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Abstract

We have investigated the systematic differences introduced when performing a Bayesian-inference analysis of the
equation of state (EOS) of neutron stars employing either variable- or constant-likelihood functions. The former
has the advantage of retaining the full information on the distributions of the measurements, making exhaustive
usage of the data. The latter, on the other hand, has the advantage of a much simpler implementation and reduced
computational costs. In both approaches, the EOSs have identical priors and have been built using the sound speed
parameterization method so as to satisfy the constraints from X-ray and gravitational waves observations, as well
as those from chiral effective theory and perturbative quantum chromodynamics. In all cases, the two approaches
lead to very similar results and the 90% confidence levels essentially overlap. Some differences do appear, but in
regions where the probability density is extremely small and are mostly due to the sharp cutoff on the binary tidal
deformability ˜ 720L set in the constant-likelihood approach. Our analysis has also produced two additional
results. First, an inverse correlation between the normalized central number density, nc,TOV/ns, and the radius of a
maximally massive star, RTOV. Second, and most importantly, it has confirmed the relation between the chirp mass
and the binary tidal deformability. The importance of this result is that it relateschirp, which is measured very
accurately, and L̃, which contains important information on the EOS. Hence, whenchirp is measured in future
detections, our relation can be used to set tight constraints on L̃.
Unified Astronomy Thesaurus concepts: Neutron star cores (1107); Nuclear physics (2077); Bayesian
statistics (1900)

1. Introduction

Gravity compresses matter inside neutron stars (NSs) to
densities several times larger than the saturation number
density of atomic nuclei ns= 0.16 fm−3. This makes NSs the
densest known material objects in the universe. The existence
of NSs has been conjectured shortly after the experimental
discovery of the neutron in the early 20th century. Since then
their existence has been confirmed by pulsar observations and
more recently by the direct detection of gravitational waves
from binary NS mergers by the LIGO/Virgo Collaboration.
Even after several decades of extensive theoretical and
observational efforts, our knowledge about the interior
composition and of such basic properties as the mass–radius
relation and the maximum mass of NSs is still limited. The
main reason for this is that first-principle calculations of the
properties of the equation of state (EOS) are currently not
reliable at the largest densities reached in NSs, although there
are two limits—either at very-low or very-high densities—
where our knowledge is on firmer grounds (see, e.g.,
Dexheimer et al. 2019, for an overview).

Indeed, at densities below and close to ns chiral effective
theory (CET) calculations (Hebeler et al. 2013; Gandolfi et al.
2019; Drischler et al. 2020; Keller et al. 2021) provide
controlled predictions for the EOS. In the opposite limit, i.e., at
densities beyond ∼40 ns, which are much larger than those

reached even in the most massive NSs, the EOS of quantum
chromodynamics (QCD) becomes accessible via perturbative
methods (Freedman & McLerran 1977; Vuorinen 2003; Gorda
et al. 2021a, 2021b). However, at densities a few times larger
than ns, which are those realized inside NS cores, one either
needs to rely on model building (see, e.g., Beloin et al. 2019;
Traversi et al. 2020; Bastian 2021; Li et al. 2021; Demircik
et al. 2022; Ivanytskyi & Blaschke 2022, for some recent
attempts) or on agnostic approaches that are not based on
microscopic models and that are similar in spirit to what was
done when modeling agnostic gravitational waveforms from
binary mergers (see, e.g., Bose et al. 2018). What the two
different approaches to modeling the EOS have in common is
that both have to satisfy the constraints provided by CET and
perturbative QCD (pQCD), as well as the observational data of
heavy pulsars and binary NS mergers.
Model-agnostic approaches to model the EOS have been

employed extensively in recent years and roughly fall into two
categories, namely, parameterized and non-parameterized
methods. Non-parameterized approaches include, for example,
Gaussian processes to infer the EOS (Landry & Essick 2019;
Brandes et al. 2023; Gorda et al. 2022; Legred et al. 2022),
machine learning (Morawski & Bejger 2020; Fujimoto et al.
2021; Han et al. 2022b; Soma et al. 2022), and nonparametric
extensions of spectral expansion method (Han et al.
2021, 2022a). On the other hand, there exist various
parameterized approaches that model the EOS by piecewise
polytropes (Read et al. 2009; Most et al. 2018; Zhao &
Lattimer 2018; O’Boyle et al. 2020), or via a spectral-method
representation of the EOS (Lindblom 2010, 2018), as well as
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some hybrids of these (Jiang et al. 2020; Ferreira &
Providência 2021; Huth et al. 2022; Tang et al. 2021).

In addition to the various EOS parameterization methods,
there are different ways to impose constraints from theory and
astrophysical measurements including their uncertainties,
which are typically provided in form of confidence intervals.
Arguably, the most popular way of imposing constraints from
observational data is the so-called Bayesian analysis with
variable likelihood functions (see, e.g., Greif et al. 2019;
Dietrich et al. 2020; Jiang et al. 2020; Al-Mamun et al. 2021;
Raaijmakers et al. 2021; Tang et al. 2021, for some recent
works), which builds a probabilistic model that accounts for the
measurement uncertainty in each of the constraints imposed. A
similar, but somewhat simpler approach, is to use instead what
we will refer to as the sharp cutoff method (see, e.g., Annala
et al. 2020; Ecker & Rezzolla 2022, 2023; Altiparmak et al.
2022; Annala et al. 2022, for some recent works), which makes
no specific assumption about how uncertainties are distributed,
but imposes the constraints by simply rejecting EOS models
according to sharp cutoff values that are, for example, provided
by the boundaries of some confidence interval. The latter
approach can be seen as equivalent to a Bayesian analysis in
which constant-likelihood functions for the constraints
are used.

Both approaches have advantages and disadvantages. The
advantage of a Bayesian analysis with variable likelihood
functions is that—when such information is available—it can
fully account for uncertainties in the measurements, even in the
cases of bimodal distributions, which is not possible in an
analysis with constant-likelihood functions. A constant-like-
lihood analysis, on the other hand, has the advantage of being
simpler to implement, more flexible in EOS modeling, and
numerically less expensive, while variable likelihood analysis
can quickly become numerically unfeasible, especially for
models with many parameters and many different constraints.

It is still unclear whether a full Bayesian analysis with a
limited parameter space using currently available observational
data is able to produce more accurate predictions than the
simpler cutoff method. Hence, the goal of this work is to
investigate whether or not the two choices for the likelihood
can lead to significantly different results for the EOS and hence
for the NS properties. To enable a direct comparison of the two
approaches, we employ in both cases the sound speed
parameterization method (Annala et al. 2020; Ecker &
Rezzolla 2022; Altiparmak et al. 2022) with identical priors
for the initial EOS ensemble. For simplicity, we restrict our
comparison to observational constraints only, meaning that the
prior ensembles in both cases are built by imposing the CET
and pQCD constraints in a fixed-cutoff manner. Hence, the
likelihood functions of the CET and pQCD constraints are
constant, while that of the observational constraints is suitably
variable.

This paper is structured as follows. In Section 2 we introduce
the two data-analysis approaches employed in this work. In
Section 3 we present the results of this comparison and identify
various relations that are independent of the analysis scheme.
In Section 4 we summarize and conclude. Finally, in
Appendix A we compare our results to a recent mass–radius
measurement of a light compact object in HESS J1731-347.
Throughout the manuscript, we use units in which the speed of
light and Newton’s gravitational constant are all set to unity,
i.e., c= 1 and G= 1.

2. Methods

2.1. EOS Parameterization

The EOS models we construct are a patchwork of several
different components, which we briefly summarize below and
that follow a procedure that is similar to the one discussed in
Altiparmak et al. (2022), to which we refer the reader for
details. At densities below 0.5 ns, we use the Baym–Pethick–
Sutherland (BPS) prescription (Baym et al. 1971). We then
describe the EOS in the range n/ns ä [0.5–1.1] with a single
polytrope of the form p= KnΓ (Rezzolla & Zanotti 2013),
where Γ is uniformly sampled in [1.77, 3.23], such that the
pressure resides entirely between the soft and stiff model of
Hebeler et al. (2013), while the polytropic constant K is fixed
by matching to the BPS EOS at 0.5 ns.
For number densities between 1.1 and ≈40 ns we use a series

of piecewise-linear segments for the sound speed as a function
of the chemical potential as starting point to construct
thermodynamic quantities. Throughout this work we use
N= 11 segments of the following sound speed form:

( )
( ) ( )
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c c
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where the values of the chemical potential μ0 and the sound
speed at the first matching point, cs,0

2 , are determined by the
corresponding polytrope; the values of μN= 2.6 GeV, as well
as cs N,

2 are determined by the perturbative QCD boundary
conditions discussed below. In our previous work (Altiparmak
et al. 2022) we randomly sample the remaining values of cs i,

2

and μi. But in this work we fix the chemical potentials that are
not determined by boundary conditions to be log-equidistantly
separated at

( )i N1.02
2.6
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⎝

⎞
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and only sample the corresponding cs i,
2 uniformly in the range

[0, 1] set by thermodynamic stability and causality. We note
that within our approach for the construction of the low-density
EOS, the maximum chemical potential that can be reached by
the polytrope at n= 1.1 ns when varying the Γ parameter is
μ0= 1.02 GeV, which is then used as the lower boundary of
the log-equidistant chemical potentials. Using a relatively large
number of N= 11 segments with log-equidistant chemical
potentials allows us to ensure sufficient resolution at densities
relevant to the NS interior. Keeping the matching chemical
potentials at constant values allows us to reduce the number of
free parameters in the Bayesian analysis and make it
numerically feasible for the large number of segments we use.
Finally, at chemical potential μ= 2.6 GeV, corresponding to

a number density of ≈40 ns, we impose the parameterized next-
to-next-to-leading order (2NLO) perturbative QCD result of
Fraga et al. (2014) for the pressure of cold quark matter
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where c1= 0.9008, d1= 0.5034, d2= 1.452, ν1= 0.3553,
ν2= 0.9101, and the effective renormalization scale parameter
X is chosen in the range [1, 4].
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There has been recent progress in extending Equation (3) to
partial 3NLO (Gorda et al. 2021a, 2021b) resulting in a small
correction to which our analysis is however not sensitive.
Naively one could expect that imposing the constraint (3) at
40 ns has little impact on the EOS at NS densities that are
7 ns. However, a number of recent studies have shown that
high-density QCD is indeed constraining, not only for the EOS
(Gorda et al. 2022; Komoltsev & Kurkela 2022; Somasun-
daram et al. 2022), but also for related quantities, such as the
sound speed and the conformal anomaly inside massive NSs
(Ecker & Rezzolla 2023).

2.2. Observational Constraints

In addition to theoretical constraints, there exists a growing
amount of astrophysical data that further constrain the dense
matter EOS and in consequence the predictions for NS
properties. Arguably the largest impact has direct mass
measurements from Shapiro delay of binary systems that have
massive radio pulsars like PSR J0740
+6620 ( M M2.08 0.07

0.07= -
+ ) by Fonseca et al. (2021),

PSR J0348+0432 ( M M2.01 0.04
0.04= -

+ ) by Antoniadis et al.
(2013), and PSR J1614-2230 ( M M1.908 0.016

0.016= -
+ ) by Arzou-

manian et al. (2018). These measurements set lower limits on
the maximum mass MTOV of static NSs. We will therefore refer
to them collectively as TOV constraints from here on.

In addition, the NICER experiment has provided combined
mass and radius measurements from the X-ray pulse-profile
modeling of PSR J0030+0451 by Miller et al. (2019)
( M M R1.44 , 13.02 km0.14

0.15
1.06
1.24= =-

+
-
+ ) and by Riley et al.

(2019) ( M M R1.34 , 12.71 km0.16
0.15

1.19
1.14= =-

+
-
+ ), and of

PSR J0740+6620 by Miller et al. (2021)
( M M R2.08 , 13.7 km0.07

0.07
1.5
2.6= =-

+
-
+ ) and by Riley et al.

(2021) ( M M R2.072 , 12.39 km0.066
0.067

0.98
1.30= =-

+
-
+ ). These

measurements offer bounds for the minimum and maximum
radii of typical (M≈ 1.4Me) and massive (M≈ 2Me) NSs.
We refer to these collectively as NICER constraints.

There also exist constraints on the tidal deformability of NSs
in binary systems that have been obtained from the direct
gravitational-wave (GW) detection by the LIGO/Virgo
Collaboration from the merger event GW170817 (Abbott
et al. 2017). From this measurement, upper bounds on the tidal
deformability Λ1.4� 580 (Abbott et al. 2018) of individual NS
with M= 1.4Me, as well as for the binary tidal deformability
parameter ˜ 7201.186L (Abbott et al. 2019) and for the chirp
mass

( ) ( ) ( ) M M M M M: 1.186 4chirp 1 2
3 5

1 2
1 5

0.001
0.001= + =-

-
+

have been derived. We then refer to these constraints obtained
from GW170817 as the GW constraints.

Finally, there are other constraints that could be used but will
not be imposed here, either because they are theoretical
constraints and hence with model-dependent uncertainties (see,
e.g., Bauswein et al. 2017; Koeppel et al. 2019; Tootle et al.
2021, for some constraints on the minimum radii derived from
prompt collapse of the binary to a black hole), or because the
measurement uncertainties are excessively large. In particular,
there exist predictions for the maximum mass by a number of
groups on the basis of the GW170817 event and the
corresponding gamma-ray burst event GRB170817A, namely,

 M M2.16TOV 0.15
0.17

-
+ (Margalit & Metzger 2017; Rezzolla

et al. 2018; Ruiz et al. 2018; Shibata et al. 2019). However,

such upper bounds on MTOV also require a number of
assumptions about the collapse to a black hole of the merged
object and about the ejected mass leading to the kilonova signal
of AT 2017gfo (see, e.g., Nathanail et al. 2021).
We also note several recent NS-mass measurements have

triggered considerable interest. For example, observations of
the black-widow pulsar PSR J0952-0607 have led to an
estimated mass of M= 2.35± 0.17Me (Romani et al. 2022),
which exceeds any previous measurements, including that of
PSR J2215+5135 ( M M2.27 0.15

0.17= -
+ ) by Linares et al. (2018).

Similarly, the recent discovery of a light central compact object
with a mass of M M0.77 0.17

0.20= -
+ within the supernova

remnant HESS J1731-347 (Doroshenko et al. 2022) has been
interpreted as the lightest NS known or a strange star; the
associated radius has been estimated to be R 10.4 km0.78

0.86= -
+ .

In Appendix A we contrast this estimate with the one that can
be inferred from our Bayesian analysis.
In the following, we discuss how we implement the TOV,

NICER, and GW constraints in our Bayesian analysis, starting
with the traditional way that uses variable likelihood functions,
followed by the simpler sharp cutoff method that uses constant
step functions for the likelihoods. We will refer to the former as
the variable-likelihood (VL) analysis and to the latter as the
constant-likelihood (CL) analysis. In each case, we employ
more than 1.5× 105 causal and thermodynamically consistent
posterior EOSs that satisfy the nuclear theory and perturbative
QCD boundary conditions, as well as the observational
constraints from pulsars and GW measurements.

2.3. Bayesian Analysis

Bayesian analysis has been extensively used to infer the
probability distribution of unknown parameters by exploiting
the knowledge of some measured variables. This is accom-
plished by constructing likelihood functions that correlate
unknown parameters and measured variables. In this approach,
the probability of a certain set of parameters is given by the
posterior probability

( ∣ ) ( ∣ ) ( ) ( )d
d

P
L

Z
, 5q q qp

=

where the vector θ collects all the free parameters, d denotes
the imposed measurement data, π(θ) is the so-called prior, and
the normalization constant Z is also called the evidence. In our
case, the likelihood L can be written as the product of the
likelihoods of the three constraints we impose

( ∣ ) ( ) ( ) ( ) ( )  dL , 6TOV
EOS

NICER GWq q q q=

where the individual likelihood functions  ,TOV NICER, and
GW are defined in detail below and the free parameters vectors
are given by

{ ∣ } ( )ℓ: 1, 2, 3, 4 , 7c
ℓ

EOS Èq q m= =

and

{ ∣ } ( )c i N: 1, 2, , 1 . 8iEOS s,
2 Èq = = ¼ - G

The four chemical potentials c
ℓm refer to the values at the center

of the NSs, two of which refer to pulsars with simultaneous
mass–radius measurements, while the other two to the two NSs
composing the GW170817 event. The three types of
parameters in this construction, i.e., c ,s

2 G and c
ℓm , are uniformly
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distributed in the following ranges:

[ ] [ ] [ ] ( )c 0, 1 , 1.77, 3.23 , 1, 2.1 GeV. 9i c
ℓ

s,
2 mÎ G Î Î

For the parameter sampling, we use the Pymultinest
(Buchner 2016) algorithm implemented in Bilby (Ashton
et al. 2019).

2.4. VL Analysis

For simplicity, to approximate the mass measurements of
PSR J0740+6620, PSR J0348+0432, and PSR J1614-2230,
we use Gaussian distributions and then the cumulative density
function (CDF) of each Gaussian is used to build the likelihood
contribution of the corresponding pulsar, namely,

( ) ( ) ¯
( )

M M1

2
1 erf

2
, 10i

i
i
TOV

EOS
TOV EOS

⎜ ⎟
⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎤

⎦
⎥q q

s
= +

-

where

( ) ( )x e dterf :
2

, 11
x

t

0

2

òp
= -

is the error function, while M̄i and σi (i= 1, 2, 3) are the mean
and the standard deviation of the ith mass measurement,
respectively. The total likelihood for the TOV constraints is
then given by the product of the individual likelihoods of these
three pulsars:

( ) ( ) ( ) : . 12
i

TOV
EOS

1

3

i
TOV

EOSq q=
=

The probability distribution function of mass and radius of
PSR J0030+04514 and PSR J0740+66205 are all estimated by
the kernel density estimation (KDE; Scott 1992) with a
Gaussian kernel using the released posterior (M,R) samples
Sk. The likelihood of NICER constraints can then be
represented as the product of the KDE of each pulsar, namely,

( ) ( ( ) ( )∣ ) ( ) SM R: KDE , , , , 13
k

k c
k

c
k

k
NICER

1

2

EOS EOSq q qm m=
=

where { ∣ }k 1, 2c
k

EOS Èq m = are parameters needed to con-
struct this likelihood and they constitute a subset of θ , while
the mass M and the radius R of the kth pulsar are functions of
the sampled EOS parameters θEOS and of the central chemical
potential parameters c

km .
When imposing a measurement of a single GW event, the

corresponding likelihood can be expressed as (Abbott et al.
2020)

( ∣ )

∣ ˜ ( ) ˜ ( )∣
( )

( )

 d W

Wd f h f

S f
df

,

exp 2
; ,

,

14
i

N
i i

n
i

GW
GW

0

GW
2d

⎡

⎣
⎢

⎤

⎦
⎥ò

q

q
µ -

-¥

where W represents the waveform model, i and Nd denote the
ith and total number of GW detectors that have detected this
event, respectively, while S i

n, d̃i, and h̃i represent the power

spectral density of the detector noise, the detected strain signal,
and the expected strain from the waveform model, respectively.
The vector θGW includes parameters that are particularly

useful to infer EOS properties, namely,

{ } ( )M M: , , , , 15d dGW
EOS 1 2

1 2q = L L

where Mj
d ( j= 1, 2) are the individual masses in the detector

frame, while the tidal deformabilities of the two NSs are
computed as

( ) ( )k
R

M
:

2

3
, . 16j

j

s
j j c

j
2

5

EOS⎜ ⎟
⎛

⎝

⎞

⎠
qmL = = L

In the expression above, Rj is the radius of the jth NS in the
binary, k2 is the second tidal Love number, Mj

s is the mass in
the source frame, and c

jm denotes the central chemical potential.
The relation between the masses in the two frames is simply
mediated by the cosmological redshift z, namely,

( ) ( ) ( )M z M1 , , 17d
j

s
j

c
j

EOSqm= +

where z= 0.0099 for the GW170817 event (Abbott et al.
2019). To this scope, we use the interpolated likelihood
function for GW170817 that is implemented in Toast
(Hernandez Vivanco et al. 2020) and that is marginalized over
all the nuisance parameters ⧹:GW

nui
GW GW

EOSq q q= in
Equation (14) to construct the likelihood for the GW constraint.
These nuisance parameters consist of a dozen of additional
parameters that are useful when performing a Bayesian analysis
on GW-emitting binaries but that are not relevant for our EOS
inference. Including these parameters would significantly slow
down the sampling process and hence we use the likelihood of
Toast that marginalizes over these parameters.

2.5. CL Analysis

In the CL analysis, we use the same set of astrophysical data
as in the VL analysis, but the corresponding likelihood
functions are constructed differently. More specifically, the
likelihood functions are implemented as Heaviside step
functions of the form



( ( ) )

[ ( ) ] ( )

H H x x

x x1, for 0,
0, else,

18

i i

i i

EOS
cut

EOS
cut

⎧
⎨⎩

q

q

= -

=  -

 

where xi(θEOS) is a quantity constructed from the prior of EOS
parameters θEOS and is either constrained from above (−) or
from below (+) by some sharp cutoff value xi

cut obtained from
the ith measurement of this quantity. In the following, in order
to construct the CL functions, we will use the same sharp cutoff
values xi

cut for the astrophysical constraints employed by
Altiparmak et al. (2022), which we discuss in detail below. On
the other hand, for the EOS parameterization, the priors of the
EOS parameters and the theoretical constraints from pQCD and
CET will be the same as those in the VL analysis discussed in
the previous section.
For the TOV constraints, we choose a single lower bound of

MTOV� 2.01Me, which is motivated by the mass measure-
ments of PSR J0740+6620 and PSR J0348+0432. The
likelihood function that implements this constraint is then

4 We have employed the best-fit ST+PST.
5 We have employed the data file STU/NICERxXMM/FI_H/run10.
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simply given by

( ) ( ( ) ) ( ) H M M2.01 . 19TOV
EOS TOV EOSq q= -+

For the NICER constraints, most relevant are the lower
bounds on the NS radii since the upper bounds are typically set
by the binary tidal deformability for the GW170817 event

˜ ( ) ( )
( )

( )M M M M M M

M M
:

16

13

12 12
202 1 1

4
1 1 2 2

4
2

1 2
5

L =
+ L + + L

+

as these are effectively more constraining. It is also important
to note that measurement of NS masses 2.2Me make the
minimum-radius bounds obtained by NICER essentially
ineffective, as recently shown in Ecker & Rezzolla (2023). In
practice, we choose a lower bound of R> 10.8 km at
M= 1.1Me and a lower bound of R> 10.75 km at
M= 2.0Me to approximate the radius measurements of PSR
J0030+0451 and PSR J0740+6620, respectively. The corresp-
onding likelihood function can then be written as

( ) ( ( ) )
( ( ) ) ( )

 H R
H R

10.75 km
10.80 km . 21

NICER
EOS 2.0 EOS

1.1 EOS

q q
q

= -
´ -

+

+

Finally, as a GW constraint, we impose the upper bound
˜ 720L derived from GW170817 only for a low-spin prior.6

The likelihood can be expressed as

( ) ( ˜ ( ) ) ( ) H 720 , 22GW
EOS 1.186 EOSq q= L --

which has to be evaluated at a fixed chirp mass
 M1.186chirp = and mass ratios q:=M1/M2ä [0.7, 1], as

imposed by the GW170817 detection. We note that the results
will vary if different values for the maximum mass are
considered. These changes have been explored by Ecker &
Rezzolla (2023), who have shown that the changes introduced
by larger values of MTOV are mostly quantitative and that no
different qualitative behavior emerges. This has been verified
by taking into account the mass measurement of PSR J0952-
0607 (Romani et al. 2022) for both the VL and the CL
approaches. As discussed in more detail in Appendix C, we
find that the difference between the results from the CL and VL
methods is larger when considering a larger maximum mass,
but also that this is simply due to the larger error bar in the
mass measurement of PSR J0952-0607, which inevitably will
affect differently the VL, where the functional form of the
likelihood is fundamental, and the CL approach, which instead
is not sensitive to the error bar. Finally, strictly speaking the
results presented here will be modified if different cutoff values
are chosen for the confidence limits (e.g., changing from 90%
to 95%); these changes, however, will be proportional to the
difference in the cutoff limits and hence of the order of few
percent at most. For this reason, and again because they will
not introduce qualitative differences, we do not consider them
in our analysis.

3. Results

Next, we present the results of our Bayesian analyses
focusing our attention on the comparison between the VL and
CL approaches. In particular, we concentrate on the EOS
properties in Section 3.1 and on the NS properties in
Section 3.2. The comparison will be based on contrasting the
90% confidence intervals and the medians of the probability
density functions (PDFs) obtained from the two analyses. For
each quantity, we approximate the PDFs by counting the
number of curves that cross each cell of equally spaced grids
and then normalize them by the maximum count on the whole
grid. Also, for readability of the figures, we only display with
color maps the PDFs for the VL analysis, referring the reader to
Altiparmak et al. (2022) and to Ecker & Rezzolla (2022) for the
corresponding PDFs in the case of the CL analysis.

3.1. EOS Properties

In this section, we first analyze the EOS properties that can
be inferred from our two Bayesian setups. We first show in the
left panel of Figure 1 the PDFs of the sound speed that we
computed using the VL approach. The PDFs show a structure
very similar to the ones computed by Altiparmak et al. (2022)
and Marczenko et al. (2023), which were obtained making use
of the CL approach. In particular, it is possible to note that the
sound speed rises rapidly until energy densities
e≈ 600MeV fm−3, where it significantly exceeds the con-
formal limit c 1 3CFT

2 = . This is a well-known feature that is
necessary to explain maximum-mass measurements M≈ 2Me
(see discussion by Bedaque & Steiner 2015; Hoyos et al. 2016;
Moustakidis et al. 2017; Kanakis-Pegios et al. 2020; Brandes
et al. 2023; Gorda et al. 2022) that require a large sound speed
at moderate densities, and is further enhanced if larger
maximum-mass constraints are imposed, namely, if
MTOV> 2Me (see Ecker & Rezzolla 2023).
The decrease of the sound speed after the maximum at

higher densities is a consequence of the pQCD constraint
imposed at very large energy densities, as well as of the tidal-
deformability constraint from GW170817, that disfavors stiff
models with too large sound speed. Overall, when comparing
the 90% confidence level contours for the VL and CL
approaches (red-solid and orange-dashed lines, respectively),
it is apparent that not only the qualitative behavior is
remarkably similar, but also the quantitative ones. These
differences become more pronounced when comparing the
100% confidence level contours (red-dotted and orange-dotted
lines, respectively) as it is in the tails of the likelihood functions
that the largest differences are imprinted in the two methods.
More importantly, the statistical relevance of these stellar
models is commensurate to the very low probability with which
they appear.
We should note that there are also two artificial features in

the PDF that are due to the parameterization method. One is the
local minimum in the upper bound of the 90% confidence level
at c 0.7s

2 » and e≈ 350MeV fm−3, which is an artifact of
fixing the chemical potentials at constant values and which
vanishes when sampling the chemical potentials randomly. The
second one is the pronounced maximum at large densities,
close to where the pQCD boundary conditions are imposed.
This maximum is caused by cases in which the pressure at large
densities is relatively low, but where it is still possible to reach
the allowed interval for pQCD in a causal way with strongly

6 Large spins are of course possible in a binary merger (see Most et al. 2020,
for a discussion of the possible ranges in the spin and mass ratios), but their
inclusion would require a consistent model of our stellar equilibria, which here
are treated as nonrotating.
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varying sound speed slightly below μ= 2.6 GeV (see also
Altiparmak et al. 2022, where this is discussed in more detail).

Also shown in the left panel of Figure 1, respectively, with
solid and dashed black (purple) lines are the 90% confidence
levels of the PDFs relative to the centers of NSs with
M= 1.4Me (or maximally massive, with M=MTOV) for the
VL and the CL approaches, respectively. Also in this case, it is
possible to note that the differences between the two
evaluations of the likelihood functions are very small. More
specifically, we find that in the VL (CL) approach the median
value of the sound speed at the center of the NSs is
( ) ( )c 0.60 0.63s c, 1.4

2 = for the typical mass M= 1.4Me and
that 97% of the EOSs have central sound speedc 1 3s c,

2 > .
Similarly, we find that at the center of maximally massive NSs
with M=MTOV, the sound speed are ( ) ( )c 0.23 0.20s c, TOV

2 = ,
in agreement with the results of Ecker & Rezzolla (2023),
while only 28 (24)% of the EOSs have central sound
speedc 1 3;s c,

2 > a detailed description of the results in
Figure 1 can be found in Table 1.

In full similarity, we show in the right panel of Figure 1 the
two PDFs relative to the EOSs. Also in this case, the features of
the PDF of the VL approach are very similar to that obtained
previously via the CL method (Altiparmak et al. 2022). As
remarked in several previous studies, a most interesting feature
is the clear change of slope (also referred to as a kink) of the
PDF at energy densities e≈ 600MeV fm−3. Annala et al.
(2020) have interpreted this feature as a sign of the appearance
of a deconfinement phase transition from dense baryonic matter

to quark matter (see also Motta et al. 2021 for an alternative
interpretation in terms of hyperons). The 90% confidence
intervals of the two approaches are again shown by red-solid
and orange-dashed lines and they agree remarkably well.
Again, deviations can be appreciated when comparing the
100% confidence intervals, marked by red and orange-dotted
lines, which exhibit differences at energy densities
e≈ 300MeV fm−3. The origin of these differences is reason-
ably well understood. In particular, the difference in the upper
bound of these contours is due to the diverse treatment of the
GW constraint: the VL approach allows for larger variations
than the CL method since in the latter the binary tidal
deformability is assumed to be strictly ˜ 720L < . As a result,
the VL approach allows for EOSs that can have radii for stars
M≈ 1.4Me that are larger than those in the CL method (this
point will be discussed also in the next section).
Finally, the right panel of Figure 1 also reported by black

(purple) solid and dashed lines the values of the pressure and
energy density reached at the center of typical (maximally
massive) NSs with M= 1.4Me (MTOV) for the VL and the CL
methods, respectively. Also in this case, the two sets of curves
are almost identical. These contours are useful to determine the
median values of the energy density and pressure at the center
of representative stars. More specifically, within the VL (CL)
approach we find ec= 390 (380)MeV fm−3 and
pc= 60 (50)MeV fm−3 for typical mass (M= 1.4Me) NSs,
while ec= 1100 (1030)MeV fm−3 and

Figure 1. Left panel: PDF of the square of the sound speed shown as a function of the energy density. Red-solid (orange-dashed) lines mark the 90% confidence levels
of the PDF, while the solid and dashed black (purple) lines mark the 90% confidence levels of the PDFs relative to the centers of NSs with M = 1.4 Me (or maximally
massive, with M = MTOV) for the VL and the CL approaches, respectively. Right panel: the same as in the left panel but for the PDF of the pressure as a function of
the energy density. In addition, marked by the red-dotted (orange-dotted) line is the 100% confidence level for the VL (CL) method, while the uncertainties in CET
(Hebeler et al. 2013) and pQCD (Fraga et al. 2014) are shown as blue and green areas, respectively.

Table 1
NS and EOS Properties (90% Confidence Levels) from the VL and the CL Methods

Method R1.4 R2.0 RTOV Λ1.4 ΛTOV nc, 1.4 nc, TOV pc, 1.4 pc, TOV ( )cs c,
2

1.4 ( )cs c,
2

TOV

(km) (km) (km) (ns) (ns) (MeV fm−3) (MeV fm−3)

VL 12.2 0.9
0.9

-
+ 12.4 1.1

1.0
-
+ 11.8 1.0

1.3
-
+ 450 190

230
-
+ 11 5

18
-
+ 2.4 0.5

0.7
-
+ 5.5 1.2

1.2
-
+ 60 20

30
-
+ 350 170

210
-
+ 0.60 0.22

0.23
-
+ 0.23 0.17

0.38
-
+

CL 12.4 1.0
0.5

-
+ 12.6 1.4

0.7
-
+ 12.1 1.3

1.1
-
+ 490 220

130
-
+ 13 7

26
-
+ 2.3 0.4

0.8
-
+ 5.2 1.1

1.5
-
+ 50 10

30
-
+ 310 150

220
-
+ 0.63 0.25

0.23
-
+ 0.20 0.16

0.38
-
+

Note. Listed are the radii R of NSs with mass M = 1.4, 2.0 Me, with maximum massM = MTOV, the corresponding tidal deformabilities Λ1.4 and ΛTOV, as well as the
number density nc, the pressure pc and the sound speed cs c,

2 at the center of typical (M = 1.4 Me) and maximally massive (M = MTOV) NSs.
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pc= 350 (310)MeV fm−3 inside maximally massive NSs
(M=MTOV) (see also Table 1).

3.2. NS Properties

We next move on to the NS properties obtained from the VL
and the CL approaches. As in the previous section we show for
clarity only the PDFs for VL, but the confidence intervals for
both VL and CL. Let us start with a discussion of the mass–
radius relation shown in Figure 2. Overall, the PDFs from the
VL and CL analyses are very similar and centered around
R≈ 12 km for NSs with massesM 2.0Me, while they start to
differ for more massive stars, where the VL approach allows
for NSs with R∼ 14 km although with rather small probability.
The slightly wider PDF in the VL approach can be explained
by the fact that the NICER and the GW constraints are imposed
with distributions that have some support also beyond the sharp
cutoff values that are employed in the CL approach. This can
be seen more clearly by comparing the outer contours (100%
intervals) shown as red (VL) and orange (CL) dotted lines. As a
result, the VL PDF yields upper and lower bounds for the NS
radii that are less restrictive than those of the CL approach. On
the other hand, when comparing the 90% confidence intervals
of the two approaches (solid and dashed lines) it is possible to
conclude that they are essentially identical, thus underlying that
the methodological differences in the use of the likelihood
functions two approaches do not result in significant changes in
the PDFs. Furthermore, both 90% confidence levels are in good
agreement with the analytic lower bound

  ( ) ( )R M M M Mkm 8.91 2.66 0.88 2+ - (black-dashed
line) derived when using the detection of GW170817 and the
estimates on the threshold mass to prompt collapse (Koeppel
et al. 2019; Tootle et al. 2021).

Also shown in the right panel of Figure 2 are the one-
dimensional PDF slices obtained in the two approaches for NSs
with fixed masses M= 1.4 and 2.0Me, together with the
corresponding median estimates (vertical solid lines) for their
radii. These cuts show more explicitly that the VL approach
results in distributions that are wider and less skewed than
those for the CL case, but also that the resulting median values
differ only by ≈200 m (see Table 1 for details); overall, the

differences between the two approaches are clearly much
smaller than the current observational uncertainties.
Next, we discuss the PDFs for the tidal deformabilities of

isolated and binary NSs that are plotted in Figure 3. More
specifically, in the left panel, we show how the PDFs of the
tidal deformability Λ of isolated NSs depend on the gravita-
tional massM in these two Bayesian analyses. There is a simple
explanation for the overall trend of the PDF: for generic EOSs
that are viable, the relative change in the NS radius is 6% in
the relevant mass range of M≈ 1–2Me, so that the tidal
deformability is (see Equation (16)) Λ∼ k2M

−5∼M− p, with
p 5. Comparing the confidence intervals of the VL and CL
approaches leads to conclusions that are very similar to those
drawn for the mass–radius relation in Figure 2. More
specifically, while the 100% confidence interval of the VL
approach is significantly wider than that of the CL method, the
90% contours are again almost identical, so that the differences
between the two methods affect mostly the less probable and
therefore less important regions of the PDFs.
In the right panel of Figure 3, we show instead the

dependence of the binary tidal deformability parameter L̃ on
the chirp mass chirp. The PDF is based on more than
9.0× 106 binary models with uniformly distributed mass ratios
q ä [0.4, 1.0], i.e., a range that is reasonable according to the
mass ratios in binary NS systems detected so far. Analogous
results from the CL approach have been shown by Altiparmak
et al. (2022) and were later generalized to large-mass
constraints by Ecker & Rezzolla (2023) (see also Zhao &
Lattimer 2018, for similar studies but where no PDF is
computed). Note that, in contrast to previous plots, the red-
solid and orange-dashed lines show here the 99% confidence
levels of the PDFs. As discussed by Ecker & Rezzolla (2022),
these bounds—and in particular the lower one—are of great
importance to constrain the tidal deformability (and hence the
EOS) using accurate measurements of the chirp mass of future
GW detections of binary NS mergers.7 Interestingly, the lower

Figure 2. Left panel: the same as in the right panel of Figure 1 but for the PDF of the stellar radius shown as a function of the stellar mass. In addition, marked by a
black-dashed line is the lower bound for the radii as computed from considerations on the threshold mass (Koeppel et al. 2019). Right panel: one-dimensional PDF
slices at fixed NS mass. The blue and green solid (light-blue and light-green dashed) lines report the PDF cuts for the radii of an NS with M = 1.4 and 2.0 Me for the
VL (CL) analysis, respectively. The vertical thin solid lines mark the corresponding median radii for the four PDFs.

7 We note that because Λ(M) and ˜ ( )chirpL are related (in the equal-mass
case L̃ = L and M M 2chirp

5= ), the left and right plots in Figure 3 can be
approximately mapped into each other after a simple rescaling M M 25 .
This mapping is quite accurate for q ≈ 1 but degrades as the mass ratio is
further decreased.
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bounds of these intervals are again almost identical, but the
upper bounds differ. The reason for this is that the upper bound
is directly set by the GW constraint of GW170817, while the
lower bound mostly depends on the TOV constraint (Ecker &
Rezzolla 2023).

In particular, the sharp cutoff on L̃ at  M1.186chirp =
employed in the CL approach strongly skews the distribution
toward the larger values of L̃. This is clearly visible in the
bottom part of the right panel in Figure 3, where we report cuts
of the binary tidal deformability at  M1.186chirp = for the
two approaches; clearly, the CL cut has a rapid falloff for
˜ 750L , while the VL cut is almost Gaussian with a longer

tail up to ˜ 1000L . As a result, the CL approach slightly
underestimates the upper bound on L̃, while the VL approach
gives a more conservative estimate. Following Altiparmak
et al. (2022), we have calculated an analytic fitting function that

approximates these bounds and is given by8

˜ ( )( ) a b , 23c
min max chirpL = +

where a=−16, b= 560, and c=−5.1 for the lower bound in
both VL and CL analyses, while a=−19 (0.4), b= 2200
(1900), and c=−5.1 (−5.5) for the upper bound in the
VL (CL) analysis.
Notwithstanding these small differences, the median values

(thin vertical lines) for the case of the GW170817 event, whose
chirp mass was  M1.186chirp = , are quite similar:
˜ 4801.186 190

260L = -
+ (VL) versus 510 210

180
-
+ (CL). Furthermore, the

˜ ( )chirpL relation can also be used the other way around.
When in the future the EOS will be better constrained, it will be
then possible to constrain the source-frame chirp mass. Our
results can be combined with the detector frame chirp mass
from the waveform-matched filter to find the redshift of the

Figure 3. Left panel: PDF of the tidal deformability Λ of isolated NSs shown as a function of the mass (the color coding is the same as that in the previous figures).
Right panel: PDF of the binary tidal deformability L̃ of binary NS systems as a function of their chirp masschirp. Indicated with a horizontal green line is the chirp
mass of the GW170817 event,  M1.186chirp = . The bottom part of the panel shows the corresponding one-dimensional PDF slices at  M1.186chirp = , where
the median values are marked by vertical thin lines.

Figure 4. PDFs of the square of the sound speed as a function of normalized radial coordinate r/R for NSs of mass M = 1.4 Me (left panel) and M = MTOV (right
panel). The color coding is the same as that in the previous figures, but the black-solid (black-dashed) lines report here the median for the VL (CL) approach.

8 For clarity, we do not report the fitting functions in Figure 3, but the quality
of the fit can be appreciated from Figure 4 of Altiparmak et al. (2022).
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luminosity distance and thus constrain cosmological models
(see, e.g., Messenger et al. 2014).

We next switch our attention to the PDFs of the sound speed
( )c r Rs

2 in the two approaches. This is presented in the left and
right panels of Figure 4, where we report the spatial
dependence (i.e., as a function of the normalized radial
coordinate r/R) of the PDFs of the sound speed inside typical
(M= 1.4Me) and maximally massive (M=MTOV) NSs.

The overall behavior of the PDF for the VL approach shown
here is similar to the one from the CL method presented by
Ecker & Rezzolla (2022, 2023). In particular, it is interesting to
note that in typical NSs the sound speed rises monotonically
from the surface toward the center, where it reaches values
( )c 0.6s c,

2
1.4 » that are significantly larger than the conformal

limit. On the other hand, in maximally massive NSs the sound
speed is nonmonotonic and has a local maximum with
c 1 3s,max

2 > in the outer layers (i.e., r/R∼ 0.6) and a local
minimum at the center with ( )c 1 3s c,

2
TOV (see Table 1 for

details). The confidence intervals and median values from VL
and CL approaches are remarkably similar, even quantitatively.
More specifically, for NSs with mass M= 1.4Me (left panel)
the VL prediction for the central sound speed,
( )c 0.60s c,

2
1.4 0.22

0.23= -
+ , is slightly lower than the one by CL,

( )c 0.63s c,
2

1.4 0.25
0.23= -

+ . Note that also in this case, the major
differences are in the upper 90% confidence levels, where the
sharp cutoff on L̃ employed in the CL analysis indirectly
causes a slight overestimate of the maximum possible values of
the sound speed. Instead, for maximally massive NSs with
M=MTOV (right panel), an opposite behavior is observed: the
central sound speed ( )c 0.23s c,

2
TOV 0.17

0.38= -
+ , from the VL

approach is slightly larger than the one from the CL method,
( )c 0.20s c,

2
TOV 0.16

0.38= -
+ . This is due to the pQCD constraint,

which introduces an anticorrelation between the sound speed
parameters at low and high densities, namely, the large values
of cs

2 in the low-density regions need to be compensated by
lower values in the high-density region.

Finally, we show in Figure 5 the correlation between the
radius RTOV and the central number density nc, TOV for an NS at
the maximum mass MTOV. Here again, red-solid and orange-
dashed ellipses enclose the 90% confidence levels obtained
from the VL and the CL approaches, respectively. These
intervals are essentially identical; hence, the relation between
RTOV and nc, TOV is largely independent of the choice of the
likelihood functions. In addition, we show results for a number
of microphysical multipurpose EOS models of pure nuclear
matter (nucleons), with hyperons (hyperons), with quark matter
(quark matter) and models derived from holographic QCD. All
EOSs are taken from the public database CompOSE9 (Typel
et al. 2015) and correspond to beta-equilibrium slices at the
lowest available temperature with electrons. Some of the
corresponding properties are listed in Table 2.
As a concluding remark we note that the correlation between

RTOV and a normalized number density nc, TOV/ns is described
by a second-order polynomial:

( )n

n
d

R
d

R
1

10 km 10 km
, 24c

s

,TOV
0

TOV
1

TOV
2

⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

⎛
⎝

⎞
⎠

= - +

where the coefficients are given by d0= 27.6 and d1= 7.5. The
relative residuals are well described by a Gaussian distribution
centered on zero and have a standard deviation of 3.7%. The
importance of Equation (24) is that it allows estimating the
maximum central density from future radius measurements of
very massive NSs. We have found that a relation similar to
Equation (24) holds also when considering the radii of NSs
with M= 1.4Me. In this case, the coefficients are given by
d0= 26.6 and d1= 7.6, but the scatter is 4 times larger,
reaching deviations of ;30%; although larger than in the case
of maximally massive stars, these deviations are much smaller
than the uncertainty in nc,TOV/ns; 3.7–7.0.

4. Conclusions

We have here investigated the systematic differences that are
introduced when performing a Bayesian-inference analysis of
the EOS of NSs employing either a variable (VL) or a constant
(CL) likelihood. The former is routinely adopted in Bayesian
analyses as it allows the introduction of suitably variable
likelihood functions for the set of constraints in the model. The
latter, on the other hand, mimics the approach frequently used
in those analyses where the data are used as sharp cutoffs and
uniform likelihoods. The advantages of the VL method are
therefore that it retains the full information on the distributions
of the measurements, thus making an exhaustive usage of the
data; its disadvantages are that it is more complex to implement
and computationally more expensive. The advantages of the
CL method, on the other hand, are to be found that the
simplicity of its implementation and the comparatively smaller
computational costs; its disadvantages are however that it does
not fully exploit all the information from the measurements and
is not adequate when the measurement results exhibit a bimodal
or multimodal behavior (a case not considered here).
In both approaches, the EOSs have been built using the

sound speed parameterization method (Annala et al. 2020;
Ecker & Rezzolla 2022; Altiparmak et al. 2022), with identical
priors for the initial EOS ensemble. For simplicity, we have
restricted our comparison to observational constraints only,

Figure 5. Relation between the normalized central number density of a
maximally massive star, nc, TOV/ns, and the corresponding radius, RTOV (the
color coding is the same as that in the previous figures). Also shown with
various symbols are the corresponding values for EOSs of pure nuclear matter
(green diamonds), with hyperons (black triangles), with quark matter (blue
crosses) and models derived from holographic QCD (red stars). Shown instead
with a black-dashed line is the quadratic fit given by Equation (24).

9 CompOSE website: https://compose.obspm.fr/.
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meaning that the prior ensembles in both cases are built by
imposing the CET and pQCD constraints in a fixed cutoff
manner. As a result, the likelihood functions of the CET and
pQCD constraints are constant, while that of the observational
constraints are suitably variable. Overall, the statistics are
performed making use of more than 1.5× 105 causal and
thermodynamically consistent posterior EOSs that satisfy the
nuclear theory and pQCD boundary conditions, as well as the
observational constraints from pulsars and GW measurements.

In our analysis, we have considered how the two inferences
differ when considering either the properties of the EOS (e.g.,
sound speed, pressure behavior as a function of the energy
density, and sound speed variation within the stellar interior) or
of the NSs (masses, radii, and tidal deformabilities). In all
cases, we have found that the two approaches lead to very
similar results and that the 90% confidence levels are
essentially overlapping. Some differences do appear when
comparing the 100% confidence levels, but these differences
concern regions of the PDFs where the probability is rather
small. When concentrating on what are the main sources of
difference we note that these can almost always be attributed to
the sharp cutoff on L̃ (i.e., ˜ 720L ) employed in the CL
analysis, which indirectly causes a slight overestimation of the
maximum possible values of the sound speed in a range of
energy densities inside that allowed for plausible stellar
models, but also a slight underestimate of the maximum
possible values of the stellar radii for all masses. Additionally,
the sharp cutoff on L̃ also leads to a smaller upper bound on L̃
with a consequent underestimation of the binary tidal
deformability using measured chirp mass. Considering the
rather small difference we conclude that the two functional
forms of the likelihood function in our Bayesian inference
behave rather similarly. We should note that this conclusion is
confidently true if we consider in our analysis the present
accurate mass measurements. Under different conditions, e.g.,
if very large uncertainties are present for the mass measure-
ment, this conclusion may be weakened simply because the VL
approach would intrinsically suffer from a large uncertainty in
the likelihood function, thus potentially leading to larger
differences with the CL approach. These considerations will

need to be taken into account when future observations become
available and the corresponding uncertainties have to be
assessed in the VL approach.
In addition to the comparison between the two inference

approaches and the assessment of the role of the likelihood
functions, our analysis has also produced two noteworthy
results. First, a clear inverse correlation between the normalized
central number density of a maximally massive star, nc, TOV/ns,
and the radius of either a typical M= 1.4Me NS or of the
corresponding maximally massive star, RTOV. Once a reliable
measurement of one of these radii is accomplished, the relation
will provide a rather stringent estimate of the number density
that needs to be matched by studies building EOSs from
nuclear theory. Second, and most importantly, it has confirmed
the relation found between the chirp mass chirp and the
binary tidal deformability L̃. We need to underline that the
importance of this result is that it relates a quantity that is
directly measurable—and is very accurately measured—from
GW observations, chirp, with a quantity that contains
important information on the microphysics L̃. For example,
when considering the case of the GW170817 event, whose
chirp mass is  M1.186chirp = , the bounds obtained in the
case of the VL approach are ˜ 4801.186 190

260L = -
+ .
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Table 2
Properties of the EOS Models Used in Figure 5

Type EOS R1.4 R2.0 RTOV MTOV ˜ ( )
1.186
q 1 0.7

L
= Ref.

(km) (km) (km) (Me)

Nucleons DD2 13.76 13.45 12.04 2.42 816 (784) Hempel & Schaffner-Bielich (2010)
LS220 12.66 11.34 10.62 2.04 574 (569) Schneider et al. (2017)
SFHx 12.4 11.78 10.9 2.13 464 (451) Steiner et al. (2013)
SLy4 11.73 10.67 10.0 2.05 313 (309) Schneider et al. (2017)
KOST2 11.58 11.21 10.2 2.22 358 (352) Togashi et al. (2017)

Hyperons DD2 Λf 13.75 12.84 11.77 2.1 813 (772) Banik et al. (2014)
DD2Y 13.75 12.33 11.53 2.04 814 (767) Marques et al. (2017)
DD2YΔ 1.1–1.1 13.47 12.22 10.63 2.17 698 (687) Raduta et al. (2020)

Quark matter RDF1.6 12.46 10.31 10.04 2.01 509 (501) Bastian (2021)
RDF1.7 12.46 11.44 10.76 2.11 508 (506) Bastian (2021)
TM1B145 12.92 12.25 10.57 2.27 625 (612) Sagert et al. (2010)
V-QCD soft 12.42 12.01 11.91 2.02 537 (517) Demircik et al. (2022)
V-QCD interm 12.51 12.4 11.86 2.14 565 (543) Demircik et al. (2022)
V-QCD stiff 12.65 12.85 11.89 2.34 617 (591) Demircik et al. (2022)

Note. The properties listed are the corresponding NS radii R1.4, R2.0 and RTOV at M = 1.4, 2.0 Me and the maximum mass MTOV, respectively, as well as the binary
tidal deformability parameter ˜

1.186L of GW170817-like binaries with chirp mass  M1.186c = for two different mass ratios q = 1 and 0.7.
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Appendix A
Comparison to HESS J1731-347

As mentioned in the main text, Doroshenko et al. (2022)
recently reported the combined mass–radius measurement of a
very light compact object within the supernova remnant
HESS J1731-347 having a mass M M0.77 0.17

0.20= -
+ and radius

R 10.4 km0.78
0.86= -

+ . Because of the untypically small values of
mass and radius that were deduced from combining distance
estimates from Gaia observations with X-ray spectrum
modeling, the nature and composition of this object are
currently unclear. Indeed, the compact star is speculated to be
either the lightest (and smallest) NS known or a strange star
composed of more exotic constituents than just nucleonic
matter.

Assuming that HESS J1731-347 is composed of standard
nuclear matter and maintaining the same uncertainties in the
mass measurement as those reported by Doroshenko et al.
(2022), we can use the results of our Bayesian analysis with VL
to infer the distribution of stellar radii compatible with our
posterior PDFs. In particular, we show in the left panel of
Figure 6 the 68.3% and 95.4% confidence levels of the PDFs
for the mass and radius of NSs as obtained in our analysis
(thick and thin red-solid lines, respectively) together with the
corresponding levels provided by Doroshenko et al. (2022)
(thick and thin light-blue solid lines, respectively)10 obtained
from the fitting of the X-ray data alone using a single-
temperature carbon atmosphere model and Gaia parallax priors.
Already a crude comparison reveals that our analysis tends to
predict systematically larger radii within the mass of interest,
with a difference of about one kilometer. It is a matter of
concern that a good portion of the allowed space for the mass
and radius suggested by Doroshenko et al. (2022) violates the
lower limits on the radius set by threshold mass by Koeppel
et al. (2019) (see also the estimate of Bauswein et al. (2017),
which requires R1.6� 10.30 km), although it is fair to recognize
that such lower limits have been deduced for larger masses.

Our tendency to have larger radii can be seen more clearly in
the right panel of Figure 6, where we compare the corresp-
onding one-dimensional PDF slices at M= 0.77Me from the
analysis of Doroshenko et al. (2022) (light-blue solid line) and
from our inference (red-solid line). Clearly, the corresponding
median values can be seen to differ by ≈1.5 km. Combining
the two PDF slices and properly normalizing leads to PDF
shown with the blue-dashed line, which suggests a radius
R 11.43 km0.60

0.64= -
+ in the 90% interval and therefore about 1

km larger than that deduced by Doroshenko et al. (2022). It will
be interesting to see if this difference persists when the present
(crude) comparison is further refined by imposing in our
Bayesian analysis the constraints coming from the measure-
ments of Doroshenko et al. (2022) and by lower limits set by
Koeppel et al. (2019); we postpone this investigation to
future work.

Appendix B
EOSs Employed in Figure 5

For completeness, we provide here the basic properties of the
EOSs used as symbols in Figure 5. These properties are listed
in Table 2 and we provide information on the NS radii (R1.4,
R2.0 at M= 1.4, 2.0Me, and RTOV at M=MTOV), on the
maximum mass MTOV and on the binary tidal deformability
˜

1.186L of GW170817-like binaries with chirp mass
 M1.186c = when considering two different mass ratios,

i.e., q= 1 and 0.7.

Appendix C
Impact of Large-mass Constraint

Here we determine the impact of the mass measurements of
the black-widow pulsar PSR J0952-0607, which has led to a
new maximum-mass constraint of M= 2.35± 0.17Me
(Romani et al. 2022). In the VL analysis, this implies
multiplying the total likelihood in Equation (12) by a new
term in the form of Equation (10), where we set M̄ M2.35=
and σ= 0.17Me. On the other hand, in the CL analysis the
new constraint is taken into account by simply replacing
2.01Me in Equation (19) with 2.35Me.

Figure 6. Left panel: comparison of the mass–radius data for HESS J1731-347 and the mass–radius distribution of our VL analysis. Thin (thick) red lines represent the
95.4% (68.3%) confidence level, while light-blue contours mark the 95.4% (68.3%) measurement posterior samples of HESS J1731-347. Right panel: one-
dimensional PDF slices at constant massM = 0.77 Me using the same color convention as in the left panel. The blue-dashed line combines the two PDFs and provides
our new estimate for the radius of HESS J1731-347.

10 We use the posterior data.
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Figure 7 reports the impact of the new constraint. Note that
in analogy with that found by Ecker & Rezzolla (2023), the
most significant change introduced by the larger mass
constraint is that of moving to higher values the lower bounds
for the stellar radii and the sound speed in the energy density
range of ∼[300, 600]MeV fm−3. In addition, the figure shows
that the differences between the distributions in the VL and CL
analyses are larger than that found when mainly considering the
constraint of maximum mass of 2.01Me from PSR J0348
+0432. This is simply due to the functional form of the
likelihood employed to account for the new constraint since a
smaller mass-measurement error makes Equation (10) behave
more like a Heaviside step function, which is just the functional
form we take in the CL likelihood of Equation (19). Thus, it is
natural to expect that the differences between the two methods
will depend also on the uncertainty of the maximum-mass
estimate. Notwithstanding these considerations, we note that
despite some differences in the boundaries, most of the 90%
intervals still overlap between the two methods (see Figure 7).
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