations. Given that the
Jacobian for each BPM/steerer/quadrupole triple can be
written as the sum of three expressions involving μk [namely,
sinðμkÞ2; cosðμkÞ2; sinðμkÞ cosðμkÞ] together with their
coefficients that depend solely on μb, μs, Q, each column
of the Jacobian can be written as a linear combination
of v1 sinðμkÞ2 þ v2 cosðμkÞ2 þ v3 sinðμkÞ cosðμkÞ where
the column vectors v1;2;3 contain the row-wise constant
coefficients depending only on μb, μs, and Q. The expres-
sions for these coefficients are the same for each group of
quadrupoles that is not interleaved by BPMs nor steerers.
Thus, the column span of the Jacobian is given by the three
column vectors v1;2;3 for each group of quadrupoles and,
thus, for a lattice with N sections and three or more non-
interleaved quadrupoles per section, the rank of the Jacobian
is at most 3N. It should be emphasized that this holds only if
all the involved quadrupoles in each section are consecutive,
i.e., not interleaved by BPMs nor steerers since otherwise
their coefficients would change according to the cases (A, B,
C). This implies that four or more consecutive quadrupoles
per section will cause a pure degeneracy since their
contributions to the Jacobian can still be described by only
three column vectors. This result holds for one dimension
(horizontal or vertical) but for uncoupled optics, it is easily
extended to both dimensions by considering that there are
sinðμkÞ2; cosðμkÞ2; sinðμkÞ cosðμkÞ terms for both dimen-
sions separately, i.e., six independent coefficient vectors
v1;2;3;4;5;6. Thus, the dimension of the column span of the
Jacobian involving both dimensions is bounded by 6N and,
therefore, seven or more consecutive quadrupoles will cause
a pure degeneracy.
This is in agreement with the result derived in [17] which

is that for uncoupled transverse optics, a set of seven or
more consecutive quadrupoles in both dimensions (or
four or more quadrupoles in one dimension) can produce
locally confined optics variations in between their segment.
Since the orbit response is a specific combination of the
lattice optics and it depends only on the optics at the
BPM and steerer locations as well as the tune if there exist
such segments of quadrupoles not interleaved with BPMs
nor steerers, the optics within such segments cannot be
resolved by observing the ORM. This can be seen in Fig. 3
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which shows simulated inverse modeling results for the
SIS18 lattice for all 36 quadrupoles, without any simulated
measurement uncertainty, while leaving out the BPMs and
steerers from an increasing number of consecutive sections.
As can be seen, for the cases where none of the sections or
only the first section is skipped, the quadrupole strengths
can be reliably recovered down to the numerical precision
of the estimator. When three or four consecutive sections
are skipped, the estimates clearly become ambiguous which
is reflected by the large increase in their standard deviation.
This is because each section contains three distinct quadru-
poles and, hence, when skipping three or more sections, the
corresponding segment contains more than seven quadru-
poles required to exhibit a degeneracy. For the case where
two sections are skipped, i.e., six quadrupoles, there is a
slight increase in standard deviation, similar to the amount
that is visible for the neighboring sections in the skip-3
and skip-4 cases. This is because when the degenerate
segment is extended with its neighboring sections, the
variations induced by those quadrupoles at the boundaries
of the segment are on the level of the numerical precision
of the estimator and, hence, will not be distinguished.
Nevertheless, it should be noted that the order of magnitude
is much smaller. The saw-tooth pattern that can be observed
between D and T quadrupoles will be explained as
quasidegeneracy below.

1. Global degeneracy

Besides the intrasection degeneracy discussed above,
which is caused by isolated groups of consecutive quadru-
poles, there can be another, global degeneracy whose
existence also depends on the BPM/steerer placement. In
the following, we use the notation S,Qn+,B which means
that we are considering one dimension (horizontal or
vertical) and the placement of lattice elements within a
section is the following: steerer, followed by n quadrupoles
(n+ means n or more), followed by a BPM. In terms of the

results, this is similar to B,Qn+,S. This pattern describes
the placement for one section and is repeated on a section-to-
section basis. We emphasize that this only describes in what
order BPM, steerer, and quadrupoles are placed but it does
not restrict the specific locations in terms of phase advance
within each section. In fact, these specific locations may be
different from section to section. For both dimensions,
horizontal and vertical, we write Sh,Sv,Qn+,Bh,Bv,
where h refers to horizontal and v refers to vertical. In terms
of the results, this is similar to any other pattern that swaps
any steerer with any BPM. This is because the Jacobian only
depends on jμb − μsj and it separates horizontal from vertical
contributions.
We show that the following placements exhibit a global

degeneracy: S,Q3+,B and Sh,Sv,Q5+,Bh,Bv. It is
worth noting that Sh,Sv,Q5,Bh,Bv causes a rank
deficiency of degree 1 in the Jacobian while Sh,Sv,
Q6,Bh,Bv causes a degree 2 rank deficiency. For Sh,
Sv,Q7+,Bh,Bv, intrasection degeneracy will appear and
the rank of the Jacobian is the same as for Sh,Sv,Q6,
Bh,Bv. The argument for this is similar to the one for S,
Q4+,B above, since exactly three column vectors are
needed for each dimension in order to generate the
Jacobian columns for a group of consecutive quadrupoles
in that dimension. In the Appendix, we proof the rank
deficiency for the S,Q3+,B (Appendix C) and Sh,Sv,
Q6+,Bh,Bv (Appendix D) placements. The origin of the
rank deficiency for the Sh,Sv,Q5,Bh,Bv pattern is not

FIG. 3. K1L residuals when running Levenberg-Marquardt
optimization for the nominal optics, starting from 1% random
quadrupole errors and gradually leaving out BPMs and steerers
from consecutive sections in order to cause a pure degeneracy of
the inverse problem. Each tick marker on the horizontal axis
indicates a quadrupole (F, D, T quadrupole per section).

TABLE I. This table presents an overview of the Jacobian
properties in terms of rank deficiency for the various BPM/steerer
placements around groups of consecutive quadrupoles.

Jacobian

No. of rows No. of columns Rank

S,Q2,B N2 2N 2N
S,Q3,B N2 3N 3N − 1

S,Q4+,B N2 4þN 3N − 1

Sh,Sv,Q4,Bh,Bv 2N2 4N 4N
Sh,Sv,Q5,Bh,Bv 2N2 5N 5N − 1

Sh,Sv,Q6,Bh,Bv 2N2 6N 6N − 2

Sh,Sv,Q7+,Bh,Bv 2N2 7þN 6N − 2

N denotes the number of sections in the lattice (N ≥ 3 is
assumed). It should be emphasized that the only deciding factor
is the placement pattern, i.e., how many quadrupoles form a
consecutive group, not where exactly these quadrupoles or the
BPMs/steerers are located in each of the sections. The specific
locations may vary from section to section and as long as the
overall placement pattern is satisfied, the rank will be the same.
For verification with simulations, the Jacobians were obtained
from simulations using the MPMATH [18] library to avoid
numerical issues (dps set to 100). The rank is then
computed as the number of singular values that are larger
than or equal to ϵN2smax where smax is the largest singular value
and ϵ ¼ 2−52 is the machine epsilon for double precision
floating point numbers.
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obvious and we report this without proof, based on our
simulation results. Table I gives an overview of the various
Jacobians’ ranks obtained via simulations, in agreement
with the analytical derivations.
Appendix B includes a similar derivation for beamlines,

i.e., noncircular lattices.

C. Quasidegeneracy

Even though groups of, for example, two consecutive
quadrupoles do not exhibit a pure degeneracy, they can
exhibit a quasidegeneracy which means that their estimated
strengths are much more susceptible to measurement
uncertainty than the ones of other quadrupoles. This type
of quasidegeneracy is explained in the following section.
The covariance of parameter estimates under linear least

squares is given by σ2ðJTJÞ−1 where σ2 is the variance of
observables and J is the Jacobian (if the various BPMs have
different measurement uncertainties, it is ðJTΣJÞ−1 with Σ
being the covariance matrix of observables). This is closely
related to the matrix JTJ. The eigenvectors of a matrix and
its inverse are similar and the eigenvalues are reciprocal, so
studying the matrix JTJ reveals important information
about the error propagation. Also, in Gauss-Newton

minimization, JTJ is used as an approximation of the
Hessian H and, thus, a lower bound for the estimated
parameter variance is given by σ2H−1. This is, of course, in
agreement since at the minimum of the cost function, the
gradient is assumed to vanish, so the flatness of the cost
function depends on how quickly that zero gradient
changes in the neighborhood of the estimate which is
indicated by the Hessian matrix.
Figure 4 shows the JTJ matrices emerging from hori-

zontal and vertical ORMs, together with their eigenvalue
spectra. There are a few things to be noted. First of all, for
the vertical JTJ plot, it can be seen that it indicates higher
variance for the D-T quadrupole pairs than for the F-D or
F-T pairs. This is because of the scaling of the Jacobian
with the beta function which, in vertical, is larger at D and T
quadrupoles than at F quadrupoles (see Fig. 1). Second, it
can be observed that in both dimensions, there is one
eigenvalue that is much smaller than others. Small eigen-
values of JTJ correspond to large eigenvalues of ðJTJÞ−1,
i.e., of the covariance estimate for model parameters.
However, for the horizontal JTJ matrix, the smallest
eigenvalue in this plot is only nonzero due to limited
numerical precision, since in the horizontal dimension,
the lattice features a S,Q3,B steerer/BPM placement

FIG. 4. Top row: Horizontal dimension, bottom row: vertical dimension. Left column: The 36 × 36 matrix JTJ. The axes numbering
indicates the 12 sections of SIS18 in hexadecimal notation and there are three rows/columns per section, corresponding to the F, D, and T
quadrupoles (in that order) of each section. Right column: The eigenvalues of corresponding JTJ matrices. The color bars and
eigenvalue magnitude indicate the magnitude of JTJ in units of m4=rad2. The values of the color bar correspond to those of the
eigenvalue plots shown on the vertical axes. For the horizontal dimension, the smallest eigenvalue λ35 is nonzero only due to limited
floating point precision. When inspecting the 12 smallest horizontal eigenvalues, it can be observed that the λ24 and λ25 eigenvalues have
a slightly greater magnitude than the remaining nine eigenvalues (neglecting λ35). These two eigenvalues correspond to sections 4 and 6
where the horizontal steerer is shifted by a few meters compared to the other sections.
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which causes a pure degeneracy (see Sec. III B 1). A zero
eigenvalue for JTJ implies a pure degeneracy since the
system JTJΔp ¼ JTr (Δp parameter update, r residuals) is
underdetermined. That is, the null space of JTJ is nonzero
and, hence, there exists a parameter update Δp that will
leave the rhs of the equation unchanged at zero. In gen-
eral, a small eigenvalue for JTJ implies a direction of
quasidegeneracy which is given by the corresponding
eigenvector. It means that the parameter update emerging
from JTJΔp ¼ JTr will be susceptible to measurement
uncertainty in the direction of the corresponding eigen-
vector. This is what is observed for the vertical Jacobian

where the vertical lattice features a B,Q2,S BPM/steerer
placement.
Figure 5 shows the two eigenvectors, in horizontal and

vertical dimensions, that correspond to the smallest eigen-
value of the corresponding JTJ matrix. Since the eigenvec-
tors of a matrix and its inverse are similar, these indicate the
direction of (quasi)degeneracy in both dimensions sepa-
rately. It can be observed that this is a global degeneracy in
both cases since all quadrupoles participate; hence, there is
only one eigenvalue that is significantly smaller than all
others. This is due to the symmetry of the lattice with respect
to the BPM/steerer placement pattern. In horizontal, for the
two sections 4 and 6 where the ORM’s circulant structure is
broken, it can be observed that a corresponding change in the
quadrupoles’ degeneracy pattern reflects this. In vertical, it
can be observed that the quasidegeneracy is driven by the
(noninterleaved) D-T quadrupole pairs.
Figure 6 shows the scaling of the covariance estimate for

model parameters, i.e., ðJTJÞ−1; for horizontal, since it is
rank deficient, ðJTJ þ αIÞ−1 is plotted (with α ¼ 1 × 10−8,
i.e., Tikhonov regularized, which is also used by, e.g., the
Levenberg-Marquardt optimizer, though it uses a flexible
regularization parameter α). Clearly, the global nature of
the degeneracy is reflected in the eigenvectors (Fig. 5).
From Fig. 4, it can be observed that pairwise cancelation is
mostly confined to nearby sections and decreases when
moving further away in terms of the phase advance.
However, the final covariance of quadrupole estimates is

FIG. 5. Eigenvectors that correspond to the smallest eigenvalue
of the JTJ matrices in horizontal (top) and vertical (bottom)
dimension. Each tick marker on the horizontal axis indicates a
quadrupole (F, D, and T quadrupole per section).

FIG. 6. ðJTJ þ αIÞ−1 for the horizontal (α ¼ 1 × 10−8; left), vertical (α ¼ 0; middle), and combined (α ¼ 0; right) dimensions. The
axes numbering indicates the 12 sections of SIS18 in hexadecimal notation and there are three rows/columns per section, corresponding
to the F, D, and T quadrupoles (in that order) of each section. The unit of the color bars, indicating the magnitude of the matrices, is
rad2=m4. The quasidegeneracy pattern looks very symmetric in vertical dimension because the BPM/steerer placement is fully
symmetric from section to section. This, however, is not a requirement as shown by the horizontal data. The degeneracy pattern reflects
the differently placed steerers in sections 4 and 6. In fact, no symmetry whatsoever in terms of the exact phase advances of BPMs or
steerers is required for a degeneracy pattern to occur; only the placement pattern in terms of upstream or downstream of quadrupoles is
deciding. For the combined dimensions, it can be observed that the resulting pattern is not fully symmetric but features local correlations
slightly more than ones with other sections. This is because the magnitude of the smallest eigenvalue for the combined dimensions is
closer to the magnitude of other eigenvalues and, thus, it does not dominate the pattern alone.
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dominated by a strong global component that is symmetric
for the vertical ORM.
For the vertical ORM, the corresponding JTJ matrix is a

block circulant matrix by the argument of section-to-
section symmetry of the vertical lattice. The eigenvectors
of a block circulant matrix B ¼ bcircðb0; b1;…; bn−1Þ ∈
BCn;k (where n is the number of blocks and k the size
of a k × k block; n ¼ 12, k ¼ 3 in our case) are derived in
[19]. They are given by2

6666664

v

ρmv

ρ2mv

..

.

ρn−1m v

3
7777775

ð7Þ

where v is a nonzero column vector of length k, which is
given below, and ρm is one of the n complex roots of unity:
ρm ¼ expð2πi mnÞ. For each ρm, there are k distinct vectors v
given by the following eigenvector equation [19]:

ðb0 þ ρb1 þ ρ2b2 þ � � � þ ρn−1bn−1Þv ¼ λv ð8Þ
where λ is the corresponding eigenvalue.
Since the first of the n roots of unity is ρ0 ¼ 1, from

Eq. (7), it becomes apparent that every block circulant
matrix B ∈ BCn;k has exactly k distinct globally symmetric
eigenmodes that repeat on a block-to-block basis. This is
the case for the vertical JTJ matrix.
Because JTJ is real and symmetric, its eigenvalues are

guaranteed to be real, too. Furthermore, since JTJ is a
Gram matrix, it is positive semidefinite and its eigenvalues

are guaranteed to be greater than or equal to zero. This is
observed for theverticalJTJmatrix and it happens that one of
the globally symmetric eigenmodes is associated with the
smallest eigenvalue λ35. Figure 7 shows the three globally
symmetric eigenmodes corresponding to the ρ0 ¼ 1
eigenvalues.
Because for the horizontal lattice, the circulant structure

of the ORM and thus of JTJ is broken in the two sections 4
and 6, it cannot have a globally symmetric eigenmode, i.e.,
a mode that repeats on a section-to-section basis. However,
as becomes apparent from the eigenvector Fig. 5, the global
mode still affects all sections at once and reflects the
breaking of symmetry in sections 4 and 6.

D. Example

In the absence of BPM errors, inverse modeling with an
optimizer such as Levenberg-Marquardt will always con-
verge to the ground-truth solution (within the boundaries of
numerical precision), given that there is no additional model
bias present and the initial guess is not too far from theground
truth (so that the optimizer will not cross any instabilities, for
example).
Figure 8 shows the covariance of the various solutions

obtained with the Levenberg-Marquardt optimizer when no
quadrupole errors are applied to the lattice and only BPM
errors are present in the ORM simulation. That is, each of
the inverse modeling instances is given a distinct noisy
ORM emerging from the same orbit response uncertainty of
7 μmmrad−1. The initial guess is the ground-truth solution,
i.e., no quadrupole errors, but from the perspective of the
optimizer, this is not the minimum of the cost function due
to the noise in the ORM; hence, it will converge to a
different solution, the K1L residuals. The structure of

FIG. 7. Globally symmetric eigenmodes of JTJ in vertical dimension which arise due to the fact that the vertical lattice is symmetric
from section to section. Each tick marker on the horizontal axis of the eigenvector plots indicates a quadrupole (F, D, and T quadrupole
per section).
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these solutions is determined by the underlying simulation
model including the lattice optics. It can be seen that the
quasidegeneracy is mainly driven by the D-T quadrupole
pairs where much larger excursions in K1L residuals
happen. This is in agreement with Fig. 6 which shows the
predicted uncertainty from the Jacobian. For 7 μmmrad−1
orbit response uncertainty, the expected covariance of D
and T quadrupole strengths is approximately ð7 × 10−3Þ2×
0.002 m−2 ≈ 1 × 10−7 m−2. This is the amount that can
be observed from the simulations with the Levenberg-
Marquardt optimizer in Fig. 8. Also, the observed covari-
ance pattern matches the one from Fig. 6.

E. Counteracting quasidegeneracy

At different stages, different options for counteracting
quasidegeneracy are feasible. During the design phase of
the accelerator, the placement of steerers and BPMs can be
investigated in order to find a placement that reduces the
amount of quasidegeneracy compared to other placement
candidates. For the SIS18 lattice, this would be achieved
by positioning the BPMs between the D and T quadrupoles.
At the stage of data analysis, the choice of optimizer allows
for different strategies to counteract the quasidegeneracy.
Examples include introducing a cutoff during singular
value decomposition (SVD) or adding additional con-
straints to the cost function.

1. Placement of BPMs/steerers

At a stage where this is still possible, the careful planning
of BPM/steerer locations can help to avoid or mitigate
quasidegeneracy. We compare the following three scenarios
with the results for the nominal lattice: moving either the
horizontal or vertical BPM or both BPMs between the D
and T quadrupole. Figure 9 shows the JTJ eigenvalue
spectra for these three cases as well as for the nominal case.
It can be observed that the different placements of BPMs
have different effects on the amount of quasidegeneracy.
Specifically, the versions where the vertical BPMs are
shifted between the D and T quadrupole yield significantly
smaller uncertainty in the estimated parameters while the
version with only horizontal BPMs shifted has a negligible
effect. Thus, it is important to explore the different options
for BPM placement in order to allow for more precise
inverse modeling results for future accelerators.

IV. FITTING OF THE ORBIT RESPONSE MATRIX

The Levenberg-Marquardt optimizer uses the Jacobian at
every iteration. Typically, this Jacobian is computed
numerically via finite-difference approximation, with an
appropriate step sizeΔ for each parameter. In the following,
we use the analytically derived Jacobian [see Eq. (6)],
which is obtained from Twiss data, for the optimization
procedure.1 While there is a mismatch between the

FIG. 8. Covariance of K1L residuals obtained with the
Levenberg-Marquardt optimizer for 7 μmmrad−1 orbit response
uncertainty when including both horizontal and vertical ORM. The
axes numbering indicates the 12 sections of SIS18 in hexadecimal
notation and there are three rows/columns per section, correspond-
ing to the F,D, andT quadrupoles (in that order) of each section.No
quadrupole errors were applied to the lattice and optimization
started at the nominal quadrupole strengths. Thus, the K1L re-
siduals emerge purely as a result of the simulatedORMuncertainty.
All 36 quadrupoles have been included in the optimization.

FIG. 9. Eigenvalues of JTJ for different BPM placements.
nominal refers to the original lattice, and h-shifted refers to the
lattice where the horizontal BPM has been shifted from its
original position (downstream of the T quadrupole) to in between
the D and T quadrupole. v-shifted means the same for the vertical
BPM and h-v-shifted refers to both BPMs being shifted between
the D and T quadrupole. The different placement strategies vary
in their smallest eigenvalue which is the one that drives the
propagation of uncertainty.

1We note that the analytical formula Eq. (6) has been derived
under the assumption of uncoupled optics. In the presence of
coupling, the analytical Jacobian needs to be rederived with the
coupling terms included. Once obtained, the analytical Jacobian
approach can then be applied to the inverse modeling of coupled
optics.
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numerical (real) and the analytical Jacobian, if this mis-
match is manageable then the fitting will still converge.
This has similarities to how closed orbit feedback (COFB)
correction with model mismatch works [20]. In the context
of COFB, the system is assumed to be linear and there
exists a true response matrix R and a model response matrix
RΘ. In an iterative scheme, the COFB converges if all
eigenvalues λi of 1 − RRþ

Θ fulfill −1 < λi ≤ 1 (where the
superscript þ denotes the pseudo-inverse). If R and RΘ are
square matrices, the relationship has to be a strict inequality
to achieve convergence, i.e., −1< λi <1. Otherwise, if R
and RΘ arem × nmatrices withm > n, then 1 − RRþ

Θ must
have the largest eigenvalue 1 with multiplicity m − n, and
all other eigenvalues must fulfill −1 < λi < 1. In the
context of linear optics from closed orbits, the matrices
R and RΘ denote, respectively, the true and analytical
Jacobian. Also, the system is not entirely linear, so the
lattice model reacts differently to a parameter update than
the linear transformation given by R. However, if the
magnitude of updates is constrained, a locally linear
version can be assumed at every iteration. This implies a
varying true matrix R≡ RðxÞ where x is the current guess

of model parameters. For an iterative scheme to
converge, the eigenvalues of the sequence of matrix
multiplications

ð1 − RRþ
ΘÞk−1…ð1 − RRþ

ΘÞ0 ð9Þ

must tend to zero as k → ∞ (where k denotes the iteration
count; except the m − n excess eigenvalues for rectangular
R;RΘ remain at 1). This is provided if the eigenvalues of
the individual matrices ð1 − RRþ

ΘÞi, for guess xi during the
ith iteration, fulfill −1 < λi ≤ 1, i.e., if the model mismatch
is manageable for each relevant optics setting during the
fitting. If the model errors are small, it might even suffice to
use a single Jacobian RΘ for the entire fitting procedure;
that is, the same Jacobian can be reused during each
iteration.2

FIG. 10. Comparison of simulation results for various cases. (A) and (N) denote, respectively, the usage of analytical or numerical
Jacobian. Q and G denote, respectively, the percentage level of random quadrupole and gain errors, uniformly sampled within these
bounds. All simulations used the Levenberg-Marquardt optimizer except the ones with the suffix (fb) which used a purely feedback-
like approach using only the analytical or numerical Jacobian obtained for the error-free model optics setting. The feedbacklike approach
converged for 67% of the simulated Q=3%, G=10% instances for both, the analytical and numerical Jacobian method. For larger
quadrupole or gain errors the rate of convergence decreases further and, hence, these results are not reported. However, simulating
quadrupole errors below 2% (not shown) results in more than 98% convergence rate for the feedbacklike approach. The convergence rate
does not depend on the simulated ORM uncertainty. All other approaches converge reliably also for the larger error levels shown in the
plot. The simulations have been performed for five different ORM uncertainties which are plotted on the horizontal axis: 0.1, 0.32, 1.0,
3.2, and 10.0 μmmrad−1. For each uncertainty level, the eight different cases are shifted horizontally for better visibility (their order
from left to right matches the order in the legend from top to bottom); however, each case used the same ORM uncertainty for
simulations (the leftmost one). Each uncertainty level contains 100 random simulations per case.

2We note that the Matlab LOCO program [6], which is part of the
Matlab Middle Layer (MML) for Accelerator Control, allows
the user to choose whether the Jacobian should be updated during
the fitting procedure or not.
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The analytical Jacobian is computed via Eq. (6) from
Twiss data which is obtained from the accelerator model
evaluated at the current parameter guess. Due to the sign
convention for quadrupoles, for the vertical dimension, the
Jacobian needs to be multiplied by −1.
Using the analytical Jacobian from Twiss data is more

efficient than computing the numerical Jacobian since
Twiss data are computed only once for the entire
Jacobian while the numerical approach computes one
ORM per quadrupole, that is, one closed orbit per steerer
per quadrupole. Thus, the speed-up factor in terms of the
scaling with the number of relevant lattice elements is
Nsteerers × Nquadrupoles. For the BPM and steerer gain parts of
the ORM, the analytical equation for the orbit response
Eq. (1) is similarly used with Twiss data in order to generate
the corresponding columns of the analytical Jacobian.
Various tests with simulation data have been performed.

The tests include random quadrupole and gain errors as
well as different levels of simulated orbit response uncer-
tainty. The Levenberg-Marquardt algorithm has been used
for the fitting. The results are shown in Fig. 10. It can be
observed that the results obtained with the analytical
Jacobian match closely with those obtained with the
numerical Jacobian. For the simulation case which limits
quadrupole errors by 3% and gain errors by 10%, the
feedbacklike approach using only the analytical Jacobian
obtained for the nominal optics converges in 67% of the
instances and it reaches unstable lattice configurations for
the remaining instances. This is due to the discrepancy of
the real Jacobian with respect to the employed Jacobian
obtained from nominal optics being too large to allow
convergence according to Eq. (9). The convergence rate is,
however, independent of the simulated ORM uncertainty.
For simulated quadrupole errors below 2%, the feedback-
like approach converges in more than 98% of instances.
Thus, this approach can be used to correct a lattice that
exhibits only small quadrupole drifts over time. For cases
with larger deviations, it is sufficient to recompute the
Jacobian during each iteration of the fitting procedure.
When the analytical Jacobian is recomputed this way, it
converges and yields good results also for larger simulated
model errors as shown in Fig. 10.

V. EXPERIMENT

The following experimental data have been collected to
support the findings. ORM and tune measurements have
been conducted for two different optics at SIS18: nominal
extraction optics and a modified version of the optics by
adjusting one of the F quadrupole families (GS01QS1F
family) by ΔK1L ¼ −1.2 × 10−3 m−1 (this quadrupole
family includes the F quadrupoles from the odd-numbered
sections). Due to the very limited experimental time
available, beta beating could not be measured, unfortu-
nately. Nevertheless, the tune measurements serve as a
verification for the derived quadrupole errors.

Since linear coupling at SIS18 is generally corrected
well, the analytical expression for the Jacobian can be used
for fitting. The results are compared to those obtained by
using the numerical Jacobian based on finite-difference
approximation. The quadrupole errors are estimated with
the Levenberg-Marquardt optimizer. Different approaches
for mitigating the quasidegeneracy are tested in conjunction
with the analytical Jacobian approach.

A. Measured data

The ORM measurements were performed with five set-
tings per steerer,−1.0,−0.5, 0.0, 0.5, and 1.0 mrad, during a
long flattop of 11 s. Position data from one of the horizontal
BPMs is shown in Fig. 11. The first 2 s are skipped because
the horizontal orbit still drifted during that timewindow; this
is likely because of the bending magnets taking a long time
to attain their nominal strength. The long flattop duration
allowed for long data integration windows of 950ms for each
steerer setting in order to reduce themeasurement uncertainty.
Also, sufficient time, 256 ms, was allocated for transitioning
between two steerer settings plus an additional 500 ms to
allow the steerers to attain the new values. For each machine
cycle, the response rc is computed from the least squares fit of
the five corresponding steerer settings. The final response r is
computed as the average over five subsequent cycles, each
inverselyweightedwith its squared standard error σc from the
least squares fit of the respective response rc:

r ¼ 1P
c

1
σ2c

X
c

rc
σ2c

: ð10Þ

FIG. 11. Position data from the horizontal BPM in section 1
during measurement of the horizontal steerer in section 5. The
steerer setting is overlaid as the dashed curve (the curve is
inverted for better visibility). The two vertical axes are not
aligned, i.e., there is no meaning in the vertical position of the
steerer relative to the position data. The red shaded areas indicate
the time windows available for orbit computation. The light
shaded area (500 ms) has been excluded because the orbit was
still slightly drifting during those time windows. The solid shaded
area (950 ms) is used for orbit computation. The white area
between two shaded areas is the allocated transition time for the
steerer magnets which is 256 ms. An additional 2 s are skipped at
the beginning of the flattop because the horizontal orbit was still
drifting during that time window.
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A measurement uncertainty of 5 μmmrad−1 has been
reached for the orbit response, with minor variations among
the different BPMs. For the measurement of modified optics,
the horizontal BPM in section 8malfunctioned and, thus, had
to be removed from the analysis.
Tune measurements have been obtained by excitation via

turn-by-turn stripline exciter and position monitoring. The
measured tunes are shown in Fig. 12. The following values
have been measured.
1. Nominal extraction optics:
(i) qh ¼ 0.3099� 0.0014
(ii) qv ¼ 0.2820� 0.0011

2. Modified extraction optics:
(i) qh ¼ 0.2914� 0.0008
(ii) qv ¼ 0.2871� 0.0007

B. Mitigation of quasidegeneracy

To obtain meaningful results that can be compared, it is
important to mitigate the quasidegeneracy which is mainly
driven by the D-T quadrupole pairs. We compare the
methods SVD cutoff, adding ΔK1L constraints to the
Jacobian as well as leaving out T quadrupoles from the
fitting. The removal of T quadrupoles is justified since they
attain small strengths during extraction optics and, thus,
much smaller errors are expected for this quadrupole
family. For comparison, we refer to the results obtained
without any method for counteracting quasidegeneracy as
the baseline method.

For each of the methods, we present the difference in
estimates between the two optics for the F quadrupoles; that
is, the estimates obtained for modified optics are subtracted
by the estimates obtained for nominal optics. Both esti-
mates are obtained by starting the fitting procedure from the
nominal optics model. Ideally, this difference of estimates
should be a zigzag pattern between −1.2 × 10−3 and 0 m−1
since the GS01QS1F family contains every second F
quadrupole (i.e., the ones from odd section numbers).

1. SVD cutoff

This is performed as a two-stage process. The first
stage uses Levenberg-Marquardt to find a (quasidegener-
ate) solution for all the involved parameters: quadrupole
errors and gain errors. The second stage freezes the thus
found gain errors and restarts fitting of quadrupole errors.
During each update step, the system JTJΔp ¼ JTr (where
Δp is the parameter update and r is the residual vector) is
solved by computing ðJTJÞ−1 via SVD and truncating a
predefined number of smallest singular values to zero. If the
SVD spectrum shows a clear drop in the magnitude of
singular values then cutting the small singular values will
be very efficient. However, for a more flat spectrum, the
number of singular values to cut is not obvious and also
the resulting estimate might suffer from the truncation. This
strongly depends on the use case and the investigated
lattice. The optimal cutoff value can be found from
simulations, where random orbit uncertainties are cast on
the nominal ORM and then inverse modeling with different
cutoff values is performed. The one that yields the smallest
error in terms of the quadrupole error estimates is then
chosen. For our use case, we found that the best results are
obtained when the number of cut values is set to 11.

2. ΔK1L weights

This approach adds weights to the Jacobian as described
in [11]. The purpose of the weights is to limit the amount of
change in the ΔK1L parameters during each iteration of the
fitting process. We determined the pattern of weights w at
every iteration by

w ¼
XN
i¼1

1

λi
vi; ð11Þ

where λi and vi are, respectively, the ith eigenvalue and
eigenvector of the ĴT Ĵ matrix originating from the Jacobian
Ĵ that represents only the ΔK1L parameters and which is
evaluated at zero gain errors. Then wk is the weight for
the kth quadrupole. The magnitude of w is chosen a priori
by a scan over different possible values and then fixed
for every iteration. It should be emphasized that for this
approach, we used the nominal gain Jacobian Ĵ not only for
the computation of the weights but it also replaced the
ΔK1L part of the actual Jacobian J which is evaluated at the

FIG. 12. Measured tunes for nominal extraction optics (top) and
modified optics (bottom). The model tunes for nominal extraction
optics are 0.29 in both dimensions. The measurement for
modified optics was performed on a reduced timescale of 6 s
to limit the amount of position data generated.
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current gain error estimate during each iteration. This is
done because when using J, the estimated gain errors
would obfuscate the degeneracy pattern of the quadrupoles
at every iteration. Using Ĵ, on the other hand, allows to
directly access the quasidegeneracy patterns and, thus,
limits them by adding corresponding weights. Using Ĵ

in place of J does not hinder convergence as their agree-
ment is sufficiently close.

3. Leaving out T quadrupoles

Since the magnitude of T quadrupole strengths is 1 order
of magnitude smaller than the one of other quadrupoles,
their errors are expected to be similarly smaller. Hence,
leaving out T quadrupoles from the fitting will alter the
estimates of other quadrupoles (mainly D quadrupoles)
only by a relatively small amount.

4. Comparison

Figure 13 shows a comparison between the three above-
mentioned strategies for counteracting quasidegeneracy.
Since the quasidegeneracy is mainly driven by the D-T
quadrupole pairs, and T quadrupoles have a 1 order of
magnitude smaller nominal strength, leaving out the T
quadrupoles from the fit is expected to effectively eliminate
the quasidegeneracy while yielding accurate results (i.e.,
close to the actual errors). The method of adding ΔK1L
constraints to the cost function proves similarly efficient as
it yields very similar results. The SVD cutoff method shows
a slight deviation, mainly because the singular value
spectrum is rather flat, and removing too many singular
values also removes too much information from the
Jacobian. The same figure also shows the results obtained
with the numerically computed Jacobian. It can be seen that
these results closely match the results obtained with the
analytical Jacobian. The SVD cutoff method shows a slight
deviation between the two methods because the singular
value spectrum of the two Jacobian versions is slightly
different.
Table II and Fig. 14 show an overview of the measured

tunes as well as the tunes obtained from the inverse
modeling results with the different methods. It can be
observed that for all methods except SVD cutoff, the
predicted model tunes after fitting match the measured
tunes within the measurement uncertainty. The predicted

FIG. 13. Comparison of inverse modeling results for the F
quadrupoles when using different methods for counteracting
quasidegeneracy. Top: using analytical Jacobian. Bottom: using
numerical Jacobian. The plots show the difference in estimates
for the modified optics and the nominal optics. The two optics
differ in the manual adjustment of odd section number F
quadrupoles by ΔK1L ¼ −1.2 × 10−3 m−1. All other quadru-
poles, including the F quadrupoles from even section numbers,
have not been modified. The dashed lines indicate the expected
(ideal) estimates for the quadrupole errors. The label Baseline
refers to the results obtained from Levenberg-Marquardt
fitting without any countermeasure against the quasidegeneracy.
The error bars due to ORM uncertainty are on the order of
1 × 10−5 m−1 and, thus, are not visible in the plot.

TABLE II. Resulting tunes from the various fitting methods compared to measured tunes.

Nominal optics Modified optics

qh qv qh qv

Measured value 0.3099 0.2820 0.2914 0.2871
uncertainty 0.0014 0.0011 0.0008 0.0007

Analytical Jacobian Baseline 0.3098 0.2819 0.2920 0.2876
SVD cutoff 0.3129 0.2822 0.2949 0.2879

ΔK1L weights 0.3095 0.2819 0.2918 0.2876
Without T quads 0.3094 0.2819 0.2917 0.2876

Numerical Jacobian Baseline 0.3100 0.2824 0.2917 0.2876
SVD cutoff 0.3128 0.2822 0.2948 0.2879

ΔK1L weights 0.3095 0.2819 0.2918 0.2876
Without T quads 0.3094 0.2819 0.2917 0.2876
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horizontal tune from the SVD cutoff method has a deviation
of up to ≈3σ from the measured horizontal tune. This is due
to the rather flat singular value spectrum. The agreement of
predicted with measured tunes confirms that the fitted
models capture the global optics of the real machine. It also
emphasizes the effect of quasidegeneracy since also the
baseline method reproduces the measured tunes closely
albeit the ΔK1L predictions deviate significantly as can be
seen in Fig. 13.

VI. CONCLUSIONS

We studied the dependency of quasidegeneracy on the
placement of BPMs and steerers for extracting linear
optics and model errors from closed orbit measurements.
We found that different BPM and steerer placements can
noticeably affect the degree of quasidegeneracy and, thus,
influence the quality of the lattice information that is
extracted from the measured orbit response matrix.
These findings emphasize the importance of studying the
effect of BPM and steerer placements during the design
phase of new accelerators.
In order to investigate the influence of BPM and steerer

placements, we derived an analytical expression for the
Jacobian matrix, relating quadrupole errors along with
BPM and steerer gain errors to the orbit response matrix.
This analytical Jacobian is then used to show which BPM
and steerer placements cause the Jacobian to be rank

deficient and, thus, cause the inverse problem to be ill-
defined which outlines the theoretical limitations of the
method. In a lattice, the consecutive placement of quadru-
poles with neither BPM nor steerer in between can cause a
rank deficiency in the Jacobian. When fitting either the
horizontal or vertical ORM alone, segments of three or
more consecutive quadrupoles cause a rank deficiency.
When fitting the horizontal and vertical ORM together,
segments of five or more quadrupoles cause a rank
deficiency. A rank deficiency in the Jacobian implies that
the corresponding quadrupole strengths cannot be deter-
mined uniquely from the measured ORM data, even in the
absence of BPM errors.
We have further demonstrated that the analytical expres-

sion for the Jacobian can be used during the fitting pro-
cedure in place of the conventional numerical Jacobian
which is computed via finite-difference approximation. A
single Twiss computation is sufficient to construct the
analytical Jacobian, which allows for substantially reduced
computation time compared to the numerical Jacobian
approach. The scaling of the computation in terms of the
number of relevant lattice elements is improved by a factor
of Nsteerers × Nquadrupoles by using the analytical Jacobian
approach. The inverse modeling process by using the
analytical Jacobian approach has been tested with large-
scale simulations and also with dedicated measurements
conducted at the heavy-ion synchrotron SIS18 at GSI.
The fitting procedure has been tested in conjunction
with various methods for mitigating quasidegeneracy.
The results obtained with the analytical Jacobian agree
well with those obtained with the numerical Jacobian.
In summary, we explored the dependency of quaside-

generacy on the placement of BPMs and steerers and, thus,
provide insight into how adequate numbers and locations
for these devices can be chosen for newly designed lattices
in order to allow for a tractable and well-conditioned
inverse problem. For large-scale machines, such as LHC,
with a large number of BPMs and steerers, the size of the
corresponding Jacobian matrix may be too big to be fully
utilizable. A practical solution is to select a subset of all
ORM elements for the fitting procedure. A profound
understanding of the impact of resulting BPM and steerer
placements on the (quasi)degeneracy can help in guiding
the selection. In addition, using the analytical Jacobian
during fitting can provide a more computationally effi-
cient solution for inverse modeling by circumventing the
method of computing the Jacobian via finite-difference
approximation.

APPENDIX A: DERIVATIVE OF
ORBIT RESPONSE WITH RESPECT TO

QUADRUPOLE STRENGTH

Starting with the orbit response rbs induced by steerer s
and measured by BPM b:

FIG. 14. Difference between predicted and measured tunes for
the various optics and inverse modeling methods. Top:ΔQh;ΔQv
for nominal extraction optics. Bottom: ΔQh;ΔQv for the modi-
fied optics. The different methods are indicated on the horizontal
axis and are the same for each subplot. (A) and (N) denote,
respectively, the usage of analytical and numerical Jacobian. The
vertical bars indicate the measurement uncertainty.
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rbs ¼
ffiffiffiffiffiffiffiffiffi
βbβs

p
|fflfflffl{zfflfflffl}

A

1

2 sinðπQÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
B

cosðπQ − jμb − μsjÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C

: ðA1Þ

The derivative d
dðK1LÞk rbs ≡ r0kbs is

r0kbs ¼ A0BCþ AB0Cþ ABC0: ðA2Þ

In the following, the individual derivatives A0, B0, and C0
are derived.

A0 ¼ 1

2
ffiffiffiffiffiffiffiffiffi
βbβs

p ½β0bβs þ βbβ
0
s�

≈ −
βk
2

ffiffiffiffiffiffiffiffiffi
βbβs

p
½Ψks þΨkb� ¼ −A

βk
2
½Ψks þ Ψkb�; ðA3Þ

where we have used the formula for the beta beating [13]:

β0s ≈ −βsβk
cosð2πQ − 2jμk − μsjÞ

2 sinð2πQÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ψks

ðA4Þ

and similarly for β0b;Ψkb.

B0 ¼ −
1

2

cosðπQÞ
sinðπQÞ2 πQ

0 ≈ −B
βk
2

1

2 tanðπQÞ ; ðA5Þ

where we have used the formula for the tune change
induced by a quadrupolar error [13]:

Q0 ≈
βk
4π

ðA6Þ

C0 ¼ −C tanðπQ − jμb − μsjÞ

×

�
βk
4
−

μmax − μmin

jμmax − μminj
ðμ0max − μ0minÞ

	
; ðA7Þ

where we have assumed cosðπQ − jμb − μsjÞ ≠ 0 (i.e.,
rbs ≠ 0) and reordered the terms μb, μs inside cosðπQ −
jμb − μsjÞ such that the argument of the absolute value
is positive, i.e., jμb − μsj ¼ jmaxðμb; μsÞ −minðμb; μsÞj
and μmax ≡maxðμb; μsÞ; μmin ≡minðμb; μsÞ. In that case
μmax−μmin
jμmax−μminj ¼ 1 and we are only left with the derivative

μ0max − μ0min ¼ ðμmax − μminÞ0. To compute this derivative,
we consider the change in local phase advance Δμi induced
by a small quadrupolar error ΔðK1LÞk [21]:

μi ¼ μ0;i þ Δμi

μi ¼
Z

si

s0

1

βðτÞ dτ þ μs¼s0

¼
Z

si

s0

1

β0ðτÞ þ ΔβðτÞ dτ þ μs¼s0

¼
Z

si

s0

1

β0ðτÞ
1

1þ ΔβðτÞ
β0ðτÞ

dτ þ μs¼s0

≈
Z

si

s0

1

β0ðτÞ
dτ −

Z
si

s0

ΔβðτÞ
β0ðτÞ2

dτ þ μs¼s0 ; ðA8Þ

where the subscript 0 indicates the unperturbed optics
functions, i.e., without quadrupole error, and we have
used the fact that Taylor series are multiplicative.
Considering the difference μmax − μmin, we thus obtain

μmax − μmin ¼
Z

smax

smin

1

β0ðτÞ
dτ −

Z
smax

smin

ΔβðτÞ
β0ðτÞ2

dτ; ðA9Þ

where smin, smax denote the corresponding longitudinal
lattice positions. Since μmax − μmin ¼ μ0;max þ Δμmax −
μ0;min − Δμmin ¼ ðμ0;max − μ0;minÞ þ Δðμmax − μminÞ, we
obtain

Δðμmax − μminÞ ¼ −
Z

smax

smin

ΔβðτÞ
β0ðτÞ2

dτ: ðA10Þ

By using the expression for the beta beating this can be
rewritten as

Δðμmax − μminÞ ¼ ΔðK1LÞk
β0;k

2 sinð2πQ0Þ

×
Z

smax

smin

cosð2πQ0 − 2jμ0;k − μ0ðτÞjÞ
β0ðτÞ

dτ:

ðA11Þ

Approximating the derivative with ðμmax − μminÞ0 ≈
Δðμmax−μminÞ
ΔðK1LÞk and using d

dτ μ0ðτÞ ¼ 1
β0ðτÞ with integration by

substitution, we obtain

μ0max − μ0min

¼ β0;k
2 sinð2πQ0Þ

Z
μ0;max

μ0;min

cosð2πQ0 − 2jμ0;k − ujÞdu: ðA12Þ

In the following, we drop the subscript 0 for nominal
values, as there is no further ambiguity.
Hence, all derivatives fA; B;Cg0 can be written as

−fA; B;Cg βk
2
ffA;B;Cg, i.e., the derivative r0kbs can bewritten

as a product of rbs, the beta function at the respective
quadrupole, and a sum of the factors ffA;B;Cg:
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drbs
dðKLÞk

¼ −rbs
βk
2

�
1

2 tanðπQÞ þ
tanðπQ − jμb − μsjÞ

2

þΨks þ Ψkb −
tanðπQ − jμb − μsjÞ

sinð2πQÞ

×
Z

maxðμb;μsÞ

minðμb;μsÞ
cosð2πQ − 2jμk − ujÞdu

�
ðA13Þ

The integral in Eq. (A13) can be solved by taking
into account the absolute value function that is part of

the integrand. Therefore, we need to divide the inte-
gration domain in order to resolve it. For any quadru-
pole k, there are three distinct cases: (A) μmin <
μmax < μk, (B) μmin < μk < μmax, (C) μk < μmin < μmax.
For cases (A) and (C), the argument of the absolute
value assumes the same sign on the entire integration
domain and, hence, there is no need to split the
integration domain. For case (B), it needs to be split
into ½μmin; μk� and ½μk; μmax�.
The solutions are

Z
μmax

μmin

cosð2πQ − 2jμk − ujÞdu

¼

8>><
>>:

ðAÞ sinðμmax − μminÞ cosð2πQ − jμk − μmaxj − jμk − μminjÞ
ðBÞ sinðjμk − μminjÞ cosð2πQ − jμk − μminjÞ þ sinðjμk − μmaxjÞ cosð2πQ − jμk − μmaxjÞ
ðCÞ sinðμmax − μminÞ cosð2πQ − jμk − μmaxj − jμk − μminjÞ

ðA14Þ

Hence, the result for cases (A) and (C) is similar and a
distinction has to be made between the two different cases
(A and C) for which both μmin, μmax are either upstream or
downstream of the quadrupole and (B) for which μmin is
upstream and μmax is downstream of the quadrupole.

APPENDIX B: DERIVATIVE OF ORBIT
RESPONSE WITH RESPECT TO QUADRUPOLE

STRENGTH FOR BEAMLINES

For beamlines, or more generally, nonclosed lattices, we
have the following formula for the orbit response at BPM b
induced by steerer s [22]:

rbs ¼
� ffiffiffiffiffiffiffiffiffi

βbβs
p

sinðμb − μsÞ; μb > μs

0; otherwise
ðB1Þ

The relation for Δβ
β for nonclosed lattices to first order is

given by [23]:

Δβx
ΔðK1LÞk

¼ −βkβx sinð2μx − 2μkÞ; ðB2Þ

where the subscript x refers to the point of measurement
and k refers to the quadrupole; μx > μk is assumed since
only downstream regions are affected.
Taking the derivative of rbs with respect to ΔðK1LÞk one

obtains the following:

rkbs ≡ drbs
dΔðK1LÞk

¼
� 0; μk < μs

−rbsβk
sinðμb−μkÞ sinðμk−μsÞ

sinðμb−μsÞ ; μk > μs

ðB3Þ
This can be expanded into cosðμkÞ2, sinðμkÞ2, and

cosðμkÞ sinðμkÞ termswith their respective coefficient vectors.

Compared with the Jacobian for a circular lattice, the
beamline Jacobian additionally has some of its elements
zeroed. Thus, the rank of the beamline Jacobian for a given
BPM/steerer placementmust be less than or equal to the rank
of the corresponding circular lattice Jacobian. Our simula-
tions show that it is rankdeficient for the casesSh,Sv,Q5+,
Bh,Bv but has full rank for Sh,Sv,Q4,Bh,Bv.

APPENDIX C: PROOF: S,Q3,B JACOBIAN
IS RANK DEFICIENT

The trigonometric expressions in the Jacobian [Eq. (6)]
can be expanded in terms of μk by using the identities
cosðx� yÞ ¼ cosðxÞ cosðyÞ ∓ sinðxÞ sinðyÞ, sinðx� yÞ ¼
sinðxÞ cosðyÞ � cosðxÞ sinðyÞ, sinð2xÞ ¼ 2 sinðxÞ cosðxÞ,
cosð2xÞ ¼ cosðxÞ2 − sinðxÞ2, 1 ¼ cosðxÞ2 þ sinðxÞ2. The
resulting expression can be grouped by terms containing
cosðμkÞ2, − sinðμkÞ2, and 2 cosðμkÞ sinðμkÞ. This allows to
represent each column of the Jacobian by a set of three
coefficient vectors, one for each of the trigonometric terms.
These coefficient vectors contain the phase advances of
BPMs/steerers and their structure only depends on whether
the BPM/steerer placement is of type A (μmin < μmax < μk),
type B (μmin < μk < μmax), or type C (μk < μmin < μmax),
where μmin ≡minðμb; μsÞ and μmax ≡maxðμb; μsÞ. Since
the quadrupole triplets of S,Q3,B are not interleaved by
BPMs/steerers, the structure of coefficient vectors is the
same for each quadrupole in a triplet. In fact, these three
coefficients vectors can be used for more than three
consecutive quadrupoles as well since the coefficient
vectors only need to be multiplied by the three trigono-
metric factors containing μk for a given quadrupole in order
to generate the corresponding column of the Jacobian.
Hence, this proof applies to S,Q3+,B BPM/steerer place-
ments as well. Thus, one set of three coefficient vectors is
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sufficient to generate the Jacobian columns for a full quadru-
pole n-tuplet with n ≥ 3. This means that there are a total of
3N coefficient vectors, one 3-tuple per quadrupolen-tuplet in
each of the N sections. These column vectors form the
column span of any S,Qn+,B Jacobian for n ≥ 3. The
structure of these coefficient vectors, in terms of the phase
advance types A, B, C, is shown exemplarily for N ¼ 4,
n ¼ 3 in schematic (Fig. 15).
We use the following set of abbreviations to simplify the

notation:

u≡ μmax þ μmin

v≡ μmax − μmin

T ≡ tanðπQ − jμmax − μminjÞ ¼ tanðπQ − vÞ

T̃ ≡ 1

2 tanðπQÞ þ
T
2

ðC1Þ

Further, (1) is used to represent cosðμkÞ2, (2) for
− sinðμkÞ2, and (3) for 2 cosðμkÞ sinðμkÞ.
The specific expressions for the coefficient vectors, in

dependence on the trigonometric factor (1, 2, 3) and type
(A, B, C), are shown in Table III.
The expressions in Table III can be further simplified by

noting the following relationships:

cosðvÞ − T sinðvÞ ¼ cosðπQÞ
cosðπQ − vÞ

cosð2πQ − vÞ þ T sinð2πQ − vÞ ¼ cosðπQÞ
cosðπQ − vÞ

T̃ ¼ cosðπQÞ
cosðπQ − vÞ

×
cosðvÞ

2 sinðπQÞ cosðπQÞ
ðC2Þ

TABLE III. Expressions for the coefficient vectors for the different types A, B, C. The relationship cosðxÞ þ
cosðyÞ ¼ 2 cosðxþy

2
Þ cosðx−y

2
Þ has been used to combine the cos terms originating from the Ψks and Ψkb terms. Note

that for each (A, B, C), the only difference in the (1) and (2) expressions is the sign of the trailing terms.

(1) A 2 cosð2πQþ uÞ½cosðvÞ − T sinðvÞ� þ T̃
B 2 cosðuÞ½cosð2πQ − vÞ þ T sinð2πQ − vÞ� − 2T sinð2πQÞ þ T̃
C 2 cosð2πQ − uÞ½cosðvÞ − T sinðvÞ� þ T̃

(2) A 2 cosð2πQþ uÞ½cosðvÞ − T sinðvÞ� − T̃
B 2 cosðuÞ½cosð2πQ − vÞ þ T sinð2πQ − vÞ� þ 2T sinð2πQÞ − T̃
C 2 cosð2πQ − uÞ½cosðvÞ − T sinðvÞ� − T̃

(3) A 2 sinð2πQþ uÞ½cosðvÞ − T sinðvÞ�
B 2 sinðuÞ½cosð2πQ − vÞ þ T sinð2πQ − vÞ�
C −2 sinð2πQ − uÞ½cosðvÞ − T sinðvÞ�

FIG. 15. This schematic shows the Jacobian elements’ types A,
B,C for N ¼ 4 sections and n ¼ 3 quadrupoles forming a triplet
in each of the sections. The quadrupoles in a triplet are labeled F,
D,T. [i] stands for the ith BPM and <i> stands for the ith
steerer. As can be seen, the quadrupoles within a triplet all share
the same type for each BPM/steerer pair.
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Thus, 2 cosðπQÞ
cosðπQ−vÞ is a common factor for all expressions in

Table III and removing this factor does not alter the rank of
the matrix. Therefore, we obtain the simplified expressions
shown in Table IV.
Let J̃ be the column-wise stack of the 3N coefficient

vectors emerging from the simplified expressions in
Table IV. Since all the used simplifications preserved the
column span of the Jacobian (up to constant factors), the
nullspace and, thus, the rank of J̃ is similar to that of
the original Jacobian J. Thus, it is sufficient to show that J̃
is rank deficient, i.e., that there exists a vector v⃗ such that
J̃ · v⃗ ¼ 0⃗. This matrix multiplication involves the row-wise
summation of the various coefficient vectors that make up
the matrix J̃. Each row contains at most the three distinct
types A,B,C (see schematic 15). Thus, each row-wise sum
is of the form

P
X∈fA;B;Cg ρX · fð1Þ; Xg þP

X∈fA;B;Cg σX ·
fð2Þ; Xg þP

X∈fA;B;Cg τX · fð3Þ; Xg where ρX stands for
the sum of entries in v⃗ corresponding to type fð1Þ; Xg in the
coefficient matrix and similarly σ refers to type (2) and τ to
type (3). If we require

P
X∈fA;B;CgðρX − σXÞ ¼ 0, then the

terms involving cosðvÞ
4 sinðπQÞ cosðπQÞ in Table IV vanish. Thus, we

can create a further simplified matrix that consists of the
expressions in Table IV with these terms removed and
augmented by an additional row which enforces the
condition

P
X∈fA;B;CgðρX − σXÞ ¼ 0 which allowed the

removal of those terms. The new version is shown in
Table V. It should be noted that this is not an equivalence
transformation, but the null-space of the new matrix is
contained in the null-space of the original matrix. Hence, it
is sufficient to show that the new matrix represented by
Table V is rank deficient.
We can reorder the various terms of J̃ to construct a new

matrix M̃ such that the columns of M̃ correspond to ρi þ σi,
τi, and ρi − σi (in that order), where i refers to the ith column
of the three matrices containing all type-(1,2,3) terms. This
reordering preserves the dot product J̃ · v⃗ ¼ M̃ · v⃗. Only the
ρi − σi terms depend on vwhile the other terms depend on u.
The overall matrix thus consists of a column-wise stack of
three submatrices corresponding to ρi þ σi, τi, and ρi − σi
and has the following form:

M̃ ¼
�
Mρþσ Mτ Mρ−σ

0…0 0…0 1…1

	
ðC3Þ

The additional last row enforces the conditionP
X∈fA;B;CgðρX − σXÞ ¼ 0. While the original Jacobian J

has shape N2 × 3N (for N sections), the new matrix M̃ has
shape ðN2 þ 1Þ × 3N. By the above derivation, it has,
however, the same nullspace as J. Thus, it is sufficient to
show that M̃ is rank deficient. Because the rank of a matrix
does not change under row- or column-wise multiplication

with a nonzero constant, the common factor sinð2πQÞ
cosðπQÞ can be

removed from the Mρ−σ matrix leaving it with only
sinðπQ − vÞ terms.
Since the Gram matrix ATA of any m × n matrix A

(m ≥ n) has the same rank as the original matrix A, it is
sufficient to show that the Gram matrix of M̃ is rank
deficient. Since the Gram matrix is a square matrix, its
determinant can be computed from the original matrix via
the Cauchy-Binet formula [24]:

detðM̃TM̃Þ ¼
X

α∈INCðm;nÞ
det ðM̃½αjn�Þ2 ¼ 0 ðC4Þ

where n denotes the set of numbers f1; 2;…; ng and
INCðm; nÞ denotes the set of all strictly increasing func-
tions from m to n; M̃½αjn� denotes the submatrix of M̃ that
emerges from selecting the rows with indices given by α
and column indices given by n.
Equation (C4) implies that the determinants of all

individual submatrices M̃½αjn� need to be zero.
To further simplify the involved expressions, we make

use of the identities cosðxÞ ¼ 1
2
ðeix þ e−ixÞ and sinðxÞ ¼

1
2i ðeix − e−ixÞ which allow to replace the various cos, sin
terms with the following expressions:

TABLE V. Further simplified expressions for the coefficient
vectors for the different types A,B,C. The additional requirementP

X∈fA;B;CgðρX − σXÞ ¼ 0 has to be satisfied.

(1) A cosð2πQþ uÞ
B cosðuÞ − sinð2πQÞ

cosðπQÞ sinðπQ − vÞ
C cosð2πQ − uÞ

(2) A cosð2πQþ uÞ
B cosðuÞ þ sinð2πQÞ

cosðπQÞ sinðπQ − vÞ
C cosð2πQ − uÞ

(3) A sinð2πQþ uÞ
B sinðuÞ
C − sinð2πQ − uÞ

TABLE IV. Simplified expressions for the coefficient vectors
for the different types (A, B, C). The common factor 2 cosðπQÞ

cosðπQ−vÞ
has been removed from the expressions in Table III.

(1) A cosð2πQþ uÞ þ cosðvÞ
4 sinðπQÞ cosðπQÞ

B cosðuÞ þ ½ cosðvÞ
4 sinðπQÞ cosðπQÞ −

sinð2πQÞ sinðπQ−vÞ
cosðπQÞ �

C cosð2πQ − uÞ þ cosðvÞ
4 sinðπQÞ cosðπQÞ

(2) A cosð2πQþ uÞ − cosðvÞ
4 sinðπQÞ cosðπQÞ

B cosðuÞ − ½ cosðvÞ
4 sinðπQÞ cosðπQÞ −

sinð2πQÞ sinðπQ−vÞ
cosðπQÞ �

C cosð2πQ − uÞ − cosðvÞ
4 sinðπQÞ cosðπQÞ

(3) A sinð2πQþ uÞ
B sinðuÞ
C − sinð2πQ − uÞ
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cosðμmax þ μminÞ ¼
p2q2 þ 1

2pq

cosð2πQþ μmax þ μminÞ ¼
p2q2g4 þ 1

2pqg2

cosð2πQ − μmax − μminÞ ¼
p2q2 þ g4

2pqg2

sinðμmax þ μminÞ ¼
p2q2 − 1

2ipq

sinð2πQþ μmax þ μminÞ ¼
p2q2g4 − 1

2ipqg2

sinð2πQ − μmax − μminÞ ¼
p2q2 − c4

2ipqg2

sinðπQ − μmax þ μminÞ ¼
q2g2 − p2

2ipqg
; ðC5Þ

where p≡ eiμmax , q≡ eiμmin , g≡ eiπQ for the given values
of μmax, μmin in each row.
It is sufficient to show the rank deficiency for the

N ¼ 3, n ¼ 3 (i.e., three sections containing quadrupole
triplets) case; the general case N > 3 follows from the
symmetric placement of lattice elements from one section
to another and n > 3 follows from the fact that the same set
of three coefficient vectors is sufficient to generate the
Jacobian columns of any quadrupole n-tuplet, i.e., M̃ is a
ðN2 þ 1Þ × 3N matrix independent of n.
The expressions in Eq. (C5) can be further simplified by

multiplying columns 1,2,3 of M̃ (containing only cos
terms) by 2g2, columns 4,5,6 (containing only sin terms)
by 2ig2, and columns 7,8,9 (containing only sin terms) by
2ig. Then the first row can be multiplied by ð2igÞ−1 and
each other row can be multiplied by their respective pq

whose inverse occurs in every element across a row. Note
that these elementary row/column operations preserve
the rank of the matrix. This yields the further simplified
expressions given by

cosðμmax þ μminÞ → p2q2g2 þ g2

cosð2πQþ μmax þ μminÞ → p2q2g4 þ 1

cosð2πQ − μmax − μminÞ → p2q2 þ g4

sinðμmax þ μminÞ → p2q2g2 − g2

sinð2πQþ μmax þ μminÞ → p2q2g4 − 1

sinð2πQ − μmax − μminÞ → p2q2 − g4

sinðπQ − μmax þ μminÞ → q2g2 − p2: ðC6Þ
Thus, the resulting matrix, with cos, sin terms being

replaced by Eq. (C6), contains only various polynomial
terms as elements. With the help of a computer algebra
system such as PARI/GP [25], it can be shown that the
determinants of all 9 × 9 submatrices of the simplified
10 × 9 matrix M̃ are identical to zero. From this follows
that M̃ is rank deficient, according to Eq. (C4). An example
program is given by program (Fig. 16).
It is worth noting that the proof does not make any

assumptions on the values of μb;j, μs;j, and Q. Thus, the
rank deficiency holds for arbitrary values of μb;j, μs;j, andQ
and does not restrict the optics nor the specific placement of
BPMs or steerers in terms of their phase advance.

APPENDIX D: PROOF: Sh,Sv,Q6,Bh,Bv
JACOBIAN IS RANK DEFICIENT

The proof for the Sh,Sv,Q6,Bh,Bv placement is
analogous to the one obtained for S,Q3,B (Appendix C).
Instead of three coefficient vectors, there are six coefficient

FIG. 16. PARI/GP program for verifying that the determinant of every 9 × 9 submatrix of the 10 × 9 M̃ matrix for the N ¼ 3 case is
identical to zero. The simplifications from Eq. (C6) have been applied. The following abbreviations are used: fa; b; cg≡ eiμb;f1;2;3g ,
fd; e; fg≡ eiμs;f1;2;3g , g≡ eiπQ. PARI/GP version 2.13.4 has been used. The program can be run by copying it into a file main.gp and
then running path/to/gp2c-run main.gp followed by typing compute().
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vectors, three for each dimension. These coefficient vectors
are orthogonal since the horizontal coefficient vectors only
have nonzero entries in the horizontal part of the Jacobian
while the vertical coefficient vectors only have nonzero
entries in the vertical part of the Jacobian and the two parts of
the Jacobian are entirely separate. Hence, we can construct a
matrix similar to M̃ in Eq. (C3) but now the matrix is a block
diagonal of shape ð2N2 þ 2Þ × 6N where the upper-left
block is the M̃ for the horizontal dimension and the
lower-right block is the M̃ for the vertical dimension.
Both blocks independently induce a rank deficiency as
shown in Appendix C. Thus, the rank deficiency for the
Sh,Sv,Q6,Bh,Bv Jacobian is twice the one for S,Q3,B.
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