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Abstract

Using more than a million randomly generated equations of state that satisfy theoretical and observational
constraints, we construct a novel, scale-independent description of the sound speed in neutron stars, where the
latter is expressed in a unit cube spanning the normalized radius, r/R, and the mass normalized to the maximum
one, M/Mroy. From this generic representation, a number of interesting and surprising results can be deduced. In
particular, we find that light (heavy) stars have stiff (soft) cores and soft (stiff) outer layers, or that the maximum of
the sound speed is located at the center of light stars but moves to the outer layers for stars with M/Mroy 2 0.7,
reaching a constant value of cs2 = 1/2 as M — Mroy. We also show that the sound speed decreases below the
conformal limit¢> = 1/3 at the center of stars with M = Mroy. Finally, we construct an analytic expression that
accurately describes the radial dependence of the sound speed as a function of the neutron-star mass, thus
providing an estimate of the maximum sound speed expected in a neutron star.

Unified Astronomy Thesaurus concepts: Gravitation (661); Fundamental parameters of stars (555); Nuclear

astrophysics (1129); Neutron stars (1108); Nuclear physics (2077)

1. Introduction

The extreme conditions in neutron-star interiors pose a
formidable problem for the theoretic modeling of nuclear
matter several times denser than the saturation density of
atomic nuclei, n,= 0.16 fm 3. While effective field-theory
calculations are arguably the most important tool to obtain
theoretical predictions for the behavior of dense matter, the
associated uncertainties become large at densities several times
n, such as those present in neutron-star cores. In addition, first-
principle perturbative quantum chromodynamics (QCD) calcu-
lations are only reliable at densities much larger than those
realized in the neutron-star interior but provide important
consistency conditions for the modeling of matter at lower
densities (Fraga et al. 2014; Annala et al. 2020, 2022; Gorda
et al. 2022; Komoltsev & Kurkela 2022; Somasundaram et al.
2022). Our theoretical control of even basic quantities, such as
the equation of state (EOS) of dense nuclear and quark matter
that, in the simplest case, is a relation between pressure and the
energy density p(e), is therefore still very limited, often forcing
the use of agnostic approaches to build the EOS of nuclear
matter at neutron-star densities. At the same time, recent and
upcoming observations of neutron stars and their merger events
represent a unique opportunity to gain information about
strongly coupled dense matter under conditions that are either
difficult or impossible to create in experiments.

It is therefore important to combine our current theoretical
knowledge with the available observational data to make
predictions for the EOS and related quantities that determine
the macroscopic properties of neutron stars. One such quantity
is the (adiabatic) sound speed, which is defined as the
derivative of the pressure with respect to the energy density
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at fixed entropy per baryon s (Rezzolla & Zanotti 2013),
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Among its many important properties, the sound speed
provides a measure of the stiffness of matter, or in other
words, it determines the amount of material pressure available
to balance the gravitational pull and therefore prevent a neutron
star from collapsing to a black hole. Clearly, a large speed of
sound corresponds to a large stiffness, which, in turn, allows
for the support of neutron stars with large radii R and large
maximum masses Mrtoy. Similarly simple logic would suggest
that the sound speed should reach its maximum value in the
core of the star.

There exist a number of works (Moustakidis et al. 2017,
Tews et al. 2018; Margaritis et al. 2020; Hippert et al. 2021;
Kanakis-Pegios et al. 2021; Altiparmak et al. 2022) addressing
the question of whether the sound speed as a function of
density in QCD has an upper limit that is smaller than the speed
of light. One natural conjecture for this bound is the value in
conformally symmetric matter, ¢ = 1/3 (see, e.g., Bedaque
& Steiner 2015; Alsing et al. 2018), such as realized in QCD at
asymptotically large density. However, it turns out that
assuming this conformal limit (¢? < 1/3) strictly at all
densities leads to a strong tension with astrophysical measure-
ments of neutron-star masses M 22 M. (Antoniadis et al.
2013; Cromartie et al. 2019; Fonseca et al. 2021), which favor
stiff EOSs with ¢2 > 1/3 at densities >n,. In addition, various
theoretical approaches, such as QCD at large isospin density
(Carignano et al. 2017), two-color QCD (Hands et al. 2006),
quarkyonic matter (McLerran & Reddy 2019; Duarte et al.
2021; Margueron et al. 2021), models for high-density QCD
(Leonhardt et al. 2020; Ma & Rho 2021; Braun &
Schallmo 2022; Pal et al. 2022), and models based on the
gauge/gravity duality (Ecker et al. 2017; Demircik et al. 2021;
Kovensky et al. 2022) predict ¢ > 1/3 at finite densities.


https://orcid.org/0000-0002-8669-4300
https://orcid.org/0000-0002-8669-4300
https://orcid.org/0000-0002-8669-4300
https://orcid.org/0000-0002-1330-7103
https://orcid.org/0000-0002-1330-7103
https://orcid.org/0000-0002-1330-7103
mailto:ecker@itp.uni-frankfurt.de
http://astrothesaurus.org/uat/661
http://astrothesaurus.org/uat/555
http://astrothesaurus.org/uat/1129
http://astrothesaurus.org/uat/1129
http://astrothesaurus.org/uat/1108
http://astrothesaurus.org/uat/2077
https://doi.org/10.3847/2041-8213/ac8674
https://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/ac8674&domain=pdf&date_stamp=2022-11-10
https://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/ac8674&domain=pdf&date_stamp=2022-11-10
http://creativecommons.org/licenses/by/4.0/

THE ASTROPHYSICAL JOURNAL LETTERS, 939:L.35 (8pp), 2022 November 10

In other words, there now exists evidence and consensus that
the sound speed at neutron-star densities exceeds the conformal
limit. However, it still remains unclear what this maximum
value should be and, more importantly, where in the neutron-
star interior it is achieved. For instance, it is natural to expect
that the maximum sound speed should always take place at the
center of the star, as this is where the largest densities are
achieved. As we will show below, this simple logic is valid for
light stars but fails spectacularly as one considers stars near the
maximum mass.

In this Letter, we investigate the behavior of the sound speed
in the neutron-star interior using input for the EOS from
nuclear theory and perturbative QCD and impose observational
constraints on neutron-star masses, radii, and tidal deform-
abilities. Our goal is to make statements that are universal in
the sense that they do not depend on a particular choice of the
EOS or any of the macroscopic scales, such as the radius and
maximum mass of a given EOS. To achieve such a model
independence, we randomly generate more than a million EOSs
that are by construction consistent with nuclear theory and
perturbative QCD at low and high densities, respectively, and
satisfy the observational constraints of isolated and binary
neutron-star merger measurements. We then generate prob-
ability density functions (PDFs) for the sound speed inside
nonrotating neutron stars and extract their median and 95%
confidence intervals. By choosing dimensionless coordinates
for the radial (»/R) and mass dependence (M/Mrov), we obtain
a novel and entirely scale-independent description of the sound
speed in the neutron-star interior.

2. Methods

Our setup is similar to the one presented by Altiparmak et al.
(2022), and we briefly review it here. The starting point is the
construction of a large number of EOSs, which we achieve by
patching together several different components. At the lowest
densities, i.e., for n<0.5n,, we use the Baym-—Pethick—
Sutherland model (Baym et al. 1971) to describe the neutron-
star crust. In the range 0.5n; <n < 1.1n,, we randomly sample
polytropes to cover the entire range between the soft and stiff
EOSs of Hebeler et al. (2013). At large densities, =>40n;,
corresponding to a fixed baryon chemical potential of
1=2.6GeV, we impose the perturbative QCD result of Fraga
et al. (2014) for the pressure p(X, p) of cold quark matter in
terms of a renormalization scale parameter X, which we sample
uniformly in the range [1, 4]. Although such high densities are
not realized in neutron stars (see, e.g., Altiparmak et al. 2022),
imposing p(X, p) constrains the EOS at neutron-star densities.
Finally, in the intermediate regime of densities, i.e.,
1.1ny < n < 40n,, we use the parameterization method intro-
duced by Annala et al. (2020), which uses a continuous
combination of piecewise-linear segments for the sound speed
as a function of the chemical potential cs2 (p) as a starting point
to construct thermodynamic quantities,

(i1 — W+ (0 — )k
Hivy — Hi

et (p) = 2

where 1; and cfi are the parameters of the ith segment in the
range [; < (< ;v (throughout this paper, we use units in
which the speed of light and Newton’s constant are equal to 1,
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¢ =G =1). The number density can then be expressed as

n(p) =m exp(fuﬁ ﬁ), 3)

where n; = 1.1n,, and p; = pu(n,) is fixed by the corresponding
chemical potential of the polytrope. Integrating Equation (3)
then gives the pressure

P =p) + f/ " aunqo), @)

7

where the integration constant p; is fixed by the pressure of the
polytrope at n=n,. We integrate Equation (4) numerically,
using a fixed number of seven segments of the form of
Equation (2) for the sound speed. Following the procedure
above, we construct a large number of EOSs by randomly
choosing the maximum speed of sound csz,max € [0, 1] and
uniformly sample the remaining free coefficients ;€ [p,
Uni1l, where pn,; =2.6GeV, and cs%i € [0, cs%max] in their
respective domains. In this way, we construct 8 x 10° EOSs
that are consistent with theoretical uncertainties in nuclear
theory and perturbative QCD.

In order to impose constraints provided by the astronomical
observations, for each EOS, we solve the Tolman—Oppenhei-
mer—Volkoff (TOV) equations and keep only those EOSs that
are consistent with the mass measurements of J0348+4-0432
(Antoniadis et al. 2013; M = 2.01 £ 0.04 M) and JO740+6620
(Cromartie et al. 2019; Fonseca et al. 2021;
M =2.08 £0.07 M) by rejecting those with maximum mass
M., < 2.0M,.. In addition, we impose the radius measure-
ments by NICER of J07404+-6620 (Miller et al. 2021; Riley
et al. 2021) and J0030+-0451 (Miller et al. 2019; Riley et al.
2019) by rejecting EOSs with R < 10.75km at M =2.0 M, and
R <10.8km at M =1.1 M, respectively. Finally, we exploit
the detection of GW171817 by LIGO/Virgo to set an upper
bound on the binary tidal deformability A < 720 (low-spin
priors; the LIGO Scientific Collaboration et al. 2019).
Denoting, respectively, with M;, R;, and A; the masses, radii,
and tidal deformabilities of the binary components, where
A= %kz(Ri/M,-)S, i=1, 2, and k, is the second tidal Love
number, we compute the binary tidal deformability as

K. Lo(2M + M)MPA; + (12M, + My) M3 A,

13 (M + M>)° ®)

For any choice of M;, and R;,, we then reject those EOSs
with A >720 for a chirp mass Mehirp =
(MM 3(My + M>)~'/> = 1.186 M., and q*=M,/M, >0.73
as required for consistency with the LIGO/Virgo data for
GW170817 (The LIGO Scientific Collaboration et al. 2019).
Imposing the observational constraints reduces our original set
of 8 x 10° EOSs to ~10° viable EOSs that form the basis for
the results presented in the next section.

We note that, in principle, there also exist estimates for the
upper bound on the maximum mass Moy < 2.167017 M (see
Rezzolla et al. 2018 but also Margalit & Metzger 2017; Ruiz
et al. 2018; Shibata et al. 2019; Nathanail et al. 2021).
However, since this bound requires a number of uncertain
model assumptions about the kilonova modeling of GRB
170817A emitted by the merger event GW170817, we do not
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Figure 1. Scale-independent description of the sound speed as a function of the
mass M normalized by the maximum mass Mrtoy and the radial location r
normalized by the neutron-star radius R. The blue region represents the median
of the PDF, while the cyan and purple regions mark the lower and upper 95%
credibility intervals, respectively. Different lines are used to show the important
properties of the PDF. The red solid line shows the value of the maximum
sound speed, cfmax , as a function of the stellar mass, while the red dashed line

shows the location within the star of cxz,max as a function of the stellar mass; the

green solid line reports the sound speed at the stellar center, cfcemer, as a
function of the stellar mass.

impose them on the results presented in the main text but rather
study their impact in Appendix A.

3. Results

Figure 1 represents the synthesis and essence of our novel
scale-independent representation of the sound speed in neutron
stars, which is described in a unit cube having as coordinates
the normalized radius r/R€ [0, 1], the normalized mass
M /Moy € [0, 1], and the (normalized) sound speed squared
cs2 € [0, 1] (to aid the visualization of the data, we restrict the
unit cube to the most interesting region). In this unit cube, we
report with the blue region the median of the sound speed—
squared PDF, while the cyan and purple regions mark the 95%
credibility intervals.

We first discuss the most prominent global features of the
median sound speed. Obviously, close to the surface of the
stars (r/R = 1), the sound speed is small CS2 ~ O(1072) and
approximately independent of the mass. This is because the
underlying nuclear-theory description at low density is tightly
constrained and has a small sound speed. Moving inside the
star (r/R <0.8), the sound speed develops a nontrivial mass
dependence. For M/Mroy 2 0.7, the sound speed changes
from a monotonic to a nonmonotonic function of r/R that has a
single local maximum, cfmax, as shown by the red dashed and
solid lines in Figure 1. Importantly, the radial location of the
maximum sound speed depends on the mass (red dashed line),
so that it is at the center of the stars (r/R=0) for light stars
(M/Mroy < 0.7) but then moves to the outer layers of the stars
(r/R~0.5-0.7) for heavy stars (M/Mroy 2 0.7). This inter-
esting and somewhat surprising behavior highlights how the
structure of a compact star depends sensitively on its mass. As
we will further discuss below, the value of this local maximum
becomes independent of the mass for sufficiently large masses
(M/Mrov 2,0.7) and attains a constant value of cfmax ~ 1 / 2
(see also Figure 3). Another important feature of the sound
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speed is the nonmonotonic behavior of the value at the center
of the stars, qfcenler, as a function of the mass, as shown by the
green solid line in Figure 1. Note that the maximum value of
cfcemer is reached by stars with intermediate mass
(M/Mroy = 0.7), while the minimum value is not obtained in
the lightest stars (M/Mroy = 0.5) but rather in the heaviest
stars (M/Mroy = 1), where it is even below the conformal
limit, i.e., cfcemer =~ 0.3 (see also top right panel of Figure 2).

In Figure 2, we show the PDFs for three different values of
the dimensionless mass parameter (top panels) and three values
of the mass when expressed in solar masses (bottom panels). In
all cases, the red lines represent the median of the PDFs, black
solid lines represent the corresponding 95% credibility
intervals, and black dashed lines mark the conformal limit
¢2 = 1/3. Note how the red curves clearly show the
transition from a monotonic to a nonmonotonic radial
dependence of the sound speed when going from light (left)
to heavy (right) stars. The sound speed in light stars increases
relatively slowly from the surface toward the center, reaching
the conformal value only at roughly half its outer radius, i.e.,
r/R=~0.5.

As a result, the outer layers of light stars are relatively soft
and therefore more sensitive to tidal disruptions than heavier
stars. In stars with intermediate mass (M/Mroy = 0.75), the
sound speed increases more rapidly toward the center and
remains at a constant value ¢ ~ csz,max =1 / 2 over a large
portion (r/R < 0.4) of the core region. Hence, these stars have a
relatively large and stiff core compared to lighter ones. Finally,
the heaviest stars (M/Mrov ~ 1) do not have a sound speed
that changes monotonically within the star but, as mentioned
above, develop a local maximum rather far from the center (r/
R~ 0.65). Hence, heavy stars have relatively soft cores but
very stiff outer layers. The stiffening in the outer layers is
clearly a consequence of imposing the 2 M. constraint
Mroy >2 M., while the softening in the core is required to
satisfy the perturbative QCD boundary conditions at large
densities and, at the same time, maintain causality at all
densities. A physically intuitive way of looking at this behavior
is the following: as the stellar core softens, the burden of
keeping the heavy star stable against gravitational collapse has
to be taken by the outer layers, which therefore need to be stiff,
i.e., must have large values of the sound speed. Hence, the
appearance of a local maximum in the sound speed is a direct
consequence of the interplay between the astrophysical
constraints (Mroy 2,2 M) and the perturbative QCD con-
straints at high densities.

We note that traditional nuclear-theory EOSs that only
capture confined nuclear matter typically do not take into
account the perturbative QCD constraints at large densities and
therefore cannot lead to the soft core that our statistical
approach points out. Indeed, widely used EOSs built on the
present understanding of low-density nuclear theory typically
predict high-mass stars with cores that are systematically stiffer
and therefore with larger sound speeds (see Figure A2 in
Appendix B).

The panels in Figure 2 also make it very easy to appreciate
that while light and intermediate-mass stars have super-
conformal central sound speeds (cfCenter > 1 / 3; black dashed
lines), heavy stars have subconformal central sound speeds
(cfCemer <1 / 3), reaching a local minimum of C.s%cemer ~ 0.3 for
M/Mroy = 1.
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Figure 2. Top panels: PDFs for the sound speed as a function of the normalized radial coordinate r/R for three fixed values of the masses M = 0.5 (left), 0.75
(middle), and 1 Moy (right). Red lines represent the median of the distribution, black solid lines are the upper and lower bounds of the 95% credibility interval, while
black dashed lines indicate the conformal limit ¢ = 1/3. Bottom panels: same as the top panels but shown for representative stellar masses in units of solar mass:
M = 1.0 (left), 1.4 (middle), and 2.0 M, (right).

Table 1
Numeric Values of the Fitting Parameters in Equation (6) for the Median Sound Speed and the Lower and Upper Bounds of Its 95% Confidence Interval for Three
Different Values of M/Mroy Used in Figure 2

M

Moy Value @ 8 ¥ 1) € ¢ n
Lower 0.02 0.14 0.47 —12.00 —2.60 15.00 12.00
0.5 Median 0.01 0.21 0.42 —18.00 —1.60 7.70 6.00
Upper 0.01 0.31 0.37 —27.00 —1.10 6.60 5.00
Lower 0.09 0.15 0.58 -9.80 —3.40 13.00 11.00
0.75 Median 0.08 0.25 0.55 —10.00 —1.80 9.80 8.40
Upper 0.09 0.15 0.58 -9.80 —3.40 13.00 11.00
Lower 0.10 0.03 0.54 —6.40 1.50 14.00 12.00
1 Median 0.18 0.14 0.71 —6.30 —1.50 10.00 8.90
Upper 0.19 0.23 0.65 —7.80 —-0.77 12.00 11.00
The smooth behavior of the medians of the sound speed A few remarks on Equation (6) are in order. First, while
shown in the panels of Figure 2 encourages the representation these functions are normalized in terms of the stellar radius and
of this behavior in terms of analytic functions, namely, maximum mass—none of which are known at present—they
nevertheless provide useful information. For instance, notwith-

F(@) = (e et N1 — tanh(Gr — )], (6) i imi i it i

G ) = (e e anh (¢x — 1)1, standing the limited knowledge available now, it is already

possible to conclude that a neutron star with a mass close to the
maximum mass of ~2.2 M, (see, e.g., Rezzolla et al. 2018) and
an average radius of ~12 km (see, e.g., Altiparmak et al. 2022)

where x:=r/R, and « =0.18, 5=0.14, yv=0.71, § = —6.30,
e= —1.5, (=10.00, and = 8.9 are the fitting parameters for

the most interesting case, namely, the median of the PDF when will have a maximum sound speed of ¢, ~ 0.7 at ~8 km from
M/Mroy = 1. For completeness, Table 1 in Appendix C the center. This valuable information can already be included in
reports the values of these coefficients for different mass cuts nuclear-theory calculations of new EOSs. Second, although a
and credibility intervals. fit with seven parameters may seem excessive, they are
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Figure 3. Mass dependence of the median of the local maximum sound speed
cfmax (red line) and the sound speed at the neutron-star center cfcemer (green
line); the red and green shaded areas indicate the corresponding 95% credibility
intervals. Black dashed and dotted lines mark half the speed of light and the
conformal limit, respectively.

necessary to faithfully represent the key features of the
distribution, such as their values at the center (r = 0) and close
to the surface of the stars (r = R), as well as the location and
value of the local maximum at intermediate radii. Finally, the
number of parameters could be reduced by imposing analytic
conditions on the approximate behavior of the PDFs in certain
limits (e.g., using the vanishing slope at /R =0, 1). However,
we have preferred to be conservative and not impose such
constraints at the cost of a larger number of parameters.
Figure 3 shows the behavior of the median of the local
maximum sound speed quax (red line) and the sound speed at

the neutron-star center csz,center (green line) as a function of the
(normalized) stellar mass. The red and green shaded areas
indicate the corresponding 95% credibility intervals, while the
black dashed and dotted lines mark the values 1/2 and 1/3,
respectively. In essence, Figure 3 highlights that the maximal
sound speed in stars with M/Mroy < 0.7 appears in their
center, because the red and green curves coincide for
M/Mroy <0.7. On the other hand, for stars with
M/Mrov 2 0.7, the two curves split; the sound speed at the
stellar center decreases monotonically toward the stellar
interior, reaching a minimum of cfcemer ~ 0.3 for the
maximum-mass stars (M/Mrgy =1). Conversely, the max-
imum sound remains at a constant value Cs2,max ~ 1 / 2 for all
masses M/Mroy < 0.7. Tt is suggestive that this constant value
is so close to half the speed of light, but it is difficult to invoke
any first-principle argument on why this should be the case.

Finally, in Figure 4, we report the behavior of the median of
the sound speed as a function of the (normalized) stellar mass at
different positions in the star, as indicated by the color bar
(these are essentially cuts at different values of r/R of the blue
median surface in Figure 1). In particular, the dark green line
represents a cut of the median at the stellar center, while the
dark blue line shows the behavior at the stellar surface. In
essence, Figure 4 highlights how the sound speed changes
when going from the surface (dark blue line) toward the core
(dark green line) in stars as a function of their mass. At r/
R~ 0.65 (light blue line), the sound speed in the heaviest stars
reaches its maximum value, ¢Z =~ 1/2, indicated by the black
dashed line.
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Figure 4. Mass dependence of the median sound speed for various different
values of the normalized radial position location inside neutron stars as
indicated by the color bar. Black dashed and dotted lines mark half the speed of
light and the conformal limit, respectively.

This shows that in the outer layers (r/R 2 0.65) of every star,
regardless of its mass, the sound speed is a monotonically
increasing function of the mass and has values ¢ < 1/2. On
the other hand, the sound speed in the core region (r/R = 0),
shown in dark green, is a nonmonotonic function of the
neutron-star mass. As a result, the maximum sound speed at the
stellar center, i.e., cfcemer ~ 1 / 2, is not attained in the lightest
(M/Mroy = 0.5) or heaviest (M/Mroy = 1) stars but rather at
intermediate mass, M/Mroy =~ 0.75. Furthermore, the sound
speed at the center of light stars (cfcemer ~ 0.4) is actually
larger than the corresponding value of the heaviest stars
(cfCemer ~ 0.3) that, as discussed above, experience a sig-
nificant softening.

4. Summary and Conclusions

We have studied the sound speed distribution inside neutron
stars using a large set of randomly generated EOSs that are
consistent with nuclear theory and perturbative QCD results in
their respective ranges of validity and in agreement with
astrophysical pulsar observations and gravitational-wave detec-
tions from binary neutron-star mergers. Our main result is a
novel and scale-independent representation of the sound speed
in a unit cube spanning the normalized radius r/R and the mass
normalized to the maximum one, M/Mrgy.

This innovative way of thinking about the sound speed has
allowed us to draw a number of general conclusions that
increase our insight into the quantitative and qualitative
behavior in neutron stars of the sound speed in particular and
dense nuclear matter in general. More specifically, we find the
following.

(1) Close to the surface of the stars, the sound speed is small
and approximately independent of the mass. However, moving
inside the stars, the sound speed develops a nontrivial mass
dependence, and for M/Mroy 2 0.7, it changes from a
monotonic to a nonmonotonic function of position r/R with
a single local maximum, c? The radial location of the

§,max
maximum sound speed depends on the mass, and it is at the
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center of the star for light stars but then moves to the outer
layers of the star for heavy stars.

(i1) The value of this local maximum becomes independent
of the mass for sufficiently large masses (M/Mroy 2 0.7) and
attains a constant value of cfmax ~ 1 / 2.

(iii) The sound speed at the center of the stars, cfcenter, also
exhibits nonmonotonic behavior as a function of the mass, with
the maximum value of cﬁcemer being reached by stars with
intermediate mass, while the minimum value is not obtained in
the lightest stars but rather in the heaviest stars, where it is
cfcemer ~ 0.3 and thus below the conformal limit.

(iv) Using the sound speed as a measure for stiffness, we find
that light stars are soft in the outer layers (r/R ~0.5-0.7) and
stiff in the core, while heavy stars have a soft core and stiff
outer layers. This is because the sound speed increases only
slowly toward the center in light stars but rapidly in heavy
stars, where it approaches a local minimum that is smaller than
the conformal limit in the core.

(v) Finally, we provide a simple fitting formula for the
median sound speed and its confidence interval in the neutron-
star interior. This information can already be included in
nuclear-theory calculations of modern EOSs to constrain the
behavior of the sound speed in those regions where nuclear-
theory predictions have large uncertainties.

In summary, the nontrivial behavior of the sound speed as a
function of the radial position inside the stars can be seen as a
probe to identify changes of the matter composition. In
particular, the softening of heavy neutron-star cores points to
the appearance of new degrees of freedom, such as hyperons or
deconfined quarks.

There are a number of possible extensions to our work. First,
while our method of constructing EOSs includes, in principle,
cases that closely resemble a first-order phase transition, they
only represent a negligible subset of our ensemble, as we do
not explicitly enforce them; hence, their statistical weight is
rather small. It would therefore be interesting to include models
that, by construction, include a first-order phase transition and
study their impact on our results. Second, in the current and
also our previous work (Altiparmak et al. 2022), we took the
so-called frequentist approach for the statistical interpretation
of our results; that is, we impose the constraints with a hard
cutoff neglecting their statistical nature. An alternative
approach to obtain a statistical interpretation would be a
Bayesian analysis, where the statistics of the observational
uncertainties is taken into account. Finally, another interesting
generalization of our work is its extension to study how
rotation—and in particular rapid rotation—affects the proper-
ties of the sound speed in neutron stars. We plan to address
many of these issues in ongoing and future work.
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Appendix A
Imposing an Upper Bound on the Maximum Mass

In this Appendix, we analyze the impact on the sound-speed
PDF of an additional constraint obtained by imposing an upper
bound on the maximum neutron-star mass, namely,
Mrov < 2.16f8;%§ M., as proposed by Rezzolla et al. (2018;
see also Nathanail et al. 2021, for a discussion of the
constraints derived from GW190814). Such a constraint is
obtained using the detection of the gravitational-wave event
GW170817 and the modeling of the kilonova signal of GRB
170817A, together with quasi-universal relations between the
maximum masses of uniformly rotating and nonrotating stars
(Breu & Rezzolla 2016). Figure Al shows the sound-speed
PDF in a way that is similar to the top panels of Figure 2, with
the difference that the PDF here is obtained after imposing an
upper limit on the TOV mass Moy <2.16 M. A rapid
comparison between Figures Al and 2 reveals that the overall
features of the sound speed remain unchanged. The most
significant difference is that the distributions are systematically
narrower, simply because the stiff EOSs with large sound
speeds are now penalized and rejected. This is particularly clear
in the panel for heavy stars (right), where the sound speed
increases less rapidly in the outer layers of the star.
Interestingly, the value of the local maximum sound speed,
Cs.max» Varies only minimally, changing from ¢ max = 1/2 in the
absence of a maximum-mass constraint to ¢; max =~ 0.45 when a
maximum-mass constraint is imposed.

Appendix B
Comparison to Microphysical Models

In this Appendix, we compare our sound-speed PDF with
three microphysical models that have been widely used in the
literature to study the properties of neutron stars and their
mergers. Figure A2, in particular, compares the radial behavior
of the sound-speed PDF in maximally massive stars with the
corresponding sound speeds obtained with these EOSs.

The orange line shows the sound speed of a pure nuclear-
matter model, the Hempel-Schaffner—Bielich (HS) EOS with
DD2 relativistic mean field interactions (Hempel & Schaffner-
Bielich 2010; Typel et al. 2010). This EOS is known to be
relatively stiff, as can be seen from the large sound speed in the
neutron-star interior. Interestingly, for r/R > 0.7, the sound
speed from this EOS agrees very well with the median sound
speed (red line) from our approach, even though our
construction does not use any input from the (HS)DD2 EOS.
However, deeper inside the star, our result is very different
from (HS)DD2 and gives less than half the sound speed in the
neutron-star core. We should note that the (HS)DD2 EOS gives
a relatively high maximum mass of Moy &~ 2.5 M, and a tidal
deformability of A; 4~ 690 for 1.4 M. stars, which is in
tension with the upper bound A, <580 derived from the
inspiral part (low-spin prior) of GW170817 (The LIGO
Scientific Collaboration et al. 2019). This means that (HS)
DD2 only provides a good description for dense matter n < ng
in light stars but is probably too stiff to describe the properties
of heavy neutron stars with cores several times denser than #;.
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Figure A1l. The PDFs for the sound speed as a function of the normalized radial coordinate /R for three fixed values of the masses M = 0.5 (left), 0.75 (middle), and
1 Mroy (right). Red lines represent the median of the distribution, black solid lines are the upper and lower bounds of the 95% credibility interval, and black dashed
lines indicates the conformal limit ¢2 = 1/3. This figure is analogous to Figure 2; the only difference is that here an upper limit on the maximum mass

Mroy < 2.16 M, is imposed.
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Figure A2. The PDF of the sound speed for M = Mroy. The red line represents
the median of the distribution, the black solid lines are the upper and lower
bounds of the 95% credibility interval, and the black dashed line indicates the
conformal limit ¢ = 1/3. Orange, green, and cyan lines report the cold beta
equilibrium sound speed for the HS(DD2) (Hempel & Schaffner-Bielich 2010;
Typel et al. 2010), BHBA (Banik et al. 2014), and intermediately stiff VQCD
(Demircik et al. 2021) EOS, respectively.

The green line, on the other hand, corresponds to the Banik—
Hempel-Bandyopadhyay (BHBA) EOS (Banik et al. 2014),
which is an extension of the (HS)DD2 EOS with A hyperons,
i.e., particles that contain strange quarks. One of the
characteristic features of hyperonic degrees of freedom is that
they lead to a softening of the EOS, which can be seen from the
local minimum in the sound speed around r/R=~0.8. The
maximum mass of this EOS is relatively low, Moy ~2.0 M.,
and therefore in tension with the mass measurement M > 2 M,
of heavy pulsars. Hence, the EOS is probably too soft to
account for the properties of light stars and the outer layers of
heavy stars, as can be seen from the large difference between
the red and green curves at r/R 2 0.5 in Figure A2.

Finally, the cyan line corresponds to the intermediately stiff
V-QCD EOS of Demircik et al. (2021), which combines the
traditional nuclear theory (HS)DD2 and the Akmal-Pandhar-
ipande—Ravenhall (Akmal et al. 1998) EOSs at low densities
with a string theory—inspired model for QCD to describe dense

baryonic and quark matter. This model gives Moy =2.14 M,
and A;4=511 and therefore conveniently satisfies the 2 M,
and tidal deformability constraints. Furthermore, it has recently
been verified (Tootle et al. 2022) via binary neutron-star merger
simulations that this EOS is not excluded by the expected 1 s
long lifetime (Gill et al. 2019) of the postmerger remnant of
GW170817. However, although this model passes all currently
known theoretical and observational constraints, it is also not
able to account for the softening of the core predicted by the
red curve.

In summary, none of the three very different microphysical
EOSs shown in Figure A2 is able to describe the behavior of
the sound speed predicted by our model-agnostic sampling
approach. The explanation is simple and reflects the difficulties
that nuclear-theory calculations have in matching the high-
density, perturbative QCD constraints. It is remarkable that
EOSs such as those considered in Figure A2—that are in good
agreement with all currently known observational constraints—
have radial profiles of the sound speed that are quite different
from those predicted from our agnostic approach. This fact
shows that the traditional methods of constraining EOS models
only with global neutron-star properties such as maximum
mass, radii, and tidal deformabilities might not be sufficient.
Rather, additional information on the properties inside the stars
is needed and can provide further nontrivial constraints. Hence,
the importance of our Equation (6) is to provide a novel
constraint in terms of the radial distribution of the sound speed
inside stars of a given mass. Using this constraint will ensure
that the newly suggested EOSs will not only satisfy the
astrophysical constraints but also be compatible with the
perturbative QCD constraints at much larger densities. We are
not aware of a comparable constraint in the literature.

Appendix C
Comprehensive Description of the Fitting

In Table 1, we provide the numerical values of the fitting
coefficients for the results shown in Figure 2; these coefficients
reflect the astrophysical constraint imposed here of Moy = 2
M., and their values may change slightly if this constraint is
increased. As briefly mentioned in the main text, some of the
parameters in Equation (6) can, in principle, be related by
strictly imposing the approximate behavior of the distribution
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in certain limits. For example, the numerical results have an
approximately vanishing slope at r/R=0, 1, and the value of
the local maximum of the median at 0 < r/R < 1 turns out to be
very close to the value 1/2 in stars with M/Mroy >0.7.
Imposing these constraints would allow one to express three of
the coefficients in terms of the remaining four but at the same
time make the formal Equation (6) more involved. In addition,
the upper and lower bounds of the credibility interval do not
show the saturation behavior of the local maximum seen in the
median such that it would not be possible anymore to express
them by the same fitting law. We also remark that the sound
speed loses the local maximum for M/Mroy <0.7 and
becomes monotonic, allowing for a simpler fitting law with
fewer parameters. This can be directly seen from the values of
« provided in Table 1, which become small compared to the
other parameters, meaning that the first exponential function in
Equation (6) can be neglected, reducing the number of relevant
parameters to five.
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